Deep Underground Astroparticle Physics at SNOLAB

Eric Vázquez Jáuregui

SNOLAB

Particle Astrophysics Seminar Batavia IL, USA; July 30, 2012

Outline

- SNOLAB facility
- Neutrino Physics programme
 - -SNO+ and HALO
- Dark Matter programme
 - DEAP, MiniCLEAN, PICASSO and COUPP
- Future experiments and underground science
- Final remarks

- To promote an International programme of Astroparticle Physics
- To provide a very deep experimental laboratory to shield sensitive experiments from penetrating Cosmic Rays
- To provide a very clean laboratory at better than class 2000 to mitigate against contamination of experiments
- To provide infrastructure for, and support to, the expts.
- Focus on dark matter, double beta decay, solar & SN experiments requiring depth and cleanliness of SNOLAB. Also provide space for prototyping of future experiments
- Large scale expts (ktonne, not Mtonne)
- Goal has been to create a significant amount of space for an active experimental programme to support current generation of experiments as early as possible

SNOLAB

2 km underground near Sudbury, Ontario

Eric Vázquez-Jáuregui

Particle Astrophysics Seminar at Fermilab

July 30, 2012

Surface Facilities

Underground Layout

Deepest and cleanest large-space international facility Ultra-low radioactivity background environment Class 2000

Eric Vázquez-Jáuregui

Particle Astrophysics Seminar at Fermilab

July 30, 2012

- \bullet 600V 3 phase 60Hz
- Air Handler Units (AHUs) to provide clean air and remove waste heat

- Ultrapure water from the SNO water purification plant
- LN₂ supplied by transport dewar from surface

- HPGe Gamma Counter 2 additional counters soon
- Rn/Ra Emanation (electrostatic counters, radon emanation)

- Spraying shotcrete
- Painting
- Washing
- Hand-cleaning

Double Beta Decay

What we know: -Neutrinos have mass -Squared mass differences

Library of Congress

What we don't know:

- -Absolute mass scale
- -Mass hierarchy
- -Dirac vs Majorana
 - Dirac neutrino $(\Delta L=0, \nu \neq \text{anti } \nu)$
 - Majorana neutrino $(\Delta L{=}2, \nu = anti \nu)$

Particle Astrophysics Seminar at Fermilab

Double Beta Decay

- 35 isotopes in nature
- $T_{1/2} > 10^{20} \text{ yrs}$

$$(A,Z)
ightarrow (A{+}2,Z){+}2e^-{+}2ar{
u}_e$$

 $(A,Z) \rightarrow (A+2,Z) + 2e^{-1}$

Double Beta Decay

- G^{0ν}: Phase space factor
 M^{0ν}: Nuclear matrix element
- $\langle m_{etaeta}
 angle$: effective u mass $\langle m_{etaeta}
 angle = \sum_i U_{ei}^2 m_i$

$$[T_{1/2}^{0
u}]^{-1} \propto lpha \eta \sqrt{rac{M imes t}{\Delta E imes B}}$$

- isotopic abundance, efficiency
- high mass, long exposure
- low background, good energy resolution

- Acrylic vessel $\phi = 12 \text{ m}$
- Liquid scintillator (LAB+PPO) 780 tonnes
- 1700 tons H_2O inner
- \bullet 5700 tons $\rm H_2O$ outer
- 9500 PMTs

- Double beta decay with ¹⁵⁰Nd
- Low energy solar neutrinos
- Geo-neutrinos
- Reactor neutrinos oscillation
- Supernova neutrinos
- Nucleon decay

LS = LAB + PPO

- Compatible with acrylic
- Inexpensive
- High light yield
- Safe

Properties:

- Density = 0.86 g/cm^3
- Flash point = 140 C
- Boiling point = 278-314 C
- Water solubility = 0.041 mg/L

Neodymium-150

- 5.6% natural abundance 43.7 kg (0.1% Nd loading)
- 3.37 MeV endpoint above most backgrounds 2^{nd} highest of $\beta\beta$ isotopes
- $0\nu\beta\beta$ rate is one of the fastest (same effective Majorana mass) largest phase-space factor
- $2\nu\beta\beta$ half-life: ground state = 9.1×10^{18} y 0⁺ excited state ~ 1.3×10^{20} y

How much Nd?

- Optimal loading at 0.3% (131.1 kg)
- Run at 0.1% (43.7 kg) initially

- 400 pe/MeV (6.4% FWHM resolution @ 3.37 MeV)
- 200 pe/MeV (9.0% FWHM resolution @ 3.37 MeV)

Energy spectrum simulation

- Effective ν mass $\sim 350 \ {\rm meV}$
- Nuclear matrix element: IBM-2
- Fiducial volume cut: 50%
- Live time: 2.4 y
- $\sim 360 \ 0 \nu eta eta$ events for 0.3%
- Solar ⁸B
- ¹⁵⁰Nd $2\nu\beta\beta$
- ²¹⁴Bi: tagged and removed $(\epsilon=99.98\%)$
- ²⁰⁸Tl: tagged and removed $(\epsilon=90\%)$

Eric Vázquez-Jáuregui

⁸B: 440 events/year _(0,5)*MeV* ²¹⁴Bi: 2.3 events/year (3%) ²⁰⁸Tl: 52.9 events/year (3%)

Double Beta Decay: Sensitivity

Lifetime and mass

- 0.3% loading
- Nuclear matrix element: IBM-2 (Barea and Iachello, Phys. Rev. C 79 (2009))
- Fiducial volume cut: 50%
- 80% live time
- Solar ⁸B
- ¹⁵⁰Nd $2\nu\beta\beta$
- ²¹⁴Bi: tagged and removed $(\epsilon=99.98\%)$
- ²⁰⁸Tl: tagged and removed $(\epsilon=90\%)$

Pileup rejection

- Nd related background: ¹⁴⁴Nd, ¹⁵⁰Nd
- Thorium, Uranium
- Rare earth & others: ¹³⁸La, ¹⁷⁶Lu, ⁴⁰K, ⁸⁵Kr,
- Cosmogenic activated: Ce, Pm, Nd

99% pileup rejection signal sacrifice: < 10% at 3 MeV

Energy

- ⁴⁸Sc $\beta \gamma$ source
- β^- for a tagged source (0.66 MeV)
- $\circ \mathrm{Sum}~\mathrm{E}(\gamma) = 3.33~\mathrm{MeV}$ $(90\%~\mathrm{BR})$
- Half life = 44 hrs
- 14 MeV-n activation on Ti
- D-T generator (site or Dresden)
- Source in R&D phase

Also several more calibration sources at different energies: AmBe, 65 Zn, 90 Y, 57,60 Co, 24 Na, 8 Li, 16 N

Optics

- ELLIE: Embedded LED Light Injection Entity
- LED driven fibers mounted on the phototube sphere to monitor
- PMT timing calibration and gain
- Scattering and attenuation lengths
- Wavelength, opening angle, position, direction

Double Beta Decay: Purification

- multistage distillation (to remove heavy metals, improves UV transparency)
- N₂/water vapor gas stripping (to remove Rn, Kr, Ar, O₂)
- water extraction (to remove K, Ra, Bi)
- metal scavenging

 (assay for solar phase)
 (to remove Ra, Bi, Pb)
- micro filtration
- NdCl₃ purification by pH adjustment co-precipitation

- Th: 10^{-17} g/g (~ 3 cpd for ²⁰⁸Tl and ²²⁸Ac)
- U: 10^{-17} g/g (~ 9 cpd for 210,214 Bi)
- 40 K: 1.3 ×10⁻¹⁸ g/g (~ 23 cpd)
- 85 Kr, 39 Ar (< 100 cpd)

Process system

Once it is running:

- Enrichment
 - Investigating some 1-2 options
 - Nd enriched to 80% ¹⁵⁰Nd: increases statistics $\times 16$
 - -Most backgrounds remain constant
- Other isotopes

Several possibilities and options

SNO+ detector

SNO+ detector

SNO+ detector

Timeline

• 2012

- -Finish work in cavity
- -Process system construction
- 2013
 - Water phase
 - Scintillator filling
 - -Scintillator phase
- **2014**
 - -Nd-loading
 - Double Beta Decay phase

Geo-neutrinos

anti- ν_e from β^- decays (U, Th) to explore chemical composition of Earth's crust & mantle

- Check models of Earth heat production
- Low reactor background in SNO+: Reactor/Geo ~ 1.1
- Geo- ν in SNO+ mainly from two reservoirs:
 - mantle
 - old, thick continental crust (very local region well-studied

• Elastic scattering:

$$-8 \text{ evts: } \nu_e + e^- \rightarrow \nu_e + e^-$$

-3 evts: anti- ν_e + e⁻ \rightarrow anti- ν_e + e⁻

$$-4 \; \mathrm{evts:} \;
u_{\mu, au} + \mathrm{e}^-
ightarrow
u_{\mu, au} + \mathrm{e}^-$$

- $-2 \text{ evts: anti-}\nu_{\mu,\tau} + e^- \rightarrow \text{anti-}\nu_{\mu,\tau} + e^-$
- Charged Current:

-263 evts: anti-
$$\nu_e$$
 + p \rightarrow n + e⁺
-27 evts: ν_e + ${}^{12}C \rightarrow {}^{12}N$ + e⁻
-7 evts: anti- ν_e + ${}^{12}C \rightarrow {}^{12}B$ + e⁺

• Neutral Current:

-58 evts:
$$\nu_x + {}^{12}\text{C} \rightarrow {}^{12}\text{C}^*(15.11\text{MeV}) + \nu_x$$

-273 evts: $\nu_x + p \rightarrow \nu_x + p$

- ⁶⁰Co: 0.32 MeV β , 2.5 MeV summed γ . Energy scale, multivertex reconstruction, pile-up
- •⁸Li: Cerenkov source. Only Cerenkov, no scintillation. PMT efficiency, LAB absorption/re-emission timing
- AmBe: n, 4.4 MeV γ . Light yield, neutron propagation, reconstruction, Nd absorption
- ¹⁶N: 6 MeV γ . Energy scale, sacrifice and contamination, check detector model in water fill
- radon source ball. Alpha quenching, beta response, scintillator timing response
- low energy gamma source: to be determined. Energy scale, reconstruction, position dependence
- camera system: six cameras spaced around the phototube sphere. Locate sources within 1 cm, monitor AV position

Helium And Lead Observatory

• Helium:

available ³He neutron detectors from the final phase of SNO

• Lead:

lead blocks from a decommissioned cosmic ray monitoring station

- -high ν -Pb cross-sections
- low n-capture cross-sections
- complementary sensitivity to water Cerenkov and liquid scintillator SN detectors

Figure 2

Cross sections per target for relevant interactions. See http://www.phy.duke.edu/~schol/snowglobes for references for each cross section plotted. Abbreviations: IBD, inverse β decay; NC, neutral current.

• Charged Current:

$$-\nu_e + {}^{208}\text{Pb} \rightarrow {}^{207}\text{Bi} + n + e^-$$

 $-\nu_e + {}^{208}\text{Pb} \rightarrow {}^{206}\text{Bi} + 2n + e^-$

• Neutral Current:

$$-\nu_x + {}^{208}\text{Pb} \rightarrow {}^{207}\text{Pb} + \text{n}$$

 $-\nu_x + {}^{208}\text{Pb} \rightarrow {}^{206}\text{Pb} + 2\text{n}$

HALO is operational

Part of SNEWS once the behaviour of the detector is well understood

HALO Supernova Signal

- 79 tons of Pb for a SN at 10 kpc: (FD distribution with T=8 MeV for ν_{μ} 's and ν_{τ} 's)
- 68 neutrons through ν_e charged current channels
 - -30 single neutrons
 - -19 double neutrons
- 20 neutrons through ν_x neutral current channels
 - -8 single neutrons
 - -6 double neutrons
 - $\sim\!\!88 \ {\rm neutrons} \ {\rm liberated} \\ \sim\!\!1.1 \ {\rm n/tonne} \ {\rm of} \ {\rm Pb}$

DEAP

Dark Matter Experiment with Argon and Pulse-shape Discrimination:

- scattered nucleus detected via scintillation
- pulse shape discrimination for suppression of β/γ events
- LAr advantages:
 - is easily purified and high light yield
 - -is well understood
 - -has an easily accessible temperature (85K)
 - allows a very large detector mass with inform response

• Detectors:

- -DEAP-1: prototype, 7 kg LAr, 2 PMTs
- -DEAP-3600: 3600 kg LAr, 255 8" PMTs

DEAP

Backgrounds in liquid argon dark matter detector:

- β/γ events: dominated by ³⁹Ar, 1 Bq/kg PSD to distinguish from recoils, use depleted argon
- neutron recoils: (α,n) , fission, μ induced clean detector materials, shielding
- surface events: Rn daughters and other impurities clean surfaces in-situ, position reconstruction

Demonstrate discrimination between electromagnetic events and nuclear recoils γ suppression better than: 3×10^{-8} , 120-240 PE, using tagged γ source

- 3600 kg argon (1000 kg fiducial) in ultra-clean AV
- Vessel is "resurfaced" in-situ to remove Rn daughters
- TPB wavelength shifter deposition
- 255 Hamamatsu R5912 HQE 8" PMTs (75% coverage)
- 50 cm light guides PE shielding for neutron moderation
- 8 m water shield in Cube Hall Eric Vázquez-Jáuregui

MiniCLEAN

MiniCLEAN

- 500 kg cryogenic liquid (150 kg fiducial) with 92 PMTs
- Material interchangeable between argon y neon
- spin-independent WIMP-nucleo cross section sensitivity of 10^{-45} cm²

PICASSO

PICASSO

- Suspended droplets of C_4F_{10} in an inactive polymerized gel matrix
- The energy deposited by a nuclear recoil triggers a phase transition
- The acoustic signal can be recorded by piezoelectric transducers
- recoil energy thresholds as low as 1.7 keV
- total target mass of 0.72 kg of 19 F and an exposure of 114 kg-day

PICASSO limits

COUPP

COUPP

- COUPP-4kg currently running at SNOLAB
- COUPP-60kg running by the end of the year
- COUPP-500kg: a tonne scale detector, inexpensive and versatile ready by 2016

COUPP limits

Future experiments and underground science

SNOLAB hosting more experiments:

- DAMIC: moving from Fermilab (2012)
- a test facility for CDMS (2012)
- SuperCDMS for dark matter
- EXO-gas and COBRA for neutrinoless double beta decay

Underground Science:

- PUPS: an experiment for the observation of seismic signals at various depths in very hard rock (completed)
- Geology, mining and deep sub-surface life

Still more space at SNOLAB

- The physics program at SNOLAB is making important contributions to experimental research in Astroparticle Physics
- Detectors for supernovae and double beta decay, for solar neutrinos, geo-neutrinos and reactor neutrino oscillations are being built
- Dark matter research experiments at SNOLAB sensitive to spin dependent and/or independent interactions
- Searches are underway with noble gases and superheated liquids detectors; solid state detectors will be deployed soon
- SNOLAB is becoming one of the leading facilities in experimental research in Astroparticle Physics