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© Directional detection : overview

© Reconstructing the dark matter distribution function
@ Kinematics: overview
@ Continuous velocity distributions
@ Parameterizing the distribution function

© Distribution function and statistics

@ Test using N-body simulations
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Directional detection : overview
Current results and prospects
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Reconstructing the dark matter distribution function

© Reconstructing the dark matter distribution function
@ Kinematics: overview
@ Continuous velocity distributions
@ Parameterizing the distribution function
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Reconstructing the dark matter distribution function Kinematics: overview

@ Directional detection : overview

© Reconstructing the dark matter distribution function
@ Kinematics: overview

© Distribution function and statistics

@ Test using N-body simulations
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Reconstructing the dark matter distribution function Kinematics: overview

Recoil energies and angles
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Reconstructing the dark matter distribution function Kinematics: overview

Scattering and form factors
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Reconstructing the dark matter distribution function Kinematics: overview

Scattering and form factors
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Reconstructing the dark matter distribution function Continuous velocity distributions

@ Directional detection : overview

© Reconstructing the dark matter distribution function

@ Continuous velocity distributions

© Distribution function and statistics

@ Test using N-body simulations
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Reconstructing the dark matter distribution function Continuous velocity distributions

Examples of velocity distributions

,,,,,

s|

Maxwellian distribution

)))))

Michie distribution

Sonia El Hedri Dark matter in 3D

Vr,t/ Vesc

June 4, 2012

11/ 42



Reconstructing the dark matter distribution function Continuous velocity distributions
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Reconstructing the dark matter distribution function Continuous velocity distributions

1 — ¢ profiles of the rate — Anisotropic case
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Reconstructing the dark matter distribution function Continuous velocity distributions

Dark matter galactic halo

Dark matter halo characterized by a phase space distribution function
P(r,V) = f(7,V)d®vd®r

Dark matter density profile
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Reconstructing the dark matter distribution function Parameterizing the distribution function

From local to global

A detector on Earth measures
fo (V) = f(Fa, V).

How to get f(7, V) for any position in the galaxy?

Jeans theorem

Any steady-state solution of the collisionless Boltzmann equation depends
on the phase-space coordinates only through integrals of motion.
Conversely, any function of the integrals of motion is a steady-state
solution of the collisionless Boltzmann equation.
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Reconstructing the dark matter distribution function Parameterizing the distribution function

Jeans theorem

A detector on Earth measures
fo (V) = (7, V)
Jeans theorem states
f(7, V) = f (h[r, V], k[F, V], k[F, V])
= fo(V) = f (h[re, V], b[fe, V], B[Fe, V])

fe (V) allows to reconstruct the global distribution function!
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Reconstructing the dark matter distribution function Parameterizing the distribution function

Example : Maxwellian distribution
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Reconstructing the dark matter distribution function Parameterizing the distribution function

Parameterizing the distribution function

600
Standard procedure: 500
@ Assuming an ansatz for (V) @ 400
(e.g. Maxwellian) £ 300

o Fit the detection signal to get o

vy, etc... 200

100

@ Only local results

0 200 400 600 800

@ Strong model dependance Vi, (Km/s)
a

Peter et al., arXiv:1202.5035v1
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Reconstructing the dark matter distribution function Parameterizing the distribution function

Parameterizing the distribution function

Find a global and model-independant parameterization of (7, V):

e global : f(7,V) — (&, L, |L],...)

@ model-independant : use series expansions

f(?, ‘7) = Z Cngi(g)hj(Lz) R

ijk
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Reconstructing the dark matter distribution function

Parameterizing the distribution function

Model independent parameterization of the distribution function

F(r,v) = f(& Lt, L) = A(E)Ra(Le)f(L2)
Le= /12— 12
(&) = Z ;P £ Legendre series
; L Ellm

h(L:) = Z dj cos ( i Le Fourier series
2\ Lt : i Lmax

(L) = Z ficos ( im Lz Fourier series
3\tz) — : i Lo
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Distribution function and statistics

© Distribution function and statistics
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Distribution function and statistics
Halo model and detector

Michie distribution

f(g, Lt7 LZ) = (e_g/go _ 1) e—O((L%'i‘L%)/Lg (_5)

Lo = rgw, & = vg/2, vo =280 km/s, a =1

Vesc = 600 km/s, kept fixed

CS, target

mpy = 6 GeV

Fit the detection rate for 1000 and 10000 signal events
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Distribution function and statistics

Michie distribution
Light dark matter
Sulphur nuclear target
10% and 10* signal events
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Test using N-body simulations

@ Test using N-body simulations
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Test using N-body simulations

N-body simulations

Best current possible estimates of f(7, V)
Via Lactea Il: 10° particles, each of mass ~ 103Ms,,
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Vogelsberger et al., Aquarius
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Test using N-body simulations
n — ¢ profile of the detection rate

mpp = 6 GeV — Sulphur nuclear target — 10000 signal events

0 b 2n

¢

Hotspots in 0 [7] showing that f>(L;) is suppressed
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Test using N-body simulations

E, L;, L, distributions near the Earth
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Test using N-body simulations
VLII simulation and Jeans theorem

Check that (&, Lt, L,) is the same everywhere in the galaxy.

o Get f1(&) directly from binned data using
N(&i,0,0)
\2& + Ve25€

but lack of statistics for f2(L;) and f3(L;)

(&) =

o Fit the velocity distributions at different positions : r = 4.5, 8 and 30
kpc and compare the results
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Test using N-body simulations

fi(€) from binned data at 8 and 30 kpc

10! — — — —
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Test using N-body simulations

Fits of £(E, L, L,)

fi(€) at 4.5, 8 and 30 kpc away from the center of the galaxy
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Test using N-body simulations

Fits of £(E, L, L,)

f(L¢) and f3(L,) at 4.5, 8 and 30 kpc
away from the center of the galaxy

~1.0 —0.5 0.0 0.5 1.0 0. 0.2 0.4 0.6 0.8 1.0
L./Lre L/ Ly

Good agreement at 1 o, small discrepancies at large distances probably
due to our choice of integrals of motion
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Test using N-body simulations
Conclusion

o Directional sensitivity is necessary to understand the kinematic
properties of the dark matter halo

@ The local velocity distribution near the Earth gives direct access to
the galactic dark matter distribution function using Jeans theorem

@ Series expansions allow to parameterize the distribution function in a
model independent way

o Multidimensional fitting techniques allow to get a reasonable estimate
of the shape of the DF with about 1000 events

@ Very good fits of the local velocity distribution function from the VLII
simulation using our ansatz

@ Jeans theorem seems verified near the center of the galaxy for VLII
data
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Test using N-body simulations

Thank you
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Test using N-body simulations
Future work

Find the optimal number of terms in the series expansion without
overfitting

Get a better estimate of the error on the distribution function
Study performance of the algorithm with background

Study performance of the algorithm in presence of streams

Get a better understanding of N-body simulation results and of the
symmetries of the gravitational potential
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Test u ody simulations
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Test using N-body simulations

Annual modulation

WIMP Wind
—

180.0°

@ Annual modulation of the dark matter flux

@ Anisotropy of the recoil directions for any velocity distribution
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Test using N-body simulations

Daily modulation
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Test using N-body simulations
Current experiments

Experiment  Target  Energy threshold (keV) V(m3)

DRIFT CS, ~ 20 1
NEWAGE CF4 ~ 100 0.03
DMTPC CFy ~ 50 0.01
MIMAC Hes/CF4 <1 0.00013
Emulsions AgBr N/A N/A

o Very low fiducial volumes
o Low pressure (drift length limited by diffusion)
o Large spin targets (for spin dependent scattering)

@ High lower energy threshold for most experiments
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Test using N-body simulations
Integrals of motion and symmetries

Gravitational potential ¥(7, t), related to the phase space density as
Ay = —4mp

Possibles integrals of motion according to the symmetries of :

2

E =% —(F) : ¢(F, t) = ¥(F) (good for haloes at equilibrium)
Ly, > = (F X Vyy.,) : spherically symmetric potentials, () = (r)
L, : axisymmetric potentials

I3 : flattened axisymmetric potentials, no analytical expression

> : planar non-axisymmetric potentials, no analytical expression
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Test using N-body simulations

Assumptions about f(7, V)

E, Ly and L, are integrals of motion 0.06

@ Halo at equilibrium : &£ is an 0.05

integral of motion 0.04

o Approximate spherical symmetry of =,
P(F) until r ~ 30kpc -

0.02

0.01

0-005 50 0 50 200
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Test using N-body simulations

Assumptions about f (7, V) — Separation of variables

If (€, Le, L) = A(E)R(L:)f(L,)

g2f(&, Ly, L)
ge(&)ar.(Le)gr,(Lz)

with

gx(X) = / / F(X,Y,Z)dYdZ

=1

G(E, L, L7) =

g= /f(E, Le,L,)dEdLdL,

For more statistics, use Gx = xvxz | J G(X, Y, Z)dYdZ
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Test using N-body simulations

Assumptions about f (7, V) — Separation of variables
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