Jan. 18th, 2012

JCSDA Seminar

Kazumasa Aonashi*, Hisaki Eito, and Seiji Origuchi

Meteorological Research Institute, Tsukuba, Japan **aonashi@mri-jma.go.jp**

Cloud-Resolving Model used

JMANHM(**Saito et al,2001)**

- **Resolution: 5 km**
- **Grids: 400 x 400 x 38**
- **Time interval: 15 s**

Explicitly forecasts 6 species of water substances

Goal: Data assimilation of MWI TBs into CRMs

OUTLINE

- **Introduction**
- Ensemble-based Variational Assimilation (EnVA)
- **Methodology** 쉬
- Problems in EnVA for CRM -9-1
- Displacement error correction (DEC)+EnVA ⊕
- **Methodology** -0-1
- Application results for Typhoon CONSON (T0404) ᅯ
- Sampling error damping method for CRM EnVA
- Sample error-damping methods of previous studies ╺╬┤
- Check the validity of presumptions of these methods юH

♦ Methodology

(Lorenc 2003, Zupanski 2005)

- **Company Figure 1** Problems in EnVA for CRM
	- Displacement error ⊹ф-|
	- Sampling error 쉭

EnVA: min. cost function in the Ensemble forecast error subspace

◆ Minimize the cost function with non-linear Obs. term.

 $\vec{r} = \vec{r} \times \vec{n} + \vec{r} \times \vec{r} \times \vec{r} + \vec{r} \times \vec{r}$ $= 1/2(\overline{X} - \overline{X}_{f})P_{f}^{-1}(\overline{X} - \overline{X}_{f}) + 1/2(Y - H(\overline{X}))R^{-1}(Y -$

- ◆ Assume the analysis error belongs to the Ensemble forecast error subspace (Lorenc, 2003): $f/2$ e $\vec{X} - \vec{X}^f = P_e^{f/2} \circ \vec{\Omega}$ $Q = [\vec{w}_1, \vec{w}_2, \ldots, P_e^{f/2}] = [\vec{X}_1^f - \vec{X}^f, \vec{X}_2^f - \vec{X}^f, \ldots, \vec{X}_N^f - \vec{X}^f]$ $\frac{1}{2}$ $X - X^f = P_e^{t/2} \circ \Omega$ **s** $\mathcal{L} = [W_1, W_2, \ldots,$
 $P_e^{f/2} = [\bar{X}_1^f - \bar{X}^f, \bar{X}_2^f - \bar{X}^f, \ldots, \bar{X}_N^f - \bar{X}^f]$ $J_x = 1/2(\bar{X} - \bar{X}_f)P_f^{-1}(\bar{X} - \bar{X}_f) + 1/2(Y - H(\bar{X}))R^{-1}(Y - H(\bar{X}))$
 **Assume the analysis error belongs to the Ensemb forecast error subspace (Lorenc, 2003):
** $\bar{X} - \bar{X}^f = P_f^{f/2} \circ \Omega$ $\Omega = [\bar{w}_1, \bar{w}_2, ..., \bar{w}_N]$
- ◆ Forecast error covariance is determined by localization $P^f = P^f \circ S$
- ◆ Cost function in the Ensemble forecast error subspace:
	- $J(\Omega) = 1/2$ trace $\{\Omega^t S^{-1} \Omega\} + 1/2 \{H(\bar{X}(\Omega)) Y\}^t R^{-1} \{H(\bar{X}(\Omega)) Y\}$

Why **Ensemble-based** *method?:* of the error covariance area area area To estimate the flow-dependency

04060915.ENS19.FT07 CORR NE.PT PointC3.inb=2 z=15

Ensemble forecast error corr. of PT (04/6/9/22 UTC)

Why Variational Method *?*

To address the nonlinearity of TBs

MWI TBs are non-linear function of various CRM variables.

<p>• TB becomes saturated as optical
\n thickness increases:
\n$T-TB \approx (1-\varepsilon_s)Te^{-2\tau/\mu},$\n</p> thickness increases:

$$
T - TB \approx (1 - \varepsilon_s) T e^{-2\tau/\mu},
$$

when $T \approx T_s$

◆ TB depression mainly due to frozen precipitation becomes dominant after saturation.

Detection of the optimum analysis

- Detection of the optimum Ω_a , w_a by minimizing *J* ₩ where Ω is diagonalized with U eigenvectors of S: $\chi_i(m) = 1/d_m \{U^t \Omega\}_i(m)$
- Approximate the gradient of the observation with ⇔ Approximate the gradient of the observation with
the finite differences about the forecast error:
 $\partial H(\vec{X})/\partial \Omega \sim \{H(\vec{X} + \alpha \delta p_i^f) - H(\vec{X})\}/\alpha$ the finite differences about the forecast error:
- To solve non-linear min. problem, we performed ≎ iterations.
- Following Zupanski (2005), we calculated the ⇔ analysis of each Ensemble members, \bar{X}_i^a from the Ensemble analysis error covariance.

Problem in EnVA (1): **Displacement error** AMSRE *TB18v (*2003/1/27/04z)

Large scale displacement errors of rainy areas between the MWI observation and Ensemble forecasts

Presupposition of Ensemble assimilation is not satisfied in observed rain areas without forecasted rain.

Mean of Ensemble Forecast (2003/1/26/21 UTC FT=7h)

Presupposition of Ensemble-based assimilation

Methodology

- **Application results for Typhoon CONSON** (T0404)
- Case -64
- Assimilation Results ╈┥
- Impact on precipitation forecasts -ф¦

Displaced Ensemble variational assimilation method

In addition to \bar{x} , we introduced \bar{d} to assimilation. The optimal analysis value maximizes : Assimilation results in the following 2 steps: 1) DEC scheme to derive \bar{d}^a from $P(\bar{d} | Y, \bar{X}^f)$ 2)EnVA scheme using the DEC Ensembles to DEC scheme to derive \vec{d}^a fr
EnVA scheme using the DE
derive \vec{X}^a from $P(\vec{X} | \vec{d}^a, Y, \vec{X}^f)$ arg max $P(\bar{X}, \bar{d} | Y, \bar{X}^f)$ $P(\overline{X}, \overline{d} | Y, \overline{X}^f) = P(\overline{d} | Y, \overline{X}^f) P(\overline{X} | \overline{d}, Y, \overline{X}^f)$ \vec{X}^a

Assimilation method

DEC scheme: min. cost function for d

[◆] Bayes' Theorem

 $P(\overline{d} | Y, \overline{X}^f) = P(Y, \overline{X}^f | \overline{d}) P(\overline{d}) / P(Y, \overline{X}^f)$

- $P(Y, \overline{X}^f | \overline{d})$ can be expressed as the cond. Prob. of Y given $\overline{X}^f(\overline{d})$:
 $P(Y, \overline{X}^f | \overline{d}) = \exp\{-1/2(Y H(\overline{X}^f(\overline{d}))^t R^{-1}(Y H(\overline{X}^f(\overline{d})))\}$ given $\bar{X}^f(\vec{d})$:
	- $P(Y, \overline{X}^f | \overline{d}) = \exp\{-1/2(Y-H(\overline{X}^f(\overline{d}))^t R^{-1}(Y-H(\overline{X}^f(\overline{d})))\}$
- We assume Gaussian dist. of $P(\vec{d})$: $P(\vec{d})$ =exp{-($\left|\vec{d}\right|^2$ /2 σ_d^2 where σ_d is the empirically determined scale of the displacement error. $P(\vec{d}) = \exp \{ -(\left| \vec{d} \right|^2 / 2 \sigma_d^2) \}$
- We derived the large-scale pattern of \tilde{a} by minimizing (Hoffman and Grassotti ,1996) : *d J* Hoffman and Grassotti ,1996) :
 $\frac{1}{2}(Y-H(\bar{X}^f(\bar{d})))^t R^{-1}(Y-H(\bar{X}^f(\bar{d})))\} + |\bar{d}|^2/2\sigma_d^2$ and Grassolli ,19
f (d̄))' R⁻¹(Y – H(\bar{X}^f *d* (Hoffman and Grassotti ,1996) :
 $J_d = \frac{1}{2}(Y - H(\bar{X}^f(\bar{d})))^t R^{-1}(Y - H(\bar{X}^f(\bar{d})))\} + |\bar{d}|^2/2\sigma_d^2$ $\overline{}$ (Hoffman and Grassotti , 1996) :
= $\frac{1}{2}(Y-H(\bar{X}^f(\bar{d})))^t R^{-1}(Y-H(\bar{X}^f(\bar{d})))\}+|\bar{d}|^2/2\sigma$

Detection of the large-scale pattern of optimum displacement

We derived the large-scale pattern of \tilde{a} from , following Hoffman and Grassotti (1996) : $J_{\overline{d}}$

$$
\text{following Hoffman and Grassotti (1996)}\nJ_d = \frac{1}{2}(Y - H(\overline{X}^f(\overline{d})))^t R^{-1}(Y - H(\overline{X}^f(\overline{d}))) + |\overline{d}|^2 / 2\sigma_d^2
$$

- We transformed \vec{d} into the control variable in wave space, \vec{r} using the double Fourier expansion. **, following Hoffman and Grassotti (1996)**
 $J_d = \frac{1}{2}(Y - H(\bar{X}^f(\bar{d})))' R^{-1}(Y - H(\bar{X}^f(\bar{d}))) + |\bar{d}|^2/2\sigma_d^2$

We transformed \bar{d} into the control variable in space, \bar{r} using the double Fourier expansion.

We used
- ◆ We used the quasi-Newton scheme (Press et al. 1996) to minimize the cost function in wave space.
- we transformed the optimum \vec{r} into the large-scale pattern of \vec{d} by the double Fourier inversion.

Assimilation method

Assimilate TMI TBs (10v, 19v, 21v) at 22UTC

RAM (mm/hr)

Cloud-Resolving Model used

JMANHM(**Saito et al,2001)**

- **Resolution: 5 km**
- **Grids: 400 x 400 x 38**
- **Time interval: 15 s**

Initial and boundary data JMA's operational regional model

Basic equations : Hydrostatic primitive

♦ Precipitation scheme: Moist convective adjustment

- + Arakawa-Schubert
	- + Large scale condensation
- **[←] Resolution: 20 km**
-

Grids: 257 x 217 x 36

Ensemble Forecasts & RTM code

Ensemble forecasts

●100 members started with perturbed initial data at 04/6/9/15 UTC (FG) ● Geostrophically-balanced perturbation (Mitchell et al. 2002) plus Humidity

RTM: Guosheng Liu (2004)

- *One-dimensional model (Plane-parallel)*
- *Mie Scattering (Sphere)*
- *4 stream approximation*

Ensemble mean (FG) Rain mix. ratio

24

CRM Variables vs. TBc at Point M

Summary

Ÿ

***Ensemble-based data assimilation can give** erroneous analysis, particularly for observed rain areas without forecasted rain.

- In order to solve this problem, we developed the Ensemble-based assimilation method that uses Ensemble forecast error covariance with displacement error correction.
- \bigoplus **This method consisted of a displacement error** correction scheme and an Ensemble-based variational assimilation scheme.

Summary

- ◆ We applied this method to assimilate TMI TBs (10, 19, and 21 GHz with vertical polarization) for a Typhoon case (9th June 2004).
- \bullet The results showed that the assimilation of TMI TBs alleviated the large-scale displacement errors and improved precip forecasts.
- **♦ The DEC scheme also avoided** misinterpretation of TB increments due to precip displacements as those from other variables.

. Sample error-damping methods of previous studies **. Check the validity of presumptions of these** methods

◆ Spatial Localization (Lorenc, 2003)

 $C_{\rm cn}(x_1, x_2) = C_{\rm ENS}(x_1, x_2) S(\Delta_{1,2})$

- ◆ Spectral Localization (Buehner and Charron, 2007) $\hat{C}_1(k1,k2) = \hat{C}_{\text{true}}(k1,k2)\hat{L}$ $\hat{C}_{sl}(k1, k2) = \hat{C}_{ENS}(k1, k2) \hat{L}_{sl}(k1, k2)$
	- **E** When transformed into spatial domain

$$
C_{sl}(x_1, x_2) = \int C_{ENS}(x_1 + s, x_2 + s) L_{sl}(s) ds
$$

◆ Variable Localization (Kang, 2011) $C_v(v1, v2) = C_{ENS}(v1, v2) \delta(v1, v2)$

Cloud-Resolving Model used

JMANHM(**Saito et al,2001)**

- **Resolution: 5 km**
- **Grids: 400 x 400 x 38**
- **Time interval: 15 s**

Initial and boundary data JMA's operational regional model

Basic equations : Hydrostatic primitive

♦ Precipitation scheme: Moist convective adjustment

- + Arakawa-Schubert
	- + Large scale condensation
- **[←] Resolution: 20 km**
-

Grids: 257 x 217 x 36

Ensemble Forecasts

- ●100 members started with perturbed initial data
- Geostrophically-balanced perturbation plus Humidity
- Random perturbation with various horizontal and vertical scales (Mitchell et al. 2002)

Extra-tropical Low (Jan. 27, 2003)

Baiu case (June 1, 2004)

Simple spatial localization is not usable. *2) Horizontal correlation scales of (U, V, PT, RH) decreased* $(160 \text{ km} \rightarrow 40 \text{ km})$ with precipitation rate.

Power spectral of horizontal ensemble forecast error (H~5000m) : Typhoon

Spectral localization may be annlicable inplitudes for low-frequency, off-diagonal modes. 2) The presumption of the spectral localization "Correlations in spectral space decreases as the difference in wave number increases" is valid. The same state of $\frac{38}{2}$ Spectral localization may be applicable.

Cross correlation of CRM variables in the vertical (Typhoon): Rain-free areas

Cross correlation of CRM variables in the vertical (Typhoon): Weak rain (1-3 mm/hr)

Cross correlation of CRM variables in the vertical (Typhoon):Heavy rain (>10mm/hr)

Cross correlation of CRM variables in the vertical (Typhoon) Rain-free areas

1)Cross correlation between precipitation-related variables and other variables increases with precipitation rate. 2) Variables can be classified in terms of precipitation rate.

Weak rain areas Variable localization needs *Heavy rain areas* classification in terms of precipitation.

Introducing sampling error damping ideas to EnVA

\bigcirc **Spetctal Localization >**

E Use of ensemble forecasts at neighboring grid points

← Heterogeneity of forecast covariance >

E Classification of CRM variables and assumption of zero cross correlation between different classes.

♦ We checked the validity of presumptions of the sampling error damping methods.

Summary

- \bullet **Simple spatial localization is not usable. Spectral localization may be applicable. ♦ Variable localization needs classification** in terms of precipitation.
- **[◆] We should consider heterogeneity of the** forecast covariance (Michel et al, 2011).

Summary

- Ensemble-based Variational Assimilation (EnVA)
- **Methodology** ᅯ
- Problems in EnVA for CRM -9-1
- Displacement error correction (DEC)+EnVA
- Methodology -64
- Application results for Typhoon CONSON (T0404) -61
- **Sampling error damping method for CRM EnVA**
- **Sample error-damping methods of previous studies** 専
- **Check the validity of presumptions of these methods** 去

Thank you for your attention.

End