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ABSTRACT 
 

This document is the Algorithm Theoretical Basis Document (ATBD) for the next 
generation of Geostationary Operational Environmental Satellite (GOES-R) Land Surface 
Emissivity (LSE) products. It is a high level description and the physical basis for the 
physical retrieval of LSE using clear sky infrared (IR) radiances measured by the 
Advanced Baseline Imager (ABI) to be flown on the GOES-R. The unique feature of 
geostationary satellite, the time continuity, is utilized to assist and improve the LSE 
retrieval, in that the LSE is assumed to be invariable within a short period of time while 
the land surface temperature (LST) is assumed to be variable. This document contains a 
description of the algorithm, including scientific aspects and practical considerations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 10

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1  INTRODUCTION 
 
1.1 Purpose of This Document 
 
The land surface emissivity (LSE) algorithm theoretical basis document (ATBD) 
provides a high level description and the physical basis for the retrieval of LSE using 
infrared (IR) radiances taken by the Advanced Baseline Imager (ABI) flown on the next 
generation of Geostationary Operational Environmental Satellite (GOES-R) series of 
NOAA geostationary meteorological/environmental satellites. The products include LSE, 
along with land surface temperature (LST), which is simultaneously retrieved from clear 
sky radiances within M × M ABI field-of-view (FOV) box area, here one FOV means one 
pixel. One field-of-regard (FOR) is defined as M × M FOVs. The ABI LSE product is a 
new product, which is not provided by the current GOES Sounder.  
 
1.2 Who Should Use This Document 
 
The intended user of this document are those interested in understanding the physical 
basis of the algorithms and how to use the output of this algorithm to optimize the LSE 
product for a particular application.  This document also provides information useful to 
anyone maintaining, modifying, or improving the original algorithm.   
 
1.3 Inside Each Section 
 
This document is broken down into the following main sections. 
 

• Observing System Overview: Provides relevant details of the ABI and provides 
a brief description of the products generated by the algorithm. 

 
• Algorithm Description : Provides a detailed description of the LSE algorithm 

including its physical basis, its input and its output. 
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• Test Data Sets and Outputs: Provides a description of the test data set used to 
characterize the performance of the algorithm and quality of the data products.  It 
also describes the results from algorithm processing using SEVIRI data. 

 
• Practical Considerations: Provides an overview of the issues involving 

numerical computation, programming and procedures, quality assessment and 
diagnostics and exception handling.  

 
• Assumptions and Limitations: All the assumptions and limitations concerning 

the algorithm theoretic basis have been described and discussed. 
 

1.4 Related Documents 
 
This document currently does not relate to any other document outside of the 
specifications of the GOES-R Ground Segment Functional and Performance 
Specification (F&PS) and to the references given throughout. 
 
1.5 Revision History 
 
Version 0.0 of this document was created by Dr. Jun Li of Cooperative Institute for 
Meteorological Satellite Studies (CIMSS) at the UW-Madison and Timothy J. Schmit of 
Center for Satellite Applications and Research (STAR) of NESDIS, with the intent to 
accompany the delivery of the version 1.0 algorithms to the GOES-R AWG Algorithm 
Integration Team (AIT). (July 2008) 
 
Version 0.0 comments/suggestions from N. Nalli (STAR/PSGS) (September 2008) 
 
Version 1.0 was developed by Zhenglong Li, Xin Jin and others to meet 80% ATBD 
requirement. (July 2010) 
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2 OBSERVING SYSTEM OVERVIEW 
 
2.1 Products Generated 
 
The GOES-R Advanced Baseline Imager (ABI) land surface emissivity (LSE) algorithm 
is responsible for the retrieval of LSE for a field-of-regard (FOR) consisting of M × M 
ABI fields-of-view (FOVs). In this document FOR specifically refers to the pixel group 
for one LSE retrieval. At the time of this writing, M = 3 (default) is assumed. The product 
generation needs brightness temperatures (BTs) from all ABI InfraRed (IR) channels 
along with numerical weather prediction (NWP) outputs for at least three measurements. 
The output includes LSE of all window channels along with a bypass product of land 
surface temperature (LST). Table 1 shows the requirements for LSE products. More 
requirement information can be found in the GOES-R Mission Requirement Document 
(MRD) and the Functional and Performance Specification (F&PS).  
 
Table 1. Requirements for GOES-R LSE products . 
 

N
am

e
 

U
se

r 
an

d 
P

rio
rit

y 

G
eo

g
ra

ph
ic

 
C

o
ve

ra
ge

 

H
o

riz
o

nt
al

 
re

so
lu

tio
n

 

M
ap

p
in

g 
ac

cu
ra

cy
 

R
ef

re
sh

 r
at

e
 

P
ro

du
ct

 
m

ea
su

re
m

en
t 

p
re

ci
si

o
n

 

P
ro

du
ct

 
E

xt
en

t 
Q

u
al

ifi
er

 

C
o

n
di

tio
ns

 
Q

u
al

ifi
er

 

A
cc

u
ra

cy
 

P
re

ci
si

on
@

 

LS
E

 

G
O

E
S

-R
 

C
 

1
0 

km
 

5
 k

m
 

6 
ho

u
rs

 

0
.0

5 

<
67

 D
eg

 

C
le

ar
 

co
n

d
iti

o
n  

0
.0

5 

0
.0

5 

@  pending for approval 



 13

 
The LSE (land surface emissivity) is the relative power of the land surface to emit energy 
by radiation. It is defined as the ratio of the energy radiated by the land surface to energy 
radiated by a blackbody at the same temperature. LSE has a spectral variation from as 
low as 0.6 to 1 depending on the surface materials, soil moisture, vegetation cover and 
surface roughness. 
 
2.2 Instrument characteristics 
 
The next-generation geostationary satellite series will enable many improvements and 
new capabilities for imager-based products. The ABI (Schmit et al. 2005, see Table 2) on 
the next-generation GOES-R will improve upon the current GOES imager with more 
spectral bands, faster imaging, higher spatial resolution, better navigation, and more 
accurate calibration. The ABI expands from five spectral bands on the current GOES 
imagers to a total of 16 spectral bands in the visible (VIS), near-infrared (NIR), and IR 
spectral regions. The coverage rate for full disk scans will increase to at least every 15 
min, and the continental U.S. (CONUS) region will be scanned every 5 min. ABI spatial 
resolution will be 2 km at the sub-point for 10 IR spectral bands, 1 km for select NIR 
bands, and 0.5 km for the 0.64 µm VIS band (Schmit et al. 2005). It is envisioned that 
better LSE product will improve selected ABI products, such as sounding and LST 
products.  
 
Both the current GOES Sounder and Imager have only three IR window channels, which 
are very sensitive to the surface and are useful for LSE retrieval. ABI, on the other hand, 
has 5 window spectral bands (3.9, 8.5, 10.35, 11.2 and 12.3 µm), greatly enhancing the 
ABI’s capability to resolve the LSE spectral variation. Studies have shown that the ABI 
with NWP forecast profiles used as the background, will be able to provide LSE product 
with quality similar as the operational MODIS products, but with much better temporal 
resolution.  
 
Table 2. Channel numbers and approximate central wavelengths for the ABI. 

Channel Number Wavelength (µm) 
Used in LSE retrieval 

Regression Physical 
1 0.47   
2 0.64   
3 0.86   
4 1.38   
5 1.61   
6 2.26   
7 3.9   
8 6.15 �  
9 7.0 �  
10 7.4 �  
11 8.5 � � 
12 9.7 �  
13 10.35 � � 



 14

14 11.2 � � 
15 12.3 � � 
16 13.3 �  

 

3 ALGORITHM DESCRIPTION 
 
This section describes the theoretical basis of ABI LSE algorithm and its implementation 
in Geostationary Cloud Algorithm Test-bed (GEOCAT) using MSG/SEVIRI as proxy. 
 
3.1 Algorithm Overview 
 
The current GOES Sounder and Imager (Menzel and Purdom 1994; Menzel et al. 1998) 
do not provide an operational surface IR emissivity product. However, an emissivity 
product is very important for other products from GOES-R ABI.  Products that require 
emissivity information include, but are not limited to, temperature and moisture retrievals 
(Ma et al., 1999; Li et al., 2008), land surface temperature (Becker and Li, 1990; Wan 
and Dozier, 1996; Yu et al., 2008)), dust and aerosol property retrieval (Zhang et al., 
2006; Li et al., 2007), cloud-top pressure (CTP) product (Menzel et al., 1992; Li et al., 
2001; Li et al., 2005), Outgoing Longwave Radiation (OLR) and trace gas retrieval 
(Clerbaux et al., 2003; Ho et al., 2005).  In addition, global IR surface emissivity is also 
very important for the assimilation of IR radiances in numerical weather prediction 
(NWP) models over land (LeMarshall et al., 2006) and climate modeling and prediction 
(Jin and Liang, 2006).  A global IR surface emissivity product has been developed for the 
Moderate Resolution Imaging Spectroradiometer (MODIS) (Wan and Li, 1997), and has 
been used widely in research (Seemann et al., 2008).  However, the operational MODIS 
product provides IR surface emissivity data at only monthly intervals; furthermore, the 
spectral coverage of the six MODIS IR window bands (3.7, 3.9, 4.0, 8.5, 11.0 and 12.0 
µm) are different from that of ABI IR window bands. A monthly global database 
(Seemann et. al 2008) has been developed based on the MODIS emissivity product and 
hyperspectral IR emissivity measurements from laboratory measurements. For GOES-R 
products, such an emissivity database may lack information on temporal variations. 
Hyperspectral resolution IR sounders onboard the polar orbiting low earth orbit (LEO) 
satellites, such as the Atmospheric Infrared Sounder (AIRS) (Chahine et al., 2006) 
onboard the NASA Earth Observing System (EOS) Aqua, the Interferometer 
Atmospheric Sounding Instrument (IASI) onboard the European Meteorological 
Operational Satellite Programme (METOP-A), the Cross-track Infrared Sounder (CrIS) 
on the NPP/JPSS (joint polar-orbiting satellite system), have the capability for retrieving 
the emissivity spectrum. Recently, an algorithm has been developed for retrieval of 
hyperspectral IR emissivity spectra from global radiance measurements of advanced 
sounders (Li et al. 2007; Zhou et al. 2008) onboard LEO satellites such as Aqua and 
Metop-A (Li and Li 2008).  LEO emissivity may be used for geosynchronous (GEO) 
product since it can be updated routinely and converted to ABI IR bands; however, due to 
the view angle difference between GEO and LEO, and the orbital gaps of LEO, the 
application of LEO emissivity to GEO products has some limitations.     
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Therefore, it is important to develop the emissivity from ABI spectral bands directly so 
that other ABI products (land surface temperature, dust/aerosol, radiation budget, cloud-
top properties, OLR, etc.) have the option to use the ABI emissivity product. The LSE 
algorithm is developed by the GOES-R AWG emissivity team at the Cooperative 
Institute for Meteorological Satellite Studies (CIMSS). It is based on the assumption that 
the LST is temporally variable while the LSE is temporally invariable within a short 
period of time, i.e. a few hours. GOES-R ABI radiances from multiple time steps are 
used to retrieve temporally invariable IR LSE and variable LST. 
 
3.2 Processing outline 
 
The process initialization gives access to three time steps of ABI IR radiances or BTs, 
ABI cloud mask (CM), satellite local zenith angle (LZA) and ancillary data (topographic 
data, land-sea mask, longitude, latitude) for the same location. Only if the pixels or FOR 
of all the three time steps are labelled as clear (in this 80% version, a conservative 
scheme is applied which requires all land pixels within the FOR must be clear; plus all 
pixels within the FOR must be over land) and the satellite zenith angle of all pixels or 
FOR is below the configurable maximum zenith threshold (set as 67 degree, but in 
practice the angle is extended to 80°; results with angle larger than 67° will be marked as 
low quality product in the next version), the LSE retrieval is performed for this FOR.  
 
BTs of all IR channels are read into the LSE algorithm although some of them are not 
used. NWP forecasts are used as background. The ABI IR radiances are used in two 
processes. The first one is regression and the second is physical retrieval. In the 
regression, all IR bands except the 3.9 µm are used in a non-linear regression, which is 
responsible for supplying the first guesses of LSE and LST as well as other ancillary 
information needed to drive the radiative transfer model. Although there are multiple 
methods to determine the first guess, the regressed LST and LSE are used in this 80% 
version. Three regressions at three time steps will generate three LSE outputs and they 
are averaged to represent the mean status of LSE first guess during the observations. The 
NWP products at the current time step are used as additional predictors in the regression 
with BTs obtained from different time steps due to some technical concerns in GEOCAT. 
Ideally, NWP products from the three corresponding time steps should be used instead. 
Although the physical retrieval will be performed only at window channels, which are 
much less sensitive to the atmospheric conditions, this compromise will inevitably 
degrade the quality of retrieval. So the total temporal span should be minimized. 
Currently it is set as 6 hours containing three observations, and the temporal gap between 
two continuous observations is 3 hours. In the physical algorithm, only the four window 
channels are used (Table 2), due to the uncertainty of radiative transfer model for channel 
3.9 µm, emissivity for this channel is not retrieved.  In this version, the algorithm can 
only support SEVIRI as proxy and the following table is just for reference. 
 
The algorithm relies on spectral and spatial information.  The performance of the LSE is 
therefore sensitive to any imagery artifacts or instrument noise. Calibrated measurements 
are also critical because the LSE compares the observed radiances to those calculated 
from a forward radiative transfer model (RTM). The channel specifications are given in 
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the GOES-R MRD. The land-sea mask is also used as input during the processing step on 
land pixels. The software has been designed in a very modular way.  
 
Since GEOCAT cannot process CM information of multiple time steps in a single time 
step and the LSE algorithm requires at least three observations for each channel, it is 
decided to run the retrieval algorithm four times a day at 0000, 0600, 1200 and 1800. For 
each run, two ancillary files containing BT and CM information at 3 and 6 hours ago 
must be prepared in advance. These files are generated by running the cloud mask 
algorithm only. For example, if we want to run the retrieval for 0600, two files containing 
BT and CM data for 0000 and 0300 must be pre-processed separately. Since the BT and 
CM data at 0600 will be stored in the same file containing the retrieval results, we only 
need to run the cloud mask algorithm for 0900 before the retrieval of 1200.  
 
The whole process includes: 
(1)  Pre-processing:  

• Run cloud mask algorithm twice to generate two ancillary files containing 
BT and CM information for the third run, i.e. the LSE retrieval algorithm. 

• Initialization in the third run: reading of processing options from the 
configuration file, reading of all coefficient file names, initialisation of 
RTM, get calibrated ABI IR BTs and associated geographical ancillary 
data to process, read of ABI CM, etc. Read in the regression coefficient 
array for non-linear regression to generate the first guess. 

• Collect clear pixels within the FOR for retrieval. All pixels within the 
FOR must be clear for the three time steps and all pixels within the FOR 
must be on land.  

• Averaging the BTs within the FOR to derive the average BT for 
regression. 

• Take collocated forecast temperature and moisture profiles and other 2-D 
forecast products such as surface air pressure at the third time step as 
ancillary factors for regression, combining with the BTs from three 
different time steps, to generate the atmospheric profiles for three different 
time steps. These profiles will be used as ancillary data in RTM 
calculation. The regressions also generate LST and LSE for the three time 
steps. The LST will be used as first guess in the retrieval. Since the LSE 
are assumed to be unchanged during the past 6 hours, they are averaged as 
first guess in the following physical retrieval. 

• Bias adjustment of ABI BTs. The bias correction coefficients are read 
from the configuration file and BT correction is made. Since we don’t 
have real data for calibration. This step is not yet to be done. In the 80% 
version, the bias adjustment for SEVIRI 7.3- and 13.4-um is hardcoded 
with data from our previous research. 
 

 (2)  Processing: 
• Performing of physical retrieval for LSE and LST in Physical Retrieval 

Module using the first guess.  
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• Checking that the retrieved results are between limits and they have 
physical sense. 
 

(3)  Post-processing: 
• In this version, quality control has not been done. We need more offline 

data to evaluate the algorithm. 
• Writing of output file. 

 
3.3 Algorithm Input 
 
3.3.1     Primary Sensor Data 
 
The list below contains the primary sensor data used by the LSE algorithm. The primary 
sensor data means information that is derived solely from the ABI observations and 
navigation. 
 

• Calibrated BTs (K) for IR bands 7-16 from M x M (where M=3) FOV array, or 
calibrated BTs (K) for IR bands 7-16 from M x M  FOV array for three time steps 

• Sensor’s local zenith angle (LZA) at the center of each M x M  FOV array 
• Latitude at the center of each M x M  FOV array 
• Longitude at the center of each M x M  FOV array 
• ABI channel use index array 
• NeDR (radiance detector noise) array 
• ABI CM for each pixel in the M x M  FOV array (developed by cloud team) for 

three time steps 
 

3.3.2     Ancillary Data 
 
The following lists and briefly describes the ancillary data required to run the LSE 
algorithm.  Ancillary data means information that is not included in the ABI observations 
or navigation data. 
 

• Non-ABI dynamic data 
 

o Surface pressure from 6–18 hour forecast from NWP model for the current 
time step. 

o Surface pressure level index from 6–18 hour forecast from NWP model for 
the current time step. 

o Temperature profile from 6–18 hour forecast from NWP model for the current 
time step. 

o Moisture profile from 6–18 hour forecast from NWP model for the current 
time step. 

 
It is suggested that for CONUS or mesoscale processing, regional NWP output will be 
used, while global NWP data will be used in full disk processing. 
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• Non-ABI static data 
 

o The regression coefficient file.  This coefficient file contains 81 regression 
coefficient datasets. Each coefficient dataset corresponds to one LZA ranging 
from 0 to 80 degrees. The regression coefficient file is an array of 81*110 * 
(3*L+1+9), where L (=101) is the atmospheric pressure levels used in RTM. 
In the 80% version, SEVIRI is proxy so the regression coefficient file is an 
array of 81*108 * (3*L+3+8). 

 
In addition, a clear-sky fast and accurate forward RTM is needed in the iterative physical 
retrieval process. As of this writing, the LSE algorithm relies on the Pressure-Layer Fast 
Algorithm for Atmospheric Transmittances (PFAAST) for the radiative transfer 
calculations, where the profile parameters are represented at a maximum of L prescribed 
pressure levels. PFAAST is based on the line-by-line radiative transfer model (LBLRTM) 
version 8.4 (Clough and Iacono, 1995) and the high-resolution transmission molecular 
absorption database-2000 (HITRAN-2000) (Rothman et al., 1992) with updates 
(aer_hitran_2000_ updat_01.1). In the near future, either the community radiative transfer 
model (cRTM) or Radiative Transfer for TOVS (RTTOV) will be integrated into the 
algorithm to replace PFAAST.  
 
3.4 Theoretical Description 
 
Land surface IR emissivity is a key parameter for many other ABI products as mentioned 
in section 3.1.  Surface IR emissivity varies with land surface type (according to soil type, 
land cover, and land use; Snyder et al. 1998; Peres and DaCamara 2005), viewing angle 
(Francois et al. 1997; McAtee et al. 2003), and time (following changes in the state of the 
vegetation and weather conditions, such as dew formation, rainfall, or snowfall). 
Nevertheless, many numerical weather prediction and climate models still use static maps 
with a limited number of possible emissivity values prescribed per surface type (Jin and 
Liang 2006; Sherlock 1999; Ogawa and Schmugge 2004).  Several methods have been 
proposed for the retrieval of IR emissivity from remote sensing data. The top of 
atmosphere (TOA) radiance is a combination of surface emitted radiance (in itself a result 
of emissivity and surface temperature) and the surface reflection of downward 
atmospheric flux, which are both absorbed and reemitted by the atmosphere, along with 
the upward emitted atmospheric radiation.  Because of this mixing of surface (emissivity 
and temperature) and atmospheric signal, the direct retrieval of emissivity is a very 
difficult problem. Different approaches for solving the direct retrieval of emissivity 
include the temperature–emissivity separation method followed by the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) team (Gillespie et al. 
1999), the two-temperature method (TTM) (Watson 1992; Faysash and Smith 1999; 
Faysash and Smith 2000; Peres and DaCamara 2005), the day/night land surface 
temperature (LST) algorithm applied to MODIS data (Wan and Li 1997), among others 
(Rodger et al. 2005; Morgan 2005).  All of these provide spectral (or channel) emissivity, 
which would have to be converted into broadband values for numerical model 
applications. A different approach called the vegetation cover method (VCM) (Peres and 
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DaCamara 2005; Caselles et al. 1997) consists of the combination of the pixel fraction of 
vegetation cover (FVC) with a lookup table developed for spectral and broadband 
emissivities, and assigned to different vegetation and bare-ground types within a land 
cover classification. The pixel effective emissivity is estimated using information on the 
proportion of vegetation and exposed surfaces. 
 
All the different approaches for the retrieval of thermal IR emissivity over land surfaces 
mentioned above have advantages and drawbacks. The choice of a given methodology 
essentially relies on the sensor characteristics, the required accuracy versus computation 
time, and the availability of (reliable) atmospheric temperature and humidity profiles. 
Two methodologies currently pursued by the Satellite Application Facility on Land 
Surface Analysis (Land SAF, http://landsaf.meteo.pt) (Schmetz et al. 2002; DaCamara 
2006): (1) the Land SAF operational scheme consisting of a version of the VCM applied 
to the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat 
Second Generation (MSG) geostationary satellites and (2) an adaptation of TTM applied 
to SEVIRI split-window channels.   
 
Taking the advantage of high temporal information, the ABI LSE algorithm is based on 
the assumption that the surface IR emissivity is temporally invariable while the surface 
skin temperature is temporally variable within a few hour time periods.  Thus, by using 
ABI window IR radiances from multiple time steps, surface skin temperatures and 
surface IR emissivity can be derived.  Experiments indicate that IR window spectral band 
radiances from three time steps that have large surface skin temperature contrast are best 
for success in the ABI surface properties (i.e., surface emissivity and skin temperature) 
retrieval.  The temperature and moisture profiles from a short range forecast model are 
used for atmospheric correction in the retrieval.   
 
In the version 2.0 algorithm, ABI radiances from three time steps that have 3 hours time 
difference are used to retrieve three skin temperatures and 4 surface IR emissivities (at 
ABI IR window bands).  Therefore, ABI radiances at the current time step (Tcurrent) will 
be used together with that at three hours before (Tcurrent – 3) and six hours before (Tcurrent – 
6) for the surface skin temperature and emissivity retrieval.  In day-2 product, radiances 
from multiple time steps (more than twice) with 6-hour time periods will be used. 
 
The following describes the theoretical basis for the LSE algorithm. A more detailed and 
scientific description of this section can be found in Li et al., (2010). Note the following 
description is written with respect to SEVIRI. 
 
3.4.1 Physics of the Problem  
 
Neglecting scattering by the atmosphere, the true clear spectrum of the IR window 
spectral band radiance exiting the earth-atmosphere system is approximated by the 
radiative transfer equation (RTE) 

R = εB(Ts)τ s − B(T)dτ (0,p)
0

ps

∫ + (1− ε) B(T)dτ * + R'
0

ps

∫ + e
,    (1) 
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where R is the exiting radiance at the top of the atmosphere or SEVIRI IR radiance, ε  is 
the surface emissivity, B(T)  is the Planck function, τ(0, p) is the atmospheric 
transmittance from the top to the atmospheric pressure p, subscript s denotes the surface, 
τ* = τs

2 /τ  is the downwelling transmittance, e is forward model uncertainty and R'  is the 
reflected solar radiation, which is ignored in the longwave IR window region. As shown 
in equation (1), the SEVIRI IR radiance has three major contributions: the surface 
emission, the upwelling atmosphere emission, and the reflection of the downwelling 
atmosphere emission by the surface. 
 
The LSE retrieval problem is to solve the land surface emissivity on the right-hand side 
of equation (1) for the given observations of radiances. Since the LSE is closely coupled 
with LST to govern the surface emission, the retrieval of LSE must be performed 
simultaneously with the retrieval of LST. The atmosphere correction is also necessary 
because of its substantial contribution to the total radiance for the window channels. 
 
3.4.2 Mathematical Description 
 
3.4.2.1     Radiative transfer equation linearization 
 
Since the inverse problem is non-linear and ill-posed, there are no analytical solutions for 
the LSE retrieval problem, and regularization is needed. Usually, the first step is to 
linearize the RTE. Neglecting impacts from ozone and other trace gases, equation (1) 
could be linearized to the first order as  
δR = KTs

δTs + Kε δεν + KTδT∑ + KQδ lnQ∑ + e
      (2) 

where δR is the radiance perturbation, which is the difference between the observation 
and the radiative transfer calculation from the first guess, K is the weighting function, 

defined as 
Kx =

∂R

∂x , where x is the variable to be retrieved. It shows the sensitivity of 
the radiance at the top of the atmosphere (TOA) with respect to the change in the variable 

x. ∑  is the sum over different atmospheric layers. Notice the logarithm of the mixing 
ratio is used instead of the mixing ratio because it has a better linear relationship with the 
radiance. e in equation (2) contains both forward model uncertainty and observation 
noise. Equation (2) shows that the radiance perturbation has three components: the LST, 
the LSE, and the atmosphere (including the temperature and the moisture profiles). Any 
perturbation in these components results in departure of the calculated radiances from the 
observed ones.  
 
Figure 1 shows the examination of the first-order linearization approximation using the 
matchup database. In each panel, only one variable is allowed to have any perturbation 
(radiative transfer calculation using the first guess instead of the true state), meaning that 
the radiance perturbation is only caused by that variable. The x-axis represents the 
calculation from the right-hand side of equation (2), and the y-axis represents the 
calculation from the left-hand side of equation (2). A perfect linearization approximation 
would see these two exactly the same.  
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Figure 1. Evaluation of first-order linearization of the radiative equation for SEVIRI 
channels 7 (8.7 µm), 9 (10.8 µm) and 10 (12 µm) for: a) the land surface temperature, b) 
the surface emissivity, c) the temperature profile, and d) the moisture profile. The x-axis 
represents the actual Tb differences as observation minus the calculation and the y-axis 
represents the Tb difference calculated using a first-order linearization approximation. 
For each panel, only the variable in that panel was perturbed. 
 
All three channels show larger than 0.99 correlation coefficients (R) for LST, LSE and 
temperature profiles (Figure 1 a, b and c), indicating strong linear relationships. Together 
with the small STD and bias, it is clear that that radiative transfer equation could be 
linearized using a first-order linearization approximation with respect to LST, LSE and 
the temperature profiles. Notice that the large STD of the LSE (0.835 K) at 8.7 µm comes 
from large perturbations of the 8.7 µm LSE first guess.  
 
However, for the moisture profiles in Figure 1 (d), the first-order linear approximation is 
not good enough. All three channels have correlation coefficients less than 0.86, and the 
STDs are larger than 0.28 K, indicating that the first order linear approximation is 
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insufficient. In fact, better agreements could be reached if a second order expansion for 
moisture is included (not shown). However, the second order expansion only increases 
the complexity of equation (2), which makes it more difficult to solve.  
 
3.4.2.2     Atmospheric correction  
 
It is difficult to solve equation (2) with only three window channels. The linearization 
approximation analysis above shows more complexity with the atmospheric profiles, 
especially the moisture profiles. It is therefore necessary to simplify equation (2) without 
introducing significant errors, especially with regard to the atmospheric terms. A 
simplified equation (2) not only makes it easier to solve for LSE and LST, but also with 
better retrieval precision.  
 
The simplest way to simplify Equation (2) is to remove the atmospheric contributions (# 
3 and 4 terms on the right hand). This removal is equivalent to assuming that the 
atmospheric states are known and the first guesses of the atmospheric profiles perfectly 
represent the true state. The first guesses can be either NWP forecast profiles, satellite 
retrievals or even a climatological background. 
 
In the ABI/SEVIR LSE algorithm, a more advanced atmospheric correction method is 
utilized; one single variable is used to represent the atmospheric contribution 

δT KT = KTδT∑ + KQδ lnQ∑∑  ,          (3) 
where δT  is a combination of temperature and moisture error profiles. For each channel, 
the radiance deviation caused by errors in the atmospheric profiles can be expressed as 
δTb = δT KT∑ .            (4) 

Let 
ˆ K T = KT∑ , the new linearized equation is 

δR = KTs
δTs + Kε δεν + ˆ K TδT + e.         (5) 

This is the equation used to solve LSE and LST along withδT .  
 
3.4.2.3     Time continuity  
 
For a general case, supposing there are N channels, there are N+2 unknowns in Equation 
(5): 1 LST, N LSE and 1δT . For a single time, the number of unknowns (N+2) is always 
larger than the number of equations (N). Therefore equation (5) is under-determined. As 
a result, it will be difficult to achieve good retrieval precision.  
 
Taking advantage of the high temporal information, the SEVIRI LSE algorithm is based 
on the assumption that the IR LSE is temporally invariable while LST is temporally 
variable within a short period of time. Let M be the number of time steps. The total 
number of equations is M × N. And the number of unknowns is N + 2M (each time step 
has one LST and oneδT ). For better retrieval precisions, it is better that the number of 
equations is equal or larger than the number of unknowns, or  
M × N ≥ N + 2M  .          (6) 
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In this study, the number of channels is N=3. The solution of Equation (6) is M ≥ 3; in 
other words at least three time steps are needed.  
 
The selection of the number of time steps and the time interval between two consecutive 
time steps is critical. Three factors are considered: the assumption of time continuity, the 
contrast among different time steps, and cloud contamination. The time span from the 
first to the last time step cannot be too large, otherwise the assumption of invariable LSE 
is violated, and the chance for all three observations to be clear is reduced. For better 
retrieval precision, it is important that there are substantial contrasts between different 
time steps. Therefore, the time distance between consecutive steps cannot be too small. 
Experiments with actual SEVIRI observations indicate three time steps with a time range 
of 3 hours are adequate. Therefore, SEVIRI radiances at the current time step (T0) will be 
used together with those at three hours before (T0 – 3) and six hours before (T0 - 6) for the 
LSE and LST retrieval. 
 
3.4.2.4     The inverse algorithm  
 
For three time steps and three channels, there are 9 equations and 9 unknowns. Let  
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Here, the number in superscript denotes the time step, and the number in subscript 
denotes the channel index. 
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Equation (5) can be written as 
δY = KδX + e .            (7) 
Here, K is the linear or tangent model of the forward radiative transfer model. It is also 
called a Jacobian matrix or k-matrix. A simple least square method gives an iterative 
solution to Equation (7) 
δXn +1 = (K n

' E−1K n )−1K n
' E−1(δYn + K nδXn )  ,      (8) 

where δXn = Xn − X0, δYn = Ym − Y(X n ) , K n is the Jacobian matrix in the nth iteration, 
E is the observation error covariance matrix which includes instrument noise and 

forward model uncertainty. Xn is the vector of the parameters to be retrieved, X0 is the 
initial state or the first guess, Ym  is the vector of the observed radiances used in the 

retrieval process, and Y(X n )  is the calculated  radiances based on the atmospheric and 

surface state of Xn. For the given first guesses and the satellite observations, the 

parameters can be retrieved using Equation (8), if the matrix K n
' E−1K n  is invertible.  

 
However, one might find no solution or the solutions may not be realistic because the 

matrix K n
' E−1K n  is singular or near singular, in which the iteration will be unstable. Any 

noise in δYn  will be greatly amplified, and the retrieval will be unrealistic. Therefore, an 
optimal estimate method is needed to solve equation (7). A general form of the 
variational solution is to minimize the following cost function (Rodgers 1976; Li et al., 
2000) 
J(X) = [Y m − Y(X)] 'E−1 [Y m − Y(X)] + [X − X0]

'H[X − X0]  ,    (9) 
where H is the a priori matrix which constrains the solution, and it can be the inverse of 
the a priori first guess error covariance matrix or another type of matrix. By applying the 
following Newtonian iteration 
Xn +1 = Xn + J''(Xn )−1 • J'(Xn )  ,          (10) 
the following quasi-nonlinear iterative form is obtained 
δXn +1 = (K n

' E−1K n + H) −1K n
' E−1(δYn + K nδXn )  .     (11) 

 
Compared with the least square method solution in Equation (8), the only difference is 
that Equation (11) has one extra term H . Physically, this term provides background 
information, so that the adjustment of the retrieval parameters is made accordingly in the 
iterations. Mathematically, this term adds extra positive values along the diagonal 

direction of matrixK n
' E−1K n , decreasing the singularity of it and making the inverse 

(K n
' E−1K n )−1

 possible and stable. 
 

 (a) The first guess (X0) 
 
For non-linear ill-posed inverse problems, the quality of the first guess is critical for the 
retrieval precision. In the simulation study, the 6-hour forecast fields provided by the 
NCEP (National Centers for Environmental Prediction) GFS at half a degree are used as 
the temperature and moisture profile first guesses. Each profile is interpolated both in 
space and time to fit the time and location of the actual satellite observation. The LSE 
and LST first guesses are randomly generated as described in section 2. When applied to 
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real data, the LST first guess can be from a regression retrieval using a satellite 
observation or NWP forecast, while the LSE first guess can be from a regression retrieval 
using satellite observations or a pre-determined database. In the case of the regression, 
the averaged emissivities from multiple time steps are used.   
 
(b) The first guess error covariance matrix 
 
The first guess error covariance matrix must be consistent with the first guesses. There is 
no universal covariance matrix suitable for all first guesses. Ideally, the inverse of the 
first guess error covariance matrix is obtained by inverting the first guess error 
covariance matrix. Since the first guesses of LSE and LST are randomly generated, the 
correlative errors are small and negligible, which indicates the off-diagonal elements of 
the inverse of the error covariance matrix could be set as zero. The diagonal elements are 
calculated with an LST error of 10 K and LSE error of 10%, 2% and 2% for the three 
channels, and δT  error of 1 K.  Therefore the H matrix is defined as follows: 

H =

0.01

0.01 0

0.01

100

2500

2500

1

0 1

1

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
   .     (12) 

In the matrix, the 0.01 is derived by 1/(10 * 10), while 100 is derived by 1/(0.1*0.1). 
 
(c) The observation error covariance matrix 
 
Normally, matrix E includes two components: the observation noise and the radiative 
transfer model uncertainty. The observation noise is estimated based on the instrument’s 
characteristics. It is typically less than 0.15 K for the three window channels. The 
forward model uncertainty is estimated from the inter-comparison of different radiative 
transfer models. The uncertainty is assumed to be 0.2 K for the three window channels. 
Similar to the inverse of the background error covariance matrix, matrix E is a diagonal 
matrix. This is equivalent to assuming that there are no correlative errors among the 
observed radiances and the forward model uncertainties. Matrix E takes the form 
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where ei, j  is the combined error from the observation noise and the forward model 
uncertainty for the ith channel at the j th time step.   
 
(d) Jacobian matrix  
 

The Jacobian matrix or k-matrix K n  (the subscript n denotes the nth iteration in the 
physical retrieval procedure) describes the change of the radiance at the top of the 
atmosphere (TOA) with respect to the change in the parameters to be retrieved. It can be 
calculated by a differential scheme or analytical method (Li et al., 2000). In this study, 
the latter method is used for computational efficiency.   
  
(e) Convergence control 
 
In each iteration, a convergence test is performed based on the increment from the last 
iteration. Define the mean increment  

dX = δX n+1
i

i =1

m

∑ /m ,          (14) 

where δX n+1
i  is the increment in nth iteration for the ith unknown variable, and m is the 

number of unknowns. If  dX  is larger than a given threshold, the iteration continues until 
the maximum number of iteration is reached. 
 
3.4.3 Algorithm Output 
 
The output of the algorithm for each FOR includes: 
 

(1)  LSE products in the four window channels (8.5, 10.35, 11.2 and 12.3 µm) for 
ABI. For SEVIRI, LSE products in three window channels (8.7, 10.8 and 12 µm). 
Note these LSE products are valid for all the time steps used in the retrieval. The 
default time steps are three with a time difference of 3 hours.  
(2)  A by-pass product of LST for all the time steps.  

 
Quality flags (not available for the 80% version delivery): 
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(3)  General Quality Flag: including some general information of each pixel such as 
space background, latitude range, zenith angle range, missing NWP data, or number 
of clear pixel, and etc. Please see Table A1 for the detail.  
(4) Retrieval Quality Flags: non-convergent iterations, large residual, bad or 
missing radiance data, etc. The definition of the value assigned to each condition is 
listed in Tab A2.  
(5)  Surface Sensitivity Quality Flags: the radiance must show enough sensitivity to 
the LST and LSE. Our study shows that the LST weighting function of 12 micron 
must be larger than 0.3 in order for good retrieval. The definition of each value 
assigned can also be retrieved from Table A1. 

 
Diagnostic/intermediate information: 

(6)  Number of clear sky pixels in the FOR. 
(7)  Number of iteration for each retrieval. 
(8)  Residuals of average BT between observation and calculation after retrieval. 
Land/Ocean flag. Please see Table A2 for details. 

 
Metadata: 
 Please refer to Table A3 for the metadata. 
 

4 Test Data Sets and Outputs 
 
Since the GOES-R is not launched yet, the ABI LSE algorithm is tested using SEVIRI 
data. The algorithm is tested using both simulated and observed SEVIRI radiances. More 
results will be shown later in the 100 % ATBD using simulated ABI radiances. 
  
4.1 Input Data Sets 
 
4.1.1 The observed SEVIRI radiances as proxy dataset 
 
SEVIRI is a 12-channel imager onboard the Meteosat Second Generation (MSG) 
(Meteosat 8 and 9). It observes the full disk of the Earth every 15 minutes (Schmetz et al., 
2002). Among the 12 SEVIRI channels in Table 3, only the three window channels in 
thermal IR (TIR) (8.7, 10.8 and 12 µm) are tested. The water vapor (6.2 and 7.3 µm), 
CO2 (13.4 µm) and ozone (9.7 µm) channels are not sensitive enough to the surface for 
LSE and LST retrieval. The 3.9 µm channel is excluded due to the difficulty with the 
radiative transfer calculation from the Sun in the daytime. More information on the 
SEVIRI can be found in Schmid et al. (2000), Schumann et al. (2002), Aminou et al. 
(2003), and Schmetz et al. (2002). The algorithm was applied to the SEVIRI observation 
from August 2006.  
 
Table 3. Spectral channel characteristics of SEVIRI in terms of central, minimum and 
maximum wavelength of the channels and the main application areas of each channel. 
The three channels in bold are used for LSE retrieval.  
 
Channel Spectral Characteristics of  Spectral Main observational application 
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No. Band (µm) Band (µm) 
  λcen λmin λmax  
1 VIS0.6 0.635 0.56 0.71 Surface, clouds, wind fields  
2 VIS0.8 0.81 0.74 0.88 Surface, clouds, wind fields 
3 NIR1.6 1.64 1.50 1.78 Surface, cloud phase 
4 IR3.9 3.90 3.48 4.36 Surface, clouds, wind fields 

5 WV6.2 6.25 5.35 7.15 
Water vapor, high level clouds, 
atmospheric instability 

6 WV7.3 7.35 6.85 7.85 Water vapor, atmospheric instability 

7 IR8.7 8.70 8.30 9.1 
Surface, clouds, atmospheric 
instability 

8 IR9.7 9.66 9.38 9.94 Ozone 

9 IR10.8 10.80 9.80 11.80 Surface, clouds, wind fields, 
atmospheric instability 

10 IR12.0 12.00 11.00 13.00 Surface, clouds, atmospheric 
instability 

11 IR13.4 13.40 12.40 14.40 
Cirrus cloud height, atmospheric 
instability 

12 HRV Broadband (about 0.4 – 1.1 µm) Surface, clouds 
 
4.1.2 The simulated SEVIRI radiances 
 
A simulation study using simulated SEVIRI radiances was conducted to help develop, 
test, diagnosis and improve the algorithm. A match-up dataset (Li et al., 2009, 2010) is 
used to generate the simulation dataset. This dataset includes: 
 

• The temperature and moisture profiles from radiosonde observations (RAOB) 
from the U.S. Department of Energy Atmospheric Radiation Measurement 
(ARM) Program at the Southern Great Plains (SGP) site (Miloshevich et al., 
2006) at Lamont, OK (C1, 36°37’N, 97°30’W),  

 
• The GFS 6-hour forecast,  

 
• The laboratory-measured LSE spectrum from the MODIS emissivity library 

(http://www.icess.ucsb.edu/modis/EMIS/html/em.html) and the ASTER spectral 
library (Salisbury et al., 1994),  

 
• And the LST measured by the infrared radiometer at the ARM site (Morris et al., 

2006).  
 
The time coverage is from August 2006 to August 2009. The sample size for clear skies 
is 1718. 
 
The ARM RAOBs are preferred to the conventional RAOB because they are more 
frequent (4 times a day), and have better overall quality (Turner et al., 2003; Li et al., 
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2009). The sampling rate is 2 s through the flight. For each sample output, details about 
time in seconds and a quality flag are provided.  
 
The simulated SEVIRI radiances are calculated using the Pressure-Layer Fast Algorithm 
for Atmospheric Transmittance (PFAAST) models (Hannon et al., 1996) with the RAOB 
profiles, the measured LST and the laboratory-measured LSE.  
 
The first guesses of LST and the surface emissivities are generated using 
xg = xt + E δxt( )         (15) 
where  xg is the first guess, xt is the true parameter, and E(δxt) is a random number with a 
bias of 0 and a standard deviation (STD) of δxt (10 K for LST; 0.1, 0.02 and 0.02 for 
emissivities of 8.7, 11 and 12 µm, respectively). The first guesses of LSE are restrained 
within [0.5 0.99], [0.85 0.99] and [0.9 0.99] for the three channels, respectively. The GFS 
forecast is used as the first guess for the atmospheric profiles. 
 
4.2 Output from LSE algorithm 
 
The primary output from the LSE algorithm is the LSE in three SEVIRI window channels 
(8.7, 10.8 and 12 µm). These retrieved LSEs are valid for all the given time steps. A 
bypass product of LST is also returned, for each time step. Figure 2 shows the scatter 
plots of the three LSE and LST, along with the statistics for the LZA of 0 degree from the 
simulation study. Note that the noise is added to each channel based on the instrument 
characteristics and forward model uncertainty. For all four variables, the physical 
retrieval algorithm successfully brings them closer to the true values. In particular, for 
LST and LSE at 8.7 µm, the retrievals are significantly better than the first guesses; the 
root-mean-square (RMS) error for LST is reduced from 10 K to 1.04 K; and the RMS of 
the 8.7 µm LSE is reduced from 0.087 to 0.018. For the 10.8 and 12 µm LSE, the 
algorithm is also able to improve the first guesses; the RMS is reduced from 0.018 to less 
than 0.015. However, the improvements are less significant compared with LST and LSE 
at 8.7 µm.  
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Figure 2. The scatter plots of the retrieval parameters against the true values for a) LST, 
b) 8.7 µm LSE, c) 10.8 µm LSE and d) 12 µm LSE. The x-axis represents the true values, 
and the y-axis represents the retrieved values.  
 
The goal of this study is to develop an algorithm that is less sensitive to: the first guess, 
the local zenith angle (LZA), radiance noise and radiance bias. It is known that the 
inverse problem in this study is an ill-posed nonlinear problem, which means the retrieval 
will be dependent on the quality of the first guesses and observation noise, which in this 
study include instrument noise and the forward model uncertainty. Figure 3 shows how 
the quality of the first guess affects the retrieval of LSE and LST. In each panel, only one 
first guess is allowed to have a different precision. From Figure 3 (a), the retrieval 
precisions of all four parameters are not affected much by the accuracy of the LST first 
guess. When the precision of the LST first guess is degraded from 2 K to 10 K, the 
retrieval precisions for the four parameters are increased by less than 0.01 K, 0.0002, 
0.0002, and 0.0002. This result indicates the quality of the LST first guess is not 
important for the retrieval. Figure 3 (b) shows that the precision of the first guess of the 
8.7 µm LSE is not important either. The retrieval precisions for the four parameters are 
also very weakly affected when the precision of the first guess of the 8.7 µm LSE is 
increased from 0.02 to 0.1. On the contrary, Figure 3 (c) and 3 (d) show that the retrieval 
precisions for all four variables are highly affected by the quality of the first guesses of 
10.8 and 12 µm LSE. When the precision of the first guess of the 10.8 µm LSE is 
increased from 0.005 to 0.04, the retrieval precisions are degraded greatly. In particular, 
for LST the retrieval precision is degraded from 0.96 K to 1.46 K. For the 8.7 µm LSE, 
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the retrieval precision is also greatly degraded from 0.017 to 0.026. Finally, the 10.8 µm 
LSE is degraded the most among the three channels; the precision change is 0.013. 
Comparing Figure 3 (c) and 3(d), the retrieval is slightly less affected by the 12 µm LSE 
than the 10.8 µm LSE because the 12 µm is more affected by water vapor absorption than 
the 10.8 µm. The weighting functions of LST and LSE are typically smaller than those 
for the 10.8 µm, resulting in less sensitivity to the accuracy of the first guess of the 12 µm 
LSE. 
 

 
 
Figure 3. The impacts of the first guesses on the physical retrieval from a) LST, b) 8.7 
µm LSE, c) 10.8 µm LSE and d) 12.0 µm LSE. The x-axis represents the RMSE of the 
first guess. Blue solid lines represent the LST retrieval RMS (the left coordinate). Green, 
red and cyan dotted lines represent retrieval RMS for 8.7, 10.8 and 12 µm LSE (the right 
coordinate). 
 
The previous results show that the quality of the first guess is extremely important for the 
10.8 and 12 µm LSE, and much less important for the 8.7 µm LSE and LST. These three 
channels are all in TIR window region, and they are all sensitive to the surface. The 
question is why the quality of the 10.8 and 12 µm LSE first guesses affect the retrieval 
much more than that of the 8.7 µm LSE? As shown in Li et al., (2010), the physical 
reason for the simultaneous use of 10.8 and 12 µm posing more first guess dependency 
than others is that these two channels observe the surface in a more similar manner than 
any other two channel combination. As a result, there is more “correlation” between the 
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two channels than between any other two channels. This makes it difficult to retrieve the 
two LSE with high accuracy simultaneously. 
 

 
Figure 4. The retrieval accuracy (mean bias error) and precision (STD of error) of a) 
LST, b) 8.7 µm LSE, c) 10.8 µm  LSE and d) 12 µm  LSE change with the local zenith 
angle. The solid lines represent the precision, and the dotted lines represent the accuracy. 
The blue lines represent the first guesses, and the green lines represent the retrievals.  
 
It is understandable that the retrieval precision is sensitive to the LZA. Usually, as the 
LZA increases, the retrieval precision decreases. However, it is important that the 
algorithm works in a wide range of LZAs. Figure 4 shows how the LZA affects the 
retrieval precision and accuracy. At all LZAs from 0 to 84 degrees, the algorithm is able 
to improve the first guesses, especially when the LZA is less than 60 degrees. When the 
LZA is larger than 60 degrees, the precision of LST and LSE at 8.7 µm is degraded 
quickly and significantly. It is interesting that the precision of LSE at 10.8 and 12 µm is 
only weakly affected by the increased LZA. This is because fewer constraints are posed 
on the LST and 8.7 µm LSE in the inverse of the first guess error covariance matrix in 
Equation (12). As the LZA increases, the channel’s sensitivity to the surface decreases. 
The retrieval becomes more sensitive to the errors in the first guesses and the satellite 
observations. Retrieval variables with fewer constraints suffer more than variables with 
strong constraints.  
 
From Figure 4, a cut-off LZA of 67 degrees is recommended; any retrieval with an LZA 
larger than the cut-off value is considered unreliable. The cut-off of 67 degrees is 
conservatively chosen for two additional concerns: 1) at large LZAs, the cloud 
contamination becomes more dominant, as the cloud optical thickness are substantially 
increased seen by the satellite; and 2) the radiative transfer calculation at large LZAs 
appears to have worse accuracy and precision. 
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Figure 5. The LST retrieval precision as a function of local zenith angle and 12 µm LST 
weighting function. 
 
The retrieval with a large LZA has less precision because the weighting functions of LST 
and LSE statistically decrease with increased LZA. However, even with a large LZA, if 
the weighting functions are large enough, the retrievals may still be accurate, if there is 
no cloud contamination and the radiative transfer calculation is reliable (e.g., trained to 
these angles). Similarly, at low LZA, if the weighting functions are small, the retrievals 
might be not accurate. Figure 5 shows the retrieval precision of LST as a function of the 
12 µm LST weighting function and LZA. The color of each pixel represents the averaged 
LST retrieval precisions (note the color bar is not linear). The blank pixels are either no 
retrievals, or the number of retrievals is too small to have statistical meaning. The LST 
retrieval precisions are better if the 12 µm LST weighting functions are large, regardless 
of LZA. On the contrary, if the 12 µm LST weighting function is small, the retrieval 
precisions are worse, no matter how large the LZA is. Clearly, the LST retrieval precision 
has a better linear relationship with the 12 µm LST weighting function than the LZA. 
There are two situations in which the 12 µm LST weighting functions are small: 1) the 
large LZA lowers the 12 µm LST weighting function, and 2) the excessive moisture in 
the atmosphere greatly attenuates the surface IR emission, reducing the 12 µm LST 
weighting function. In both situations, the retrieval will have a low precision.  
 

It is critical that the algorithm is not sensitive to the noise in δYn , including the 
observation noise and the forward model uncertainty. The observation noise can be 
estimated from the instrument characteristics, and the forward model uncertainty is 0.2 K 
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for all three channels. Figure 6 shows how the noise affects the retrievals. Three different 
levels of noise are added: half (0.5σ+0.1), normal  (1.0σ+0.2) and double  (2.0σ+0.4). σ 
denotes the instrument noise. The retrieval precision is only weakly affected by the noise. 
As the noise increases, the retrieval precisions decrease, but very slowly. When the noise 
is doubled from half to normal, the changes in retrieval precisions for all four variables 
are very small. When the noise is doubled from normal to double, the changes are more 
visible, but still very small. The average LST precision decrease is 0.1 K. And the LSE 
precision decrease is 0.002, 0.001 and 0.001 for the three channels. These small changes 
indicate the physical algorithm is only weakly sensitive to the noise. Not shown here is 
that the retrieval accuracy is not affected by the noise. 
 

 
Figure 6. The LST and LSE retrieval precisions affected by noise, including instrumental 
noise and forward model uncertainty. The left y-axis is for LST, and the right y-axis is for 
LSE. The blue bars represent half of the noise, the light green color represents normal 
noise, and the brown bars represent double the noise. The retrieval accuracy is not shown 
because it is not affected by the noise. σ denotes the instrumental noise.  
 
When applied to real data, the radiance bias is another factor that needs to be addressed. 
The radiance bias may come from satellite observations due to calibration, dust and cloud 
contamination, or from the radiative transfer model’s failure to accurately simulate water 
vapor absorption. Dust contamination is a severe problem when applying the method 
over Africa. Figure 7 shows how the retrievals are affected by the radiance biases. The 
control run (light green) does not have any radiance biases. Two experimental runs are 
conducted. In the first one, a radiance bias of -1 K is added to the 8.7 µm Tb to simulate 
dust contamination. And in the second experiment, a radiance bias of 0.5 K is added to 
the 12 µm Tb to simulate RT model bias. From Figure 7, the radiance bias in 8.7 µm has 
little impact on the retrieval of the LST and LSE at 10.8 and 12 µm; the accuracies do not 
change much from the light green to the blue bars. But it greatly decreases the LSE 
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accuracy of 8.7 µm from 0.005 to -0.028. In contrast, the radiance bias in 12 µm affects 
all four variables; the LST is changed by +0.32 K, and LSE is changed by -0.008, -0.007 
and 0.008 for the three channels. These changes indicate the physical algorithm is only 
partially affected by the radiance biases.  
 

 
Figure 7. The LST and LSE retrieval accuracy affected by radiance biases. The left y-axis 
is for LST, and the right y-axis is for LSE. The blue bars represent -1 K for the 8.7 µm 
radiance bias due to dust contamination. The light green color represents the control run, 
which has no radiance bias. The brown bars represent +0.5 K for the 12 µm radiance bias 
from the radiative transfer calculation. The retrieval precision is not shown because it is 
not affected by the radiance biases.  
 
The SEVIR LSE algorithm is applied to real SEVIRI observations from August 2006. 
Since there are no enough LSE measurements, no validation has been conducted to 
quantify the LSE retrieval accuracy and precision. The LSE retrievals have been inter-
compared with other LSE products. Figure 8 shows the retrieved SEVIRI LSE imagery 
for 8.7 µm, along with monthly LSE imagery from IASI, AIRS and MODIS/Aqua. The 
visual comparison shows that the SEVIRI LSE retrievals have a lot similarity to the 
operational MODIS/Aqua monthly LSE product, especially geographical distribution. 
Both the SEVIRI and MODIS/Aqua have much better spatial resolution than the IASI 
(0.5 degree) and operational AIRS (1 degree) monthly LSE product.  
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Figure 8. (Top left) the retrieved SEVIRI LSE from August 1 2006 for 8.7 µm, (top right) 
IASI monthly LSE product for 8.7 µm from August 2007 (after convolved using SEVIRI 
spectral response function), (lower left) operational AIRS monthly LSE product for 8.7 
µm from August 2006, and (lower right) operational MODIS/Aqua LSE product for 8.55 
µm (collection 4.1) from August 2007. The blank areas are either cloudy or no data.  
 

 
Figure 9. The scatter plots of 8.7 µm LSE products for (left) SEVIRI, (middle) 
operational monthly AIRS, and (right) IASI using MODIS/Aqua operational monthly 
LSE product as reference. The SEVIRI product agrees with MODIS/Aqua product better 
than both AIRS and IASI.   
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Figure 10. Same as Figure 8 except for 10.8 µm. 
 

 
Figure 11. Same as Figure 9 except for 10.8 µm. 
 
According to Li et al., 2010, the operational MODIS/Aqua monthly LSE product has 
better precisions than both IASI and AIRS. It is used as reference to evaluate the SEVIRI 
LSE product. Figure 9 shows the scatter plots of the 8.7 µm LSE using MODIS/Aqua 
operational monthly LSE product (collection 4.1) as reference. Compared with 
operational AIRS and IASI monthly LSE products, the SEVIRI LSE product has smaller 
STD (0.0388) and bias (-0.000878), indicating the SEVIRI LSE product has more 
similarity to the MODIS/Aqua product than AIRS and IASI.  
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Figure 12. Same as Figure 8 except for 12 µm. 
 

 
Figure 13. Same as Figure 9 except for 12 µm. 
 
Figures 10 and 12 show the LSE product imagery for 10.8 and 12 µm. Figures 11 and 13 
show the scatter plots using MODIS/Aqua as reference for 10.8 and 12 µm. For both 10.8 
and 12 µm, the SEVIRI LSE products agree with MODIS/Aqua operational monthly LSE 
products better than AIRS and IASI.  
 



 

Figure 14. The SEVIRI LST products (left) compared with the ECMWF analysis (right) 
for three time steps: 6 (upper), 12 (middle) and 18 (lower) UTC on August 1 2006.
SEVIRI LSE product better agrees with the actual heating pattern (from east to west). 
 
An indirect way to qualitatively evaluate SEVIRI LSE product is to compare the by
product of LST retrieved by the SEVIRI LSE algorithm. Since the LSE and LST are 
simultaneously retrieved from the SEVIRI LSE algorithm, it is expected that the LST 
product has reasonable value if the LSE i
series of the SEVIRI LST compared with ECMWF analysis over north Africa. In the 
morning at 6 UTC, the Sun arises from the east, and the SEVIRI LST product 
successfully reveals that the surface temperature gradient is from the west (low LST) to 
the east (high LST). The ECMWF analysis, on the other hand, fails to capture that 
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gradient. At 12 UTC, the Sun is directly overhead. Both the ECMWF and SEVIRI LST 
show that the heating is all over the place, and the surface temperature gradient is not that 
much, although the latter shows much better spatial resolution than the former. In the late 
afternoon at 18 UTC, the Sun moves to the far west. The SEVIRI LST successfully 
shows the surface temperature gradient is from the east (low LST) to the west (high 
LST). Again, the ECMWF analysis fails to capture the gradient.  
 
Without LSE measurements, it is difficult to validate the SEVIRI LSE product. 
According to Li et al. (2010), the LSE precision can be objectively derived using satellite 
observations. This will be included in the 100 % ATBD.  
 
4.2.1 Precision and Accuracy Estimate 
 
The SEVIRI LSE product has not been validated due to the lack of LSE measurements. 
However, the simulation study with various sensitivity tests shows that the algorithm is 
stable and efficient. It is expected that the retrieval accuracy and precision are less than 
0.03 for the LZA less than 67 degree. Both meet the requirement of 0.05. An objective 
method, recently developed by Li et al., 2010, will be used to evaluate the LSE precision.  
 
4.2.2 Error Budget 
 
Sensitivity studies were conducted to test the algorithm’s sensitivity on the first guess, the 
local zenith angle, the radiance noise and the radiance biases. The simulation study shows 
that  
 
The algorithm is effective at bringing the LST and LSE at 8.7 µm to the true state, no 
matter how good the first guesses are.  
 
The algorithm is also able to improve the LSE at 10.8 and 12 µm, although it is more 
dependent on the quality of the first guesses.  
 
It is found that the retrieval is less sensitive to LZA, but more sensitive to the value of the 
weighting functions of LSE and LST. As long as the weighting functions are large 
enough (large sensitivity), the retrieval precisions are good. However, when applying to 
real data, the retrieval might not be as good as in the simulation when the LZA is large as 
there might have more radiative transfer uncertainty and cloud contamination in the large 
LZA. An LZA cut-off of 67 degrees is recommended from the study.  
 
The algorithm is found to be weakly sensitive to the observational random noise, 
including the observation noise and the forward model uncertainty, while the retrieval is 
partially sensitive to the radiance biases. The radiance bias in the 8.7 µm from dust 
contamination only affects the retrieval of the 8.7 µm LSE, while the radiance bias in the 
12 µm from the radiative transfer calculation affects the retrieval of LST and all the LSE. 
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5 PRACTICAL CONSIDERATIONS 
 
5.1 Numerical Computation Considerations 
 
Both the regression and the physical iterative procedure are mathematically 
straightforward. The requirement of the computation is not high since there are only 9 
variables and 9 equations (for SEVIRI). Besides, the algorithm only runs four times 
(every 6 hours) a day.  
 
5.2 Programming and procedural Considerations 
 
The LSE algorithm requires knowledge of clear mask and NWP forecast information 
within each FOR. The LSE is implemented sequentially (pre-process, regression followed 
by iterative physical approach). The LSE is purely a FOR by FOR algorithm. Then it 
could be parallelized in future version for processing with several CPU. The only task 
that is not made inside LSE code is spatial interpolation of NWP before retrieval process 
upon the arrival of new NWP data to avoid repeat the process every slot.  
 
5.3 Quality Assessment and Diagnostics  
 
Currently, there is no quality assessment to provide any quality flag of the LSE retrieval. 
Both the simulation and the application to the observed SEVIRI show that LSE retrievals 
are reasonable except that some FORs have LSE slightly larger than 1.0 for 12 µm. In the 
100 % ATBD, the following procedures will be implemented to diagnose the 
performance of the LSE. 

• Derive BT residuals between observations and calculations with forecast and 
retrieval. 

• The absolute value of LSE should be reasonably less than 1.0. 
• The temporal variation of LSE should be small in the surface condition is not 

changed dramatically. 
• The LSE retrieval precision is usually not good when the LST and LSE weighting 

functions of 12 µm are small.  
 
5.4 Exception Handling 
Algorithm cannot be run if any of the mandatory IR channels data, ABI CM and NWP 
forecast is bad or missing. It is required that all of the 3 by 3 FOVs are in clear sky and 
over land.  
 
5.5 Algorithm Validation 
 
5.5.1 Pre-launch Validations 
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The application to both the simulated and the observed SEVIRI radiances shows that the 
LSE algorithm is effective and efficient. The simulation study shows that the algorithm is 
particularly effective on retrieving LSE of 8.7 µm and LST, despite of the quality of the 
first guesses of these two. The algorithm is also effective on retrieving LSE of 10.8 and 
12 µm although more dependent on the quality of the first guesses of these two. The 
inter-comparison to the MODIS/Aqua operational monthly LSE product shows that the 
SEVIRI LSE agrees with MODIS/Aqua better than both the AIRS and IASI, both of 
which are hyperspectral instruments.  
 
Recently, an efficient method for quantitatively evaluating the land surface emissivity 
(LSE) precision using satellite radiance observations is introduced by Li et al. (2010). 
The LSE Tb deviations, defined as the standard deviations of Tb differences between 
satellite observations and radiative transfer calculations, can be estimated by minimizing 
the impacts from land surface temperature (LST) and atmospheric profiles. This is 
followed by the estimation of LSE precision. This method does not need the true LSE 
measurements. It only needs ancillary information such as atmospheric profiles and LST, 
both of which do not require high accuracy and thus can be obtained from an NWP 
forecast or analysis. The SEVIRI LSE will be compared with AIRS operational products, 
the MODIS operational products, and the IASI research product. Results will be 
presented in 100 % ATBD.  
 
5.5.2 Post-launch Validations 
 
Similar as the pre-launch validation, the strategy of the post-launch validation mainly 
consists of two approaches. One, the GOES-R/ABI LSE products will be inter-compared 
with other LSE products, such as MODIS, AIRS, IASI and CrIS. Second, the objective 
method developed by Li et al., 2010 will be used to quantitatively evaluate the GOES-
R/ABI LSE precisions. If possible, the ABI LSE products will be compared with 
laboratory measurements.  
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6 Assumptions and Limitations 
 
6.1 Performance 
 
The factors impact LSE performance include the inaccuracy of CM, uncertainty of fast 
RTM, radiance and calibration bias, and imperfect of first guesses of the LSE of the split 
window channels.  The strategies for mitigation include: 
(1) For CM improvement, collaborate with cloud team and provide feedback on using 
their CM product, identify the problematic areas where CM algorithm needs to be 
improved. 
(2) Compare the LSE products retrieved using PFAAST, RTTOV and CRTM. Evaluate 
the products and choose the one that has the best precision. 
(3) For radiance bias, compare the ABI observed radiances to the more accurate 
hyperspectral observations, such as IASI and AIRS. Derive the radiance bias adjustment 
coefficients, and these coefficients should be updated routinely.  
(4) The first guesses of the split window channels could also be from other LSE 
databases, such as AIRS, MODIS and IASI. Evaluation will be conducted to determine 
which one serves the best first guess.  
 
6.2 Assumed Sensor Performance 
 
Good ABI radiometric performance is required. The sensitivity study shows that the 
algorithm is only weakly sensitive to the instrument noise. However, as another source of 
random noise, the forward model uncertainty might have more impacts on the retrieval. 
Therefore, an accurate RT model is preferred.  
 
6.3 Pre-planned Product Improvements 
 
Here are pre-planned product improvements based on the operational priority and 
feasibility. 
 
6.3.1 Improvement 1: using emissivity database as first guess. 
 
Evaluation will be conducted to determine the better LSE database (from MODIS, AIRS, 
IASI and UW Baseline Fit) as the first guess.  
 
6.3.2 Improvement 2: Radiance bias adjustment 
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The more accurate hyperspectral radiances from IASI and AIRS will be used to correct 
SEVIRI/ABI radiances.  
 
6.3.3 Improvement 3: Using more sophisticated RT model. 
 
Evaluation will be performed to determine if CRTM or RTTOV is necessary.  
 
6.3.4 Improvement 4: Using regional high resolution forecast model 
 
The algorithm benefits from more sophisticated and accurate NWP model. It is believed 
using regional high resolution NWP model improve the LSE retrieval.  
 
6.4 Assumptions 

• The single FOV ABI CM is available before the LSE retrieval 
• Forecast temperature and moisture profiles, as well as surface pressure are 

available 
• NeDR and calibration for all ABI IR bands are known and reasonably good 
• A fast and accurate RTM along with K-Matrix computation are available 
• Retrieval is performed on FOR basis  
• Spectral response knowledge is stable and known 
• ABI satellite position is known 
• SSEC quality ABI data with respect to striping, stability, cross-talk, etc. 
 

6.5 Limitations 
• LSE products are only available over “clear” FORs only (all FOVs within the 

FOR are clear) 
• Effect of emissivity short-term variation is not handled.  
• Surface roughness and skin temperature non-homogeneousness are not handled 
• Since it is an iterative physical retrieval, computation is relative expensive and 

increase the width of the FOR could be necessary in large region processing 
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8. APPENDIX 
Table A1: LSE output variables – quality flags 

Variable Name Unit Type Size† Description 
Quality_Flag none Int8 NX_NY Overall quality flag : 

=0 : good 
=1 : space 
=2 : latitude greater than threshold 
=3 : satellite zenith angle greater than 
threshold 
=4 : number of clear pixels less than 
threshold 
=5 : missing NWP data 
=6 : fatal processing error 

Quality_Flag_Rtvl none Int8 NX_NY Retrieval quality flag: 
=0: good retrieval 
=1: non-convergence 
=2: residual too large 
=3: non-completed converge 
=4: bad retrieval  

Quality_Flag_Kts,12 µm
# none Int8 NX_NY Surface sensitivity quality: 

=0: Kts,12 µm>0.3, good 
=1: Kts,12 µm<=0.3 bad 

† NX_NY refers to the number of FORs in the x-direction by the number of FORs in the y-direction 
#: Kts,12 µm is the LST weighting function of 12 micron. 
 

Table A2: LSE output variables -- quality information 
Variable Name Unit Type Size† Description 
Num_Iteration none Int8 NX_NY Number of iterations 

RMSE_BrtTemp_Next K Float32 NX_NY RMSE of average BT residual after retrieval 

Num_Clr_Pix none Int8 NX_NY Number of clear pixels in FOR@ 
† NX_NY refers to the number of FORs in the x-direction by the number of FORs in the y-direction 
@: this number changes with the FOR size. 
 

Table A3: LSE meta-data  
 

Name Details/Comments 
  

Date swath beginning and swath end 
Time swath beginning and swath end 

Bounding Box product resolution  
number of rows and  
number of columns,  

bytes per pixel 
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data type 
byte order information 

location of box relative to nadir (pixel space) 
Product Name  
Product Units  

Ancillary Data to Produce Product product precedence 

Version Number  

Origin where it was produced 

Quality Information  

Name  

Satellite GOES-16, etc. 

Instrument ABI 

Altitude   

Nadir pixel in the fixed grid  

Attitude  

Latitude  

Longitude  

Grid Projection  

Type of Scan  

Product Version Number  

Data compression type  

Location of production  

Citations to Documents  

Contact Information  

  

For each LSE product, the following 
information is required: 

 

Mean, Min, Max and Standard deviation 
of retrievals from first guess 

for LSE 

Number of IR channels, channel 8 to 
channel 16 

 

For each IR channel, the following 
information is required: 

Mean difference between calculated BT 
(from first guess) and observed BT for the 

IR channel 

 

Number of QA flag values   

For each QA flag value, the following 
information is required: 

Percent of retrievals with the QA flag 
value 

Definition of QA flag 

 

Total number of attempted retrievals  

 


