The Universe Under a Magnifying Glass

Chris Morrison University of California, Davis Fermi Lab Talk, 10/15/12

Collaborators

- UC Davis:
 - Ryan Scranton (Advisor)
 - Tony Tyson (Advisor)
 - Sam Schmidt

Johns Hopkins:

- Brice Ménard
- STScI:
 - Russell Ryan
- Edinburgh:
 Ami Choi

- The Deep Lens Survey:
 - Ian Dell'Antonio (Brown)
 - David Wittman (UC Davis)
 - Begoña Ascoaso (Barcelona)
 - Jim Bosch (Princeton)
 - Will Dawson (UC Davis)
 - Perry Gee (UC Davis)
 - Jack Hughes (Rutgers)
 - M. James Jee (UC Davis)
 - Vera Margoniner (Sac State)
 - Michael Schneider (UC Davis)
 - Paul Thorman (UC Davis)

Outline

Introduction

- Modern Cosmology in a Nutshell
- Gravitational Lensing
 - Magnification
- The Deep Lens Survey
 - Survey Specifics
 - Data Selection
- Results
 - Lensing Measurements
 - Cosmological Comparison
 - Preliminary Dust Measurements
- Summary/Future Work

Our Universe

Lensing

Magnification

Credit: SDSS Collaboration

Motivating Magnification

- Can be preformed on any survey with sufficiently good photometry.
- No need to measure galaxy shape.
- Complementary mass and cosmological information to shear.
- Measurable at higher redshifts on a given survey than shear.

Measuring Magnification

What about Dust?

- Lensing is achromatic.
- Trends in color with angle can be interpreted as astrophysical.

 $\langle A - B \rangle(\theta) \propto \mu_A - \mu_B + \tau_A - \tau_B$

 Can be used to measure the amount of dust in galaxies.

Opacity of the Universe

The Deep Lens Survey

The Deep Lens Survey

- Observed on the NOAO 4 Meter telescopes from 1999-2005
- 20 square degree area
- B (25.5_{AB}) ; V (25.5_{AB}) ; R (26.0_{AB}) ; z (24.5_{AB})
- R Band Seeing <0.9 arcseconds
- ~5 Million galaxies in the survey
- Precursor for future wide area, deep surveys (DES, LSST, etc.)

Survey Context

Selecting Galaxies

- Need to cleanly select foreground lenses and background sources.
 - Avoid cross contamination between lenses and sources.
 - Also avoid sources(lenses) in front(behind) of lenses(sources).
- Solution: Use information on galaxy redshift as
- Best way to do this: Use spectra of galaxies to identify emission lines.
 - Too expensive to do for large surveys.

Photometric Redshifts

Photometric Redshifts

Spectroscopic Vs Photometric Redshift

Foreground Lens Redshift Bins

Background Sources: Lyman Break Galaxies

LBG Redshift Recovery

Systematics (Depth)

-18

Systematics (Seeing)

-0.75

-1.10

Expected Magnification Signal

Surface Mass Density (S/N>20)

High Significance Tomographic Bins

Bias-Free Ratio w_{ls}~b¹, w_{ll}~b²

Tomographic Ratio, $\Re(z) = w_{ls}^2 / w_{ll}$

What about Dust?

LBG Color Trend

Extragalactic Dust Extinction

Tomographic Dust Extinction

Opacity of the Universe \wedge ^ ∀ 0.10 \vee observer-frame 0.01 Tolman test (More et al. 09) QSO color scatter (Moertsell & Goobar 05) SNe Ia + H(z) (Avgoustidis et al. 09) dust around galaxies (Menard et al. 09) dust in Mgll absorbers (Menard et al. 07) 1.0 0.0 0.5 1.5 2.0

redshift

Credit: Brice Ménard

Summary

Tomography

- Robust detection of magnification, S/N>20. No contamination due to physical clustering.
- Tomographic signal consistent with concordance cosmology across 7 redshift bins.
- Tomographic lensing is becoming a reality in current surveys.
- Accepted To MNRAS, arXiv:1204.2830v3 Dust
- Preliminary work measuring dust reddening in DLS is promising.
- Work still needs to be done interpreting the results.
 - Measure bias to properly derive cosmological opacity

Future Work

- Use extract galaxy bias and cosmology from the magnification measurement
- Joint magnification/shear lensing measurements
- Model cosmology dependence of covariances for MCMC analysis
 - Part of the CHOMP cosmology suite written by myself and Ryan Scranton
 - Available at: <u>http://code.google.com/p/chomp</u>
- Expand the analysis package STOMP to utilize Google's geometry library S2.
 - Available at: <u>http://code.google.com/p/astro-stomp</u>

Looking Toward The Future

Future surveys will greatly improve over these results and will have a shot at answering what dark energy is.