Dark Matter Properties from the Faintest Galaxies

Louis E. Strigari Stanford University/KIPAC Fermilab Astrophysics Seminar 4/2/2012

Particle Dark Matter

Weakly Interacting Massive Particles (WIMPs) in equilibrium in early Universe, may freeze-out with significant relic abundance

Point Sources in Fermi

Fermi-LAT Collaboration 1108.1435

Notable non-Fermi sources (yet)

- Galaxy clusters [Pinzke, Pfrommer, Bergstrom 2011; Gao et al. 2012; Ando & Nagai 2012; Han et al. 2012]
- Dwarf spheroidals (dSphs) [Tyler 2002; Evans, Ferrer, Sarkar 2004; Strigari et al. 2007, 2008]
- (Optically) dark subhalos [Tasitsiomi & Olinto 2002; Koushiappas et al. 2004; Pieri et al. 2008; Baltz et al. 2008; Springel et al. 2008; Anderson et al. 2010; Baxter et al. 2011; Buckley & Hooper 2011; Belikov et al. 2011]
 - If they are dark matter sources, then:

$$\left\{\int_{E_{\rm th}}^{M_{\chi}} \sum_{i} \frac{dN_{\gamma,i}}{dE} \frac{\langle \sigma v \rangle_{i}}{M_{\chi}^{2}} dE \right\} \left\{\int_{0}^{\Delta\Omega} \left\{\int_{\rm LOS} \rho^{2}[r(\theta, \mathcal{D}, s)] ds \right\} d\Omega \right\}$$
$$J \text{ value}$$

Search for dark matter from dSphs

- Well understood dark matter distributions
- Nearby, may be modeled as point sources
- No sources of gamma-rays from cosmic rays or star formation

Outstanding questions

- How precise can the masses be determined? (Strigari et al. ApJ 2007; Lokas et al. MNRAS 2009; Walker et al ApJ 2009; Wolf et al. MNRAS 2009)
- Do CDM-based NFW profiles provide best model? Core/cusp issue? (e.g. Gilmore et al. ApJ 2007; Walker & Penarrubia ApJ 2011)
- Degeneracy with kinematics variables (e.g. light profile, anisotropy of stars) (Strigari, Kaplinghat, Bullock, 2007 ApJL; Evans and An MRNAS 2008)?
- Are the kinematic solutions self-consistent?

Standard dSph Kinematics Cookbook

$$\sigma_{los}^2(R) = \frac{2}{I_\star(R)} \int_R^\infty \left(1 - \beta \frac{R^2}{r^2}\right) \frac{\nu_\star \sigma_r^2 r dr}{\sqrt{r^2 - R^2}}$$

•Model both the stellar and the dark matter distribution

- Statistics of stellar orbits (velocity anisotropy)
- •Assume hydrostatic equilibrium, determine mass
- •Warning!: acceptable solutions don't guarantee consistent distribution function

$$\mathcal{L}(\mathscr{A}) \equiv P(\{v_i\}|\mathscr{A}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi(\sigma_{los,i}^2 + \sigma_{m,i}^2)}} \exp\left[-\frac{1}{2} \frac{(v_i - u)^2}{\sigma_{los,i}^2 + \sigma_{m,i}^2}\right]$$

Testing for self-consis

Assuming Isotropic Orbits:

$$f(\mathcal{E}) = \frac{1}{\sqrt{8\pi^2}} \left[\int_0^{\mathcal{E}} \frac{\mathrm{d}^2 \rho}{\mathrm{d}\Psi^2} \frac{\mathrm{d}\Psi}{\sqrt{\mathcal{E} - \Psi}} + \frac{1}{\mathcal{E}^{1/2}} \left(\frac{\mathrm{d}\rho}{\mathrm{d}\Psi} \right)_{\Psi = 0} \right]$$

• Simplest constant anisotropy models:

 $f(E,L) = L^{-2\beta} f_E(E)$

• Simplest radially-varying anisotropy models [Osipkov-Merritt]

$$\beta = 1 - \frac{\sigma_{\theta}^2 + \sigma_{\phi}^2}{2\sigma_r^2} = \frac{1}{1 + (r_a/r)^2}$$

Testing LCDM with subhalo kinematics

- Consider a subhalo in simulation
- Imagine a galaxy with the stellar density profile lives there
- Predict velocity dispersion (assuming isotropy)
 - Compare with observed velocity dispersion
 - Test goodness-of-fit

dSph Photometric profiles

Core in 3D

$$\rho_{\rm pl}(r) = \frac{\rho_0}{\left[1 + (r/r_{\rm pl})^2\right]^{5/2}}$$

Cusp in 3D

$$\rho_{\star}(r) \propto \frac{1}{x^a (1+x^b)^{(c-a)/b}}$$

Matching 2nd moment of distribution

Higher order moments

Kinematics: Implications

- Isotropic, NFW models are consistent with data
- No core/cusp issue for bright dwarf spheroidals
- Further testing for anisotropic, non-spherical models [Breddels et al. 2011; Jardel & Gebhardt ApJ 2012; Baghramian, Afshordi, LS]
- Circular velocities range 10-25 km/s

Stellar systems of a really new kind

A COMPLETE SPECTROSCOPIC SURVEY OF THE MILKY WAY SATELLITE SEGUE 1: THE DARKEST GALAXY*

Joshua D. Simon¹, Marla Geha², Quinn E. Minor³, Gregory D. Martinez³, Evan N. Kirby^{4,5}, James S. Bullock³, Manoj Kaplinghat³, Louis E. Strigari^{6,5}, Beth Willman⁷, Philip I. Choi⁸, Erik J. Tollerud³, and Joe Wolf³

WILLMAN 1 - A PROBABLE DWARF GALAXY WITH AN IRREGULAR KINEMATIC DISTRIBUTION Beth Willman¹, Marla Geha², Jay Strader^{3,4}, Louis E. Strigari⁵, Joshua D. Simon⁶, Evan Kirby^{7,8}, Nhung Ho², Alex Warres¹

Willman et al., 2010

$$\mathcal{L}(\mathscr{A}) = P(\{v_i\}|\mathscr{A}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi(\sigma_{los,i}^2 + \sigma_{m,i}^2)}} \exp\left[-\frac{1}{2}\frac{(v_i - u)^2}{\sigma_{los,i}^2 + \sigma_{m,i}^2}\right]$$

Dark matter distributions

Search for emission from satellites

Search for emission from satellites

Limits robust to background treatments Geringer-Sameth & Koushiappas PRL 2012

Improvements in analysis

- Better data on stellar kinematics
 - Improved models
 - Proper motions
- More MW satellites will be discovered
- Only used 2 years of possible 10 years of Fermi data
- Complementarily with ground-based detectors

Distribution function modeling

- Discretize the distribution function in (E,L) space [Richstone & Tremaine (1984); Wu & Tremaine (2006); Wu (2007); Magorrian MNRAS (2006)]
- Solve for the weights
- Schwarschild modeling: DF is smooth in phase space and weights are maximized (not marginalized over) [Breddels et al. 2011; Jardel & Gebhardt ApJ 2012]
- Marginalizing over weights via MCMC captures nonsmooth features in phase-space
- Implications for J values [Braghmain, Afshordi, LS, to appear]

How well will we do?

Search for Dark Subhalos

How rare is our Milky Way Galaxy?

Dark matter in all satellites

Luminosity-mass mapping

Further Implications

- Semi-analytic models predict more bright satellites than observed [e.g. Cooper et al. MNRAS 2010; Bovill & Ricotti ApJ 2011]
- Does the mapping between circular velocity and luminosity imply a ``massive failure" of LCDM? [e.g. Boylan-Kolchin et al., 2011]

A few ways out

1) Inclusion of Baryons in simulations [Wadepuhl & Springel MNRAS 2011, Parry et al. MNRAS 2012]

2) More fundamental modification simulations

- warm dark matter
- primordial power spectrum

3) Low mass of the Milky Way [Vera-Ciro et al. 2012; Wang et al. 2012]

4) The Milky Way is an oddball

Testing the oddball hypothesis

Satellite	M_V	$L_V[L_{\odot}]$	$d_{sun}[kpc]$
Large Magellanic Cloud	-18.5	2.15×10^9	49
Small Magellanic Cloud	-17.1	5.92×10^8	63
Sagittarius	-15.0	8.55×10^7	28
Fornax	-13.1	1.49×10^7	138
Leo I	-11.9	4.92×10^6	270
Leo II	-10.1	$9.38 imes 10^5$	205
Sculptor	-9.8	7.11×10^{5}	88
Sextans	-9.5	5.40×10^{5}	86
Carina	-9.4	4.92×10^5	94
Draco	-9.4	4.92×10^5	79
Ursa Minor	-8.9	1.49×10^5	69
Canes Venatici I	-8.6	2.36×10^5	224
Leo T	-8.0	5.92×10^4	417
Hercules	-6.6	$3.73 imes 10^4$	138
Boötes I	-6.3	$2.83 imes 10^4$	60
Ursa Major I	-5.5	$1.36 imes 10^4$	106
Leo IV	-5.0	$8.55 imes 10^3$	158
Canes Venatici II	-4.9	$7.80 imes 10^3$	151
Ursa Major II	-4.2	$4.09 imes 10^3$	32
Coma	-4.1	$3.7 imes 10^3$	44
Boötes II	-2.7	1.03×10^3	43
Willman 1	-2.7	1.03×10^3	38
Segue 1	-1.5	3.40×10^2	23
6			

• Search MW-analogs in SDSS for satellite galaxies

• Probabilistic model using background subtraction

• Rely on spectroscopic and photometric redshifts

Magellanic Cloud-like Galaxies

• About 600 systems with spectra on MC-like satellites

• About 10,000 systems with photometric redshifts on MC-like satellites

Probability for Magellanic Clouds

•5% probability a MW-like system hosts 2 satellites brighter than MCs

• Mean of 0.25 satellites brighter than MCs per MW-like galaxy

Faintest satellites in SDSS

• Very few systems with spectra for Fornax-like satellites

• About 1,000 systems with photometric redshifts for Fornax-like satellites

Improvements with Future Surveys

- Dark energy survey will provide at least 4x more MW-like galaxies
- For satellites will reach down to at least two magnitudes fainter than SDSS analysis
- For nearby systems satellites are identified and velocity dispersions can be determined

Going forward

- Fermi-LAT results now rule out thermal relic particle DM in the mass range 10-25 GeV
- More Galactic satellites are out there, and more data is on the way
- Complementarity with direction detection results
- Stay tuned...