Filamentary Environment and Mass Measurements of Galaxy Clusters

Yookyung Noh (UC Berkeley)

work with Joanne Cohn 12/10/2012 Fermilab Particle Astrophysics Seminar

Cosmic Web

In observed galaxies

In simulated dark matter

Clusters are the largest, most massive virialized objects lying at the nodes of cosmic web (M $\approx 10^{14}$ - 10^{15} M_o/h, R ≈ 1 Mpc)

Clusters in Multi-wavelength Observations

X-ray Luminous, spatially extended objects due to hot gas

Optical Large populations of galaxies Microwave Sunyaev-Zeldovich Effect (SZE) Decrement or increment of the background CMB

Why do we study clusters?

- Cosmological probe
- Special environment of galaxies
- Hosting extreme astrophysical phenomena ^{Voit 05,} Allen++11, etc.

Cluster mass is a crucial property!

Change from w=-1 to w=-0.8 • 30-60% change in the predicted abundance • only 20% change in the mass threshold

Challenges in Mass Measurements

- Measure cluster mass indirectly
- Measurements include the cosmic web around the cluster

millennium simulation

Challenges in Mass Measurements

- Measure cluster mass indirectly
- Measurements include the cosmic web around the cluster

Questions about Filaments around Galaxy Clusters

 What are the properties of filaments which surround clusters?
 Extending the work of Colberg, Krughoff & Connolly 05, Aragon-calvo, Shandarin, & Szalay 10

• How do filaments affect cluster observations?

What are Filaments? (No Unique DEFN)

Observations

- $\begin{array}{c} 36 \\ 42 \\ 48 \\ 000554 \\ -13^{\circ}00 \\ 06 \\ -13^{\circ}12 \\ 01^{\circ}39^{\circ}00^{\circ}} \\ 30^{\circ} \\ 30^{\circ} \\ 30^{\circ} \\ 38^{\circ}00^{\circ} \\ 30^{\circ} \\ 30^{\circ$
- Extended warm hot gas between clusters (T ~ 10⁵ - 10⁷ K, 40% of total baryon)
- Overdensities of galaxies, Orientations of galaxies, etc
- Filament finders
 - Halo based: e.g. Minimal spanning trees (e.g. Barrow++85)
 - Density based: e.g. Hessian of the potential or density (e.g. Hahn++07, Bond++10)

What are Filaments? (No Unique DEFN)

Observations

- $\begin{array}{c}
 36 \\
 42 \\
 48 \\
 00 \\
 54 \\
 -13^{\circ}00 \\
 06 \\
 -13^{\circ}00 \\
 06 \\
 -13^{\circ}12 \\
 01^{\circ}39^{\circ}00^{\circ} \\
 30^{\circ} \\
 30$
- Extended warm hot gas between clusters (T ~ 10⁵ - 10⁷ K, 40% of total baryon)
- Overdensities of galaxies, Orientations of galaxies, etc
- Filament finders
 - Halo based: e.g. Minimal spanning trees (e.g. Barrow++85)
 - Density based: e.g. Hessian of the potential or density (e.g. Hahn++07, Bond++10)

Simulation

- N-body simulation (TreePM code, White 2002)
 - 250 Mpc/h box, 2048³ particles
 - $\Omega_m = 0.274$, h = 0.72, n=0.95, $\sigma_8 = 0.8$
 - Halos via FoF with linking length ~0.168
 - Focus here on z=0.1
- Mock observations
 - Based on dark matter and subhalo distribution

- Based on halos (Zhang et al. 2009) (min. halo mass: 3×10¹⁰ M_☉)
 - Take each massive halo
 - Look at neighbors (<10Mpc/h)
 - See which bridge is densest in terms of halos (>5ρ_b)
 - Cut at the most massive halo in filament (>3Mpc/h)
- Add various refinements
 - Analogous to spherical overdensity of the cluster
 - Merge nearby filaments, etc..

- Based on halos (Zhang et al. 2009) (min. halo mass: 3×10¹⁰ M_☉)
 - Take each massive halo
 - Look at neighbors (<10Mpc/h)
 - See which bridge is densest in terms of halos (>5ρ_b)
 - Cut at the most massive halo in filament (>3Mpc/h)
- Add various refinements
 - Analogous to spherical overdensity of the cluster
 - Merge nearby filaments, etc..

- Based on halos (Zhang et al. 2009) (min. halo mass: 3×10¹⁰ M_☉)
 - Take each massive halo
 - Look at neighbors (<10Mpc/h)
 - See which bridge is densest in terms of halos (>5ρ_b)
 - Cut at the most massive halo in filament (>3Mpc/h)
- Add various refinements
 - Analogous to spherical overdensity of the cluster
 - Merge nearby filaments, etc..

- Based on halos (Zhang et al. 2009) (min. halo mass: 3×10¹⁰ M_☉)
 - Take each massive halo
 - Look at neighbors (<10Mpc/h)
 - See which bridge is densest in terms of halos (>5ρ_b)
 - Cut at the most massive halo in filament (>3Mpc/h)
- Add various refinements
 - Analogous to spherical overdensity of the cluster
 - Merge nearby filaments, etc..

- Based on halos (Zhang et al. 2009) (min. halo mass: 3×10¹⁰ M_☉)
 - Take each massive halo
 - Look at neighbors (<10Mpc/h)
 - See which bridge is densest in terms of halos (>5ρ_b)
 - Cut at the most massive halo in filament (>3Mpc/h)
- Add various refinements
 - Analogous to spherical overdensity of the cluster
 - Merge nearby filaments, etc..

Statistics of Total Filaments (z=0.1)

- Number of filaments in total: ~30000
- Number of nodes: ~44000
- Halo mass fraction in filaments: ~45%
- Halo number fraction in filaments: ~36%

Filaments Surrounding Clusters

- Finder restricts to local filamentary environment of the cluster
 - Filaments may be longer (e.g. Colberg++05, Gonzalez&Padilla10)

Filaments Surrounding Clusters

- 243 Clusters ($M_{halo} \ge 10^{14} M_{\odot}/h$) \rightarrow 227 nodes
- 10 Mpc/h radius sphere around each cluster
 - ~70% halo mass in cluster filaments

Statistics of Cluster-Filaments

 ~75% of cluster filament mass in the three most massive filaments

- As cluster mass increases, number of cluster-filaments increases
 - Trends agree with previous work (e.g. Colberg++05)

Geometry

What possibilities are there for the filaments?

Schematic example for 8 filaments from a cluster

Filament Distribution around Clusters

Example: Filament distribution around one single cluster

By eye, filament distribution tends to be planar

Solid Angle Subtended by Filaments

- Project all the halos in all the filaments in IOMpc/h sphere
- Calculate the solid angle subtended by those halos in filaments
 - About 10-30% of the sky is covered

 $M_{node} \sim 5 \times 10^{14} M_{sun}$

Spatial Distribution around Clusters

5

5

Defining Planes

• "Plane":

- Disk with 10 Mpc/h radius, 3 Mpc/h thick
- Orientation: Contain max. mass
 - Cluster-Filaments
 Pairs of filaments
 - Other tracers
 : Random directions

Defining Planes

• "Plane":

- Disk with 10 Mpc/h radius, 3 Mpc/h thick
- Orientation: Contain max. mass
 - Cluster-Filaments
 Pairs of filaments
 - Other tracers
 : Random directions

Defining Planes

• "Plane":

- Disk with 10 Mpc/h radius, 3 Mpc/h thick
- Orientation: Contain max. mass
 - Cluster-Filaments
 Pairs of filaments
 - Other tracers
 : Random directions

Planar Geometry around Clusters

~60-80% of mass or richness in "planes"

 Planes from different tracers tend to be aligned

 Cluster major axis tends to lie in plane

Normal to the plane is a special direction

Cluster Observables with Planar Environment

Are there correlations between the direction of the plane and the scatter in cluster mass measurements?

Mass measurements in simulation

For more detail, see White, Cohn, & Smit 10

- Mass along 96 different lines of sight
- Mass measurements via
 - Richness

- N_{red}: Red galaxies, Max BCG, colors using Skibba & Sheth 09
- N_{phase}: All galaxies, cluster membership using Yang, Mo, & van den Bosch 08 (phase space)
- Velocity dispersions (V_{3σ}, V_{phase}): dynamics of galaxies
- SZ flux: based on the mass of halos, cylinder, r180b
- Weak lensing: SIS or NFW profile, cylinder, r180b

Planar Environment vs. Observables

• Consider the angle of normal to plane with the line of sight for cluster observation

Example of correlation around one cluster

 $M_{cluster} = 2.7 \times 10^{14} M_{\odot}/h$

Yookyung Noh (UC Berkeley)

Correlation coefficient distribution for all clusters

Significant correlation (< -0.25) for many clusters Corrln. depends on the type of

measurement

Scatter in a given mass measurement is correlated with the filamentary environment (via projection effects)

White, Cohn & Smit 11

- Are the scatters in different cluster mass measurements correlated with each other?
- What are physical origins of the scatters of cluster mass measurements?

Scatter in Cluster Mass Measurements

Correlated Scatter

A single cluster

Ensemble of clusters Yookyung Noh (UC Berkeley)

Correlated Mass Scatter

- Why is this important? Rykoff++08, Stanek++10, White, Cohn, & Smit10, etc.
 - Stacking of ensemble of clusters can result in a bias
 - Error estimates can be incorrect for the joint measurement of one cluster

Analyses are beginning to include: Rozo ++09, Mantz++10, Benson++11, etc. A recent application to an observational cluster sample: Angulo++12 etc.

- How can we take care of it?
 - Calibrate with simulations
 - Understand what it is physically related to

Correlated Mass Scatter

- Why is this important?
 - Rykoff++08, Stanek++10, White, Cohn, & Smit10, etc. Stacking of ensemble of clusters can result in a bias
 - Error estimates can be incorrect for the joint measurement of one cluster

Analyses are beginning to include: Rozo ++09, Mantz++10, Benson++11, etc. A recent application to an observational cluster sample: Angulo++12 etc.

- How can we take care of it?
 - Calibrate with simulations
 - Understand what it is physically related to 0

Principal Component Analysis (PCA)

Convert a set of correlated variables into a set of independent variables

- PĈs are eigenvectors of covariance/correlation matrix
- Corresponding eigenvalues indicate the importance of PĈs
 - PĈO gives the direction of the largest variance

PCA for Cluster Observables

PC0 accounts for 70% of total variance on average

- $P\hat{C}0 \sim 0.42M_{red} + 0.14M_{ph} + 0.19M_{sz} + 0.83M_{vel} + 0.29M_{wl}$
- Including PC0 and PC1 accounts for 95% of total variance on average

PCs vs. Observables

- Velocity dispersion mass measurements show the largest correlation with PC0
- N_{phase} mass measurements show the largest correlation with PC4

Cluster Properties depending on line-of-sight

Consider directional dependent intrinsic and environmental properties

Some related work e.g. Splinter++97, Kasun&Evrard05, Lee++08, Paz++11

Correlation with line-of-sight dependent Properties

- Calculate the correlations between
 - |cos\[embed]| between line-of-sight direction and each of directional properties
 - cos Φ of the mass scatter along each line-of-sight to PC0 direction

Cluster Properties depending on line-of-sight

Cluster Properties depending on line-of-sight

Next largest correlation/ covariance

Many of these axes are close to each other in direction → observing along long axis has
 largest contribution from PC0

Correlations with the long axis and mass scatters have been discussed in e.g. Becker & Kravtsov II, Feroz & Hobson I2

PCA for Ensemble of Clusters

- Calculate PC's for scalar properties
 Earlier related work: Jeeson-Daniel++, Einasto++, Skibba&Maccio(II)
 - Mass scatter properties: average scatter (i.e. [<M_{obs}> M_{true}]/M_{true}), PC's from mass scatter PCA, etc.
 - Physical properties: mass fraction in filament plane, richness fraction in biggest sub halos, triaxiality, etc.
- PC0 accounts for ~20% of total variance
 - Including up to PC4 accounts for ~50% of total variance

PCA for Ensemble of Clusters

 PC0 is strongly correlated with the average offsets in mass measurements and shape parameters

Summary

- Filament distributions around clusters are planar
 - A source of scatter in mass measurements
- Scatters in different mass measurements are often correlated with each other
 - can cause biases, error, underestimates, etc. if not taken into account
 - Due to the shared physical origins of scatter: Cluster long axis is most correlated with PC0
 - Analyzed using PCA: which combinations of scatter tend to occur together?

Summary

 Calibrating the scatters and their correlations requires simulations which faithfully reproduce observables, systematics and selection function