

National Cooperative Geologic Mapping Program

CONTACT INFORMATION

Wisconsin Geological and Natural History Survey State Geologist: James M. Robertson (608/262.1705) STATEMAP Contact: Thomas J. Evans (608/263.4125) WisconsinGeologicalSurvey.org

USGS — NCGMP Office Program Coordinator: Peter T. Lyttle (703/648.6943) http://ncgmp.usgs.gov

Federal fiscal year	Pleistocene or bedrock mapping covering all or parts of counties listed (scale 1:100,000)	State dollars	Federal dollars	Total project dollars
1993	Lincoln	\$54,786	\$24,000	\$78,786
1994	Walworth	40,895	40,789	81,684
1995	Walworth	32,122	31,998	64,120
1996	Manitowoc	48,130	47,502	95,632
1997	Kewaunee, Manitowoc	78,049	76,690	154,739
1998	Kenosha, Kewaunee, Racine, Walworth	85,704	83,130	168,834
1999	Door, Milwaukee, Waukesha	121,559	114,019	235,578
2000	Door, Ozaukee	83,906	79,429	163,335
2001	Door, Florence, Forest, Langlade, Outagamie, Vilas, Washington, Waupaca, Waushara, Winnebago	169,984	167,231	337,215
2002	Brown, Calumet, Fond du Lac, St. Croix	200,800	200,800	401,600
2003	Calumet, Fond du Lac, Green Lake, Marquette, St. Croix, Outagamie, Winnebago	266,161	244,115	510,276
2004	Calumet, Columbia, Green Lake, Marquette, Outagamie, Pierce, St. Croix, Winnebago	208,300	190,229	398,528
2005	Brown, Iowa, Oconto, Outagamie, Pierce, Shawano, St. Croix, Waupaca	212,120	194,978	407,098
2006	Iowa, Menominee, Oconto, Pierce, Shawano	232,265	213,860	446,125
2007	Adams, Juneau, LaCrosse, Marathon, Monroe, Portage, Waupaca, Waushara, Wood	80,913	72,768	153,681
2008	Brown, Calumet, Manitowoc, Ozaukee, Shawano, Washington, Waupaca	106,348	93,615	199,963
2009	Brown, Grant, Sheboygan	212,157	189,014	401,171
2010	Fond du Lac, Grant, Sheboygan	238,961	211,206	450,167
	TOTALS	2,473,160	2,275,373	4,748,533

he STATEMAP part of the National Cooperative Geologic Mapping Program (NCGMP) has significantly enhanced the Wisconsin Geological and Natural History Survey's (WGNHS) ability to produce new county geologic maps in Wisconsin. Over the past 18 years, STATEMAP has helped support geologic mapping of glacial and/ or bedrock materials and the preparation of digital map products in all or part of 39 counties. This new geologic map information is regularly incorporated into decision making on a wide variety of local and county-wide issues that include protecting groundwater, locating new municipal wells, siting waste-disposal facilities, identifying potential aggregate resources, and addressing a broad spectrum of land-use concerns. The geologic maps are also used to develop educational materials on the state's glacial history and landscapes.

Recent geologic mapping of glacial materials and Paleozoic bedrock in the Southeastern Wisconsin Regional Planning Commission (SEWRPC) seven-county area is

being used in a variety of ways in this rapidly urbanizing part of the state. For example, geologic mapping aids in the identification of supplies of non-metallic resources (sand, gravel, crushed stone, and dimension stone) that support urban and infrastructure construction. In addition, the geologic map information helps to constrain and calibrate a regional groundwater aquifer simulation model. This model, developed jointly by the WGNHS, U.S. Geological Survey–Water Resources Division, and the Wisconsin Department of Natural Resources, simulates water levels and movement in shallow and deep aquifer systems in the region. Model results support present and future regional groundwater and water-supply management planning efforts that directly address such issues as wellhead protection, the effect of landuse activities on groundwater, water conservation, groundwater recharge scenarios, the optimization of groundwater use, well interference, and the optimal location of new water-supply wells.