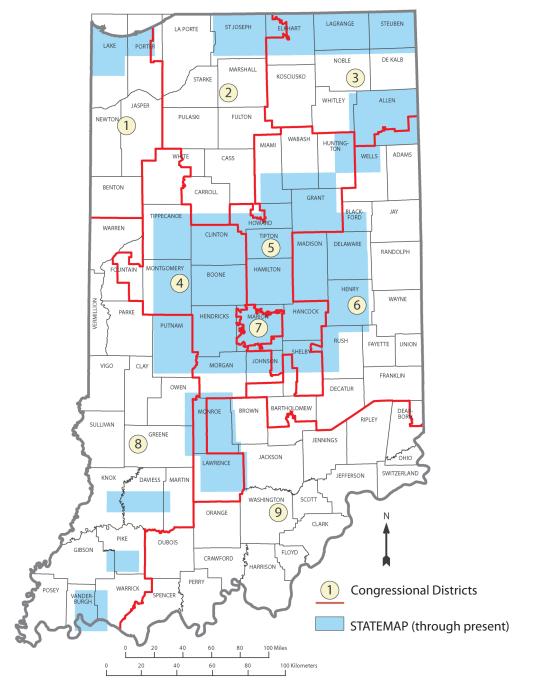


Association of American State Geologists



United States Geological Survey

National Cooperative Geologic Mapping Program

STATEMAP Component: States compete for federal matching funds for geologic mapping

INDIANA

Contact information

April 2009

Indiana Geological Survey State Geologist: John C. Steinmetz (812/855-5067) STATEMAP Contact: Marni D. Karaffa (812/855-1366) http://igs.indiana.edu

USGS Geologic Mapping Program Office Program Coordinator: Peter T. Lyttle (703/648-6943) Assoc. Program Coordinator: Randall C. Orndorff (703/648-4316) http://ncgmp.usgs.gov/

Summary of STATEMAP Geologic Mapping Program in Indiana

Federal Fiscal Year	Projects/ Scale	Federal Dollars	State Dollars	Total Project Dollars
1993	Surficial Mapping: Gary 7.5-min quadrangle: scale 1:24,000	24,426	64,160	88,586
1994	Surficial Mapping: Calumet City, Highland, Lake Calumet and Whiting 7.5-min quadrangles: scale 1:24,000	57,938	79,418	137,356
	Surficial Mapping: Chicago 30' x 60' quadrangle: scale 1:100,000			
	Surficial Mapping: Evansville North and Evansville South 7.5-min guadrangles: scale 1:24,000	30,000	50,079	80,079
1995	Surficial Mapping: Dyer, Crown Point and Saint John 7.5-min guadrangles: scale 1:24,000	35,000	53,203	88,203
	Surficial Mapping: Newburgh and Daylight 7.5-min quadrangles: scale 1:24,000	15,000	19,429	34,429
1996	Surficial Mapping: Shipshewana, Topeka, Oliver Lake, Lagrange and Sturgis 7.5-min quadrangles: scale 1:24,000	51,446	51,673	103,119
	Surficial Mapping: Continuation of mapping Daylight 7.5-min quadrangle: scale 1:24,000	16,771	18,787	35,558
	Surficial & Bedrock Mapping: Loogootee and Montgomery 7.5-min guadrangles: scale 1:24,000	52,135	85,433	137,568
	Digital Conversion: Maps and report of Allen County	12,290	13,191	25,481
1997	Surficial Mapping: Mongo and Wolcottville 7.5-min quadrangles: scale 1:24,000	44,827	45,101	89,928
	Surficial & Bedrock Mapping: Washington and Wheatland 7.5-min quadrangles: scale 1:24,000	62,586	78,891	141,477
1998	Surficial Mapping: Middlebury, Millersburg, Stroh, Orland and Bronson South 7.5-min quadrangles: scale 1:24,000	56,045	57,008	113,053
	Surficial & Bedrock Mapping: Oakland City and Augusta 7.5-min guadrangles: scale 1:24,000	16,261	54,771	71,032
1999	Surficial Mapping: Arcadia, Ashley, Angola East, Angola West, Bristol, Clear Lake, Edon, Elkhart,	62,950	63,052	126,002
	Foraker, Goshen, Hamilton, Kempton, Sheridan and Tipton 7.5-min quadrangles: scale 1:24,000	30,160	30,449	60,609
	Bedrock Mapping: East 1/4 Lafayette and West 1/4 Muncie 30' x 60' quadrangles: scale 1:100,000	16,890	17,163	34,053
2000	Surficial Mapping: Carmel, Fishers, Lakeville, Lydick, Noblesville, North Liberty, Osceola, South	63,775	64,502	128,277
	Bend East, South Bend West, Wakarusa, Westfield and Wyatt 7.5-min quadrangles: scale 1:24,000	34,990	35,732	70,722
	Bedrock Mapping: Indianapolis 30' x 60' quadrangle: scale 1:100,000	40,807	41,023	81,830
2001	Surficial Mapping: East 1/2 Lafayette and West 1/2 of Muncie 30' x 60' quadrangles: scale 1:100,000	197,152	197,366	394,518
	Bedrock Mapping: West 1/2 Muncie, West 1/2 New Castle and Lafayette 30' x 60' quadrangles: scale 1:100,000			
	National Geologic Map Database: Indiana geoscience map bibliography	6,000	6,000	12,000
2002	Surficial Mapping: Continuation of 2001 mapping	227,334	227,689	455,023
	Bedrock Mapping: Continuation of 2001 mapping			
2003	Surficial Mapping: Cleveland, Ingalls, Greenfield and Pendleton 7.5-min quadrangles: scale 1:80,000	147,329	147,887	295,216
	Bedrock Mapping: Southwest part of the Wabash 30' x 60' quadrangle: scale 1:100,000			
2004	Surficial Mapping: Dunreith, Knightstown, Lewisville, New Castle E, New Castle W and Shirley 7.5-min quadrangles: scale 1:50,000	125,555	125,807	251,362
	Bedrock Mapping: Gosport, Modesto and Hindustan 7.5-min quadrangles: scale 1:24,000	78,017	78,019	156,036
2005	Surficial Mapping: Mount Pleasant and Sulphur Springs 7.5-min quadrangles: scale 1:50,000	70,994	71,160	142,154
	Bedrock Mapping: Whitehall, Bloomington and Unionville 7.5-min quadrangles: scale 1:24,000	68,130	69,169	137,299
2006	Surficial Mapping: Muncie East and Muncie West 7.5-min quadrangles: scale 1:40,000	74,529	75,028	149,557
	Bedrock Mapping: Allens Creek, Clear Creek, and Stanford 7.5-min quadrangles: scale 1:24,000	81,207	81,416	162,623
2007	Surficial Mapping: Eaton and Wheeling 7.5-min quadrangles: scale 1:50,000	58,086	58,422	116,508
	Bedrock Mapping: Bartlettsville and Oolitic 7.5-min quadrangles: scale 1:24,000	88,038	88,374	176,412
2008	Surficial Mapping: Huntington, Zanesville, Majenica, and Markle 7.5-min quadrangles: scale 1:63,360	45,441	45,607	91,049
	Surficial Mapping: Plainfield and Brownsburg 7.5-min quadrangles: scale 1:63,360	24,812	25,309	50,121
	Bedrock Mapping: Bedford East and Bedford West 7.5-min quadrangles: scale 1:24,000	98,176	98,587	196,763
	Digital Conversion: Surficial maps within parts of three counties of northern Indiana: scale 1:100,000	17,719	18,133	35,852
2009	Surficial Mapping: Bippus, Laud, and parts of Arcola, Churubusco, and Zanesville 7.5-min quadrangles: scale 1:63,360	54,812	55,183	109,995
	Bedrock Mapping: Norman and Tunnelton 7.5-min quadrangles: scale 1:24,000	101,659	101,709	203,368
	Digital Conversion: Surficial maps within St. Joseph County: scale 1:48,000	15,948	16,369	32,317
	TOTALS	\$2,305,235	\$2,510,299	\$4,815,535

Statement of Outcome

Geologic Mapping: A State Need

The Indiana Geological Survey (IGS) STATEMAP program strives to produce quality geologic maps at scales suitable to address the societal, scientific and operational needs of the state. Mapping priorities are determined on the basis of several criteria, including the practical need to concentrate mapping in corridors and centers of growth, the distribution of completed and in-progress work, the availability of data, and opportunities for inter-agency cooperation. Through their mapping efforts, IGS staff endeavor to promote broad-based geological understanding amongst our citizens and bridge the gap between the highly technical nature of science and the need for general earth information.

How are geologic maps used?

In many ways, geologic maps are best utilized for making informed decisions involving any land-use changes, such as:

- Assessing ground-water availability and quality
- Assessing mineral and energy resources and the impact of their extraction of the environment
- Aiding in land-use planning
- · Locating waste disposal sites for solid and hazardous wastes
- Evaluating the impact and helping to mitigate geologic hazards such as earthquakes and landslides

Advances in Geographic Information Systems and computer databases permit STATEMAP-sponsored geologists to make customized, user-friendly products. Moreover, modern geologic maps are digitally stored for ease of rapid dissemination at minimal cost. These methods of data handling and manipulation, in themselves, create new mapping challenges and opportunities.

Overall, the intent of modern geologic maps is to permit the citizens of the state to raise the quality of their lives through informed decisions directed toward the wise use of the land.