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to Incorporate Microwave Imager Data  

into a Cloud-Resolving Model  
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Cloud-Resolving Model used  
JMANHM（Saito et al,2001) 

• Resolution:      5 km 
• Grids:   400 x 400 x 38 
• Time interval:  15 s 

Explicitly forecasts 6 species 
 of water substances     
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Goal: Data assimilation of MWI TBs into CRMs 

Hydrological Model Cloud Reslv. Model  
+ Data Assim System 

MWI TBs 
(PR) 

Precip. 
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Ensemble-based Variational Assimilation 

(EnVA) 

Methodology 

   (Lorenc 2003, Zupanski 2005) 

Problems in EnVA for CRM 
Displacement error 

Sampling error 
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EnVA: min. cost function in the Ensemble 
forecast error subspace   

Minimize the cost function with non-linear Obs. term. 

 

 

Assume the analysis error belongs to the Ensemble 
forecast error subspace （Lorenc, 2003): 

 

 

Forecast error covariance is determined by localization 

 

Cost function in the Ensemble forecast error 
subspace： 
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Why Ensemble-based  method?:  

 

200km 

10km 

Heavy Rain Area Rain-free Area 

 To estimate the flow-dependency  
of the error covariance  

Ensemble forecast error corr. of PT (04/6/9/22 UTC) 
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 Why Variational Method ?  

 

MWI TBs are non-linear function of 
various CRM variables. 

TB becomes saturated  as optical 
thickness increases: 

 

 

 

TB  depression mainly due to 
frozen precipitation becomes 
dominant after saturation.         
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To address the non-
linearity of TBs  
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Detection of the optimum analysis   

Detection of the optimum          by minimizing  

       where     is diagonalized with U eigenvectors of S： 

 

Approximate the gradient of the observation with 
the finite differences about the forecast error: 

 

To solve non-linear min. problem, we performed 
iterations. 

Following Zupanski (2005), we calculated the 
analysis of each Ensemble members,     from the 
Ensemble analysis error covariance. 
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Problem in EnVA (1): Displacement error  

 
Large scale 

displacement errors of 

rainy areas between the 

MWI observation and 

Ensemble forecasts  

 

Presupposition of 

Ensemble assimilation 

is not satisfied in 

observed rain areas 

without forecasted rain. 

AMSRE  TB18v (2003/1/27/04z) 

Mean of Ensemble Forecast 

(2003/1/26/21 UTC FT=7h） 
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Presupposition of Ensemble-based assimilation 

Obs. Analysis ensemble mean 

T=t0 T=t1 T=t2 

Analysis w/ errors FCST ensemble mean 
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Ensemble forecasts have 
enough spread to include 
(Obs. – Ens. Mean) 
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 Ensemble-based assimilation for observed rain 

areas without forecasted rain 

Obs. Analysis ensemble mean 

T=t0 T=t1 T=t2 

Analysis w/ errors FCST ensemble mean 

R

Assimilation can give 
erroneous analysis 
when the 
presupposition is not 
satisfied. 

Signals from rain can be 

misinterpreted as those 

from other variables 

Displacement error correction is needed! 
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Problem in EnVA (2): Sampling error 

Forecast error corr. of W (04/6/9/15z 7h fcst) 

Heavy rain 

(170,195) 

Weak rain 

(260,210) 

Rain-free 

(220,150) 

200 km 
200 km 

Severe sampling 

error for precip-

related variables 
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Displacement error correction 

(DEC)+EnVA 

 

Methodology 

 Application results for Typhoon CONSON 

(T0404) 

Case 

Assimilation Results 

Impact on precipitation forecasts 
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Displaced Ensemble variational  

assimilation method 

In addition to   , we introduced     to assimilation. 

The optimal analysis value maximizes ： 

 

 

Assimilation results in the following 2 steps: 

  1) DEC scheme to derive    from 

  2)EnVA scheme using the DEC Ensembles to 

derive       from 
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Fig. 1: 
CRM Ensemble  

Forecasts 

Displacement Error 

Correction 

Ensemble-based 

Variational  

Assimilation 
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DEC scheme: min. cost function for d 

Bayes’ Theorem 

 

        can be expressed as the cond. Prob. of Y 
given       ： 

 

We assume Gaussian dist. of        ：   

   where  is the empirically determined scale of the 
displacement error. 

We derived the large-scale pattern of    by minimizing        

         (Hoffman and Grassotti ,1996) ： 
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Detection of the large-scale 

pattern of optimum displacement 

 We derived the large-scale pattern of    from    
, following Hoffman and Grassotti (1996) ： 
 

 

 We transformed    into the control variable in wave 
space,    using the double Fourier expansion. 

 

We used the quasi-Newton scheme (Press et al. 
1996) to minimize the cost function in wave space.  

 

we transformed the optimum    into the large-scale 
pattern of     by the double Fourier inversion.  
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Fig. 1: 
CRM Ensemble  

Forecasts 

Displacement Error 

Correction 

Ensemble-based 

Variational  

Assimilation 
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Case （2004/6/9/22 UTC) TY CONSON 

 

 

 

TMI TB19ｖ RAM (mm/hr) 
Assimilate TMI TBs   

  (10v, 19v, 21v ) at 22UTC 
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Cloud-Resolving Model used  
JMANHM（Saito et al,2001) 

• Resolution:      5 km 
• Grids:   400 x 400 x 38 
• Time interval:  15 s 

Initial and boundary data 
JMA’s operational regional model 

Basic equations : Hydrostatic 
primitive 
Precipitation scheme:   

     Moist convective adjustment  
    + Arakawa-Schubert  
    + Large scale condensation 

Resolution: 20 km 
Grids:          257 x 217 x 36 
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Ensemble Forecasts & RTM code 

Ensemble forecasts 

100 members started with  

   perturbed initial data  

 at 04/6/9/15 UTC (FG) 

Geostrophically-balanced  

  perturbation  (Mitchell et al. 2002)  

  plus Humidity 

 

RTM: Guosheng Liu (2004) 

One-dimensional model (Plane-parallel) 

Mie Scattering (Sphere) 

4 stream approximation 

 

 

Ensemble mean (FG) 

Rain mix. ratio 

TB19v cal. from FG 

23 



TB19v from TMI and CRM outputs 

FG： 
First  

guess 

DE： 
After  

DEC 

ND: 
NoDE+ 

EnVA 

CN： 

DE+ 

EnVA 

TMI 
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Post-fit residuals 

FG： DE： 

ND: 
CN： 

LN: 
DE+ 
EnVA. 
1st 

))(())((21)()(21 11 XHYRXHYXXPXXJ fffx


 

Jx=24316.6 

Jb=0 

Jo=24316.6 

Jx= 9435.2 

Jb=0 

Jo= 9435.2 

Jx= 4105.4 

Jb=   834.5 

Jo= 3270.9 

Jx= 2431.9 

Jb=   290.9 

Jo= 2141.0 

Jx=  6883.0 

Jb=      14.5 

Jo=  6868.4 
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RAM and Rain mix. ratio analysis (z=930m) 

FG DE 

RAM 

ND CN 
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RH(contours) and W(shades) along N-S 

FG DE 

CN ND 
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Hourly Precip. forecasts (FT=0-1 h) 22-23Z 9th 

RAM 

DE 

CN ND 

FG 
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Hourly Precip. Forecasts (FT=3-4 h) 01-02Z 10th  

RAM 

DE 

CN ND 

FG 
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Summary 
 

Ensemble-based data assimilation can give 

erroneous analysis, particularly for observed 

rain areas without forecasted rain.  

In order to solve this problem, we developed 

the Ensemble-based assimilation method 

that uses Ensemble forecast error covariance 

with displacement error correction.  

This method consisted of a displacement error 

correction scheme and an Ensemble-based 

variational assimilation scheme.    
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Summary 
We applied this method to assimilate TMI TBs 
(10, 19, and 21 GHz with vertical polarization) 
for a Typhoon case (9th June 2004). 

 The results showed that the assimilation of 
TMI TBs alleviated the large-scale 
displacement errors and improved precip 
forecasts.  

 The DEC scheme also avoided 
misinterpretation of TB increments due to 
precip displacements as those from other 
variables. 
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Sampling error damping method for CRM 

EnVA 

 

Sample error-damping methods of 

previous studies 

Check the validity of presumptions of these 

methods 
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Sample error-damping methods of 

previous studies 

Spatial Localization (Lorenc, 2003)  
     

 
Spectral Localization (Buehner and Charron, 2007)  

   
 

When transformed into  spatial domain 

 
 

Variable Localization (Kang, 2011) 

ˆ ˆ ˆ( 1, 2) ( 1, 2) ( 1, 2)sl ENS slC k k C k k L k k

( 1, 2) ( 1 , 2 ) ( )sl ENS slC x x C x s x s L s ds  

1,2( 1, 2) ( 1, 2) ( )sp ENSC x x C x x S 

( 1, 2) ( 1, 2) ( 1, 2)v ENSC v v C v v v v
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Cloud-Resolving Model used  
JMANHM（Saito et al,2001) 

• Resolution:      5 km 
• Grids:   400 x 400 x 38 
• Time interval:  15 s 

Initial and boundary data 
JMA’s operational regional model 

Basic equations : Hydrostatic 
primitive 
Precipitation scheme:   

     Moist convective adjustment  
    + Arakawa-Schubert  
    + Large scale condensation 

Resolution: 20 km 
Grids:          257 x 217 x 36 
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Ensemble Forecasts 

Extra-tropical Low 

(Jan. 27, 2003) 

Typhoon CONSON 

(June. 9, 2004) 

C 

Baiu case 

(June 1, 2004) 

100 members started with  

   perturbed initial data 

Geostrophically-balanced  

  perturbation plus Humidity 

Random perturbation with various 

   horizontal and vertical scales 

    (Mitchell et al. 2002) 
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Horizontal correlation of ensemble forecast 

error  (H~ 5000 m) : Typhoon  

 （black: U, green:RHW2, red：W） 

Rain-free area 

 

Weak Precip  
PR 1-3 mm/hr 

Heavy Precip 
PR >10mm/hr 

km km km 

1) (precip, W) had narrow correlation scales (~ 15 km). 

2) Horizontal correlation scales of (U, V, PT, RH) decreased 

 (160 km -> 40 km) with precipitation rate. 37 

Simple spatial localization is not usable. 



Power spectral of horizontal ensemble 

forecast error  (H~5000m) : Typhoon  

W U 

1) Precip and W are diagonal, other had significant amplitudes 

 for low-frequency, off-diagonal modes. 

2) The presumption of the spectral localization  

“Correlations in spectral space decreases as the difference  

in wave number increases” is valid. 38 

Spectral localization may be applicable. 



Cross correlation of CRM variables in the 

vertical (Typhoon): Rain-free areas 
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Cross correlation of CRM variables in the 

vertical (Typhoon): Weak rain (1-3 mm/hr) 
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Cross correlation of CRM variables in the 

vertical (Typhoon):Heavy rain (>10mm/hr) 
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1)Cross correlation between  

precipitation-related variables  

and other variables increases  

with precipitation rate. 

2) Variables can be classified  

in terms of precipitation rate.  

 
 

Cross correlation of CRM variables in the 

vertical (Typhoon) 

Weak rain areas 

Rain-free areas 

Heavy rain areas 
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Variable localization needs  
classification in terms of precipitation. 



Introducing sampling error 

damping ideas to EnVA 

Spetctal Localization > 

Use of ensemble forecasts at neighboring 
grid points 

Heterogeneity of forecast covariance > 

Classification of CRM variables and 
assumption of zero cross correlation 
between different classes. 
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Summary 

We checked the validity of presumptions 

of the sampling error damping methods. 

 

Simple spatial localization is not usable. 

Spectral localization may be applicable. 

Variable localization needs classification 

in terms of precipitation. 

We should consider heterogeneity of the 

forecast covariance (Michel et al, 2011). 
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Summary 
 

Ensemble-based Variational Assimilation (EnVA) 

Methodology 

Problems in EnVA for CRM 

Displacement error correction (DEC)+EnVA 

 Methodology 

 Application results for Typhoon CONSON (T0404) 

 Sampling error damping method for CRM EnVA 

Sample error-damping methods of previous studies 

Check the validity of presumptions of these methods 
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 Thank you for your attention. 

End 
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