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THE SHAPE OF THE SUNSPOT CYCLE*
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Abstract. The temporal behavior of a sunspot cycle, as described by the International sunspot
numbers, can be represented by a simple function with four parameters: starting time, amplitude,
rise time, and asymmetry. Of these, the parameter that governs the asymmetry between the rise to
maximum and the fall to minimum is found to vary little from cycle to cycle and can be fixed at a
single value for all cycles. A close relationship is found between rise time and amplitude which allows
for a representation of each cycle by a function containing only two parameters: the starting time and
the amplitude. These parameters are determined for the previous 22 sunspot cycles and examined
for any predictable behavior. A weak correlation is found between the amplitude of a cycle and the
length of the previous cycle. This allows for an estimate of the amplitude accurate to within about
30% right at the start of the cycle. As the cycle progresses, the amplitude can be better determined to
within 20% at 30 months and to within 10% at 42 months into the cycle, thereby providing a good
prediction both for the timing and size of sunspot maximum and for the behavior of the remaining
7-12 years of the cycle.

1. Introduction

Analyses of historical data on sunspots and related solar activity have revealed
a wealth of information about the sunspot cycle. The well-known 11-year period
associated with sunspot cycles was first reported by Wolf (1852) from his examina-
tion of the Ziirich Observatory sunspot records. Earlier, Schwabe had announced an
apparent systematic fluctuation with a shorter period (see Meadows, 1970; Shove,
1983). Waldmeier (1935, 1939) noted the asymmetry between the rise to maximum
and the fall to minimum as well as the importance of the amplitude in determining
the shape and length of the cycle. Wilson (1988) provides a useful description of
other relationships found by examining the historical records of previous sunspot
cycles.

Of course the sunspot cycle is not strictly periodic. Cycles are observed to
vary both in size and length, and periods of inactivity like the Maunder minimum
(Maunder, 1922; Eddy, 1976) are known to have occurred. Nonetheless, numerous
authors have attempted to describe the cycle as a strictly periodic phenomenon
with the hope of predicting future activity levels (see Wilson, 1984, and references
cited therein).

Several authors have recently reported on efforts to describe the solar cycle
in terms of smoothly varying functions with adjustable parameters. In particular,
Nordemann (1992) fitted the rise to maximum and the decline to minimum with
exponential functions requiring six free parameters (initial value, time-constant,
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and starting time for each phase) and Elling and Schwentek (1992) used a modified
F-distribution density function that required five parameters.

Nordemann’s analysis provides little in terms of true prediction for future cycle
activity. Yearly averaged sunspot numbers are used so there are only 5-7 data points
for each phase of the cycle and a good determination of the relevant parameters
is not achieved until that phase is nearly complete. In addition, there seems to be
little correlation between the parameters for the rising and declining phases and
the cusp at maximum where the two phases meet is not at all representative of the
true shape of the activity cycle. Such studies are valuable, however, in that they
provide a time series of coefficients that describe individual solar cycles. (In a later
paper by Nordemann and Trivedi (1992) the time sequence of these parameters is
analyzed and some periodicities have been suggested.)

The approach taken by Elling and Schwentek (1992) is potentially more useful.
Instead of using yearly means of sunspot numbers, they used quarterly (3-month)
averages, fitting the entire cycle to a single function. They indicate the utility
of using a fit to the whole cycle for help in forecasting future activity (such as
maximum and minimum) for a given cycle. Their results also show that at least one
of their parameters remains fixed for all of the cycles that they examined (cycles 10
—21, the modern era of sunspot cycles; Wilson, 1992). This suggests that simpler
functions with fewer parameters might be used to describe the shape of a sunspot
cycle.

In this paper, we describe our efforts to find a simpler function that might be
used to reproduce the shape of each sunspot cycle, simpler in terms of having fewer
free parameters. We examine the relationships between the various parameters and
assess the potential for an early determination of the relevant parameters for use
in predicting future solar activity. The analysis reveals that, indeed, the temporal
behavior of the sunspot number can be adequately described by a simple function
of only two parameters for each cycle and that these parameters can be determined
fairly early in the cycle.

2. The Sunspot Data and our Basis Function

For our analysis we use monthly averages of the International relative sunspot
number (Waldmelier, 1961; McKinnon, 1987; updates published in Solar Geophys-
ical Data available from NOAA/SEL, Boulder, Colorado). Although these data
extend from 1749 to the present, some daily values for years prior to 1849 are
missing, thereby making that data less reliable. These monthly averages are plotted
in Figure 1 for the entire interval (1749-1992).

Inspection of Figure 1 reveals that individual cycles show a wide range of
temporal behavior. For example, some cycles (like 12—-16) are small in amplitude
(about half the size of cycle 19), while others are considerably larger (like 18, 19, 21,
and 22). Most cycles show substantial asymmetry, with the rise to maximum being
faster than the fall to minimum. Further, smaller cycles tend to rise to maximum
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Fig. 1. Monthly averages of the International sunspot numbers for 1749 to 1992. This illustrates the
cyclic behavior of the sunspot numbers and shows the variations in size and shape of each sunspot
cycle.

more slowly than larger cycles (the Waldmeier effect). Lastly, while the average
cycle length (minimum to minimum) is about 11 years, individual cycles vary in
length from about 9 to 14 years. (Wilson (1987) has shown that the distribution of
individual cycle lengths is better described using a bimodal distribution consisting
of shorter and longer period cycles.)

We began our investigation by examining the rise toward maximum of sunspot
number over the first two to three years of each cycle. We found that the rise can
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be well represented by a function that increases as ¢, where t is the time from the
start of the cycle. Linear, quadratic, and exponential functions were, on average,
poorer representations of this phase of the solar cycle. Similarly, we found that the
decline of the sunspot cycle (from maximum to minimum) can be well represented
by a function that decreases as exp(—t?). Combining these results, we were led to
investigate a function of the form

f(t) = a(t — to)* /{exp[(t — t0)*/b*] — c} , 1)

where parameter a represents the amplitude and is directly related to the rate of
rise from minimum,; b is related to the time in months from minimum to maximum;
c gives the asymmetry of the cycle; and ¢ denotes the starting time. This function
reproduces both the rise and decay portions of the sunspot cycle and smoothly
transitions between the portions at both minimum and maximum. It is similar to
the Planck function but contains four free parameters and has a more rapid decline
after maximum.

We determined the best-fit parameters for each cycle using the Levenberg—
Marquardt method as described by Press et al. (1986). This method is a nonlinear
least-squares fitting algorithm in which all four parameters can vary. The statistical
errors in the monthly averages were taken to be the standard deviation in the
average as determined from the daily values for 1849 to the present. We found that
these errors are well represented by s = 3.3 /R, where R is the monthly average
sunspot number. By invoking this functional form we were able to represent the
errors in the earlier less reliable era of sunspot measurements (before 1849).

Our estimates for the errors in the best-fit parameters were obtained by measur-
ing their deviations from a series of 10* Monte-Carlo simulations for each cycle.
These simulations used the best-fit parametric values to construct a basic time
series. Each monthly value was then perturbed with normally-distributed random
variations, using the standard deviations of the monthly averages as the standard
deviation for the variations. Each simulation was then fit to the basis function and
the best-fit parameters were then used to find the mean values and their variances.

3. Cycle Shape Parameters

In attempting to fit each cycle with the 4-parameter basis function we found that
the process initially gave parameters with large uncertainties. Similarly good fits
could be obtained by adjusting the starting time along with the other three param-
eters. However, if the starting time was fixed (at smoothed sunspot minimum for
instance), the procedure was stabilized and well-determined values were obtained
for the other parameters. The problem was then one of determining the best starting
time for each cycle. Since the cycles are known to overlap by about 3 years, with
new cycle spots appearing at high latitudes while old cycle spots are still seen at low
latitudes (Brunner, 1943; Giovanelli, 1964), sunspot minimum is not necessarily
the most appropriate starting time for a cycle.
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Fig. 2. Asymmetry parameter c and associated 2¢ error bars for the functional fit to cycles 1-21. A
single value, ¢ = 0.71, is consistent with the best-fit values from all but three cycles and is shown by
the thick horizontal line in the figure.

With the starting time set at sunspot minimum, our analysis showed that the
symmetry parameter ¢ could be fixed at a constant value for 21 complete cycles.
Figure 2 depicts the measured values of ¢ for each cycle with error bars that
represent 2o errors. Although variations do occur from cycle to cycle, they appear
to be unrelated to the other parameters and the results are consistent with taking
a single value of ¢ = 0.71 for all cycles. This effectively reduces the number of
parameters by one and also stabilizes the fitting procedure by removing one degree
of freedom.

With ¢ = 0.71 the time of maximum, tmax, 1S given explicitly by

tmax — to = 1.081b months , 2)

where parameter b is also expressed in months. The value of the sunspot number
at maximum, Ry, is then given by

Ruax = 0.504ab> . 3)

Examination of the best-fit parametric values for each cycle shows that param-
eters a and b are related. Cycles with large amplitudes (large a) take less time to
rise to maximum (smaller values for b), the so-called the Waldmeier effect. We in-
vestigated functional fits to this relationship and noted that, for small a, parameter
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Fig. 3. Parameter b (months to maximum) plotted as a function of parameter a (amplitude) for cycles
1-21. This shows that small amplitude cycles rise to maximum more slowly than large amplitude
cycles. Individual cycles are represented by 2o error ellipses. The early, incomplete cycles are shown
with open ellipses, the nearly complete cycles 8 and 9 as gray ellipses, and the recent cycles with
fully-complete coverage as black ellipses. The functional fit given by (4) is represented by the thick
line through the data.

b must be smaller than ¢ ~!/3 for the maximum sunspot number, as given by (3), to

decrease at small a as expected. Using b(a) ~ a~1/* and then fitting both t, and
a for each cycle, we found a new set of starting times that differed slightly from
that of minimum smoothed sunspot number. Using these values of ¢y still gives
¢ = 0.71 and produces a much tighter fit for both 5(a) and for the functional fit to
the sunspot data.

Figure 3 shows parameter b as a function of parameter a for all cycles using
these optimized starting times. The ellipses represent 20 errors, where black ellipses
denote cycles 10-21 (the modern era), gray ellipses the less reliably known cycles
8 and 9 (still considered to be of ‘good’ quality), and open ellipses the earlier,
poorly known cycles 1-7. A strong relationship between a and b is clearly seen,
with cycles of large amplitude a rising more quickly to maximum as given by the
smaller values for the parameter b. The best fit to this relationship is given by

b(a) = 27.12 + 25.15/(a x 103)1/4 4)

which passes within 20 of most (17 of 21) of the data points and is plotted as
the thick line in Figure 3. A standard linear regression analysis between the best-
fit b values and those obtained from (4) yields a linear correlation coefficient of
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0.95 with a standard error of estimate equal to 1.4; the regression is found to be
statistically significant at >99.9% level of confidence.

Setting ¢ = 0.71 and using (4) to represent b in (1) gives a 2-parameter function
for fitting to each sunspot cycle, with the parameters being the amplitude a and the
starting time t(. The results of our analyses for these shape parameters are given
in Table I. The first column gives the cycle number and the second through fourth
columns give the results for the 3-parameter fit. The fifth column gives a measure
of the goodness-of-fit as given by

N
X= J [Z(& - fi)z/s%} /N, )
=1

where R; is the monthly-averaged sunspot number, f; is the functional fit value, s;
is the standard deviation for the monthly-averaged sunspot number, and [V is the
number of months in the cycle. A value for y of 1.0 indicates that, on average, the
fitted function passes within one standard deviation of the data points. Columns 6
-8 give the parameter values and ’y values for the 2-parameter fit to each cycle. The
last column (9) gives X values for the 5-parameter fits of Elling and Schwentek
(1992). (We did not calculate ’y values for Nordemann’s fits because of the coarser
time resolution from the use of yearly averages.)

The results shown in Table I indicate that, with the exception of cycles 5, 6,
and 12, all three functions (the 3-parameter fit, the 2-parameter fit, and the 5-
parameter fit of Elling and Schwentek) fit the data fairly well (typically within
about 1o of the data values). The 3-parameter function usually gives a slightly
better fit than the 2-parameter function and both are usually better than the 5-
parameter function of Elling and Schwentek (1992). (This is probably due to the
use of quarterly averages by Elling and Schwentek.) These differences are not,
however, considered significant. The more important result is that sunspot data can
be adequately fit with a relatively simple function of only two parameters.

In Figure 4 we plot the monthly averages of the sunspot number along with our
2-parameter function for each cycle. The thin line in Figure 4 represents the data
while the thick line is constructed using parameters from the 2-parameter fits given
in Table I. This curve represents the sum of the contributions from both the current
cycle at the date in question and from the previous cycle. While the contribution
from the previous cycle becomes negligible well before the maximum of a cycle,
it does tend to push the actual date of sunspot minimum ahead several months into
the start of a new cycle. Figure 4 illustrates how well our 2-parameter function
actually fits the data and shows our prediction for the remainder of this cycle.

4. Forecasting Potential

Our analysis suggests that the rote behavior of a sunspot cycle is governed by
two parameters, starting time and amplitude. These parameters would be useful in
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Fig. 4. A comparison of the sunspot data and our 2-parameter functional fit for the years 1749-1992
(cycles 1-22). The thin line represents the sunspot data. The thick line represents our 2-parameter fit

for each cycle including our prediction for the remaining years of this cycle.

forecasting future activity if they could be determined early in the cycle or found to
vary predictably from one cycle to the next. Given the starting time tp, an estimate
of parameter a will then determine the behavior of the sunspot cycle over its full

duration.

The value for parameter a, in fact, be quite accurately determined within the
first 2-3 years following the start of the cycle. For the 21 completed cycles we
determined best-fit values of parameter a using the 2-parameter function at a series
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Fig. 5. Determinations of the amplitude parameter a at 6-month intervals into each cycle. The ratio
of the estimated value of « to its final value determined at the end of the cycle is plotted for each
cycle at 6-month intervals from 18 to 78 months. The modern cycles are represented with solid lines
while the earlier, less reliable, cycles are represented by dotted and dashed lines. Although parameter
a varies by a factor of 10 from cycle to cycle, it is determined to within 20% of its final value at
30 months and to within 10% at 42 months into the cycle.

of 6-month time intervals starting at 18 months into each cycle. The ratio of these
values to the final values (determined at the end of each cycle) is plotted in Figure 5.
The thick lines in Figure 5 represent the more recent (modern era) cycles for which
we have complete coverage, while the broken lines represent the earlier cycles in
which the observations were not taken every day. While the values for parameter a
are found to vary by more than a factor of 10 from cycle to cycle (Table I), Figure 5
indicates that we can determine this parameter to within 20% of its final value at
30 months, and to within 10% of its final value at 42 months into the cycle. This
suggests that fitting the behavior of the solar cycle by means of the 2-parameter
function during the rising phase gives a prediction of the behavior of solar activity
over the remaining 7 to 12 years of the cycle, including both the maximum phase
and the decline to sunsequent cycle minimum. (Similar predictability was found
by Elling and Schwentek, 1992, with their 5-parameter function.)

Determining the amplitude and starting time of a cycle before it has started
is a far more difficult problem. Examining the amplitude parameters for the last
22 cycles reveals a rather chaotic appearance. The mean value of a is 1.85 x 1073
and there appears to be a slight upward trend in amplitudes over time with
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a(n) =92x107*+80x 105 n, (6)

where n is the cycle number (1 to 22). A Fourier analysis of the amplitude pa-
rameters shows enhanced power at periods representing one cycle over the length
of the dataset (always a suspicious result) as well as at periods of 7-8 cycles (the
Gleissberg cycle) and at periods of 2-3 cycles (even-odd cycle behavior). Unfor-
tunately, given the small number of cycles analyzed, it is difficult to determine the
significance of any of these periodicities. We have, however, repeated the Fourier
analysis on a series of 16 cycle samples (i.e., cycles 1-16, 2-17, etc.) and find
that peaks at periods of 8 and 2 cycles persist until we start including the last four
cycles (cycles 19-22). This difference in behavior for the most recent cycles might
reflect a change in the Sun’s magnetic dynamo. On the other hand it might reflect
better observations of the Sun since the IGY in 1959. At present, we do not fully
understand the significance of this finding.

An examination of the starting times for the last 22 cycles also suggests a rather
chaotic behavior. The mean value for the length of the cycle, [to(n + 1) — to(n)],
is 131.6 months and there appears to be a downward trend over time with

to(n + 1) — to(n) = 134.9 — 0.30n months . (7)

This effect, combined with that given by (6), shows that the more recent cycles
have been larger in amplitude and shorter in length than the earlier ones. We also
find a weak correlation between the length of the cycle and the rise time as given
by parameter b but the relationship is not better than (7) for predicting the length of
a cycle. Both relationships give errors of several months to more than a year even
during the modemn era of sunspot observations.

Perhaps surprisingly, there does appear to be a weak inverse correlation between
the amplitude of a cycle and the length of the previous cycle. Cycles that take a
long time to get started tend to have small amplitudes. This is illustrated in Figure 6
where the data ellipses represent the amplitude of each cycle as functions of the
length of the previous cycle. Here again the recent, high amplitude, cycles appear
anomalous. Using cycles 2—18 we find that a linear fit with

a(n) = 6.57 x 1073 — 3.78 x 1072 [to(n) — to(n — 1)] (8)

characterizes the inferred relationship shown as the thick line in Figure 6. For most
cycles this relationship gives an estimate for the amplitude of the cycle accurate
to about 30% at the very beginning of the cycle. Using the average value for the
amplitude is typically in error by about 75%, so our inferred relationship is definitely
more useful than just taking the average. A standard linear regression on the
predicted and observed amplitudes gives a correlation coefficient of 0.63, implying
that about 40% of the variance in parameter is explained by the relationship.
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Fig. 6. Amplitude parameter a as a function of the length of the previous cycle. A weak correlation
is inferred to exist between the two parameters suggesting that cycles that take longer to start tend to
be smaller in amplitude. A linear fit to the values for cycles 2—18 is shown by the thick line through
the data.

5. Conclusions and Discussion

Our study clearly shows that the shape of the sunspot cycle can be adequately
described using a simple function with only two free parameters. This function was
derived from a 4-parameter functional fit of the monthly mean sunspot numbers
by fixing the asymmetry at a nominal value and expressing the time for the rise
to maximum in terms of the amplitude of the cycle. While better fits might be
obtained with more complicated functions containing more free parameters, the
fact that the 2-parameter fit passes within about one standard deviation of the data
points suggests that this function 1s adequate.

We have also found that the values of the amplitude parameter a are well
determined early in the cycle. The length of the previous cycle can be used to
estimate the amplitude of the following cycle to within about 30% at the start of the
cycle, even though the actual amplitudes vary by more than a factor of 10 from cycle
to cycle. By fitting sunspot numbers during the rising portion of the cycle using our
2-parameter function we found that we can reduce the uncertainty to about 20%
at 30 months and to about 10% at 42 months into the cycle. This determination of
the parameters provides an early estimate for the temporal behavior of the sunspot
cycle over its remaining years including sunspot maximum.

One difficulty we found in fitting our function to the data was the determination
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of the best starting time ¢ for each cycle. Although smoothed sunspot minimum
gives a good estimate for these starting times, the optimal times were found a pos-
teriori by fitting the full cycle with the 2-parameter function. For cycle 22, we
fit the start of the cycle with the 3-parameter function and adjusted the starting
time until parameters a and b agreed with (4). While this technique might also be
used with other cycles, other datasets may also provide additional information for
determining the best starting times. For example, the positions of sunspots have
been reliably recorded since 1874. This information might be used to note the first
appearance of high latitude spots. Further, magnetic polarity information has been
available since 1917. Together these data might be used to better ascertain the best
start time for a cycle.

Ideally, a theoretical model of the solar dynamo should provide the basis for
observations of the physical processes on the Sun that are relevant to the workings
of the dynamo itself. Observations of the rotation, magnetic field, and velocity
field of the Sun would then provide the initial conditions for calculations of future
solar activity levels. However, good working models of the solar dynamo have
not as yet been developed. Furthermore, if the dynamo is concentrated at the base
of the convection zone, the observations themselves may be difficult to obtain.
Nonetheless, preliminary work in this direction shows some promise. Schatten
et al. (1978) and Layden et al. (1991) have demonstrated that a determination
of the polar magnetic field strength at sunspot minimum may provide a good
indication for the strength of the following maximum. But this provides only a
single value for the cycle and should be combined with a determination of the
shape of the cycle to give a fuller description of solar activity levels. In lieu of
a good theory and the relevant observations, we have relied on observations of
the symptoms of the solar dynamo (i.e., sunspots) to look for characteristics that
determine the shape and provide some additional predictive ability.

The procedures outlined here should also be applied to other data sets to examine
any differences between the shape of the activity cycle as given by sunspot number
and that given by quantities such as sunspot area, 10.7 cm flux, plage index,
solar irradiance, etc. Such studies might then provide additional information which
would help in forecasting future solar activity and in constraining models of the
solar magnetic dynamo.
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