ASYMMETRIC DARK MATTER

KATHRYN M. ZUREK UNIVERSITY OF MICHIGAN

Friday, April 27, 2012

OVERWHELMING EVIDENCE FOR DARK MATTER

EVIDENCE FOR DM OVERWHELMING

All evidence points toward

WHAT DO WE KNOW ABOUT DM?

 Not modified gravity

- BBN --> not free baryons
- MACHO searches
 +Lya --> not
 bound baryons
- CMB + LSS + Bullet
 --> not neutrinos as
 DM

WHAT DO WE KNOW ABOUT DM?

CMB + LSS -- clustering properties

 Weakly interacting

- With us -- direct detection
- With itself -- halo shape bounds

Cold

• Which probe is the most constraining?

$$d\langle \delta p_X^2 \rangle / dt = \sum_{b=e,p} n_b \int d^3 v_B d^3 v_X f(v_B) f(v_X) d\Omega_* \frac{d\sigma_{Xb}}{d\Omega_*} v_{\rm rel} \delta p_X^2$$

Friday, April 27, 2012

HOW DARK IS DARK MATTER?

Coupling at CMB epoch is most constraining

HOW DARK IS DARK MATTER?

 Direct detection is also (potentially) highly constraining

THEORIES OF DARK MATTER

Axions

- Solve Strong CP
- Correct density of high scale axions via selection

• WIMPs

- Naturally obtain correct density via freeze-out
- Connected to weak scale
- Chemical Potential Dark Matter
 - Naturally obtain correct density via chemical potential
 - Connected to weak scale

BARYON AND DM NUMBER RELATED?

-20

10

x=m/T

100

BARYON AND DM NUMBER RELATED?

 Accidental, or dynamically related?

Experimentally, $\Omega_{DM} \approx 5\Omega_b$ Mechanism $n_{DM} \approx n_b$

 $m_{DM} \approx 5m_p$

Nussinov, Hall, Gelmini, Barr, Chivukula, Farhi, D.B. Kaplan

CHEMICAL POTENTIAL DARK MATTER

X

Use EW sphalerons?

SU(2) carrying dark fields! Barr, Chivukula, Farhi; D.B. Kaplan

CHEMICAL POTENTIAL DARK MATTER

Use EW sphalerons?

LEP and Precision EW tend to result in problematic models

A SIMPLE PRESCRIPTION: ASYMMETRIC DM

- Essential idea is to use higher dimension operators to transfer the asymmetry between sectors
- Avoid problems of precision EW

Luty, Kaplan, KZ '09

ASYMMETRIC DM

Friday, April 27, 2012

Energy

ASYMMETRIC DM

1. Transfer lepton or baryon asymmetry to DM through higher dimension operator

 Have asymmetry transferring operator decouple before DM becomes non-relativistic (Otherwise allows DM asymmetry to washout)

3. Annihilate away symmetric abundance of DM $n_X - n_{\bar{X}} \approx 10^{-10} n_X$

ANNIHILATING THERMAL ABUNDANCE

 $n_{DM} \sim T^3 \to 10^{-10} T^3$

Matter Anti-Matter

Dark

ANNIHILATING THERMAL ABUNDANCE

MANY EXAMPLES OF ASYMMETRIC DM

 $M_p \sim 1 \text{ GeV}$

Standard Model

Multiple resonances?

Could be complex

Dark forces and dark Higgs mechanism

CONSTRUCTING ADM SECTORS

- Difficult? Highly constrained? Predictive?
- Generate GeV scale dynamically
- Dark photon and dark Higgs provide efficient annihilation mechanism

DYNAMICAL GENERATION OF "LOW" SCALE

 All that's needed is a weak coupling between dark sector and weak scale

DYNAMICAL GENERATION OF "LOW" SCALE

Cohen, Phalen, Pierce, KZ

$W = \lambda STH' + S^2LH$ + Kinetic Mixing $U(1)_X$ +1-1 $U(1)_d$ +1-1

DYNAMICAL GENERATION OF "LOW" SCALE

A SIMPLE MODEL

- Unbroken global $U(1)_X$ --> stable sterile DM candidate
- Approximately supersymmetric; a workable spectrum

DESTRUCTIVE POWER OF DARK PHOTINOS

MANY QUESTIONS REMAIN

- How to generate the asymmetry? Cheung, KZ '11
- How to dynamically generate DM mass and light states in hidden sector?
- Cosmological implications -- is the asymmetry erased? Impact on astrophysical objects? Tulin, Yu, KZ, '12 McDermott, Yu, KZ, '11
- Direct and indirect detection of DM?

Lin, Yu, KZ, '11

ASTROPHYSICAL Implications

- DM does not annihilate
- It can accumulate in the center of stars

X

- Notable case: neutron stars
- Elastically scatter, come to rest in core
- High density!

ADM, BLACK HOLE AND NEUTRON STARS

McDermott, Yu, KZ '11

- Scalar case can lead to BH formation
- DM continues to accumulate until there are enough that they self-gravitate
- OR, they first form Bose-Einstein condensate and then self-gravitate
- Once they self-gravitate, they can collapse to form a BH!

BH FORMATION W/O BEC

McDermott, Yu, KZ, '11

$$E \sim -\frac{GNm^2}{R} + \frac{1}{R} \qquad \qquad N_{Cha}^{boson} \simeq \left(\frac{M_{pl}}{m}\right)^2 \simeq 1.5 \times 10^{34} \left(\frac{100 \text{ GeV}}{m}\right)^2$$

 $N_X \simeq 2.3 \times 10^{44} \left(\frac{100 \text{ GeV}}{m_X}\right) \left(\frac{\rho_X}{10^3 \text{ GeV/cm}^3}\right) \left(\frac{\sigma_{XB}}{2.1 \times 10^{-45} \text{ cm}^2}\right) \left(\frac{t}{10^{10} \text{ years}}\right)$

- Rapidly accumulate enough DM to exceed Chandrasekhar number
- Rapidly thermalize
- Then need to self-gravitate!

$$N_{self} \simeq 4.8 \times 10^{41} \left(\frac{100 \text{ GeV}}{m_X}\right)^{5/2} \left(\frac{T}{10^5 \text{ K}}\right)^{3/2}$$

BH FORMATION W/BEC

• With BEC, DM becomes dense fast!

$$N_X^0 = N_X \left[1 - \left(\frac{T}{T_c}\right)^{3/2} \right] \simeq N_X - 1.0 \times 10^{36} \left(\frac{T}{10^5 \text{ K}}\right)^3 \qquad r_{BEC} = \left(\frac{3}{8\pi G m_X^2 \rho_B}\right)^{1/4} \simeq 1.5 \times 10^{-5} \text{ cm} \left(\frac{100 \text{ GeV}}{m_X}\right)^{1/2}$$

Have to worry about evaporation

$$\frac{dM_{BH}}{dt} \simeq 4\pi\lambda_s \left(\frac{GM_{BH}}{v_s^2}\right)^2 \rho_B v_s - \frac{1}{15360\pi G^2 M_{BH}^2} + \left(\frac{dM_{BH}}{dt}\right)_{DM}$$

$$\left(\frac{dM_{BH}}{dt}\right)_{DM} \simeq 2.3 \times 10^{36} \text{ GeV/year } \left(\frac{\rho_X}{10^3 \text{ GeV/cm}^3}\right) \left(\frac{\sigma_{XB}}{2.1 \times 10^{-45} \text{ cm}^2}\right)$$

ADM, BLACK HOLE AND NEUTRON STARS

Friday, April 27, 2012

LIGHT DARK MATTER $m_X < 10 \text{ GeV}$

- What are the cosmological constraints?
- Assume thermalized hidden sector
 - Relic density + LHC
 - Halo shapes
 - CMB and ADM

HALO SHAPES

- Need new light states
- New light states can mediate scattering

CMB: LIGHT DM PREFERS AN ASYMMETRY

DIRECT DETECTION

- Couplings (freeze-out)
- Mediator masses (halo shapes)

Bjorken, Essig, Schuster, Toro

DIRECT DETECTION

- Couplings (freeze-out)
- Mediator masses (halo shapes)

OSCILLATING ADM

- Any violation of X number can lead to dark - anti - dark oscillations, e.g. $m_M X^2$
- What are the conditions for this to happen?

Oscillation time scale Scattering time scale $\frac{dY_{\beta}}{dz} = \frac{z}{2} \langle P_{\alpha \to \beta}(t) \rangle \frac{\Gamma_{\alpha}}{H_1} (Y_{\alpha} - Y_{\beta})$

 $m_M > H$

True results more subtle

Cohen, KZ '09 Falkowski, Rudermann, Volansky '10 Buckley, Profumo '11 Cirelli, Panci, Servant, Zaharijas '11

BOLTZMANN EQ FROM FIRST PRINCIPLES

Tulin, Yu, KZ '12

$$\frac{\partial \mathscr{F}_{k}}{\partial t} - Hk \frac{\partial \mathscr{F}_{k}}{\partial k} = -i[\mathcal{H}_{k}, \mathscr{F}_{k}] + C_{k}[\mathscr{F}]$$

$$\swarrow$$
Coherent oscillations
$$M = \begin{pmatrix} m_{X} & m_{M} \\ m_{M} & m_{X} \end{pmatrix}$$

$$\mathcal{H}_{k} = \sqrt{k^{2} + M^{2}} = \omega_{k} \mathbb{1} + \frac{m_{X} \delta m}{\omega_{k}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $\delta m \sim m_M > H$

BOLTZMANN EQ FROM FIRST PRINCIPLES

$$n \equiv (2s+1) \int \frac{d^3k}{(2\pi)^3} \mathscr{F}_k = \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix}, \quad \bar{n} \equiv (2s+1) \int \frac{d^3k}{(2\pi)^3} \,\bar{\mathscr{F}}_k = \begin{pmatrix} n_{22} & n_{12} \\ n_{21} & n_{11} \end{pmatrix}$$

$$\frac{\partial n}{\partial t} + 3Hn = -i \left[\mathcal{H}_0, n\right] - \frac{\Gamma_{\pm}}{2} \left[O_{\pm}, \left[O_{\pm}, n\right]\right] - \langle \sigma v \rangle_{\pm} \left(\frac{1}{2} \left\{n, O_{\pm} \bar{n} O_{\pm}\right\} - n_{eq}^2\right)$$

Coherence broken only through flavor sensitive interactions

BOLTZMANN EQ FROM FIRST PRINCIPLES

$$n \equiv (2s+1) \int \frac{d^3k}{(2\pi)^3} \mathscr{F}_k = \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix}, \quad \bar{n} \equiv (2s+1) \int \frac{d^3k}{(2\pi)^3} \,\bar{\mathscr{F}}_k = \begin{pmatrix} n_{22} & n_{12} \\ n_{21} & n_{11} \end{pmatrix}$$

$$\frac{\partial n}{\partial t} + 3Hn = -i \left[\mathcal{H}_0, n\right] - \frac{\Gamma_{\pm}}{2} \left[O_{\pm}, \left[O_{\pm}, n\right]\right] - \langle \sigma v \rangle_{\pm} \left(\frac{1}{2} \left\{n, O_{\pm} \bar{n} O_{\pm}\right\} - n_{\text{eq}}^2\right)\right]$$

Only flavor blind interactions source annihilations:

$$\frac{1}{2} \{Y, O_{+}\bar{Y}O_{+}\} = \begin{pmatrix} Y_{11}Y_{22} + Y_{12}Y_{21} & Y_{11}Y_{12} + Y_{12}Y_{22} \\ Y_{21}Y_{11} + Y_{22}Y_{21} & Y_{11}Y_{22} + Y_{12}Y_{21} \end{pmatrix}$$

$$\frac{1}{2} \{Y, O_{-}\bar{Y}O_{-}\} = \begin{pmatrix} Y_{11}Y_{22} - Y_{12}Y_{21} & 0 \\ 0 & Y_{11}Y_{22} - Y_{12}Y_{21} \end{pmatrix}$$

NUMERICAL RESULTS

- Vector interactions
- But scattering off
- Oscillations turn on, no depletion of DM density

NUMERICAL RESULTS

NUMERICAL RESULTS

 10^{8}

1000

0.01

Η

- Scalar interactions
- Oscillations turn on

Friday, April 27, 2012

V + V -

NEW ÁVENUES FOR BARYOGENESIS

 B and DM number violation simultaneously

$$W = Xu^c d^c d^c$$

- Coupled oscillators
- Generates equal and opposite B and DM number -- cogenesis!

Cheung, KZ '11

 $n_{B-L} = -n_X$

COGENESIS IN THE EARLY UNIVERSE

To see how it works, map to simple mechanical analog: pseudo-particle in 2-dimensions

$$\phi = \frac{1}{\sqrt{2}} r_{\phi} e^{i\theta_{\phi}}$$

$$n_{\phi} = j^0 = i(\phi \phi^{\dagger} - \phi^{\dagger} \phi) = r_{\phi}^2 \dot{\theta}_{\phi}$$

B-L and X asymmetry: torque on mechanical analog

COGENESIS IN THE EARLY UNIVERSE

- Two ingredients for successful Affleck-Dine Cogenesis
 - Stabilization: non-zero B-L and X vevs

20

 Torque: non-zero angular momentum

COGENESIS -- NATURAL FOR ADM!

 $\mathcal{O}_{R-L}\mathcal{O}_X$

 $\mathcal{O}_{B-L} = LH_u, LLE^c, QLD^c, U^cD^cD^c$

 $\mathcal{O}_X = X, \ X^2$

Cheung, KZ '11

- Affleck-Dine works by utilizing flat directions with non-zero <B-L>
- Note there is a symmetry $U(1)_{B-L+X}$ which generates $-n_{B-L} = n_X \neq 0$.
- At low temperature, symmetry breaks when O_{B-L}O_X decouples, separately freezing in the asymmetries

 $U(1)_{B-L+X} \rightarrow U(1)_{B-L} \times U(1)_X$

DM: Where are We?

• The Nature of the DM remains one of the most

important open problems in physics

- It's an auspicious time
- Indirect detection -approaching thermal cross-sections in some mass regions

DM: Where are We?

- Direct detection -reaching the Higgs pole. Ton scale experiments should surpass it
- In a position to rule out or observe "standard" WIMP

$$\sigma_n \sim 10^{-45-46} \ \mathrm{cm}^2$$

DM: Where are We?

- DM anomalies?
- Other candidates
- Asymmetric Dark Matter gives rise to a distinctive phenomenology to explore

