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Outline 

•  Gravitational-Wave Essentials 

•  GW Observations To-Date 

•  Current Activity and the Near Future 

•  Future Directions (current R&D) 
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Context and Plea 

Laser Interferometer 
Gravitational-wave Observatory 

I’ve been working on LIGO 
for 15 years! 
So, if I use some 
incomprehensible jargon, 
please stop me! 
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Gravitational-Wave Essentials 

•  What are gravitational-waves? 
•  Why try to detect them? 
•  How can they be detected? 
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Gravitational Waves 

•  Caused by moving masses 
(mass distributions with changing quadrupole) 

•  Distortions of space-time 
–  linearization of GR gives wave 

equation 
– propagate at speed of light 
– 2 polarizations 

Image Credit: K. Thorne (Caltech) , 
T. Carnahan (NASA GSFC)  
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More Sources 

•  There are many potential GW sources 
•  Today, just compact binaries 

– NS-NS, NS-BH, BH-BH 
– “inspiral, merger, coalescence” 

? 



8 

Direct Detection Payoffs 

•  Direct observation of strong-field GR 
•  Constrain evolution of stellar populations 

that produce compact objects 
•  Constrain neutron-star equation of state  

(and thus theories of nuclear matter) 
•  A “standard siren” ! 
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Standard Siren 

•  Waveform and amplitude 
determined by source mass 

•  Weak interaction with matter 
–  Astrophysical sources unscreened 

by intervening matter 
–  Disturbed only by gravitational 

lenses 
Image Credit: K. Thorne (Caltech) , 
T. Carnahan (NASA GSFC)  
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Already Detected!  Indirectly! 

•  PSR 1913+16, the Hulse-Taylor binary 
– First clear demonstration of GW radiation 
– Binary neutron star 
– 8 hour orbital period 
– Will merge in 300Myr 
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Direct Detection: How 

•  Gravitational Waves Distort Space 

Time 

5/1~/ LLh !=
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Direct Detection: Not Easy 

•  Interferometers 
•  How sensitive? 

– For a binary neutron 
star coalescence! 
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M ! 6x1030 kg ! 3 M solar 
R ! 20 km  
F ! 100 Hz 
r  ! 5x1023 m ! 15 Mpc 
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Detector Noises: Setting 

test mass 
(mirror)"

LASER"

photodiode"

hLL =!

•  Example: first generation LIGO 
1997-2010 

4km 

LIGO Hanford Observatory 

Resonant 
Arm Cavities 
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Detector Noises: Quantum 

test mass 
(mirror)"

Quantum Noise!

"Shot" noise!

Radiation 
pressure!

LASER"

photodiode"

Quantum!
(light, not gravity)!

10-23 

10-22 

10-21 

10-20 

10Hz 100Hz 1kHz 10kHz 

Strain 
1/!Hz 

10W input power 
300W on beam-splitter 
15kW in arm cavities 

LLh /!=
Strain Sensitivity 

Disp 
m/!Hz 

10-20 

10-19 

10-18 

10-17 

4km 
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Detector Noises: Seismic 

test mass 
(mirror)"

Quantum Noise!

"Shot" noise!

Radiation 
pressure!

Seismic Noise!

LASER"

photodiode"
Quantum!Seismic!

10-23 

10-22 

10-21 

10-20 

10Hz 100Hz 1kHz 10kHz 

Strain 
1/!Hz 

Passive Stack, 4 layers, 10Hz 
Simple Pendulum, 1Hz 
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Detector Noises: Thermal 

test mass 
(mirror)"

Quantum Noise!

"Shot" noise!

Radiation 
pressure!

Thermal 
(Brownian) 

Noise!

LASER"

photodiode"
Quantum!Thermal!

10-23 

10-22 

10-21 

10-20 

10Hz 100Hz 1kHz 10kHz 

Strain 
1/!Hz 

Wire Suspensions, Q ~ 100k 
Fused Silica Test-Mass, 10kg 

         HEAT BATH 

Fluctuation-Dissipation Theorem 
Callen and Welton, 1951 

LOSS 

Motion 
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Detector Noises: Summary 

Quantum!

Thermal!

Seismic!
10-23 

10-22 

10-21 

10-20 

10Hz 100Hz 1kHz 10kHz 

Strain 
1/!Hz 

LLh /!=
Strain Sensitivity 

test mass 
(mirror)"

Quantum Noise!

"Shot" noise!

Radiation 
pressure!

Seismic Noise!

Thermal 
(Brownian) 

Noise!

LASER"

photodiode"

NS-NS 
15Mpc 
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Fundamentals: The Message 

•  Direct detection of gravitational waves has 
a lot to offer 

•  The physics of gravitational wave 
detection is straight forward 

•  The numbers work out! we can do it 
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GW Observations To-Date 

•  A brief history of the detectors 
•  How much data has been taken? 
•  What have we found? 
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First Generation Detectors 

Credit: C. Mayhew & R. Simmon (NASA/GSFC), NOAA/ NGDC, DMSP Digital Archive  

LIGO 
H1&H2 

LIGO L1    

GEO 

VIRGO 
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Why so many detectors? 
Detection confidence! 

•  Coincidence 
– Multiple detectors 
– Same signal 
– Same time 
– EM counterpart? 

•  Triangulation on the sky 
– Need at least 3 detectors 

L1 

H1 & H2 10ms 



How I became famous! 
(and the curse of being a physicist who can code) 

•  In 1999, I was working 
on simulating the 
LIGO interferometer 

•  My thesis happened 
where simulation and 
instrument met 

22 

LASER"

4km 

Resonant 
Arm Cavities 

Resonant 
Recycling Cavity 
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Not Fast or Easy! LIGO 

Started in 2001! 
Many years and many 
technical noises later, we 
arrived at the design. 
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Not even the second time! Virgo 

Full Detector Operation 
Begins December 2004 

Major Data Collection 
Begins May 2007 
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Achieved Sensitivity 

LIGO: H2!

LIGO: L1!

LIGO: H1!

Virgo!

GEO!
LIGO, GEO and Virgo 
share all data to form a 
global detector network. 
 
Since 2006, roughly 2 
years of network data 
have been collected. 
 
The LIGO Scientific 
Collaboration includes 
over 50 Universities and 
about 1000 researchers. 
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Publications 

•  Over 70 publications 
– Analysis still underway 

•  GRB070201 
– Short GRB! merger? 

•  Andromeda in the error box! 
– not NS-NS in Andromeda 
– Astrophys. J 681 
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Why we didn’t hear anything 
yet 

•  Consider our favorite source... binary 
neutron stars, like PSR 1913+16 
– 5 known tight NS binaries 

– Gives R ~ 100 / Myear 
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Why we didn’t hear anything 
yet 

•  Extrapolate to other galaxies weighted by 
blue-light luminosity 
– Roughly 1 MW of blue-light every 100 Mpc3 
– Detection Rate ~ Rate x Detection Volume 

1
100Mpc3

100
Myr

!
4!
3
(15Mpc)3 ~ 1

70yr

? 
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Current Activity and 
 the Near Future 

•  2nd generation detectors around the world 
•  Advanced LIGO 
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Credit: C. Mayhew & R. Simmon (NASA/GSFC), NOAA/ NGDC, DMSP Digital Archive  

Advanced GW Network 

advLIGO 
H1&H2 advLIGO    

L1    

GEO 
HF advVIRGO 

LIGO 
India 

? 
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Advanced LIGO: Underway! 
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Advanced LIGO: More Power 

10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Quantum!

Strain 
1/!Hz 

100W input power 
5kW on beam-splitter 
750kW in arm cavities 

With nearly 1MW of 
circulating power, radiation 
pressure becomes a serious 
problem" 

Interferometer simulations 
developed for LIGO are now 
used world-wide 

13um !! 
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Advanced LIGO: Less Loss 

Strain 
1/!Hz 

10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Thermal!
Quantum!

Quartz Suspension, Q ~ 600M 
Fused Silica Test-Mass, 40kg 

It all ends in a 40kg glass 
suspended by 400 micron 
glass fibers" 

Prototype Suspension 
at MIT 
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More Power, Less Loss! 
Unstable? 

Nascent 
Excitation 

Mechanical 
Mode 

Radiation 
Pressure 

Pump 
Field 

Scattered 
Field 

(cavity gain) 

!"

High Finesse 
Cavity 
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Students damp instabilities to save 
Advanced LIGO 

Thanks to" 
Post-doc: Slawek Gras 
Grad: John Miller, Brett Shapiro 
Undergrad: Natania Antler, Jonathan Soto 
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Advanced LIGO: Better Isolation 

10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Se
is

m
ic!

Strain 
1/!Hz 

Active Isolation, 3 layers 
Quadruple Pendulum, 1Hz 

Thermal!
Quantum!

Each interferometer floats on 
tons of metal with hundreds 
of active control loops" 

Active Seismic Isolator 
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Advanced LIGO 

10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Se
is

m
ic!

Strain 
1/!Hz 

Thermal!
Quantum!

LLh /!=
Strain Sensitivity 

NS-NS 
150Mpc 

100 million light years 

Advanced LIGO ~2016 

Initial LIGO 2007 

Credit: R.Powell, B.Berger 

1000/70 yr ~ 14/yr 
 
That’s about 1 
NS-NS detected 
each month. 
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•  Direct observation of strong-field GR 
•  Constrain evolution of stellar populations 

that produce compact objects 
 Constrain neutron-star equation of state  
(and thus theories of nuclear matter) 
 Standard siren 

Payoffs: Advanced LIGO 
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Future Directions (current R&D) 

•  We heard something! now what? 
•  Where to go next 
•  Detector Upgrades  
•  Lab Scale R&D 
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We heard something! 
 now what? 

•  Detecting gravitational-waves is not the 
end of our journey, it is the beginning 

•  “First detection” is an exciting landmark 
•   But, most of the payoff comes from 

– observing a variety of sources 
– preferably for many cycles each 
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How we make an observatory 

•  Regular detections – more sensitive 
•  Long time in-band for inspirals 

– Good parameter estimation 
– Good distance estimate 

•  Low-frequency performance 
– Time in-band scales like fmin

-8/3 

– Example! NS-NS with fmin = 3, 10, 30 Hz,     
   time is 7 hours, 17 minutes, 1 
minute 
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“Obvious Improvements” 

•  Longer 
– Pro: gain at all frequencies 
– Con: increased vertical coupling 
– Con: new facility = time and money 

•  3rd generation, 2030? 
– not soon 

LLh /!=

310~
10

!

=

"

kmL

< 
Cost 

$1B 
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“Obvious Improvements” 

•  More Power 
– Pro: lower shot noise 
– Con: higher radiation pressure noise 
– Con: mirror thermal distortion 
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“Obvious Improvements” 

Increasing the power helped 
last time" 

10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Quantum!

Strain 
1/!Hz 

LLh /!=
Strain Sensitivity 
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“Obvious Improvements” 

10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Strain 
1/!Hz 

Quantum!

LLh /!=
Strain Sensitivity 

" but now radiation 
pressure noise makes things 
worse at low-frequency! 
 
This has already been 
optimized. 
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Squeezing: The Next Step 

10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Strain 
1/!Hz 

Quantum!

Quantum noise can be 
reduced by squeezing" 

Recently demonstrated by 
Barsotti/Mavalvala at the 
Hanford Observatory 

Phase 

IFO Signal 

Amplitude 



102 10310−23

10−22

Frequency (Hz)

1 
/ !
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z

LIGO H1 Strain Sensitivity (h)

 

 

Typical Sensitivity
Sensitivty with squeezing injection
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Squeezing: It works! 

Quantum noise can be 
reduced by squeezing" 

Recently demonstrated by 
Barsotti/Mavalvala at the 
Hanford Observatory 



10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Se
is

m
ic!

Strain 
1/!Hz 

Thermal! Quantum!
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Low Frequency: Moving the Wall 

We moved seismic down, 
but it doesn’t help much" 
 
Let’s work on suspension 
thermal noise. 



10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Se
is

m
ic!

Strain 
1/!Hz 

Thermal! Quantum!
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Where is the big payoff? 

We know how to reduce 
seismic noise and 
suspension thermal noise, 
but coating thermal noise is 
still a problem. 

The next generation will be 
all about coatings and 
quantum noise" 
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Coating R&D 

•  Example: coating thermal noise 
•  Scales with beam radius 

– GW detector: r ~ 6cm 
– Lab scale: r ~ 60um 

•  Need measurements in 
GW band ~100Hz 
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Thermal Noise 

– Also important also for frequency references, 
 spectroscopy, atomic clocks, quantum information, 

         macro-quantum measurement! 



Starting now at MIT 

Laser for LG10 Lock

Laser for LG00 Lock

Transmission
Sensors

In Vacuum
Optics

REFL 00

REFL 01

Beatnote

Sample
Mirror

EOM

EOM
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•  Coating noise measurement for Advanced 
LIGO and coatings 

•  Facility for coating characterization 
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Back to Quantum Noise 

10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Se
is

m
ic!

Strain 
1/!Hz 

Thermal!
Quantum!

LLh /!=
Strain Sensitivity 

Now we’re back to quantum 
noise. 
 
The radiation pressure part 
can be addressed by 
making the mirrors more 
massive" 



10-24 

10-23 

10-22 

10-21 

10Hz 100Hz 1kHz 10kHz 

Se
is

m
ic!

Strain 
1/!Hz 

Thermal!
Quantum!

LLh /!=
Strain Sensitivity 

NS-NS 
150Mpc 
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Upgraded Advanced Detector 

Let’s say we get this far" 
what have we gained? 
 
NS-NS mergers at 150Mpc 
 
BH-BH inspirals at z of 1 
 
Back to our list of payoffs! 
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•  Direct observation of strong-field GR 
•  Constrain evolution of stellar populations 

that produce compact objects 
 Constrain neutron-star equation of state  
(and thus theories of nuclear matter) 

•  A “standard siren” for cosmology 

Payoffs: Upgraded Detectors 



Other Directions 

•  Bigger, better LIGO is not the only way! 
– Depending on what we find, we may need to 

change direction 
•  narrow-band detectors for CW sources 
•  low-frequency detectors for IMBH, ! 
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Optical Space Frame 
 
A long, vibration isolated, rigid platform 
for high precision experiments 



TOBA – torsion bar antenna 

•  10 mHz to 10 Hz 
•  First prototype built in Japan (Ando et. al) 

57 
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The Message 

•  First generation detectors 
– operated as designed 

•  Advanced detectors, coming soon 
– First detection 2017? 

•  Upgrades will take us from 
– Detector: “Wow! We heard something!” to 
– Observatory: “How many sources   

     are in band now?” 
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