Dark matter in 3D

Sonia El Hedri with Daniele Alves and Jay Wacker

SLAC - Stanford University

June 4, 2012

arXiv:1204.5487v1

~		_		
50	n 12		He	dr
20	i i a		116	чı

Directional detection : overview

2 Reconstructing the dark matter distribution function

- Kinematics: overview
- Continuous velocity distributions
- Parameterizing the distribution function

Oistribution function and statistics

4 Test using N-body simulations

Directional detection : overview

Directional detection

Current results and prospects

- Currently not competitive with XENON or CDMS for dark matter discovery
- Provide much more information about dark matter kinematics through recoil directions
- Unique information about the dark matter halo in the post discovery era

1 Directional detection : overview

2) Reconstructing the dark matter distribution function

- Kinematics: overview
- Continuous velocity distributions
- Parameterizing the distribution function

3 Distribution function and statistics

4 Test using N-body simulations

- Kinematics: overview
- Continuous velocity distributions
- Parameterizing the distribution function

3 Distribution function and statistics

4 Test using N-body simulations

Recoil energies and angles

Kinematics: overview

Scattering and form factors

Kinematics: overview

Scattering and form factors

- Kinematics: overview
- Continuous velocity distributions
- Parameterizing the distribution function

3 Distribution function and statistics

4 Test using N-body simulations

Examples of velocity distributions

Reconstructing the dark matter distribution function Continuous velocity distributions

$\eta - \phi$ profiles of the rate – Isotropic case

Reconstructing the dark matter distribution function Continuous velocity distributions

$\eta - \phi$ profiles of the rate – Anisotropic case

Dark matter galactic halo

Dark matter halo characterized by a phase space distribution function

$$P(\vec{r},\vec{v}) = f(\vec{r},\vec{v})d^3vd^3r$$

Dark matter density profile

$$ho(\vec{r}) = \int f(\vec{r},\vec{v}) d\vec{v}$$

Local velocity distribution at \vec{r}_0

$$f_{\vec{r}_0}(\vec{v}) = f(\vec{r}_0,\vec{v})$$

From local to global

A detector on Earth measures

$$f_{\oplus}(\vec{v}) = f(\vec{r}_{\oplus},\vec{v}).$$

How to get $f(\vec{r}, \vec{v})$ for any position in the galaxy?

Jeans theorem

Any steady-state solution of the collisionless Boltzmann equation depends on the phase-space coordinates only through integrals of motion. Conversely, any function of the integrals of motion is a steady-state solution of the collisionless Boltzmann equation.

Jeans theorem

A detector on Earth measures

$$f_{\oplus}(\vec{v}) = f(\vec{r}_{\oplus},\vec{v})$$

Jeans theorem states

$$f(\vec{r}, \vec{v}) = f(I_1[\vec{r}, \vec{v}], I_2[\vec{r}, \vec{v}], I_3[\vec{r}, \vec{v}])$$
$$\Rightarrow f_{\oplus}(\vec{v}) = f(I_1[\vec{r}_{\oplus}, \vec{v}], I_2[\vec{r}_{\oplus}, \vec{v}], I_3[\vec{r}_{\oplus}, \vec{v}])$$

 $f_{\oplus}(\vec{v})$ allows to reconstruct the global distribution function!

Example : Maxwellian distribution

$$f(\vec{r}, v) = \left(e^{\frac{v_{esc}^2(\vec{r}) - v^2}{v_0^2}} - 1\right) \Theta(v_{esc}^2 - v^2) \Rightarrow f(\mathcal{E}) = \left(e^{-\frac{\mathcal{E}}{\mathcal{E}_0}} - 1\right) \Theta(-\mathcal{E})$$
$$\mathcal{E}(\vec{r}, v) = \frac{v^2 - v_{esc}^2(\vec{r})}{2}$$

Parameterizing the distribution function

Standard procedure:

- Assuming an ansatz for f(v) (e.g. Maxwellian)
- Fit the detection signal to get v₀, etc...
- Only local results
- Strong model dependance

Peter et al., arXiv:1202.5035v1

Parameterizing the distribution function

Find a *global* and *model-independant* parameterization of $f(\vec{r}, \vec{v})$:

• global :
$$f(\vec{r}, \vec{v}) \rightarrow f(\mathcal{E}, L_z, |L|, \ldots)$$

• model-independant : use series expansions

$$f(\vec{r},\vec{v}) = \sum_{ijk} c_{ijk} g_i(\mathcal{E}) h_j(L_z) \dots$$

Model independent parameterization of the distribution function

$$f(\vec{r},\vec{v}) = f(\mathcal{E},L_t,L_z) = f_1(\mathcal{E})f_2(L_t)f_3(L_z)$$

$$L_t = \sqrt{L^2 - L_z^2}$$

$$f_{1}(\mathcal{E}) = \sum_{i} c_{i} P_{L}^{(i)} \left(\frac{\mathcal{E}}{\mathcal{E}_{lim}}\right) \text{ Legendre series}$$

$$f_{2}(L_{t}) = \sum_{i} d_{i} \cos\left(i\pi \frac{L_{t}}{L_{max}}\right) \text{ Fourier series}$$

$$f_{3}(L_{z}) = \sum_{i} f_{i} \cos\left(i\pi \frac{L_{z}}{L_{max}}\right) \text{ Fourier series}$$

< □ > < ---->

Directional detection : overview

2 Reconstructing the dark matter distribution function

- Kinematics: overview
- Continuous velocity distributions
- Parameterizing the distribution function

3 Distribution function and statistics

4 Test using N-body simulations

Halo model and detector

Michie distribution

$$f(\mathcal{E}, L_t, L_z) = \left(e^{-\mathcal{E}/\mathcal{E}_0} - 1\right) e^{-\alpha(L_t^2 + L_z^2)/L_0^2} \Theta(-\mathcal{E})$$

•
$$L_0=r_\oplus v_0$$
, $\mathcal{E}_0=v_0^2/2$, $v_0=280$ km/s, $lpha=1$

- $v_{esc} = 600 \text{ km/s}$, kept fixed
- CS₂ target
- $m_{DM} = 6 \text{ GeV}$
- Fit the detection rate for 1000 and 10000 signal events

0.0 L_t/L_t^{max}

0.5

-0.5

1.2

1.0

0.8

0.4

0.2

0.0

 $f_2(L_t)$

1.0

Directional detection : overview

2 Reconstructing the dark matter distribution function

- Kinematics: overview
- Continuous velocity distributions
- Parameterizing the distribution function

3 Distribution function and statistics

4 Test using N-body simulations

N-body simulations

Best current possible estimates of $f(\vec{r}, \vec{v})$ Via Lactea II: 10⁹ particles, each of mass $\sim 10^3 M_{Sun}$

Vogelsberger et al., Aquarius

$\eta-\phi$ profile of the detection rate

 $m_{DM} = 6 \text{ GeV} - \text{Sulphur nuclear target} - 10000 \text{ signal events}$

Hotspots in 0 [π] showing that $f_2(L_t)$ is suppressed

\mathcal{E} , L_t , L_z distributions near the Earth

10000 signal events Particles taken in a 200 pc thick spherical shell 8 kpc away from the Sun

Sonia El Hedri

June 4, 2012 27 / 42

VLII simulation and Jeans theorem

Check that $f(\mathcal{E}, L_t, L_z)$ is the same everywhere in the galaxy.

• Get $f_1(\mathcal{E})$ directly from binned data using

$$f_1(\mathcal{E}_i) = rac{N(\mathcal{E}_i,0,0)}{\sqrt{2\mathcal{E}_i + v_{esc}^2}}$$

but lack of statistics for $f_2(L_t)$ and $f_3(L_z)$

• Fit the velocity distributions at different positions : *r* = 4.5, 8 and 30 kpc and compare the results

$f_1(\mathcal{E})$ from binned data at 8 and 30 kpc

Fits of $f(\mathcal{E}, L_t, L_z)$

 $f_1(\mathcal{E})$ at 4.5, 8 and 30 kpc away from the center of the galaxy

Fits of $f(\mathcal{E}, L_t, L_z)$

 $f_2(L_t)$ and $f_3(L_z)$ at 4.5, 8 and 30 kpc away from the center of the galaxy

Good agreement at 1 σ , small discrepancies at large distances probably due to our choice of integrals of motion

Conclusion

- Directional sensitivity is necessary to understand the kinematic properties of the dark matter halo
- The local velocity distribution near the Earth gives direct access to the galactic dark matter distribution function using Jeans theorem
- Series expansions allow to parameterize the distribution function in a model independent way
- Multidimensional fitting techniques allow to get a reasonable estimate of the shape of the DF with about 1000 events
- Very good fits of the local velocity distribution function from the VLII simulation using our ansatz
- Jeans theorem seems verified near the center of the galaxy for VLII data

Thank you

3

< □ > < □ > < □

- Find the optimal number of terms in the series expansion without overfitting
- Get a better estimate of the error on the distribution function
- Study performance of the algorithm with background
- Study performance of the algorithm in presence of streams
- Get a better understanding of N-body simulation results and of the symmetries of the gravitational potential

ъ

Annual modulation

- Annual modulation of the dark matter flux
- Anisotropy of the recoil directions for any velocity distribution

Daily modulation

Daily modulation of the recoil direction (about 45%)

Current experiments

Experiment	Target	Energy threshold (keV)	$V(m^3)$
DRIFT	CS_2	~ 20	1
NEWAGE	CF_4	~ 100	0.03
DMTPC	CF ₄	~ 50	0.01
MIMAC	He_3/CF_4	< 1	0.00013
Emulsions	AgBr	N/A	N/A

- Very low fiducial volumes
- Low pressure (drift length limited by diffusion)
- Large spin targets (for spin dependent scattering)
- High lower energy threshold for most experiments

Integrals of motion and symmetries

Gravitational potential $\psi(\vec{r}, t)$, related to the phase space density as

$$\Delta \psi = -4\pi\rho$$

Possibles integrals of motion according to the symmetries of ψ :

- $E = \frac{v^2}{2} \psi(\vec{r}) : \psi(\vec{r}, t) = \psi(\vec{r})$ (good for haloes at equilibrium)
- $L_{x,y,z} = (\vec{r} \times \vec{v}_{x,y,z})$: spherically symmetric potentials, $\psi(\vec{r}) = \psi(r)$
- L_z : axisymmetric potentials
- I_3 : flattened axisymmetric potentials, no analytical expression
- I_2 : planar non-axisymmetric potentials, no analytical expression

Assumptions about $\overline{f(\vec{r},\vec{v})}$

$$\mathcal{E}$$
, L_t and L_z are integrals of motion

- Halo at equilibrium : \mathcal{E} is an integral of motion
- Approximate spherical symmetry of ψ(r) until r ~ 30kpc

Assumptions about $f(\vec{r}, \vec{v})$ – Separation of variables

If
$$f(\mathcal{E}, L_t, L_z) = f_1(\mathcal{E})f_2(L_t)f_3(L_z)$$

$$G(\mathcal{E}, L_t, L_z) = \frac{g^2 f(\mathcal{E}, L_t, L_z)}{g_{\mathcal{E}}(\mathcal{E})g_{L_t}(L_t)g_{L_z}(L_z)} = 1$$

with

$$g_X(X) = \int \int f(X, Y, Z) dY dZ$$
$$g = \int f(\mathcal{E}, L_t, L_z) d\mathcal{E} dL_t dL_z$$

For more statistics, use $\bar{G}_X = \frac{1}{\Delta Y \Delta Z} \int \int G(X, Y, Z) dY dZ$

Assumptions about $f(\vec{r}, \vec{v})$ – Separation of variables

Sonia El Hedri

June 4, 2012 42 / 42