Dark matter in 3D

Sonia El Hedri with Daniele Alves and Jay Wacker

SLAC – Stanford University

June 4, 2012

arXiv:1204.5487v1

4 0 8

 QQ

[Directional detection : overview](#page-2-0)

[Reconstructing the dark matter distribution function](#page-4-0)

- **[Kinematics: overview](#page-5-0)**
- [Continuous velocity distributions](#page-9-0)
- **•** [Parameterizing the distribution function](#page-14-0)

[Distribution function and statistics](#page-20-0)

4 [Test using N-body simulations](#page-23-0)

つひひ

[Directional detection : overview](#page-2-0)

Directional detection

4 0 8

Current results and prospects

- Currently not competitive with XENON or CDMS for dark matter discovery
- **•** Provide much more information about dark matter kinematics through recoil directions
- Unique information about the dark matter halo in the post discovery era

4 D F

[Directional detection : overview](#page-2-0)

2 [Reconstructing the dark matter distribution function](#page-4-0)

- **[Kinematics: overview](#page-5-0)**
- [Continuous velocity distributions](#page-9-0)
- **•** [Parameterizing the distribution function](#page-14-0)

[Distribution function and statistics](#page-20-0)

[Test using N-body simulations](#page-23-0)

[Reconstructing the dark matter distribution function](#page-4-0) **[Kinematics: overview](#page-5-0)**

- [Continuous velocity distributions](#page-9-0)
- [Parameterizing the distribution function](#page-14-0)

3 [Distribution function and statistics](#page-20-0)

[Test using N-body simulations](#page-23-0)

Recoil energies and angles

 $\eta \sim 0$ for high E_R , wide angle for low E_R

 \leftarrow

Scattering and form factors

 \leftarrow

[Reconstructing the dark matter distribution function](#page-8-0) | [Kinematics: overview](#page-8-0)

Scattering and form factors

 \leftarrow

[Reconstructing the dark matter distribution function](#page-4-0)

[Kinematics: overview](#page-5-0)

• [Continuous velocity distributions](#page-9-0)

• [Parameterizing the distribution function](#page-14-0)

[Distribution function and statistics](#page-20-0)

[Test using N-body simulations](#page-23-0)

Examples of velocity distributions

つひひ

[Reconstructing the dark matter distribution function](#page-11-0) [Continuous velocity distributions](#page-11-0)

Low ER Low ER

$\eta - \phi$ profiles of the rate – Isotropic case

[Reconstructing the dark matter distribution function](#page-12-0) [Continuous velocity distributions](#page-12-0)

$η − φ$ profiles of the rate − Anisotropic case

Dark matter galactic halo

Dark matter halo characterized by a phase space distribution function

$$
P(\vec{r},\vec{v})=f(\vec{r},\vec{v})d^3vd^3r
$$

Dark matter density profile

$$
\rho(\vec{r}) = \int f(\vec{r}, \vec{v}) d\vec{v}
$$

Local velocity distribution at \vec{r}_0

$$
f_{\vec{r}_0}(\vec{v})=f(\vec{r}_0,\vec{v})
$$

From local to global

A detector on Earth measures

$$
f_{\oplus}(\vec{v})=f(\vec{r}_{\oplus},\vec{v}).
$$

How to get $f(\vec{r}, \vec{v})$ for any position in the galaxy?

Jeans theorem

Any steady-state solution of the collisionless Boltzmann equation depends on the phase-space coordinates only through integrals of motion. Conversely, any function of the integrals of motion is a steady-state solution of the collisionless Boltzmann equation.

つへへ

Jeans theorem

A detector on Earth measures

$$
f_{\oplus}(\vec{v}) = f(\vec{r}_{\oplus}, \vec{v})
$$

Jeans theorem states

$$
f(\vec{r}, \vec{v}) = f(I_1[\vec{r}, \vec{v}], I_2[\vec{r}, \vec{v}], I_3[\vec{r}, \vec{v}])
$$

\n
$$
\Rightarrow f_{\oplus}(\vec{v}) = f(I_1[\vec{r}_{\oplus}, \vec{v}], I_2[\vec{r}_{\oplus}, \vec{v}], I_3[\vec{r}_{\oplus}, \vec{v}])
$$

 $f_{\oplus}(\vec{v})$ allows to reconstruct the global distribution function!

4 0 8

 QQ

Example : Maxwellian distribution

$$
f(\vec{r}, v) = \begin{pmatrix} e^{\frac{v_{esc}^2(\vec{r}) - v^2}{v_0^2}} - 1 \end{pmatrix} \Theta(v_{esc}^2 - v^2) \Rightarrow f(\mathcal{E}) = \left(e^{-\frac{\mathcal{E}}{\mathcal{E}_0}} - 1\right) \Theta(-\mathcal{E})
$$

$$
\mathcal{E}(\vec{r}, v) = \frac{v^2 - v_{esc}^2(\vec{r})}{2}
$$

Parameterizing the distribution function

Standard procedure:

- Assuming an ansatz for $f(\vec{v})$ (e.g. Maxwellian)
- Fit the detection signal to get v_0 , etc...
- Only local results
- Strong model dependance lab (km/s)
 (km/s)

Peter et al., arXiv:1202.5035v1 for the halo-only 2-parameter analyses with fixed my in section 3.1.1.1. Analyses using energyfor the halo-only 2-parameter analyses with fixed m^χ in section 3.1.1. Analyses using energy-

finducial values used in simulating the data. Black dots indicate the values used to generate the values of σ

PRIOR COMPANY

fiducial v[alu](#page-16-0)e[s](#page-18-0) [u](#page-16-0)[se](#page-17-0)[d](#page-18-0) [i](#page-13-0)[n](#page-14-0) [s](#page-20-0)[im](#page-3-0)[u](#page-19-0)[la](#page-20-0)[ti](#page-0-0)[ng](#page-41-0) the data. Black dots indicate the values used to generate the

Parameterizing the distribution function

Find a global and model-independant parameterization of $f(\vec{r}, \vec{v})$:

$$
\bullet \text{ global}: f(\vec{r}, \vec{v}) \to f(\mathcal{E}, L_z, |L|, \ldots)
$$

model-independant : use series expansions

$$
f(\vec{r},\vec{v})=\sum_{ijk}c_{ijk}g_i(\mathcal{E})h_j(L_z)\ldots
$$

Model independent parameterization of the distribution function

$$
f(\vec{r},\vec{v})=f(\mathcal{E},L_t,L_z)=f_1(\mathcal{E})f_2(L_t)f_3(L_z)
$$

$$
L_t = \sqrt{L^2 - L_z^2}
$$

$$
f_1(\mathcal{E}) = \sum_i c_i P_L^{(i)} \left(\frac{\mathcal{E}}{\mathcal{E}_{lim}}\right)
$$
 Legendre series

$$
f_2(L_t) = \sum_i d_i \cos \left(i\pi \frac{L_t}{L_{max}}\right)
$$
 Fourier series

$$
f_3(L_z) = \sum_i f_i \cos \left(i\pi \frac{L_z}{L_{max}}\right)
$$
 Fourier series

∢ ロ ▶ 《 何

[Directional detection : overview](#page-2-0)

[Reconstructing the dark matter distribution function](#page-4-0)

- **[Kinematics: overview](#page-5-0)**
- [Continuous velocity distributions](#page-9-0)
- **•** [Parameterizing the distribution function](#page-14-0)

[Distribution function and statistics](#page-20-0)

[Test using N-body simulations](#page-23-0)

Halo model and detector

• Michie distribution

$$
f(\mathcal{E}, L_t, L_z) = \left(e^{-\mathcal{E}/\mathcal{E}_0} - 1\right) e^{-\alpha (L_t^2 + L_z^2)/L_0^2} \Theta(-\mathcal{E})
$$

•
$$
L_0 = r_{\oplus} v_0
$$
, $\mathcal{E}_0 = v_0^2/2$, $v_0 = 280$ km/s, $\alpha = 1$

- $v_{esc} = 600$ km/s, kept fixed
- \bullet CS₂ target
- $m_{DM} = 6$ GeV
- Fit the detection rate for 1000 and 10000 signal events

Michie distribution Light dark matter Sulphur nuclear target 10^3 and 10^4 signal events

 $\frac{1.0}{-1.0}$ -0.5 0.0 0.5 1.0

 $0.0 - 0.0$

0.2 0.4 $\left| \frac{\widetilde{\mathcal{L}}}{\mathcal{L}} 0.6 \right|$ 0.8 1.0 1.2

[Directional detection : overview](#page-2-0)

[Reconstructing the dark matter distribution function](#page-4-0)

- **[Kinematics: overview](#page-5-0)**
- [Continuous velocity distributions](#page-9-0)
- **•** [Parameterizing the distribution function](#page-14-0)

[Distribution function and statistics](#page-20-0)

The Dark Matter galactic halo

N-body simulations

Best current possible estimates of $f(\vec{r}, \vec{v})$ Via Lactea II: 10⁹ particles, each of mass $\sim 10^3 M_{Sun}$

Vogelsberger et al., Aquarius

 $\mathcal{A} \square \vdash \mathcal{A} \boxtimes \mathcal{B}$ [a](#page-22-0)nd $\mathcal{A} \boxtimes \mathcal{B}$ $\mathcal{A} \boxtimes \mathcal{B}$ $\mathcal{A} \boxtimes \mathcal{B}$ and $\mathcal{A} \boxtimes \mathcal{B}$

[Test using N-body simulations](#page-25-0)

$\eta - \phi$ profile of the detection rate

 $m_{DM} = 6$ GeV – Sulphur nuclear target – 10000 signal events

Hotspots in 0 $[\pi]$ showing that $f_2(L_t)$ is suppressed

[Test using N-body simulations](#page-26-0)

\mathcal{E}, L_t, L_z distributions near the Earth

10000 signal events Particles taken in a 200 pc thick spherical shell 8 kpc away from the Sun

VLII simulation and Jeans theorem

Check that $f(\mathcal{E}, L_t, L_z)$ is the same everywhere in the galaxy.

• Get $f_1(\mathcal{E})$ directly from binned data using

$$
f_1(\mathcal{E}_i) = \frac{N(\mathcal{E}_i, 0, 0)}{\sqrt{2\mathcal{E}_i + v_{\rm esc}^2}}
$$

but lack of statistics for $f_2(L_t)$ and $f_3(L_z)$

• Fit the velocity distributions at different positions : $r = 4.5$, 8 and 30 kpc and compare the results

[Test using N-body simulations](#page-28-0)

$f_1(\mathcal{E})$ from binned data at 8 and 30 kpc

Fits of $f(\mathcal{E}, L_t, L_z)$

 $f_1(\mathcal{E})$ at 4.5, 8 and 30 kpc away from the center of the galaxy

[Test using N-body simulations](#page-30-0)

Fits of $f(\mathcal{E}, L_t, L_z)$

 $f_2(L_t)$ and $f_3(L_z)$ at 4.5, 8 and 30 kpc away from the center of the galaxy

Good agreement at 1 σ , small discrepancies at large distances probably due to our choice of integrals of motion

Conclusion

- Directional sensitivity is necessary to understand the kinematic properties of the dark matter halo
- The local velocity distribution near the Earth gives direct access to the galactic dark matter distribution function using Jeans theorem
- Series expansions allow to parameterize the distribution function in a model independent way
- Multidimensional fitting techniques allow to get a reasonable estimate of the shape of the DF with about 1000 events
- Very good fits of the local velocity distribution function from the VLII simulation using our ansatz
- Jeans theorem seems verified near the center of the galaxy for VLII data

Thank you

 299

重

 \mathcal{A} . p

 \rightarrow

Kロト K個ト K B

- Find the optimal number of terms in the series expansion without overfitting
- Get a better estimate of the error on the distribution function
- Study performance of the algorithm with background
- Study performance of the algorithm in presence of streams
- Get a better understanding of N-body simulation results and of the symmetries of the gravitational potential

[Test using N-body simulations](#page-34-0)

重

÷,

一本語

× ×

(ロ) (d) →

[Test using N-body simulations](#page-35-0) november 2, 2009 14:20 WSPC/INSTRUCTION FILE STATE STATE
The signal state sta

Annual modulation

- **Annual modulation of the dark matter flux**
- Anisotropy of the recoil directions for *any* velocity distribution

4 0 8

Daily modulation

in the laboratory frame. (right) Magnitude of this daily modulation for seven labels of the sev Daily modulation of the recoil direction (about 45%) $\,$ Daily modulation of the recoil direction (about 45%)
Sonia El Hedri Dark matter in 3D

Current experiments

- Very low fiducial volumes
- Low pressure (drift length limited by diffusion)
- Large spin targets (for spin dependent scattering)
- • High lower energy threshold for most experiments

Integrals of motion and symmetries

Gravitational potential $\psi(\vec{r},t)$, related to the phase space density as

$$
\Delta \psi = -4\pi \rho
$$

Possibles integrals of motion according to the symmetries of ψ :

- $E = \frac{v^2}{2} \psi(\vec{r})$: $\psi(\vec{r}, t) = \psi(\vec{r})$ (good for haloes at equilibrium)
- $L_{x,y,z} = (\vec{r} \times \vec{v}_{x,y,z})$: spherically symmetric potentials, $\psi(\vec{r}) = \psi(r)$
- \bullet L_z : axisymmetric potentials
- \bullet I_3 : flattened axisymmetric potentials, no analytical expression
- \bullet I_2 : planar non-axisymmetric potentials, no analytical expression

Assumptions about $f(\vec{r}, \vec{v})$

- \mathcal{E} , L_t and L_z are integrals of motion
	- Halo at equilibrium : $\mathcal E$ is an integral of motion
	- Approximate spherical symmetry of $\psi(\vec{r})$ until $r \sim 30 kpc$

 \leftarrow

[Test using N-body simulations](#page-40-0)

Assumptions about $f(\vec{r}, \vec{v})$ – Separation of variables

If
$$
f(\mathcal{E}, L_t, L_z) = f_1(\mathcal{E})f_2(L_t)f_3(L_z)
$$

$$
G(\mathcal{E}, L_t, L_z) = \frac{g^2 f(\mathcal{E}, L_t, L_z)}{g\mathcal{E}(\mathcal{E})g_{L_t}(L_t)g_{L_z}(L_z)} = 1
$$

with

$$
g_X(X) = \int \int f(X, Y, Z) dY dZ
$$

$$
g = \int f(\mathcal{E}, L_t, L_z) d\mathcal{E} dL_t dL_z
$$

For more statistics, use $\bar{G}_X = \frac{1}{\Delta Y \Delta Z} \int \int G(X, Y, Z) dY dZ$

[Test using N-body simulations](#page-41-0)

Assumptions about $f(\vec{r}, \vec{v})$ – Separation of variables

