Deep Underground Astroparticle Physics at SNOLAB

Eric Vázquez Jáuregui

SNOLAB

Particle Astrophysics Seminar Batavia IL, USA; July 30, 2012

Outline

- SNOLAB facility
- Neutrino Physics programme
	- $-SNO+$ and $HALO$
- Dark Matter programme – DEAP, MiniCLEAN, PICASSO and COUPP
- Future experiments and underground science
- Final remarks
- To promote an International programme of Astroparticle Physics
- To provide a very deep experimental laboratory to shield sensitive experiments from penetrating Cosmic Rays
- To provide a very clean laboratory at better than class 2000 to mitigate against contamination of experiments
- To provide infrastructure for, and support to, the expts.
- Focus on dark matter, double beta decay, solar & SN experiments requiring depth and cleanliness of SNOLAB. Also provide space for prototyping of future experiments
- Large scale expts (ktonne, not Mtonne)
- Goal has been to create a significant amount of space for an active experimental programme to support current generation of experiments as early as possible

SNOLAB

2 km underground near Sudbury, Ontario

Eric Vázquez-Jáuregui

July 30, 2012

Surface Facilities

 $\operatorname{Eric}\,$ Vázquez-Jáuregui

Underground Layout

Deepest and cleanest large-space international facility Ultra-low radioactivity background environment Class 2000

Particle Astrophysics Seminar at Fermilab

Eric Vázquez-Jáuregui

- 600V 3 phase 60Hz
- Air Handler Units (AHUs) to provide clean air and remove waste heat

- Ultrapure water from the SNO water purification plant
- \bullet LN₂ supplied by transport dewar from surface

- HPGe Gamma Counter 2 additional counters soon
- Rn/Ra Emanation (electrostatic counters, radon emanation)

- Spraying shotcrete
- Painting
- Washing
- Hand-cleaning

Eric Vázquez-Jáuregui

Double Beta Decay

What we know: -Neutrinos have mass -Squared mass differences

Library of Congress

What we don't know:

- -Absolute mass scale
- -Mass hierarchy
- -Dirac vs Majorana
	- Dirac neutrino $(\Delta L=0, \nu \neq \text{anti }\nu)$
	- Majorana neutrino $(\Delta L=2, \nu = \text{anti }\nu)$

Eric Vázquez-Jáuregui Particle Astrophysics Seminar at Fermilab July 30, 2012

Double Beta Decay

 \bullet T_{1/2} $> 10^{20}$ yrs

$$
(A,Z)\rightarrow (A+2,Z)+2e^-+2\bar{\nu}_e
$$

 $(A, Z) \rightarrow (A + 2, Z) + 2e^-$

Double Beta Decay

$$
[T^{0\nu}_{1/2}]^{-1} = G^{0\nu} |{\cal M}^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2
$$

- \bullet $G^{0\nu}$: Phase space factor
- $\bullet\ \mathcal{M}^{0\nu}$:Nuclear matrix element
- \bullet $\langle m_{\beta\beta}\rangle$: effective ν mass $\langle m_{\beta\beta}\rangle = \sum U_{ei}^2 m_i$ i

$$
[T_{1/2}^{0\nu}]^{-1} \propto \alpha \eta \sqrt{\frac{M \times t}{\Delta E \times B}}
$$

- isotopic abundance, efficiency
- high mass, long exposure
- low background, good energy resolution
- Acrylic vessel $\phi = 12 \text{ m}$
- Liquid scintillator (LAB+PPO) 780 tonnes
- \bullet 1700 tons $H₂O$ inner
- 5700 tons H₂O outer
- 9500 PMTs

- Double beta decay with $150Nd$
- Low energy solar neutrinos
- Geo-neutrinos
- Reactor neutrinos oscillation
- Supernova neutrinos
- Nucleon decay

$LS = LAB + PPO$

- Compatible with acrylic
- Inexpensive
- High light yield
- Safe

Properties:

- Density = 0.86 g/cm³
- Flash point $= 140$ C
- Boiling point $= 278-314$ C
- Water solubility $= 0.041$ mg/L

Neodymium-150

- 5.6% natural abundance 43.7 kg (0.1% Nd loading)
- 3.37 MeV endpoint above most backgrounds 2^{nd} highest of $\beta\beta$ isotopes
- \bullet 0 $\nu\beta\beta$ rate is one of the fastest (same effective Majorana mass) largest phase-space factor
- $2\nu\beta\beta$ half-life: ground state $= 9.1 \times 10^{18}$ y 0^+ excited state $\sim 1.3\times10^{20}$ y

How much Nd?

- Optimal loading at 0.3% (131.1 kg)
- Run at 0.1% (43.7 kg) initially

- \bullet 400 pe/MeV (6.4% FWHM resolution @ 3.37 MeV)
- 200 pe/MeV (9.0% FWHM resolution @ 3.37 MeV)

Energy spectrum simulation

- Effective ν mass \sim 350 meV
- Nuclear matrix element: IBM-2
- Fiducial volume cut: 50%
- Live time: 2.4 y
- \sim 360 0 $\nu\beta\beta$ events for 0.3%
- Solar ⁸B
- \bullet $^{150}\mathrm{Nd}$ $2\nu\beta\beta$
- •²¹⁴Bi: tagged and removed $(\epsilon = 99.98\%)$
- ²⁰⁸Tl: tagged and removed $(\epsilon = 90\%)$

Lifetime and mass

- 0.3% loading
- Nuclear matrix element: IBM-2 (Barea and Iachello, Phys. Rev. C 79 (2009))
- Fiducial volume cut: 50%
- 80% live time
- Solar ⁸B
- \bullet $^{150}\mathrm{Nd}$ $2\nu\beta\beta$
- •²¹⁴Bi: tagged and removed $(\epsilon = 99.98\%)$
- ²⁰⁸Tl: tagged and removed $(\epsilon = 90\%)$

Pileup rejection

- Nd related background: 144 Nd, 150 Nd
- Thorium, Uranium
- Rare earth & others: 138 La, 176 Lu, 40 K, 85 Kr,
- Cosmogenic activated: Ce, Pm, Nd

99% pileup rejection signal sacrifice: $< 10\%$ at 3MeV

Energy

- \bullet ⁴⁸Sc $\beta-\gamma$ source
- \bullet β^- for a tagged source (0.66 MeV)
- Sum $E(\gamma) = 3.33$ MeV (90% BR)
- Half life $= 44$ hrs
- 14 MeV-n activation on Ti
- D-T generator (site or Dresden)
- Source in R&D phase

Also several more calibration sources at different energies: AmBe, $^{65}Zn,~^{90}Y,~^{57,60}Co,~^{24}Na,~^{8}Li,$ 16_N

Optics

- ELLIE: Embedded LED Light Injection Entity
- LED driven fibers mounted on the phototube sphere to monitor
- PMT timing calibration and gain
- Scattering and attenuation lengths
- Wavelength, opening angle, position, direction

Double Beta Decay: Purification

- multistage distillation (to remove heavy metals, improves UV transparency)
- N_2 /water vapor gas stripping (to remove Rn, Kr, Ar, O2)
- water extraction (to remove K, Ra, Bi)
- metal scavenging (assay for solar phase) (to remove Ra, Bi, Pb)
- micro filtration
- NdCl₃ purification by pH adjustment co-precipitation

- Th: 10^{-17} g/g (\sim 3 cpd for 208 Tl and 228 Ac)
- U: 10^{-17} g/g (\sim 9 cpd for ²¹⁰,214Bi)
- $\bullet \ ^{40}\text{K: 1.3} \times 10^{-18} \text{ g/g}$ $(\sim 23 \text{ cpd})$
- \bullet $^{85}\text{Kr},\,^{39}\text{Ar}$ (< 100 cpd)

Process system

Once it is running:

- Enrichment
	- Investigating some 1-2 options
	- $-$ Nd enriched to 80\% 150 Nd: increases statistics $\times 16$
	- Most backgrounds remain constant
- Other isotopes

Several possibilities and options

SNO+ detector

SNO+ detector

SNO+ detector

Timeline

• 2012

- Finish work in cavity
- Process system construction
- 2013
	- Water phase
	- Scintillator filling
	- Scintillator phase
- 2014
	- Nd-loading
	- Double Beta Decay phase

Geo-neutrinos

anti- ν_e from β^- decays (U, Th) to explore chemical composition of Earth's crust & mantle

- Check models of Earth heat production
- Low reactor background in SNO+: Reactor/Geo ∼1.1
- Geo- ν in SNO+ mainly from two reservoirs:
	- mantle
	- old, thick continental crust (very local region well-studied)

• Elastic scattering:

$$
-8
$$
 evts: $\nu_e + e^- \rightarrow \nu_e + e^-$

– 3 evts: anti- ν_e + e⁻ → anti- ν_e + e⁻

$$
-4
$$
 evts: $\nu_{\mu,\tau} + e^- \rightarrow \nu_{\mu,\tau} + e^-$

- 2 evts: anti- $\nu_{\mu,\tau}$ + e⁻ \rightarrow anti- $\nu_{\mu,\tau}$ + e⁻
- Charged Current:
	- 263 evts: anti- ν_e + p \rightarrow n + e⁺ -27 evts: $\nu_e + {}^{12}C \rightarrow {}^{12}N + e^-$ –7 evts: anti- ν_e + 12 C \rightarrow 12 B + e⁺
- Neutral Current:

$$
-58
$$
 evts: $\nu_x + {}^{12}C \rightarrow {}^{12}C^*(15.11 \text{MeV}) + \nu_x$

– 273 evts: ν_x + p $\rightarrow \nu_x$ + p

- \bullet $^{60}\mathrm{Co:}$ 0.32 MeV β , 2.5 MeV summed γ . Energy scale, multivertex reconstruction, pile-up
- ⁸Li: Cerenkov source. Only Cerenkov, no scintillation. PMT efficiency, LAB absorption/re-emission timing
- AmBe: n, 4.4 MeV γ . Light yield, neutron propagation, reconstruction, Nd absorption
- \bullet ¹⁶N: 6 MeV γ . Energy scale, sacrifice and contamination, check detector model in water fill
- radon source ball. Alpha quenching, beta response, scintillator timing response
- low energy gamma source: to be determined. Energy scale, reconstruction, position dependence
- camera system: six cameras spaced around the phototube sphere. Locate sources within 1 cm, monitor AV position

Helium And Lead Observatory

• Helium:

available ³He neutron detectors from the final phase of SNO

• Lead:

lead blocks from a decommissioned cosmic ray monitoring station

- $-\text{high }\nu\text{-Pb cross-sections}$
- low n-capture cross-sections
- complementary sensitivity to water Cerenkov and liquid scintillator SN detectors

Cross sections per target for relevant interactions. See http://www.phy.duke.edu/~schol/snowglobes for references for each cross section plotted. Abbreviations: IBD, inverse β decay; NC, neutral current.

• Charged Current:

$$
-\nu_e + {}^{208}{\rm Pb} \rightarrow {}^{207}{\rm Bi} + {\rm n} + {\rm e}^-
$$

$$
-\nu_e + {}^{208}{\rm Pb} \rightarrow {}^{206}{\rm Bi} + 2 {\rm n} + {\rm e}^-
$$

• Neutral Current:

$$
-\nu_x + \frac{208}{10}Pb \rightarrow \frac{207}{10}Pb + n
$$

$$
-\nu_x + \frac{208}{10}Pb \rightarrow \frac{206}{10}Pb + 2n
$$

HALO is operational

Part of SNEWS once the behaviour of the detector is well understood

HALO Supernova Signal

- 79 tons of Pb for a SN at 10 kpc: (FD distribution with T=8 MeV for ν_{μ} 's and ν_{τ} 's)
- \bullet 68 neutrons through ν_e charged current channels
	- 30 single neutrons
	- 19 double neutrons
- 20 neutrons through ν_x neutral current channels
	- -8 single neutrons
	- 6 double neutrons
	- ∼88 neutrons liberated \sim 1.1 n/tonne of Pb

DEAP

Dark Matter Experiment with Argon and Pulse-shape Discrimination:

- scattered nucleus detected via scintillation
- pulse shape discrimination for suppression of β/γ events
- LAr advantages:
	- is easily purified and high light yield
	- is well understood
	- has an easily accessible temperature $(85K)$
	- allows a very large detector mass with inform response
- Detectors:
	- DEAP-1: prototype, 7 kg LAr, 2 PMTs
	- DEAP-3600: 3600 kg LAr, 255 8" PMTs

DEAP

Backgrounds in liquid argon dark matter detector:

- \bullet β/γ events: dominated by $39Ar$, 1 Bq/kg PSD to distinguish from recoils, use depleted argon
- neutron recoils: (α, n) , fission, μ induced clean detector materials, shielding
- surface events: Rn daughters and other impurities clean surfaces in-situ, position reconstruction

Demonstrate discrimination between electromagnetic events and nuclear recoils γ suppression better than: $3\times10^{-8},\,120$ -240 PE, using tagged γ source

 $\operatorname{Eric}\,$ Vázquez-Jáuregui

- 3600 kg argon (1000 kg fiducial) in ultra-clean AV
- Vessel is "resurfaced" in-situ to remove Rn daughters
- TPB wavelength shifter deposition
- 255 Hamamatsu R5912 HQE 8" PMTs (75% coverage)
- 50 cm light guides PE shielding for neutron moderation
- 8 m water shield in Cube Hall

Eric Vázquez-Jáuregui

 $\operatorname{Eric}\,$ Vázquez-Jáuregui

Eric Vázquez-Jáuregui

MiniCLEAN

MiniCLEAN

- 500 kg cryogenic liquid (150 kg fiducial) with 92 PMTs
- Material interchangeable between argon y neon
- spin-independent WIMP-nucleo cross section sensitivity of 10^{-45} cm²

PICASSO

PICASSO

- Suspended droplets of C_4F_{10} in an inactive polymerized gel matrix
- The energy deposited by a nuclear recoil triggers a phase transition
- The acoustic signal can be recorded by piezoelectric transducers
- recoil energy thresholds as low as 1.7 keV
- total target mass of 0.72 kg of ¹⁹F and an exposure of 114 kg-day

PICASSO limits

Eric Vázquez-Jáuregui Particle Astrophysics Seminar at Fermilab July 30, 2012

COUPP

COUPP

- COUPP-4kg currently running at SNOLAB
- COUPP-60kg running by the end of the year
- COUPP-500kg: a tonne scale detector, inexpensive and versatile ready by 2016

COUPP limits

Future experiments and underground science

SNOLAB hosting more experiments:

- DAMIC: moving from Fermilab (2012)
- a test facility for CDMS (2012)
- SuperCDMS for dark matter
- EXO-gas and COBRA for neutrinoless double beta decay

Underground Science:

- PUPS: an experiment for the observation of seismic signals at various depths in very hard rock (completed)
- Geology, mining and deep sub-surface life

Still more space at SNOLAB

- The physics program at SNOLAB is making important contributions to experimental research in Astroparticle Physics
- Detectors for supernovae and double beta decay, for solar neutrinos, geo-neutrinos and reactor neutrino oscillations are being built
- Dark matter research experiments at SNOLAB sensitive to spin dependent and/or independent interactions
- Searches are underway with noble gases and superheated liquids detectors; solid state detectors will be deployed soon
- SNOLAB is becoming one of the leading facilities in experimental research in Astroparticle Physics