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Directional detection : overview

Directional detection
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Directional detection : overview

Current results and prospects
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Figure 8: Upper limits and allowed region in the WIMP-proton spin-dependent cross section

versus WIMP mass parameter space. Thick solid line shows the limits obtained in this work.

Limits from our surface run[31] are shown by a thick-dotted line for comparison. Limits and
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Currently not competitive with
XENON or CDMS for dark
matter discovery

Provide much more information
about dark matter kinematics
through recoil directions

Unique information about the
dark matter halo in the post
discovery era
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Reconstructing the dark matter distribution function
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Reconstructing the dark matter distribution function Kinematics: overview

Recoil energies and angles

cos η =
vmin(ER)
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Reconstructing the dark matter distribution function Kinematics: overview

Scattering and form factors

dR

dERdΩ
∝ |F (ER)|2|FDM(ER)|2δ(. . .)
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Reconstructing the dark matter distribution function Kinematics: overview

Scattering and form factors
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Reconstructing the dark matter distribution function Continuous velocity distributions
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Reconstructing the dark matter distribution function Continuous velocity distributions

Examples of velocity distributions

Maxwellian distribution
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Reconstructing the dark matter distribution function Continuous velocity distributions

η − φ profiles of the rate – Isotropic case
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Reconstructing the dark matter distribution function Continuous velocity distributions

η − φ profiles of the rate – Anisotropic case
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Reconstructing the dark matter distribution function Continuous velocity distributions

Dark matter galactic halo

Dark matter halo characterized by a phase space distribution function

P(~r , ~v) = f (~r , ~v)d3vd3r

Dark matter density profile

ρ(~r) =

∫
f (~r , ~v)d~v

Local velocity distribution at ~r0

f~r0
(~v) = f (~r0, ~v)
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Reconstructing the dark matter distribution function Parameterizing the distribution function

From local to global

A detector on Earth measures

f⊕(~v) = f (~r⊕, ~v).

How to get f (~r , ~v) for any position in the galaxy?

Jeans theorem

Any steady-state solution of the collisionless Boltzmann equation depends
on the phase-space coordinates only through integrals of motion.
Conversely, any function of the integrals of motion is a steady-state
solution of the collisionless Boltzmann equation.
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Reconstructing the dark matter distribution function Parameterizing the distribution function

Jeans theorem

A detector on Earth measures

f⊕(~v) = f (~r⊕, ~v)

Jeans theorem states

f (~r , ~v) = f (I1[~r , ~v ], I2[~r , ~v ], I3[~r , ~v ])

⇒ f⊕(~v) = f (I1[~r⊕, ~v ], I2[~r⊕, ~v ], I3[~r⊕, ~v ])

f⊕(~v) allows to reconstruct the global distribution function!
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Reconstructing the dark matter distribution function Parameterizing the distribution function

Example : Maxwellian distribution
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Reconstructing the dark matter distribution function Parameterizing the distribution function

Parameterizing the distribution function

Standard procedure:

Assuming an ansatz for f (~v)
(e.g. Maxwellian)

Fit the detection signal to get
v0, etc...

Only local results

Strong model dependance
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Figure 2. Top row: Contour plots for the 2D posterior probability distribution in vlab-σH space,
for the halo-only 2-parameter analyses with fixed mχ in section 3.1.1. Analyses using energy-
only, direction-only, and direction+energy information are shown. Red square markers indicate the
fiducial values used in simulating the data. Black dots indicate the values used to generate the
spectra and maps in figures 3 and 4. The marginalized posterior probability is shaded blue, with
contours indicating 68% and 95% confidence levels. Bottom row: The same for the 3-parameter
analyses assuming a flat mass prior. Note that the energy-only contours are larger in the σH direction
when only a flat prior on mχ is known instead of the exact value; in contrast, the direction+energy
contours are relatively insensitive to lack of knowledge about mχ.
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Reconstructing the dark matter distribution function Parameterizing the distribution function

Parameterizing the distribution function

Find a global and model-independant parameterization of f (~r , ~v):

global : f (~r , ~v)→ f (E , Lz , |L|, . . .)

model-independant : use series expansions

f (~r , ~v) =
∑
ijk

cijkgi (E)hj(Lz) . . .
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Reconstructing the dark matter distribution function Parameterizing the distribution function

Model independent parameterization of the distribution function

f (~r , ~v) = f (E , Lt , Lz) = f1(E)f2(Lt)f3(Lz)

Lt =
√

L2 − L2
z

f1(E) =
∑
i

ciP
(i)
L

( E
Elim

)
Legendre series

f2(Lt) =
∑
i

di cos

(
iπ

Lt
Lmax

)
Fourier series

f3(Lz) =
∑
i

fi cos

(
iπ

Lz
Lmax

)
Fourier series
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Distribution function and statistics
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Distribution function and statistics

Halo model and detector

Michie distribution

f (E , Lt , Lz) =
(
e−E/E0 − 1

)
e−α(L2

t +L2
z )/L2

0Θ(−E)

L0 = r⊕v0, E0 = v2
0 /2, v0 = 280 km/s, α = 1

vesc = 600 km/s, kept fixed

CS2 target

mDM = 6 GeV

Fit the detection rate for 1000 and 10000 signal events

Sonia El Hedri Dark matter in 3D June 4, 2012 22 / 42



Distribution function and statistics

Michie distribution
Light dark matter

Sulphur nuclear target
103 and 104 signal events
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Test using N-body simulations
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Test using N-body simulations

N-body simulations

Best current possible estimates of f (~r , ~v)
Via Lactea II: 109 particles, each of mass ∼ 103MSun

The Dark Matter galactic halo
Direct/Directional detection

Determining f (̨v, rE )
Conclusion

Hint of halo properties via N-body simulations
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Sonia El Hedri, with Daniele Alves and Jay Wacker (work in progress)Dark Matter directional detection

Vogelsberger et al., Aquarius
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Test using N-body simulations

η − φ profile of the detection rate

mDM = 6 GeV – Sulphur nuclear target – 10000 signal events

#

!
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$

$

2

$ 2$0
0

π/2

π/6

η

Hotspots in 0 [π] showing that f2(Lt) is suppressed
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Test using N-body simulations

E , Lt , Lz distributions near the Earth

10000 signal events
Particles taken in a 200 pc thick

spherical shell
8 kpc away from the Sun
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Test using N-body simulations

VLII simulation and Jeans theorem

Check that f (E , Lt , Lz) is the same everywhere in the galaxy.

Get f1(E) directly from binned data using

f1(Ei ) =
N(Ei , 0, 0)√

2Ei + v2
esc

but lack of statistics for f2(Lt) and f3(Lz)

Fit the velocity distributions at different positions : r = 4.5, 8 and 30
kpc and compare the results
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Test using N-body simulations

f1(E) from binned data at 8 and 30 kpc
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Test using N-body simulations

Fits of f (E , Lt , Lz)

f1(E) at 4.5, 8 and 30 kpc away from the center of the galaxy
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Test using N-body simulations

Fits of f (E , Lt , Lz)

f2(Lt) and f3(Lz) at 4.5, 8 and 30 kpc
away from the center of the galaxy
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Good agreement at 1 σ, small discrepancies at large distances probably
due to our choice of integrals of motion
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Test using N-body simulations

Conclusion

Directional sensitivity is necessary to understand the kinematic
properties of the dark matter halo

The local velocity distribution near the Earth gives direct access to
the galactic dark matter distribution function using Jeans theorem

Series expansions allow to parameterize the distribution function in a
model independent way

Multidimensional fitting techniques allow to get a reasonable estimate
of the shape of the DF with about 1000 events

Very good fits of the local velocity distribution function from the VLII
simulation using our ansatz

Jeans theorem seems verified near the center of the galaxy for VLII
data
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Test using N-body simulations

Thank you
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Test using N-body simulations

Future work

Find the optimal number of terms in the series expansion without
overfitting

Get a better estimate of the error on the distribution function

Study performance of the algorithm with background

Study performance of the algorithm in presence of streams

Get a better understanding of N-body simulation results and of the
symmetries of the gravitational potential
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Test using N-body simulations
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Test using N-body simulations

Annual modulation
November 2, 2009 14:20 WSPC/INSTRUCTION FILE

cygnus2009Whitepaper

4 Battat et al.

Fig. 1. Hammer-Aito↵ projection of the WIMP flux in Galactic coordinates. A WIMP mass of
100 GeV has been assumed (from Ref. 12).

z

x

z

x

t = 0 h

t = 12 h

Cygnus

Fig. 2. (left) The daily rotation of the Earth introduces a modulation in recoil angle, as measured
in the laboratory frame. (right) Magnitude of this daily modulation for seven lab-fixed directions,
specified as angles with respect to the Earth’s equatorial plane. The solid line corresponds to zero
degrees, and the dotted, dashed, and dash-dot lines correspond to ±18�, ±54� and ±90�, with
negative angles falling above the zero degree line and positive angles below. The ±90� directions
are co-aligned with the Earth’s rotation axis and therefore exhibit no daily modulation. This
calculation assumes a WIMP mass of 100 GeV and CS2 target gas. (from Ref. 13).

the WIMP origin of the dark matter interaction candidate events.11 This is often

referred to as the materials signal. In practice, this would require the detection of a

large number of events with both targets (in order to measure the energy spectra),

the operation of experiments in similar background environments, and accurate

calculations of the nuclear form factors.

Annual modulation of the dark matter flux

Anisotropy of the recoil directions for any velocity distribution
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Test using N-body simulations

Daily modulation

November 2, 2009 14:20 WSPC/INSTRUCTION FILE
cygnus2009Whitepaper

4 Battat et al.

Fig. 1. Hammer-Aito↵ projection of the WIMP flux in Galactic coordinates. A WIMP mass of

100 GeV has been assumed (from Ref. 12).
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Cygnus

Fig. 2. (left) The daily rotation of the Earth introduces a modulation in recoil angle, as measured

in the laboratory frame. (right) Magnitude of this daily modulation for seven lab-fixed directions,

specified as angles with respect to the Earth’s equatorial plane. The solid line corresponds to zero
degrees, and the dotted, dashed, and dash-dot lines correspond to ±18�, ±54� and ±90�, with

negative angles falling above the zero degree line and positive angles below. The ±90� directions
are co-aligned with the Earth’s rotation axis and therefore exhibit no daily modulation. This

calculation assumes a WIMP mass of 100 GeV and CS2 target gas. (from Ref. 13).

the WIMP origin of the dark matter interaction candidate events.11 This is often

referred to as the materials signal. In practice, this would require the detection of a

large number of events with both targets (in order to measure the energy spectra),

the operation of experiments in similar background environments, and accurate

calculations of the nuclear form factors.

Daily modulation of the recoil direction (about 45%)
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Test using N-body simulations

Current experiments

Experiment Target Energy threshold (keV) V(m3)

DRIFT CS2 ∼ 20 1
NEWAGE CF4 ∼ 100 0.03
DMTPC CF4 ∼ 50 0.01
MIMAC He3/CF4 < 1 0.00013

Emulsions AgBr N/A N/A

Very low fiducial volumes

Low pressure (drift length limited by diffusion)

Large spin targets (for spin dependent scattering)

High lower energy threshold for most experiments
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Test using N-body simulations

Integrals of motion and symmetries

Gravitational potential ψ(~r , t), related to the phase space density as

∆ψ = −4πρ

Possibles integrals of motion according to the symmetries of ψ:

E = v2

2 − ψ(~r) : ψ(~r , t) = ψ(~r) (good for haloes at equilibrium)

Lx ,y ,z = (~r × ~vx ,y ,z) : spherically symmetric potentials, ψ(~r) = ψ(r)

Lz : axisymmetric potentials

I3 : flattened axisymmetric potentials, no analytical expression

I2 : planar non-axisymmetric potentials, no analytical expression
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Test using N-body simulations

Assumptions about f (~r , ~v)

E , Lt and Lz are integrals of motion

Halo at equilibrium : E is an
integral of motion

Approximate spherical symmetry of
ψ(~r) until r ∼ 30kpc

χ(r , n̂) =
ψ(r n̂)− ψs(r)

ψ(r n̂)

0 50 100 150 200
r(kpc)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

χ
(r
,n̂

)

Sonia El Hedri Dark matter in 3D June 4, 2012 40 / 42



Test using N-body simulations

Assumptions about f (~r , ~v) – Separation of variables

If f (E , Lt , Lz) = f1(E)f2(Lt)f3(Lz)

G (E , Lt , Lz) =
g2f (E , Lt , Lz)

gE(E)gLt (Lt)gLz (Lz)
= 1

with

gX (X ) =

∫ ∫
f (X ,Y ,Z )dYdZ

g =

∫
f (E , Lt , Lz)dEdLtdLz

For more statistics, use ḠX = 1
∆Y∆Z

∫ ∫
G (X ,Y ,Z )dYdZ

Sonia El Hedri Dark matter in 3D June 4, 2012 41 / 42



Test using N-body simulations

Assumptions about f (~r , ~v) – Separation of variables

ḠE , ḠLt , ḠLz
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