

DarkSide and its low radioactivity argon target

Henning O. Back – Princeton University FCPA Seminar, 22 February 2012

ARGON SCINTILLATION

Excited argon dimer production

2/22/2012

3

Argon light output

Pulse shape

- Excited Ar dimer has 2 lowest energy states
 - Singlet
 - lifetime ~ 7 ns
 - Triplet (forbidden decay)
 - Lifetime ~1.6 µsec
 - States populated differently depending on ionization density
- Allows for pulse shape discrimination

Pulse shape for different radiation

Pulse shape for nuclear recoils

- Dark matter will only scatter off of argon nucleus
- Recoiling nucleus cause argon excitation and ionization

Argon light yield

- Incident radiation may loose energy other than through excited dimer formation
- Ionization density dependent

Scintillation Efficiency of Noble Elements (Scene)

Fermilab - F. DeJongh, W. H. Lippincott, B. Loer, S. Pordes, A. Sonnenschein, C. Stoughton, J. Yoo Princeton - H. O. Back, F. Calaprice, H. Cao, C. Galbiati, L. Grandi, P. Meyers, P. Mosteiro, A. Wright Temple University- C. J. Martoff, C. Martin UCLA - H. Wang, Y. Meng Universit`a Federico II and INFN, Naples, Italy - A. Cocco and G. Fiorillo

University of Notre Dame - P. Collon and W. Tan

- Pulsed low energy neutron beam at Notre Dame
- Small dual phase TPC
- Several neutron detectors used in coincidence with TPC

- Measure scintillation efficiency due to nuclear recoils as a function of
 - Recoil energy
 - Applied E-field
- Will also measure free charge

DARKSIDE

Taking advantage of argon properties for dark matter searches

DarkSide Collaboration

The onion peel of ultra low level background reduction

DarkSide event ID

- Use argon scintillation and ionization properties
 - Scintillation pulse shape analysis
 - Ionization/Scintillation analysis

Dual phase TPC principle

- Primary scintillation occurs in the liquid (S1)
- Free electrons from ionization are drifted to a gas region where a secondary scintillation pulse measures ionization (S2)
- Eliminating surface events (Fiducial volume)
 - PMT hit pattern provides X-Y position
 - Drift time provides Z position

Pulse shape discrimination

Ionization:Scintillation discrimination (S2/S1)

DarkSide design

DarkSide events

DarkSide-10 results

High efficiency neutron veto

- Boron-loaded liquid scintillator
 - − (¹⁰Bo + n \rightarrow ⁷Li + α)
- Tag nuclear recoils events
 - A neutron can produce a nuclear recoil in TPC
 - Neutron is then captured in veto and event is tagged
- Efficiency
 - >99.5% efficiency for radiogenic neutrons
 - >95% efficiency for cosmogenic neutrons

For details: NIM A 664:18-26 (2011)

Pure argon target

- Generally:
 - Readily available
 - Easily purified

But...

We will discuss this in more detail later

Clean detector materials

Detector materials

- All are generally low in Uranium and Thorium
 - Stainless steel
 - Teflon
 - Copper
 - Etc.
- All materials are being screened
 - Direct gamma assay
 - Neutron Activation Analysis
 - ICP-MS

Photodetectors

- Quartz Photo Intensifying Device (QUPID)
- Limited material (No dynodes)
- Quartz = No 40 K (1.46 MeV γ)

CTF water tank

- Counting Test Facility was Borexino's prototype
- DarkSide will use the CTF water tank
- Provides shielding from cavern walls, etc.
- Water is also instrumented for muon veto
- Dimensions
 - 11m tall
 - 10m diameter

Laboratori Nazionale del Gran Sasso (LNGS)

• 5000 meter H_2O equivalent

Detector Status

DarkSide 10

- 10 kg active mass
- Installed at LNGS
- Includes water shield

DarkSide 50

- 50 kg active mass
- CTF water tank is being drained
- Neutron veto sphere panels are being fabricated
- TPC construction beginning at Princeton
- Argon target \rightarrow next topic

THE DARKSIDE ARGON

Pure low radioactive underground argon

Atmospheric argon limits

- Argon-39
 - Beta emitter (q = 565 keV, $t_{1/2}$ = 269 years)
 - Produced in the atmosphere through cosmic ray interactions (eg, ⁴⁰Ar(n, 2n)→³⁹Ar)
 - Atmospheric abundance
 - ³⁹Ar/⁴⁰Ar is 8×10⁻¹⁶ (0.8 ppq)
 - Specific activity = 1 Bq/kg
 - Is the limiting factor in size and sensitivity for argon detectors
 - Limits detector size due to ³⁹Ar event pile-up
 - One ton detector
 - Electron drift time across 1 ton detector (1m)= order 500µs (minimum time between events, equivalent to 2kHz)
 - Atmospheric ³⁹Ar decay rate = 1kHz/ton

Terrestrial argon sources

As I understand them

- ⁴⁰Ar comes from ⁴⁰K decay
- Atmosphere
 - ³⁹Ar produced by cosmic ray neutrons
- Crust
 - No cosmic ray
 - Neutrons from U and Th
- Mantle
 - Very low U and Th
 - Lowest ³⁹Ar levels

CO₂ well is SW Colorado

- There are geological formations that trap gases underground
- We found CO₂ well in SW Colorado (near Cortez)
- Contains 600 ppm Argon

Depleted Argon Counting

- Dedicated "low background detector"
- ~0.56 kg liquid Ar active mass
- Cryogenic, low background 3" PMT
- 2" Cu, 8" Pb shielding
- Muon veto

Depleted Argon Counting

- At Princeton, background in the ³⁹Ar region is 0.05 Bq in (200,800 keV)
- ³⁹Ar depletion factor of >10 from direct counting, >~50 from spectral fit

Depleted Argon Counting

- At KURF (1400 m.w.e.) background reduced to 0.002 Bq in 300-400 keV
- Depletion factor of >50 from counting
 - Spectral fit in progress

Getting to the argon

- Extraction
 - In Colorado we extract a crude argon gas mixture (Ar, N₂, and He)
- Purification
 - The gas from Cortez is then sent to Fermilab for further purification

Absorption of CO2 on 4A zeolite

Vacuum Pressure Swing Absorption (VPSA)

Our plant

VPSA plant

Operated locally by technician Chris Condon – Managed by H. Back

Calibration gas versus VPSA stage 2 output

FCPA Seminar

Results and status

- Final output of plant is a gas mixture
 - Argon
 - Helium
 - Nitrogen
- Gas is compressed into high pressure cylinders and shipped to Fermilab
- From lessons learned:
 - Plant operations continue to improve – moving from R&D to production
 - Plant efficiency has increased

- 2010
 - Output
 - 2.5% argon
 - 70% nitrogen
 - 27.5% helium
 - Production
 - 23kg argon
- 2011
 - Output
 - ~5% argon
 - Production
 - 53kg argon
 - Continuous operation: May-June & July - October
- 2012
 - Plant starting up this week

Total underground argon collected to date = 76kg

Purification at Fermilab The Cryogenic Distillation Column

Column packing material

- Column is filled with high surface area material
- Boiling and condensation happens on the surface of column packing material
- Controlling temperature and gas/liquid flows allows for continuous purification

Distillation Column

- 2 600W cryocoolers
 - Balanced with 700W heaters for temperature control
- Reboiler cooled by liquid from column
 - Temperature controlled with 700W heater
- Active PID temperature control
- Active mass flow control
- Pressure and temperature monitoring throughout
- Multiple input RGA measures gas at three points
 - Input
 - Waste
 - Product

DARK SIDE

DARK SIDE

RGA quantitative gas analysis

- An RGA measures the partial pressure of component gases
- Generally calibrated for nitrogen (N₂ pressure is correct)
- Correction factor for other components needs to be calculated using known calibration gas
- Correction factor is gas mixture dependent
- For our analysis here we assume correction factors below are correct

Gas	Known mixture	Measured RGA pressures (Torr)	Expected pressure Total pressure calculated from N ₂ pressure (P _T = 2.15×10 ⁻⁶ / 40%)	Correction factors for this mixture
Nitrogen	40%	2.15×10 ⁻⁶	2.15×10 ⁻⁶	1.0
Argon	5%	3.90×10 ⁻⁷	2.69×10 ⁻⁷	0.69
Helium	55%	2.16×10 ⁻⁶	2.96×10 ⁻⁶	1.37

Pure Argon RGA Spectrum

DARK SIDE

Tested gas samples

Sample #1

- Our RGA measurement:
 - $N_2 = 1000 \text{ ppm}$
- Atlantic Analytical:
 - $N_2 = 700 \text{ ppm}$
 - $O_2 = 40 \text{ ppm}$
- Pacific Northwest National Lab
 - $N_2 = 920 \text{ ppm}$
 - $O_2 < 10 \text{ ppm}$

Sample #2

- Our RGA measurement:
 - $N_2 < 500 \text{ ppm}$
- Atlantic Analytical:
 - $N_2 = 4100 \text{ ppm}$
 - $O_2 = 810 \text{ ppm}$
- Pacific Northwest National Lab (2 runs)
 - N₂ = 4250 and 4000 ppm
 - O₂ = 430 and 600 ppm
- We believe there was air contamination

Argon recovery efficiency

- Consumed 24 high pressure cylinders with 262 scf of gas each (7419 liters)
 - 662g of Argon / cylinder
 - 14.9 kg of Argon total in 24 cylinders
- Accumulated mass (rough estimate)
 - Mass lost through product line 50scc/m for ~10days = 1.2kg
 - Mass from liquid level
 - 16 cm of liquid = 10.8 kg
 - Total = 10.8 + 1.2 = 12 kg
 - Mass from measuring flow out of reboiler during warm up
 - Integral volume out of product 5521liters = 9.3 kg
 - Total = 9.3 + 1.2 = 10.5kg
- Collection efficiency
 - Overall 70-80%
 - During continuous distillation = 80%
 - Residual loss during cool down, tuning, etc.

³⁶Ar as a diagnostic tool

- ³⁶Ar natural atmospheric isotopic abundance = 0.34%
- Cortez gas does not show any ³⁶Ar
- What is the background at mass 36?
 - What is the ³⁶Ar reduction factor?
 - Need pure underground argon mass spectrum
- Underground argon ³⁹Ar reduction factor >50
- Might be able to measure atmospheric argon contamination at a level where the ³⁹Ar level is still acceptable.

Distillation Column

- Argon purity achieved
 - Continuous distillation 99.90%
 - Batch purification > 99.95%
- Argon collection efficiency
 - 80% for gas with 55% helium content
 - Probably better with less helium
- Production rate in continuous distillation ~1kg/day
- Distillation of underground argon begins this week (tomorrow)
- Underground argon mass required 200kg

Conclusion

- Argon is a powerful scintillator and excellent medium for detection of ionization
- Argon's discrimination power make is attractive for WIMP dark matter detector
- Although ³⁹Ar is a limiting factor with atmospheric argon, we have found a source of underground argon whose ³⁹Ar concentration is at least 50 times less than atmospheric argon
- Extraction and purification of this underground argon is underway, and approaching a production mode