High energy cosmic rays: (1) lessons from radioactive nuclei and positrons (2) robust tests for exotic sources

Kfir Blum

Katz, KB, Morag, Waxman; **MNRAS 405, 1458 (2010)** KB; **JCAP 1111 (2011) 037** +work in progress

> Fermilab astro seminar 05/07/2012

Motivation: High energy cosmic rays

- Continuing data revolution: HESS, Fermi, ATIC, PAMELA, CREAM, DeepCore,...
 and AMS02 is running
- Even in old data, some rocks left to turn over
- Primordial antimatter extinct occurrence in HE CRs relatively well understood

 potential window to fundamental physics dark matter? pulsars?

Plan

- Cosmic rays: simple analysis of stable secondaries
 CR grammage
- Radioactive nuclei: propagation time
 Radioactive nuclei probe escape time up to (surprisingly) high energy
- Positrons, antiprotons; PAMELA and Fermi Know injection → learn propagation Robust tests for secondary hypothesis

Galactic CRs: lightning review

- CRs fill our Galaxy. Galactic: up to ~ PeV (at least). Energy density ~ eV/cm³
- Primaries: p, C, Fe, ... consistent w/ stellar material, shock-accelerated
- Secondaries: B, Be, Sc, Ti, V, ... consistent w/ fragmentation of primaries on ISM Antimatter occurs as secondary $pp \rightarrow pn\pi^+ \rightarrow ppe^-e^+\nu_e\bar{\nu}_e\nu_\mu\bar{\nu}_\mu$
- Open questions: propagation, primary source(s)

A simple analysis of stable secondaries

• At high energy, flux of stable secondary nuclei follows empirical relation:

$$J_S = \frac{c}{4\pi} X_{\text{esc}} \tilde{Q}_S \qquad (S = {}^9\text{Be}, \text{ B}, \text{ Sc}, \bar{p}, \dots)$$

• \tilde{Q}_{S} = Local net production density per traversed unit column density of ISM

• $X_{esc} = CR$ grammage = mean column density. X_{esc} : no species label, S

CR grammage $J_S = \frac{c}{4\pi} X_{esc} \tilde{Q}_S$

- Measured from B/C, sub-Fe/Fe $X_{\rm esc}(\mathcal{R}) \approx 8.7 \left(\frac{\mathcal{R}}{10 \, {\rm GV}}\right)^{-0.5} \, {\rm g/cm^2}$
- Precise way by which X_{esc} comes about is unknown

• Equivalent to:
$$\frac{n_A}{n_B} = \frac{Q_A}{\tilde{Q}_B}$$

A,B secondaries, compared at the same rigidity

Intuition: ISM bombarded by CRs. Yields $N_{A,B}$ secondary particles per unit time. N_A/N_B depends on CR and ISM *composition*. If composition uniform everywhere \rightarrow expect \checkmark

• Sufficient condition:

Composition of CRs and of ISM approximately uniform, in regions where most secondaries observed at earth are produced

Example: antiprotons

No free parameters.

Why does it work so well?

Why it could work:

NGC 891

Why it could work:

NGC 891

MW? Feldmann, Hooper, Gnedin arXiv:1205.0249

1.4GHz

NIR

Diffusion models fit grammage

Maurin, Donato, Taillet, Salati Astrophys.J.555:585-596,2001

Diffusion models fit grammage

$$X_{\rm esc} = X_{\rm disc} Lc/(2D) g(L/R) \propto \varepsilon^{-\delta}$$

$$\implies f(\delta) = (\varepsilon/ \text{ GeV})^{\delta - 0.6} \approx 75^{\delta - 0.6}$$

$$g(L/R) = \frac{2R}{L} \sum_{k=1}^{\infty} J_0 \left(\nu_k \frac{r_s}{R}\right) \frac{\tanh\left(\nu_k \frac{L}{R}\right)}{\nu_k^2 J_1(\nu_k)}$$

Plan

- Cosmic rays: simple analysis of stable secondaries
 CR grammage
- Radioactive nuclei: propagation time
 Radioactive nuclei probe escape time up to (surprisingly) high energy
- Positrons, antiprotons; PAMELA and Fermi Know injection → learn propagation Robust tests for secondary hypothesis

Propagation time scales: radioactive nuclei

B/C teach us the mean column density of target material traversed by CRs

But it does not say much about the time it takes to accumulate this column density

A beam of carbon nuclei traversing 1g/cm² of ISM produces the same amount of boron, whether it spent 1kyr in a dense molecular cloud, or 1Myr in rarified ISM

→ Radioactive nuclei carry time info (as do positrons)

Radioactive nuclei: Charge ratios vs. isotopic ratios

Charge ratios Be/B, Al/Mg, Cl/Ar, Mn/Fe

Isotopic ratios

 $^{10}{\rm Be}/^{9}{\rm Be},\,^{26}{\rm Al}/^{27}{\rm Al},\,^{36}{\rm Cl/Cl},\,\,^{54}{\rm Mn/Mn}$

• High energy isotopic separation difficult. Must resolve mass Isotopic ratios up to ~ 2 GeV/nuc (ISOMAX)

 Charge separation easier. Charge ratios up to ~ 16 GeV/nuc (HEAO3-C2) (AMS-02: Charge ratios to ~ TeV/nuc. Isotopic ratios ~ 10 GeV/nuc)

• Benefit: avoid low energy complications; significant range in rigidity

• Drawback: systematic uncertainties (cross sections, primary contamination)

Radioactive nuclei: Charge ratios vs. isotopic ratios

Charge ratios Be/B, Al/Mg, Cl/Ar

Isotopic ratios

Radioactive nuclei: Charge ratios

A STUDY OF THE SURVIVING FRACTION OF THE COSMIC-RAY RADIOACTIVE DECAY ISOTOPES ¹⁰Be, ²⁶Al, ³⁶Cl, and ⁵⁴Mn AS A FUNCTION OF ENERGY USING THE CHARGE RATIOS Be/B, Al/Mg, Cl/Ar, AND Mn/Fe MEASURED ON *HEAO*-3

> W. R. WEBBER¹ AND A. SOUTOUL Received 1997 November 6; accepted 1998 May 11

(WS98)

reaction	$t_{1/2}$ [Myr]	$\sigma \; [{\rm mb}]$
$^{10}_4{ m Be}$ $ ightarrow$ $^{10}_5{ m B}$	1.51(0.06)	210
$^{26}_{13}\mathrm{Al}\rightarrow^{26}_{12}\mathrm{Mg}$	0.91(0.04)	411
$^{36}_{17}\mathrm{Cl}$ $ ightarrow$ $^{36}_{18}\mathrm{Ar}$	0.307(0.002)	516
$^{54}_{25}Mn\rightarrow^{54}_{26}\mathrm{Fe}$	$0.494(0.006)^*$	685

Surviving fraction vs. suppression factor

- Convert charge ratios to observable with direct theoretical interpretation
- 1st step: WS98 report surviving fraction
 Well defined quantity, model independently.

$$\tilde{f}_i = \frac{J_i}{J_{i,\infty}}$$

2nd step: net source includes losses $\tilde{Q}_S(\mathcal{R}) = \sum_P \frac{n_P(\mathcal{R})\sigma_{P\to S}}{\bar{m}} - \frac{n_S(\mathcal{R})\sigma_{S\to X}}{\bar{m}}$

Surviving fraction over-counts losses $n_{i,\infty} > n_i$

Instead, define **suppression factor** due to decay Accounts for actual fragmentation loss

$$f_{s,i} = \frac{J_i}{\frac{c}{4\pi} \,\tilde{Q}_i \, X_{\rm esc}}$$

Suppression factor

• Different nuclei species on equal footing

• Expect
$$t_{
m esc} = t_{
m esc}(\mathcal{R})$$
 , $f_{s,i} \approx \left(rac{t_i}{t_{
m esc}}
ight)^{lpha}$

Examples:

Leaky Box ModelDiffusion
$$f_{s,i} = \frac{1}{1 + t_{esc}/t_i}$$
 $f_{s,i} = \sqrt{t_i/t_{esc}} \tanh\left(\sqrt{t_{esc}/t_i}\right)$ $\tilde{f}_i = \frac{1}{1 + \frac{t_{esc}}{t_c} \left(1 + \frac{X_{esc} \sigma_{i \to X}}{m_p}\right)^{-1}}$ $\tilde{f}_i = \dots$

Surviving fraction vs. energy (WS98)

Suppression factor vs. energy

Suppression factor vs. lifetime

Residual rigidity dependence

$$\log\left(\frac{f_{s,i}\left(\mathcal{R}'\right)}{f_{s,j}\left(\mathcal{R}'\right)}\right) \approx \alpha \log\left(\frac{A_j Z_i \tau_i}{A_i Z_j \tau_j}\right)$$

 $\Delta \alpha \propto 1/\log\left(\tau_i/\tau_j\right)$

Radioactive nuclei: constraints on $t_{\rm esc}$

- Rigidity dependence: hints from current data
- Cannot (yet) exclude $\ \delta < -1$ with $lpha \lesssim 0.5$
- AMS-02 should do much better! Looking forward to the verdict: will it stay?

Radioactive nuclei: constraints on $t_{ m esc}$

Plan

- Cosmic rays: simple analysis of stable secondaries
 CR grammage
- Radioactive nuclei: propagation time
 Radioactive nuclei probe escape time up to (surprisingly) high energy
- Positrons, antiprotons; PAMELA and Fermi
 Know injection → learn propagation
 Robust tests for secondary hypothesis

What to expect from current and upcoming positron measurements?
 Secondary e+ produced in pp interactions, just like e.g. antiprotons
 Antiprotons understood → secondary e+ production understood
 e+ lose energy radiatively. Measure e+ → measure losses

Positrons

$$\frac{J_{e^+}}{J_p} = f_{s,e^+} 10^{-\gamma+1} \xi_{e^+,A>1} C_{e^+,pp}(\varepsilon) \frac{\sigma_{pp,inel,0}}{m_p} X_{\text{esc}}$$

$$pp \to pn\pi^+ \to ppe^-e^+\nu_e\bar{\nu}_e\nu_\mu\bar{\nu}_\mu$$

h	Exclusive reaction	$\overline{M}_{\rm X}$ (GeV c^{-2})	$\sqrt{s_t}$ (GeV)	E _t (GeV)	T _t (GeV)
π^+	$pn\pi^+$	1.878	2.018	1.233	0.295
π	$pp\pi^{+}\pi^{-}$	2.016	2.156	1.540	0.602
π^0	$pp\pi^0$	1.876	2.011	1.218	0.280
κ^+	$\Lambda^0 p \kappa^+$	2.053	2.547	2.520	1.582
κ ¯	$pp\kappa^+\kappa^-$	2.370	2.864	3.434	2.496
p	āgag	2.814	3.752	6.566	5.628
p	pp	0.938	1.876	0.938	0

Positrons

$$\frac{J_{e^+}}{J_p} = f_{s,e^+} 10^{-\gamma+1} \xi_{e^+,A>1} C_{e^+,pp}(\varepsilon) \frac{\sigma_{pp,inel,0}}{m_p} X_{\rm esc}$$

- Cannot apply grammage relation: energy losses. Parameterize...
- Cooling suppression depends on time scales for escape and loss. Both time scales unknown
- Moreover, precise relation model dependent

For example, diffusion models predict:

$$f \sim \sqrt{t_c/t_{\rm esc}}$$

Leaky Box models predict: $f \sim t_c/t_{
m esc}$

• What we do know: steep spectrum \rightarrow loss suppresses flux

Study positrons and antiprotons together

Below ~100 GeV, positron flux consistent w/ secondary + losses.

Positrons: data

 $f_{s,e^+} < 1$

Positrons: data

non secondary

Positrons: data

Kinetic Energy [GeV]

Constraints on positron energy loss

• Suppression factor: (estimated f_{e+} goes down by~10-20% if adopt new Adriani et al 1103.4055)

$$f_{s,e^+} = \frac{J_{e^+}}{\frac{c}{4\pi} \,\tilde{Q}_{e^+} \,X_{\rm esc}} \approx 0.6 \times 10^3 \left(\frac{\mathcal{R}}{10\,{\rm GV}}\right)^{0.5} \times \frac{J_{e^+}(\mathcal{R})}{J_p(\mathcal{R})}$$

• Saw
$$f_{s,e^+} \sim 0.3 < 1$$
 @20 GV

Does this result make sense quantitatively?

• Expect f_{s,e^+} rise if escape time drops faster than cooling time: $f_{s,e^+} \approx \left(\frac{t_c}{t_{\rm esc}}\right)^{\alpha}$ expect $t_c \propto \mathcal{R}^{-\delta_c}$. If uniform environment, IC/sync', Thomson regime $\delta_c \sim 1$

ightarrow Does data allow escape time falling faster than t_c ?

Positrons vs. radioactive nuclei

 Suppression factor due to decay ≈ suppression factor due to radiative loss, if compared at rigidity such that cooling time ≈ decay time

Explain:

$$t_c = \left| \mathcal{R}/\dot{\mathcal{R}} \right| \propto \mathcal{R}^{-\delta_c} \qquad \qquad n_{e^+} \sim \mathcal{R}^{-\gamma}$$

Consider decay term of nuclei and loss term of e+ in general transport equation.

decay:
$$\partial_t n_i = -\frac{n_i}{t_i}$$
 loss: $\partial_t n_{e^+} = \partial_{\mathcal{R}} \left(\dot{\mathcal{R}} n_{e^+} \right) = -\frac{n_{e^+}}{\tilde{t}_c}$
 $\tilde{t}_c = \frac{t_c}{\gamma - \delta_c - 1}$

But, $\gamma \sim 3 \rightarrow \tilde{t}_c \approx t_c$

Combined information

• Is f_{s,e^+} rising with rigidity (=escape time falling faster then cooling time) allowed by data?

Currently cannot exclude robustly. Upcoming data should settle this!

Next:

• Quantitative result for $\,f_{s,e^+}$

Cooling ~ decay $f_{s,i} \approx \left(\frac{t_i}{t_{\rm esc}}\right)^{\alpha} \quad f_{s,e^+} \approx \left(\frac{t_c}{t_{\rm esc}}\right)^{\alpha}$

Cooling time
$$t_{\rm c} \approx 10 \,\mathrm{Myr} \,\left(\frac{\mathcal{R}}{30 \,\mathrm{GV}}\right)^{-1} \left(\frac{\bar{U}_T}{1 \,\mathrm{eV} \,\mathrm{cm}^{-3}}\right)^{-1}$$

$$\frac{f_{s,i}(\mathcal{R}')}{f_{s,e^+}(\mathcal{R}')} \approx \left[\left(\frac{\tau_i}{1.5 \,\mathrm{Myr}} \right) \left(\frac{\mathcal{R}'}{20 \,\mathrm{GV}} \right)^2 \left(\frac{\bar{U}_T}{1 \,\mathrm{eV} \,\mathrm{cm}^{-3}} \right) \right]^{\alpha}$$

Combined information

•
$$f_{s,e^+} \sim 0.3 < 1$$
 @ 20 GV

consistent w/ secondary... so far

Upper bound from Cl

$$\bar{U}_T < 5 \left(\frac{\mathcal{R}}{20 \,\mathrm{GV}}\right)^{-2} \,\mathrm{eV \, cm^{-3}}$$

• Test secondary e+:

$$\bar{U}_T < U_{CMB} \approx 0.25 \text{ eV/cm}^3$$

Tests for secondary positrons

1. Existence of losses: $f_{s,e^+} < 1$

Independent of radioactive nuclei. Satisfied by PAMELA data

2. Amount of losses: $\bar{U}_T > U_{CMB}$

Compare w/ radioactive nuclei. At present, satisfied where CI and e+ data coexist AMS02 can easily expose discrepancy at higher energy, even if $f_{e+} < 1$

3. Slope: $\delta + \delta_c < 0$

Measure escape time $t_{esc} \propto \mathcal{R}^{\delta}$ and cooling time $t_c \propto \mathcal{R}^{-\delta_c}$ Based on radioactive nuclei. Consistent w/ PAMELA data

Another clean test

Summary

• Stable secondaries

propagation models fit grammage

Radioactive nuclei

probe propagation time up to surprisingly high E

Interpreting e+ data

e+ ~ antiprotons, define robust tests
secondary e⁺ consistent up to 100 GeV
PAMELA , AMS-02 reach ~300 GeV
Fermi 2011: if correct, rules out secondary model.
AMS02 should settle this

Xtras

Guiding concept: The solar neutrino problem

Major success of particle astrophysics: Solar Neutrinos

Case was only closed when astro uncertainties were removed model independently. Done from basic principles:

- Low energy deficit (Homestake) T uncertainty?
- Smaller deficit at higher energy (Kamiokande)
 - → real anomaly
- Lesson:

model independent no-go conditions

CR grammage

In some more detail

Net production includes fragmentation losses

$$\tilde{Q}_S(\mathcal{R}) = Q_{P \to S}(\mathcal{R}) - Q_{S \to X}(\mathcal{R}) = \sum_P \frac{n_P(\mathcal{R})\sigma_{P \to S}}{\bar{m}} - \frac{n_S(\mathcal{R})\sigma_{S \to X}}{\bar{m}}$$

 \bar{m} = mean ISM particle mass (~ 1.3 m_p)

High-energy \rightarrow energy independent cross sections; negligible energy gain/loss Approx': secondary inherits rigidity of primary

• In general
$$n_S(r', t', \mathcal{R}) = c \int^{t'} dt \int d^3r \,\rho_{ISM}(r, t) \,\tilde{Q}_S(r, t, \mathcal{R}) \,G(r, r'; t, t'; \mathcal{R})$$

• Uniform composition:
$$\bar{m}(r',t') = \bar{m}(r,t)$$
, $\frac{n_i(r,t,\mathcal{R})}{n_j(r,t,\mathcal{R})} = f_{ij}(\mathcal{R})$

• Thus
$$\tilde{Q}_S(r', t', \mathcal{R}) = \tilde{Q}_S(r, t, \mathcal{R}) \frac{n_{P_1}(r', t', \mathcal{R})}{n_{P_1}(r, t, \mathcal{R})}$$

• Obtain: $n_S(r', t', \mathcal{R}) = \tilde{Q}_S(r', t', \mathcal{R}) X_{\text{esc}}(\mathcal{R})$

$$X_{\rm esc}(\mathcal{R}) = c \int^{t'} dt \int d^3r \,\rho_{ISM}(r,t) \,\frac{n_{P_1}(r,t,\mathcal{R})}{n_{P_1}(r',t',\mathcal{R})} \,G(r,r';t,t';\mathcal{R})$$

Stable secondaries, spallation losses

Equivalently:

$$dxQ_A = n_{A,out} + n'_{A,out} - n_{A,in}$$
$$dxQ_{A,eff} = n''_{A,out} - n_{A,in}$$

$$Q_{A,\text{eff}} = Q_A - n_A \frac{\sigma_{A \to X}}{m_p} \rho_{ISM} c$$

Homogenous composition:

Q_{eff} works just the same!

Comparing with radioactive nuclei

Time scales:

cooling vs decay

Theoretically clean channel:

Theoretically clean channel:

 \overline{p}/p Concrete example: Z3-protected ν' at the TeV Annihilation may compete w/ background if light radion ~ 10-100 GeV (Sommerfeld enhanced)

$$f_V = \frac{\int d^3 r q_{DM}(\vec{r}) \bar{G}(\vec{r}_{\rm sol}, \vec{r})}{\int d^3 r q_{\rm sec}(\vec{r}) \bar{G}(\vec{r}_{\rm sol}, \vec{r})} \sim L/h \sim 10 - 100$$

Positron anomaly?

Claims of a primary source:

• The electrons are assumed to have the same production spectrum as the protons, and to suffer the same energy losses as the positrons $f_{s,e^-} = f_{s,e^+}$.

• The e^+ flux, including the energy loss suppression, is calculated within a specific propagation model.

Positron anomaly?

Claims of a primary source:

• The electrons are assumed to have the same production spectrum as the protons, and to suffer the same energy losses as the positrons $f_{s,e^-} = f_{s,e^+}$.

• The e^+ flux, including the energy loss suppression, is calculated within a specific propagation model.

Positron anomaly?

Claims of a primary source:

• The electrons are assumed to have the same production spectrum as the protons, and to suffer the same energy losses as the positrons $f_{s,e^-} = f_{s,e^+}$.

• The e^+ flux, including the energy loss uppression, is calculated within a specific propagation model.

Interpretation

Decay suppression factor probes propagation

$$n \sim \frac{Q V_{\text{source}} t_{\text{eff}}}{V_{\text{eff}}}$$
$$f \sim \frac{n_{\text{decay}}}{n_{\text{no decay}}} \sim \frac{V_{\text{esc}}}{V_{\text{decay}}} \times \frac{t_{\text{decay}}}{t_{\text{esc}}} \sim \left(\frac{t_{\text{decay}}}{t_{\text{esc}}}\right)^{1-\kappa d}$$

- Scaling of volume depends on type of motion, relevant dimensions $V_{\rm eff} \sim \left(t_{\rm eff}
 ight)^{\kappa\,d}$
- \rightarrow In models with thin disc and thick halo, d~1
- \rightarrow Uniform models, diffusion models, compound diffusion, ...

$$\kappa \sim 0$$
 $\kappa \sim \frac{1}{2}$ $\kappa \sim \frac{1}{4}$
• Expect $f_{s,i} \approx \left(\frac{t_i}{t_{\rm esc}}\right)^{\alpha}$

• Lastly, if trapping is magnetic, expect $t_{
m esc} = t_{
m esc}(\mathcal{R})$

Galactic CR: general picture

- Primaries: p, C, Fe, ... consistent w/ stellar material, shock-accelerated
- Secondaries: B, Be, Sc, Ti, V, ... consistent w/ fragmentation of primaries on ISM

Low energy complications

- Solar modulation
- Geomagnetic effects
- Reacceleration
- Convection
- Energy dependent fragmentation cross sections
- Ionization losses

• ?

Limit to R>10 GV → avoid most effects

Radioactive nuclei

 $t_{\rm esc} \approx (20 \operatorname{to} 40) \times (\mathcal{R}/10 \operatorname{GV})^{0 \operatorname{to} 0.2} \operatorname{Myr}, \quad \text{DLBM},$ $t_{\rm esc} \approx (200 \operatorname{to} 500) \times (\mathcal{R}/10 \operatorname{GV})^{-0.7 \operatorname{to} -0.3} \operatorname{Myr}, \quad \text{diffusion}$

Radioactive nuclei

