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ABSTRACT

This document is the Algorithm Theoretical Basischment (ATBD) for the next
generation of Geostationary Operational Environiae®atellite (GOES-R) Land Surface
Emissivity (LSE) products. It is a high level deption and the physical basis for the
physical retrieval of LSE using clear sky infrarédR) radiances measured by the
Advanced Baseline Imager (ABI) to be flown on th®ES-R. The unique feature of
geostationary satellite, the time continuity, iglized to assist and improve the LSE
retrieval, in that the LSE is assumed to be in\deiavithin a short period of time while
the land surface temperature (LST) is assumed teakiable. This document contains a
description of the algorithm, including scientifispects and practical considerations.



1 INTRODUCTION

1.1 Purpose of This Document

The land surface emissivity (LSE) algorithm thewadt basis document (ATBD)
provides a high level description and the physkzdis for the retrieval of LSE using
infrared (IR) radiances taken by the Advanced Basdmager (ABI) flown on the next
generation of Geostationary Operational Environmle®atellite (GOES-R) series of
NOAA geostationary meteorological/environmentakBées. The products include LSE,
along with land surface temperature (LST), whickimultaneously retrieved from clear
sky radiances withiM x M ABI field-of-view (FOV) box area, here one FOV msaone
pixel. One field-of-regard (FOR) is defined ldsx M FOVs. The ABI LSE product is a
new product, which is not provided by the curre@iEs Sounder.

1.2 Who Should Use This Document

The intended user of this document are those stEdein understanding the physical
basis of the algorithms and how to use the outptiie algorithm to optimize the LSE
product for a particular application. This documalso provides information useful to
anyone maintaining, modifying, or improving thegonial algorithm.

1.3 Inside Each Section

This document is broken down into the following maéections.

* Observing System Overview Provides relevant details of the ABI and provides
a brief description of the products generated leyaligorithm.

» Algorithm Description: Provides a detailed description of the LSE alhoni
including its physical basis, its input and itspoutt
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» Test Data Sets and OutputsProvides a description of the test data set tsed
characterize the performance of the algorithm amity of the data products. It
also describes the results from algorithm procgsssing SEVIRI data.

» Practical Considerations Provides an overview of the issues involving
numerical computation, programming and procedugeslity assessment and
diagnostics and exception handling.

» Assumptions and Limitations All the assumptions and limitations concerning
the algorithm theoretic basis have been descrihddiscussed.

1.4 Related Documents
This document currently does not relate to any rotdecument outside of the

specifications of the GOES-R Ground Segment Funatioand Performance
Specification (F&PS) and to the references giveaughout.

1.5 Revision History

Version 0.0 of this document was created by Dr. Ouwof Cooperative Institute for
Meteorological Satellite Studies (CIMSS) at the UWWsldison and Timothy J. Schmit of
Center for Satellite Applications and Research (BTAf NESDIS, with the intent to
accompany the delivery of the version 1.0 algorghim the GOES-R AWG Algorithm
Integration Team (AIT). (July 2008)

Version 0.0 comments/suggestions from N. Nalli (RTRSGS) (September 2008)

Version 1.0 was developed by Zhenglong Li, Xin dmd others to meet 80% ATBD
requirement. (July 2010)
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2 OBSERVING SYSTEM OVERVIEW

2.1 Products Generated

The GOES-R Advanced Baseline Imager (ABI) landaefemissivity (LSE) algorithm
is responsible for the retrieval of LSE for a figfiregard (FOR) consisting &fl x M
ABI fields-of-view (FOVSs). In this document FOR giifecally refers to the pixel group
for one LSE retrieval. At the time of this writingl = 3 (default) is assumed. The product
generation needs brightness temperatures (BTs) &bmBI InfraRed (IR) channels
along with numerical weather prediction (NWP) ougpior at least three measurements.
The output includes LSE of all window channels glavith a bypass product of land
surface temperature (LST). Table 1 shows the rements for LSE products. More
requirement information can be found in the GOESARsion Requirement Document
(MRD) and the Functional and Performance SpeciboatF&PS).

Table 1. Requirements for GOES-R LSE products .
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The LSE (land surface emissivity) is the relatiesvpr of the land surface to emit energy
by radiation. It is defined as the ratio of thergyeaadiated by the land surface to energy
radiated by a blackbody at the same temperaturk. h&s a spectral variation from as

low as 0.6 to 1 depending on the surface matersalis,moisture, vegetation cover and

surface roughness.

2.2 Instrument characteristics

The next-generation geostationary satellite sen#isenable many improvements and
new capabilities for imager-based produ@ise ABI (Schmit et al. 2005, see Table 2) on
the next-generation GOES-R will improve upon therent GOES imager with more

spectral bands, faster imaging, higher spatial luéiso, better navigation, and more
accurate calibration. The ABI expands from five g bands on the current GOES
imagers to a total of 16 spectral bands in theblas{VIS), near-infrared (NIR), and IR

spectral regions. The coverage rate for full diskns will increase to at least every 15
min, and the continental U.S. (CONUS) region wél $canned every 5 min. ABI spatial
resolution will be 2 km at the sub-point for 10 $Rectral bands, 1 km for select NIR
bands, and 0.5 km for the 0.64 um VIS band (Scletndl. 2005). It is envisioned that
better LSE product will improve selected ABI prothjcsuch as sounding and LST
products.

Both the current GOES Sounder and Imager havetonde IR window channels, which
are very sensitive to the surface and are useful$& retrieval. ABI, on the other hand,
has 5 window spectral ban{3.9, 8.5, 10.35, 11.2 and 12.81), greatly enhancing the
ABI's capability to resolve the LSE spectral vanat Studies have shown that the ABI
with NWP forecast profiles used as the backgrowilllbe able to provide LSE product
with quality similar as the operational MODIS prats) but with much better temporal
resolution.

Table 2. Channel numbers and approximate centnatleagths for the ABI.
., Used in LSE retrieval
""Regression|  Physical

Channel Numberr  Wavelength (ur

1 0.47
2 0.64
3 0.86
4 1.38
5 1.61
6
7
8
9

2.26
3.9
6.15
7.0
10 7.4
11 8.5
12 9.7
13 10.35

ASENENENENAN
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14 11.2 v v
15 12.3 v v
16 13.3 v

3 ALGORITHM DESCRIPTION

This section describes the theoretical basis of BBE algorithm and its implementation
in Geostationary Cloud Algorithm Test-bed (GEOCAiE)ng MSG/SEVIRI as proxy.

3.1 Algorithm Overview

The current GOES Sounder and Imager (Menzel andoRurl994; Menzel et al. 1998)
do not provide an operational surface IR emissipitgduct. However, an emissivity
product is very important for other products fro@ES-R ABI. Products that require
emissivity information include, but are not limites] temperature and moisture retrievals
(Ma et al., 1999; Li et al., 2008), land surfaceperature (Becker and Li, 1990; Wan
and Dozier, 1996; Yu et al., 2008)), dust and a®rpsoperty retrieval (Zhang et al.,
2006; Li et al., 2007), cloud-top pressure (CTR)doict (Menzel et al., 1992; Li et al.,
2001; Li et al., 2005), Outgoing Longwave Radiati@LR) and trace gas retrieval
(Clerbaux et al., 2003; Ho et al., 2005). In addit global IR surface emissivity is also
very important for the assimilation of IR radiandes numerical weather prediction
(NWP) models over land (LeMarshall et al., 2006J alimate modeling and prediction
(Jin and Liang, 2006). A global IR surface emiggiproduct has been developed for the
Moderate Resolution Imaging Spectroradiometer (M®OWan and Li, 1997), and has
been used widely in research (Seemann et al., 2088yvever, the operational MODIS
product provides IR surface emissivity data at aninthly intervals; furthermore, the
spectral coverage of the six MODIS IR window baf(@®lg, 3.9, 4.0, 8.5, 11.0 and 12.0
pm) are different from that of ABI IR window bandA. monthly global database
(Seemann et. al 2008) has been developed basdw dMQ@DIS emissivity product and
hyperspectral IR emissivity measurements from latooy measurements. For GOES-R
products, such an emissivity database may lackrmmdtion on temporal variations.
Hyperspectral resolution IR sounders onboard tHarparbiting low earth orbit (LEO)
satellites, such as the Atmospheric Infrared Sourf@d¢RS) (Chahine et al., 2006)
onboard the NASA Earth Observing System (EOS) Agtlze Interferometer
Atmospheric Sounding Instrument (IASI) onboard tliropean Meteorological
Operational Satellite Programme (METOP-A), the Gwack Infrared Sounder (CrIS)
on the NPP/JPSS (joint polar-orbiting satellitetsyy, have the capability for retrieving
the emissivity spectrum. Recently, an algorithm bagn developed for retrieval of
hyperspectral IR emissivity spectra from globaliaade measurements of advanced
sounders (Li et al. 2007; Zhou et al. 2008) onbdaE® satellites such as Agua and
Metop-A (Li and Li 2008). LEO emissivity may beeasfor geosynchronous (GEO)
product since it can be updated routinely and cdaddo ABI IR bands; however, due to
the view angle difference between GEO and LEO, #adorbital gaps of LEO, the
application of LEO emissivity to GEO products hame limitations.
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Therefore, it is important to develop the emisgifibom ABI spectral bands directly so
that other ABI products (land surface temperatdust/aerosol, radiation budget, cloud-
top properties, OLR, etc.) have the option to ume ABI emissivity product. The LSE
algorithm is developed by the GOES-R AWG emissiigam at the Cooperative
Institute for Meteorological Satellite Studies (C38). It is based on the assumption that
the LST is temporally variable while the LSE is morally invariable within a short
period of time, i.e. a few hours. GOES-R ABI radieas from multiple time steps are
used to retrieve temporally invariable IR LSE amadiable LST.

3.2 Processing outline

The process initialization gives access to three tsteps of ABI IR radiances or BTs,
ABI cloud mask (CM), satellite local zenith angleZf) and ancillary data (topographic

data, land-sea mask, longitude, latitude) for tes location. Only if the pixels or FOR
of all the three time steps are labelled as clearthis 80% version, a conservative
scheme is applied which requires all land pixelthinithe FOR must be clear; plus all
pixels within the FOR must be over land) and theelsge zenith angle of all pixels or

FOR is below the configurable maximum zenith thoddh(set as 67 degree, but in
practice the angle is extended to 80°; results aiitgle larger than 67° will be marked as
low quality product in the next version), the LS#rieval is performed for this FOR.

BTs of all IR channels are read into the LSE aloni although some of them are not
used. NWP forecasts are used as background. ThelRB&diances are used in two
processes. The first one is regression and thendet® physical retrieval. In the
regression, all IR bands except the @ are used in a non-linear regression, which is
responsible for supplying the first guesses of L8 LST as well as other ancillary
information needed to drive the radiative transfedel. Although there are multiple
methods to determine the first guess, the regresS@dand LSE are used in this 80%
version. Three regressions at three time stepsgeilerate three LSE outputs and they
are averaged to represent the mean status of kSEgtiess during the observations. The
NWP products at the current time step are usedldisi@al predictors in the regression
with BTs obtained from different time steps duesdmne technical concerns in GEOCAT.
Ideally, NWP products from the three correspondinge steps should be used instead.
Although the physical retrieval will be performedly at window channels, which are
much less sensitive to the atmospheric conditidhss compromise will inevitably
degrade the quality of retrieval. So the total terap span should be minimized.
Currently it is set as 6 hours containing threecoletions, and the temporal gap between
two continuous observations is 3 hours. In the @ayslgorithm, only the four window
channels are used (Table 2), due to the uncertainfydiative transfer model for channel
3.9 um, emissivity for this channel is not retri@veln this version, the algorithm can
only support SEVIRI as proxy and the following &is just for reference.

The algorithm relies on spectral and spatial infation. The performance of the LSE is
therefore sensitive to any imagery artifacts otrimaent noise. Calibrated measurements
are also critical because the LSE compares thendgdbeadiances to those calculated
from a forward radiative transfer model (RTM). Ttleannel specifications are given in
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the GOES-R MRD. The land-sea mask is also usedpa during the processing step on
land pixels. The software has been designed imamedular way.

Since GEOCAT cannot process CM information of npldtitime steps in a single time
step and the LSE algorithm requires at least tlleservations for each channel, it is
decided to run the retrieval algorithm four timedag at 0000, 0600, 1200 and 1800. For
each run, two ancillary files containing BT and GMormation at 3 and 6 hours ago
must be prepared in advance. These files are gedetsy running the cloud mask
algorithm only. For example, if we want to run tie¢rieval for 0600, two files containing
BT and CM data for 0000 and 0300 must be pre-psstkseparately. Since the BT and
CM data at 0600 will be stored in the same filetaoring the retrieval results, we only
need to run the cloud mask algorithm for 0900 keefbe retrieval of 1200.

The whole process includes:
(1) Pre-processing:

* Run cloud mask algorithm twice to generate two l&ifiles containing
BT and CM information for the third run, i.e. th&E retrieval algorithm.

e Initialization in the third run: reading of process options from the
configuration file, reading of all coefficient filaames, initialisation of
RTM, get calibrated ABI IR BTs and associated gapgrcal ancillary
data to process, read of ABI CM, etc. Read in #gression coefficient
array for non-linear regression to generate ttst fjuess.

* Collect clear pixels within the FOR for retrievdlll pixels within the
FOR must be clear for the three time steps angdiadlls within the FOR
must be on land.

* Averaging the BTs within the FOR to derive the ager BT for
regression.

» Take collocated forecast temperature and moisttoglgs and other 2-D
forecast products such as surface air pressurbeathird time step as
ancillary factors for regression, combining withetlBTs from three
different time steps, to generate the atmosphedfi@s for three different
time steps. These profiles will be used as angilldata in RTM
calculation. The regressions also generate LSTL&#for the three time
steps. The LST will be used as first guess in #igaval. Since the LSE
are assumed to be unchanged during the past 6, ltbeysare averaged as
first guess in the following physical retrieval.

* Bias adjustment of ABI BTs. The bias correction fiorents are read
from the configuration file and BT correction is dea Since we don't
have real data for calibration. This step is ndttgebe done. In the 80%
version, the bias adjustment for SEVIRI 7.3- and448n is hardcoded
with data from our previous research.

(2)  Processing:

« Performing of physical retrieval for LSE and LST Rnysical Retrieval
Module using the first guess.

16



» Checking that the retrieved results are betweerntdirand they have
physical sense.

3) Post-processing:
* In this version, quality control has not been done need more offline
data to evaluate the algorithm.
» Writing of output file.

3.3 Algorithm Input

3.3.1 Primary Sensor Data

The list below contains the primary sensor datal usethe LSE algorithm. The primary
sensor data means information that is derived wdltelm the ABI observations and
navigation.

» Calibrated BTs (K) for IR bands 7-16 from x M (whereM=3) FOV array, or
calibrated BTs (K) for IR bands 7-16 fravhx M FOV array for three time steps

» Sensor’s local zenith angle (LZA) at the centeeathM x M FOV array

» Latitude at the center of eabhx M FOV array

* Longitude at the center of eabhx M FOV array

* ABI channel use index array

* NeDR (radiance detector noise) array

* ABI CM for each pixel in thel x M FOV array (developed by cloud team) for
three time steps

3.3.2 Ancillary Data

The following lists and briefly describes the alaeiy data required to run the LSE
algorithm. Ancillary data means information th&hot included in the ABI observations
or navigation data.

* Non-ABI dynamic data

o Surface pressure from 6-18 hour forecast from NWiehfor the current
time step.

o Surface pressure level index from 6-18 hour fotefrasn NWP model for
the current time step.

o Temperature profile from 6-18 hour forecast from RiViiodel for the current
time step.

o0 Moisture profile from 6-18 hour forecast from NWPRbael for the current
time step.

It is suggested that for CONUS or mesoscale praogssegional NWP output will be
used, while global NWP data will be used in fuBldprocessing.
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* Non-ABI static data

0 The regression coefficient file. This coefficidile contains 81 regression
coefficient datasets. Each coefficient datasetesponds to one LZA ranging
from O to 80 degrees. The regression coefficideti§ an array of 81*110 *
(3*L+1+9), where L (=101) is the atmospheric pressievels used in RTM.
In the 80% version, SEVIRI is proxy so the regresstoefficient file is an
array of 81*108 * (3*L+3+8).

In addition, a clear-sky fast and accurate forwRiidM is needed in the iterative physical
retrieval process. As of this writing, the LSE aitfum relies on the Pressure-Layer Fast
Algorithm for Atmospheric Transmittances (PFAASTYr fthe radiative transfer
calculations, where the profile parameters areesgted at a maximum bfprescribed
pressure levels. PFAAST is based on the line-by+ladiative transfer model (LBLRTM)
version 8.4 (Clough and lacono, 1995) and the hggiolution transmission molecular
absorption database-2000 (HITRAN-2000) (Rothman akf 1992) with updates
(aer_hitran_2000_ updat_01.1). In the near futitBer the community radiative transfer
model (cRTM) or Radiative Transfer for TOVS (RTTOWjll be integrated into the
algorithm to replace PFAAST.

3.4 Theoretical Description

Land surface IR emissivity is a key parameter fangnother ABI products as mentioned
in section 3.1. Surface IR emissivity varies wéhd surface type (according to soil type,
land cover, and land use; Snyder et al. 1998; RPerddDaCamara 2005), viewing angle
(Francois et al. 1997; McAtee et al. 2003), ancet{ifollowing changes in the state of the
vegetation and weather conditions, such as dew dtom rainfall, or snowfall).
Nevertheless, many numerical weather predictioncintate models still use static maps
with a limited number of possible emissivity valygescribed per surface type (Jin and
Liang 2006; Sherlock 1999; Ogawa and Schmugge 20&&veral methods have been
proposed for the retrieval of IR emissivity fromnmmete sensing data. The top of
atmosphere (TOA) radiance is a combination of serfamitted radiance (in itself a result
of emissivity and surface temperature) and the aserfreflection of downward
atmospheric flux, which are both absorbed and riéedhby the atmosphere, along with
the upward emitted atmospheric radiation. Becafishis mixing of surface (emissivity
and temperature) and atmospheric signal, the dnedcteval of emissivity is a very
difficult problem. Different approaches for solvirtge direct retrieval of emissivity
include the temperature—emissivity separation nwetfiollowed by the Advanced
Spaceborne Thermal Emission and Reflection Radem{ASTER) team (Gillespie et al.
1999), the two-temperature method (TTM) (Watson219Baysash and Smith 1999;
Faysash and Smith 2000; Peres and DaCamara 20@5)day/night land surface
temperature (LST) algorithm applied to MODIS datdaq and Li 1997), among others
(Rodger et al. 2005; Morgan 2005). All of thesevle spectral (or channel) emissivity,
which would have to be converted into broadbanduesl for numerical model
applications. A different approach called the vageh cover method (VCM) (Peres and
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DaCamara 2005; Caselles et al. 1997) consistseoddmbination of the pixel fraction of
vegetation cover (FVC) with a lookup table devebbger spectral and broadband
emissivities, and assigned to different vegetaaod bare-ground types within a land
cover classification. The pixel effective emisgiis estimated using information on the
proportion of vegetation and exposed surfaces.

All the different approaches for the retrieval bétmal IR emissivity over land surfaces
mentioned above have advantages and drawbackschihiee of a given methodology
essentially relies on the sensor characteristiesyéquired accuracy versus computation
time, and the availability of (reliable) atmospleetemperature and humidity profiles.
Two methodologies currently pursued by the SagelMpplication Facility on Land
Surface Analysis (Land SAF, http://landsaf.metgo(fchmetz et al. 2002; DaCamara
2006): (1) the Land SAF operational scheme comgjsii a version of the VCM applied
to the Spinning Enhanced Visible and Infrared Img@&EVIRI) onboard the Meteosat
Second Generation (MSG) geostationary satellitels(ahan adaptation of TTM applied
to SEVIRI split-window channels.

Taking the advantage of high temporal informatithre, ABI LSE algorithm is based on
the assumption that the surface IR emissivity mprally invariable while the surface
skin temperature is temporally variable within & feour time periods. Thus, by using
ABI window IR radiances from multiple time stepsyrface skin temperatures and
surface IR emissivity can be derived. Experim@migcate that IR window spectral band
radiances from three time steps that have largaiskin temperature contrast are best
for success in the ABI surface properties (i.etfeme emissivity and skin temperature)
retrieval. The temperature and moisture profikesnfa short range forecast model are
used for atmospheric correction in the retrieval.

In the version 2.0 algorithm, ABI radiances fromet time steps that have 3 hours time
difference are used to retrieve three skin tempezatand 4 surface IR emissivities (at
ABI IR window bands). Therefore, ABI radiancestfa current time step {Jien) Will

be used together with that at three hours befasgdI— 3) and six hours before {(Jrent—

6) for the surface skin temperature and emissnatyieval. In day-2 product, radiances
from multiple time steps (more than twice) with éuin time periods will be used.

The following describes the theoretical basis far ESE algorithm. A more detailed and
scientific description of this section can be foumdLi et al., (2010). Note the following
description is written with respect to SEVIRI.

3.4.1 Physics of the Problem

Neglecting scattering by the atmosphere, the tidearcspectrum of the IR window
spectral band radiance exiting the earth-atmospbgstem is approximated by the
radiative transfer equation (RTE)
P, P,
R=&B(T)7, - f B(T)d7(0,p) +(1—£)f B(T)dr +R+e
0 0 , 1)
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where R is the exiting radiance at the top of the atmosploe SEVIRI IR radiances is
the surface emissivity,B(T) is the Planck function,”(0:P) is the atmospheric
transmittance from the top to the atmospheric presp, subscript s denotes the surface,

I =217 s the downwelling transmittance, is forward model uncertainty arid is the
reflected solar radiation, which is ignored in tbegwave IR window region. As shown
in equation (1), the SEVIRI IR radiance has thregjom contributions: the surface
emission, the upwelling atmosphere emission, amrdréflection of the downwelling
atmosphere emission by the surface.

The LSE retrieval problem is to solve the land acef emissivity on the right-hand side
of equation (1) for the given observations of rades. Since the LSE is closely coupled
with LST to govern the surface emission, the resieof LSE must be performed
simultaneously with the retrieval of LST. The atplosre correction is also necessary
because of its substantial contribution to thel tatdiance for the window channels.

3.4.2 Mathematical Description
3.4.2.1 Radiative transfer equation linearizatin

Since the inverse problem is non-linear and illgghghere are no analytical solutions for
the LSE retrieval problem, and regularization igeded. Usually, the first step is to
linearize the RTE. Neglecting impacts from ozond ather trace gases, equation (1)
could be linearized to the first order as

R=K, O, +K, 0, + D KT+ K,dInQ+e @)

wheredR is the radiance perturbation, which is the diffe between the observation
and the radiative transfer calculation from thetfiguess, K is the weighting function,
oR

defined as * _a_x, where X is the variable to be retrieved. It shokes sensitivity of
the radiance at the top of the atmosphere (TOA) vaspect to the change in the variable

X. Z Is the sum over different atmospheric layers. &&the logarithm of the mixing
ratio is used instead of the mixing ratio becau$mas a better linear relationship with the
radiance.€ in equation (2) contains both forward model uraiaty and observation
noise. Equation (2) shows that the radiance peatimb has three components: the LST,
the LSE, and the atmosphere (including the temperand the moisture profiles). Any
perturbation in these components results in depadiithe calculated radiances from the
observed ones.

Figure 1 shows the examination of the first-ordeedrization approximation using the
matchup database. In each panel, only one variatdéowed to have any perturbation
(radiative transfer calculation using the first gsiénstead of the true state), meaning that
the radiance perturbation is only caused by thaiabke. The x-axis represents the
calculation from the right-hand side of equation, (&nd the y-axis represents the
calculation from the left-hand side of equation @®)perfect linearization approximation
would see these two exactly the same.
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Figure 1. Evaluation of first-order linearizatior the radiative equation for SEVIRI
channels 7 (8.7 um), 9 (10.8 um) and 10 (12 um)dpthe land surface temperature, b)
the surface emissivity, c) the temperature proéiled d) the moisture profile. The x-axis
represents the actual Tb differences as observations the calculation and the y-axis
represents the Tb difference calculated using sd-dirder linearization approximation.
For each panel, only the variable in that panel paaturbed.

All three channels show larger than 0.99 correfatioefficients (R) for LST, LSE and

temperature profiles (Figure 1 a, b and c¢), indigpstrong linear relationships. Together
with the small STD and bias, it is clear that thediative transfer equation could be
linearized using a first-order linearization appnoeation with respect to LST, LSE and
the temperature profiles. Notice that the large $Tihe LSE (0.835 K) at 8.7 um comes
from large perturbations of the 8.7 um LSE firsegst

However, for the moisture profiles in Figure 1 (the first-order linear approximation is

not good enough. All three channels have correlatimefficients less than 0.86, and the
STDs are larger than 0.28 K, indicating that thmstfiorder linear approximation is
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insufficient. In fact, better agreements could bached if a second order expansion for
moisture is included (not shown). However, the sdcorder expansion only increases
the complexity of equation (2), which makes it mdiféicult to solve.

3.4.2.2 Atmospheric correction

It is difficult to solve equation (2) with only the window channels. The linearization
approximation analysis above shows more complexith the atmospheric profiles,

especially the moisture profiles. It is therefoexz@ssary to simplify equation (2) without
introducing significant errors, especially with aed to the atmospheric terms. A
simplified equation (2) not only makes it easiestidve for LSE and LST, but also with
better retrieval precision.

The simplest way to simplify Equation (2) is to @rme the atmospheric contributions (#
3 and 4 terms on the right hand). This removal geivalent to assuming that the
atmospheric states are known and the first guesfstse atmospheric profiles perfectly
represent the true state. The first guesses cagitlber NWP forecast profiles, satellite
retrievals or even a climatological background.

In the ABI/SEVIR LSE algorithm, a more advanced @pheric correction method is
utilized; one single variable is used to represeatatmospheric contribution

I Ky =D KOl +) K,dInQ @)

where dT is a combination of temperature and moisture grofiles. For each channel,
the radiance deviation caused by errors in the spimeric profiles can be expressed as

a‘rb:a‘TZKT_ @)

Let Ky = ZKT, the new linearized equation is
R =K, T +K_ I, +K.OT +e )

This is the equation used to solve LSE and LSTa@ieithdT .
3.4.2.3 Time continuity

For a general case, supposing there are N charhets,are N+2 unknowns in Equation
(5): 1 LST, N LSE and 4T . For a single time, the number of unknowns (N-2jlivays
larger than the number of equations (N). Thereéapeation (5) is under-determined. As
a result, it will be difficult to achieve good retval precision.

Taking advantage of the high temporal informatithre, SEVIRI LSE algorithm is based
on the assumption that the IR LSE is temporallyairable while LST is temporally
variable within a short period of time. Let M beethumber of time steps. The total
number of equations is M N. And the number of unknowns is N + 2M (each tisbep
has one LST and or®). For better retrieval precisions, it is betteattthe number of
equations is equal or larger than the number ohawks, or

M xN=N+2M . (6)
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In this study, the number of channels is N=3. Tbleton of Equation (6) is M 3; in
other words at least three time steps are needed.

The selection of the number of time steps andithe interval between two consecutive
time steps is critical. Three factors are considetlee assumption of time continuity, the
contrast among different time steps, and cloud amomtation. The time span from the
first to the last time step cannot be too largbeotise the assumption of invariable LSE
is violated, and the chance for all three obseowstito be clear is reduced. For better
retrieval precision, it is important that there axébstantial contrasts between different
time steps. Therefore, the time distance betweesemtive steps cannot be too small.
Experiments with actual SEVIRI observations indictitree time steps with a time range
of 3 hours are adequate. Therefore, SEVIRI radmatéhe current time stepgfwill be
used together with those at three hours befage @) and six hours before (16) for the
LSE and LST retrieval.

3.4.2.4 The inverse algorithm

For three time steps and three channels, ther@ eg@ations and 9 unknowns. Let

R T
R, T
R T,
R &
Y=|R| X=|g,
R; &
R-S -Tl
R; T
—R’f—, —TS—,and
Ki, 0 0 K, 0 0 K;) 0 0
Ki, 0 0 0 K, 0 K, 0 O
Ki, 0 0 0 0 K, K, 0 0
0 K2, 0 Ki 0O 0 0 K& O
K= 0 K, 0 0 K}, 0 0 K&, O
0 K2, 0 0O 0 Kj 0 K2, O
0 0 K} K% O O O 0 K2
0 0 K}, O K5 O O O K,
(0 0 K, 0O 0 K% 0 0 K,

Here, the number in superscript denotes the tirp, sdind the number in subscript
denotes the channel index.
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Equation (5) can be written as

oY =KX +e . (7)

Here, K is the linear or tangent model of the faveadiative transfer model. It is also
called a Jacobian matrix or k-matrix. A simple teaguare method gives an iterative
solution to Equation (7)

éxn+1 :(K nE_lKn)_lKnE_l(éYn +K néxn) ' (8)
where K, =X, =X, Y, =Y" =Y(X,) K, s the Jacobian matrix in the nth iteration,
E is the observation error covariance matrix whidglides instrument noise and
forward model uncertaintyxn is the vector of the parameters to be retrievidjs the
initial state or the first guessy™ is the vector of the observed radiances usedén th
retrieval process, and (X4) is the calculated radiances based on the atmoe el
surface state offn. For the given first guesses and the satelliteedagions, the

parameters can be retrieved using Equation (ﬂ)eifnatrixK'nE_lK n is invertible.

However, one might find no solution or the soluiamay not be realistic because the
K ETK . . . . . .
matrix KoE K, is singular or near singular, in which the itevatwill be unstable. Any

noise in9n will be greatly amplified, and the retrieval wde unrealistic. Therefore, an
optimal estimate method is needed to solve equaffn A general form of the
variational solution is to minimize the followingst function (Rodgers 1976; Li et al.,
2000)

IX)=[Y™ = YOOI ETLY™ = Y(X)] +[X =X HIX = X,] , 9)
where H is the a priori matrix which constrains the sauatiand it can be the inverse of
the a priori first guess error covariance matrixanother type of matrix. By applying the
following Newtonian iteration

Xon =X, +3(X,) "0 I(X,) (10)
the following quasi-nonlinear iterative form is abted
X, ,, =(K.E*K, +H)*K E* (Y, +K X,) . (11)

Compared with the least square method solutionguakon (8), the only difference is
that Equation (11) has one extra tekin Physically, this term provides background
information, so that the adjustment of the retrigpaameters is made accordingly in the
iterations. Mathematically, this term adds extrasifpee values along the diagonal

direction of matri%'nE_lKn, decreasing the singularity of it and making theerse
(KLE™K,)™ possible and stable.

(a) The first guess E<o)

For non-linear ill-posed inverse problems, the fyalf the first guess is critical for the
retrieval precision. In the simulation study, thdad@ur forecast fields provided by the
NCEP (National Centers for Environmental PredictiGiS at half a degree are used as
the temperature and moisture profile first gues&ash profile is interpolated both in
space and time to fit the time and location of élctual satellite observation. The LSE
and LST first guesses are randomly generated asiloled in section 2. When applied to
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real data, the LST first guess can be from a regyesretrieval using a satellite
observation or NWP forecast, while the LSE firseégsican be from a regression retrieval
using satellite observations or a pre-determinddb#se. In the case of the regression,
the averaged emissivities from multiple time stepesused.

(b) The first guess error covariance matrix

The first guess error covariance matrix must besisd@nt with the first guesses. There is
no universal covariance matrix suitable for alstfiguesses. Ideally, the inverse of the
first guess error covariance matrix is obtained ibyerting the first guess error
covariance matrix. Since the first guesses of LB& IaST are randomly generated, the
correlative errors are small and negligible, whicticates the off-diagonal elements of
the inverse of the error covariance matrix couldéieas zero. The diagonal elements are
calculated with an LST error of 10 K and LSE er6rl0%, 2% and 2% for the three
channels, andT error of 1 K. Therefore the H matrix is definesifallows:
0.01

0.01 0

0.01
100

H= 2500

2500

0 1

1
L 4 (12)
In the matrix, the 0.01 is derived by 1/(10 * 1@}ile 100 is derived by 1/(0.1*0.1).

(c) The observation error covariance matrix

Normally, matrix E includes two components: the observation noise thadradiative
transfer model uncertainty. The observation nasestimated based on the instrument’s
characteristics. It is typically less than 0.15 & the three window channels. The
forward model uncertainty is estimated from thesirdgomparison of different radiative
transfer models. The uncertainty is assumed to.b&dor the three window channels.
Similar to the inverse of the background error c@mrece matrix, matrixe is a diagonal
matrix. This is equivalent to assuming that there correlative errors among the
observed radiances and the forward model uncedair¥atrix E takes the form
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L sl | (13)

where & is the combined error from the observation noisd the forward model
uncertainty for thé” channel at thg" time step.

(d) Jacobian matrix

The Jacobian matrix or k-matrif » (the subscript n denotes the nth iteration in the
physical retrieval procedure) describes the chamig¢éhe radiance at the top of the
atmosphere (TOA) with respect to the change inptirameters to be retrieved. It can be
calculated by a differential scheme or analyticatthod (Li et al., 2000). In this study,
the latter method is used for computational efficie

(e) Convergence control

In each iteration, a convergence test is perforiveesed on the increment from the last
iteration. Define the mean increment

dX = 1/Za><in+1/m , (14)
i=1

where &X' ., is the increment im" iteration for thei™ unknown variable, anch is the

number of unknowns. IfdX is larger than a given threshold, the iterationtcmes until
the maximum number of iteration is reached.

3.4.3 Algorithm Output

The output of the algorithm for each FOR includes:
(1) LSE products in the four window channels (86,35, 11.2 and 12,3m) for
ABI. For SEVIRI, LSE products in three window chais (8.7, 10.8 and 12m).
Note these LSE products are valid for all the tsteps used in the retrieval. The
default time steps are three with a time differeoic® hours.
(2) A by-pass product of LST for all the time step

Quality flags (not available for the 80% versiortiviry):
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(3) General Quality Flag: including some genenédrimation of each pixel such as
space background, latitude range, zenith anglestangsing NWP data, or number
of clear pixel, and etc. Please see Table Al ferdgtail.

(4) Retrieval Quality Flags: non-convergent itevati, large residual, bad or
missing radiance data, etc. The definition of takig assigned to each condition is
listed in Tab A2.

(5) Surface Sensitivity Quality Flags: the radiameust show enough sensitivity to
the LST and LSE. Our study shows that the LST weghfunction of 12 micron
must be larger than 0.3 in order for good retrieVidde definition of each value
assigned can also be retrieved from Table Al.

Diagnostic/intermediate information:
(6) Number of clear sky pixels in the FOR.
(7) Number of iteration for each retrieval.
(8) Residuals of average BT between observatiah cafculation after retrieval.
Land/Ocean flag. Please see Table A2 for details.

Metadata:
Please refer to Table A3 for the metadata.

4  Test Data Sets and Outputs

Since the GOES-R is not launched yet, the ABI L8orithm is tested using SEVIRI
data. The algorithm is tested using both simulatedi observed SEVIRI radiances. More
results will be shown later in the 100 % ATBD usBsigiulated ABI radiances.

4.1 Input Data Sets

4.1.1 The observed SEVIRI radiances as proxy dataset

SEVIRI is a 12-channel imager onboard the MetedSatond Generation (MSG)
(Meteosat 8 and 9). It observes the full disk ef Barth every 15 minutes (Schmetz et al.,
2002). Among the 12 SEVIRI channels in Table 3yadhke three window channels in
thermal IR (TIR) (8.7, 10.8 and 12 um) are tesiHie water vapor (6.2 and 7.3 pm),
CO2 (13.4 um) and ozone (9.7 um) channels areemstitsse enough to the surface for
LSE and LST retrieval. The 3.9 um channel is exaetudue to the difficulty with the
radiative transfer calculation from the Sun in thytime. More information on the
SEVIRI can be found in Schmid et al. (2000), Schamat al. (2002), Aminou et al.
(2003), and Schmetz et al. (2002). The algorithrs s@aplied to the SEVIRI observation
from August 2006.

Table 3. Spectral channel characteristics of SEMiRierms of central, minimum and
maximum wavelength of the channels and the mainicgtion areas of each channel.
The three channels in bold are used for LSE redliev

| Channe | Spectra | Charactristics of Spectre | Main observational applicati |
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No. Band (um Band (um
Acen Amin Amax
1 VISO0.€ 0.63¢ 0.5¢ 0.71 Surface, clouds, wind fielc
2 VISO0.& 0.81 0.74 0.8¢ Surface, clouds, wind fiel
3 NIR1.€ 1.64 1.5C 1.7¢ Surface, cloud pha
4 IR3.C 3.9C 3.4¢ 4.3¢ Surface, clouds, wind fiel:
5 WV6.2 6.25 5.35 7.15 | Water vapor, high level cloud
atmospheric instability
6 WV7.3 7.35 6.85 7.85 Water vapor, atmospheritalvikty
7 IR8.7 8.70 8.30 91 _Surfaqg, clouds, atmospheric
instability
8 IR9.7 9.6¢ 9.3¢ 9.9/ Ozon¢
9 IR10.8 | 1080 | 9.80 | 11.g0| Surtace clouds, wind fields
atmospheric instability
10 IR12.0 | 12.00 | 11.00| 13.00| Surface, clouds, atmospheric
instability
11 IR13.4 | 1340 | 12.40| 14.40 CiMus cloud height, atmosphe
instability
12 HRV Broadband (about 0.4 — 1.1 um) Surface,ddou

4.1.2 The simulated SEVIRI radiances

A simulation study using simulated SEVIRI radianeess conducted to help develop,
test, diagnosis and improve the algorithm. A matphdataset (Li et al., 2009, 2010) is
used to generate the simulation dataset. This efatadudes:

The temperature and moisture profiles from radidsonbservations (RAOB)
from the U.S. Department of Energy Atmospheric Raodh Measurement
(ARM) Program at the Southern Great Plains (SGR) @iloshevich et al.,
2006) at Lamont, OK (C1, 36°37'N, 97°30'W),

The GFS 6-hour forecast,

The laboratory-measured LSE spectrum from the MOBI&issivity library
(http://www.icess.ucsb.edu/modis/EMIS/html/em.htral)d the ASTER spectral
library (Salisbury et al., 1994),

And the LST measured by the infrared radiometéh@atARM site (Morris et al.,
2006).

The time coverage is from August 2006 to August®R0the sample size for clear skies
is 1718.

The ARM RAOBs are preferred to the conventional FBA®ecause they are more
frequent (4 times a day), and have better overadlity (Turner et al., 2003; Li et al.,
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2009). The sampling rate is 2 s through the fliglor each sample output, details about
time in seconds and a quality flag are provided.

The simulated SEVIRI radiances are calculated ugiagPressure-Layer Fast Algorithm
for Atmospheric Transmittance (PFAAST) models (Hamet al., 1996) with the RAOB
profiles, the measured LST and the laboratory-measuSE.

The first guesses of LST and the surface emisssvdire generated using

X, =% +E(&,) (15)
where Xy is the first guess is the true parameter, affdx;) is a random number with a
bias of 0 and a standard deviation (STD)daf (10 K for LST; 0.1, 0.02 and 0.02 for
emissivities of 8.7, 11 and 1#n, respectively). The first guesses of LSE areragstd

within [0.5 0.99], [0.85 0.99] and [0.9 0.99] fdret three channels, respectively. The GFS
forecast is used as the first guess for the atneygphrofiles.

4.2 Output from LSE algorithm

The primary output from the LSE algorithm is theEL® three SEVIRI window channels
(8.7, 10.8 and 12 um). These retrieved LSEs arnel Yat all the given time steps. A
bypass product of LST is also returned, for eanotetstep. Figure 2 shows the scatter
plots of the three LSE and LST, along with theistiats for the LZA of 0 degree from the
simulation study. Note that the noise is addeddachechannel based on the instrument
characteristics and forward model uncertainty. Bbr four variables, the physical
retrieval algorithm successfully brings them closetthe true values. In particular, for
LST and LSE at 8.7 um, the retrievals are signifiiljabetter than the first guesses; the
root-mean-square (RMS) error for LST is reducednfdd K to 1.04 K; and the RMS of
the 8.7 um LSE is reduced from 0.087 to 0.018. ther 10.8 and 12 um LSE, the
algorithm is also able to improve the first guessies RMS is reduced from 0.018 to less
than 0.015. However, the improvements are lessfignt compared with LST and LSE
at 8.7 um.
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Figure 2. The scatter plots of the retrieval par@nseagainst the true values for a) LST,
b) 8.7 um LSE, ¢) 10.8 um LSE and d) 12 um LSE. X¥-a&is represents the true values,
and the y-axis represents the retrieved values.

The goal of this study is to develop an algorithmattis less sensitive to: the first guess,
the local zenith angle (LZA), radiance noise andiaace bias. It is known that the
inverse problem in this study is an ill-posed noedir problem, which means the retrieval
will be dependent on the quality of the first gussand observation noise, which in this
study include instrument noise and the forward rhodeertainty. Figure 3 shows how
the quality of the first guess affects the retrlexfaLSE and LST. In each panel, only one
first guess is allowed to have a different precisi6rom Figure 3 (a), the retrieval
precisions of all four parameters are not affectesth by the accuracy of the LST first
guess. When the precision of the LST first guesdeigraded from 2 K to 10 K, the
retrieval precisions for the four parameters a@daased by less than 0.01 K, 0.0002,
0.0002, and 0.0002. This result indicates the tualf the LST first guess is not
important for the retrieval. Figure 3 (b) showstttie precision of the first guess of the
8.7 um LSE is not important either. The retrieviqgisions for the four parameters are
also very weakly affected when the precision of firg guess of the 8.7 um LSE is
increased from 0.02 to 0.1. On the contrary, Fidute) and 3 (d) show that the retrieval
precisions for all four variables are highly affsttby the quality of the first guesses of
10.8 and 12 pym LSE. When the precision of the fins¢ss of the 10.8 um LSE is
increased from 0.005 to 0.04, the retrieval preasiare degraded greatly. In particular,
for LST the retrieval precision is degraded frori@K to 1.46 K. For the 8.7 um LSE,
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the retrieval precision is also greatly degradednf0.017 to 0.026. Finally, the 10.8 pm

LSE is degraded the most among the three chantisprecision change is 0.013.

Comparing Figure 3 (c) and 3(d), the retrievallighsly less affected by the 12 um LSE

than the 10.8 um LSE because the 12 um is moretedfdy water vapor absorption than
the 10.8 um. The weighting functions of LST and L&E typically smaller than those

for the 10.8 um, resulting in less sensitivityie accuracy of the first guess of the 12 um
LSE.
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Figure 3. The impacts of the first guesses on thesipal retrieval from a) LST, b) 8.7
pum LSE, c) 10.8 um LSE and d) 12.0 um LSE. Theig-eepresents the RMSE of the
first guess. Blue solid lines represent the LSTieeal RMS (the left coordinate). Green,
red and cyan dotted lines represent retrieval RM3£7, 10.8 and 12 um LSE (the right
coordinate).

The previous results show that the quality of ith&t fuess is extremely important for the
10.8 and 12 um LSE, and much less important foBtligum LSE and LST. These three
channels are all in TIR window region, and they allesensitive to the surface. The
guestion is why the quality of the 10.8 and 12 p8ELfirst guesses affect the retrieval
much more than that of the 8.7 um LSE? As showhiist al., (2010), the physical

reason for the simultaneous use of 10.8 and 12 psm@ more first guess dependency
than others is that these two channels observsutiace in a more similar manner than
any other two channel combination. As a resulttghe more “correlation” between the
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two channels than between any other two channéls.miakes it difficult to retrieve the
two LSE with high accuracy simultaneously.
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Figure 4. The retrieval accuracy (mean bias eramg precision (STD of error) of a)
LST, b) 8.7 um LSE, c) 10.8 um LSE and d) 12 pi@Elchange with the local zenith
angle. The solid lines represent the precision,thadlotted lines represent the accuracy.
The blue lines represent the first guesses, angrében lines represent the retrievals.

It is understandable that the retrieval precis®rsensitive to the LZA. Usually, as the
LZA increases, the retrieval precision decreaseswd¥er, it is important that the
algorithm works in a wide range of LZAs. Figure Hows how the LZA affects the
retrieval precision and accuracy. At all LZAs fr@rio 84 degrees, the algorithm is able
to improve the first guesses, especially when tBA is less than 60 degrees. When the
LZA is larger than 60 degrees, the precision of L&8W LSE at 8.7 um is degraded
quickly and significantly. It is interesting thdtet precision of LSE at 10.8 and 12 yum is
only weakly affected by the increased LZA. Thidvecause fewer constraints are posed
on the LST and 8.7 um LSE in the inverse of th&t fjuess error covariance matrix in
Equation (12). As the LZA increases, the channsdssitivity to the surface decreases.
The retrieval becomes more sensitive to the elirotbe first guesses and the satellite
observations. Retrieval variables with fewer caaiats suffer more than variables with
strong constraints.

From Figure 4, a cut-off LZA of 67 degrees is reaoamded; any retrieval with an LZA
larger than the cut-off value is considered unbddia The cut-off of 67 degrees is
conservatively chosen for two additional conceria3: at large LZAs, the cloud
contamination becomes more dominant, as the cl@tidad thickness are substantially
increased seen by the satellite; and 2) the radiatansfer calculation at large LZAs
appears to have worse accuracy and precision.
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Figure 5. The LST retrieval precision as a funcidrocal zenith angle and 12 uym LST
weighting function.

0.5

The retrieval with a large LZA has less precisi@tduse the weighting functions of LST
and LSE statistically decrease with increased LBAwever, even with a large LZA, if
the weighting functions are large enough, the eesiis may still be accurate, if there is
no cloud contamination and the radiative transtdcudation is reliable (e.g., trained to
these angles). Similarly, at low LZA, if the weiglg functions are small, the retrievals
might be not accurate. Figure 5 shows the retripuatision of LST as a function of the
12 um LST weighting function and LZA. The colorezch pixel represents the averaged
LST retrieval precisions (note the color bar is lnmtar). The blank pixels are either no
retrievals, or the number of retrievals is too drtmlhave statistical meaning. The LST
retrieval precisions are better if the 12 um LSTiglveng functions are large, regardless
of LZA. On the contrary, if the 12 um LST weightifignction is small, the retrieval
precisions are worse, no matter how large the L& Alearly, the LST retrieval precision
has a better linear relationship with the 12 um Mighting function than the LZA.
There are two situations in which the 12 pm LSTghéng functions are small: 1) the
large LZA lowers the 12 um LST weighting functiand 2) the excessive moisture in
the atmosphere greatly attenuates the surface IRsem, reducing the 12 pm LST
weighting function. In both situations, the retaéwill have a low precision.

It is critical that the algorithm is not sensitite the noise inéYn, including the
observation noise and the forward model uncertaifitye observation noise can be
estimated from the instrument characteristics, taedorward model uncertainty is 0.2 K
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for all three channels. Figure 6 shows how theeaftects the retrievals. Three different
levels of noise are added: half (6+9.1), normal (1.6+0.2) and double (2d3-0.4).0
denotes the instrument noise. The retrieval precis only weakly affected by the noise.
As the noise increases, the retrieval precisiogsedse, but very slowly. When the noise
is doubled from half to normal, the changes iniegtl precisions for all four variables
are very small. When the noise is doubled from rarm double, the changes are more
visible, but still very small. The average LST psean decrease is 0.1 K. And the LSE
precision decrease is 0.002, 0.001 and 0.001 éothtee channels. These small changes
indicate the physical algorithm is only weakly déwe to the noise. Not shown here is
that the retrieval accuracy is not affected byrtbise.

—
o
o
o

LSE precision

LST precision (K)
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2
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| I I I l l
0 : 0
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I 2.06+0.4
Figure 6. The LST and LSE retrieval precisions@#d by noise, including instrumental
noise and forward model uncertainty. The left ysagifor LST, and the right y-axis is for
noise, and the brown bars represent double the ndlee retrieval accuracy is not shown
because it is not affected by the noselenotes the instrumental noise.

When applied to real data, the radiance bias ishandactor that needs to be addressed.
The radiance bias may come from satellite obsemsatdue to calibration, dust and cloud
contamination, or from the radiative transfer m&l&ilure to accurately simulate water
vapor absorption. Dust contamination is a seveablpm when applying the method
over Africa. Figure 7 shows how the retrievals affected by the radiance biases. The
control run (light green) does not have any radabi@ses. Two experimental runs are
conducted. In the first one, a radiance bias df i¢ added to the 8.7 um Tb to simulate
dust contamination. And in the second experimemdsance bias of 0.5 K is added to
the 12 um Tb to simulate RT model bias. From Figurthe radiance bias in 8.7 um has
little impact on the retrieval of the LST and LSEL8.8 and 12 pm; the accuracies do not
change much from the light green to the blue bBrd. it greatly decreases the LSE
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accuracy of 8.7 um from 0.005 to -0.028. In corjrdee radiance bias in 12 um affects
all four variables; the LST is changed by +0.32aK¢ LSE is changed by -0.008, -0.007
and 0.008 for the three channels. These changesaiadhe physical algorithm is only

partially affected by the radiance biases.
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Figure 7. The LST and LSE retrieval accuracy a#ddiy radiance biases. The left y-axis
is for LST, and the right y-axis is for LSE. Theublbars represent -1 K for the 8.7 um
radiance bias due to dust contamination. The kigaén color represents the control run,
which has no radiance bias. The brown bars repre€eh K for the 12 um radiance bias
from the radiative transfer calculation. The retaleprecision is not shown because it is

not affected by the radiance biases.

The SEVIR LSE algorithm is applied to real SEVIRdservations from August 2006.
Since there are no enough LSE measurements, ndattah has been conducted to
qguantify the LSE retrieval accuracy and precisidhe LSE retrievals have been inter-
compared with other LSE products. Figure 8 showesrétrieved SEVIRI LSE imagery
for 8.7 um, along with monthly LSE imagery from IARIRS and MODIS/Aqua. The
visual comparison shows that the SEVIRI LSE retilsvhave a lot similarity to the
operational MODIS/Aqua monthly LSE product, espikgigeographical distribution.
Both the SEVIRI and MODIS/Aqua have much bettertigpaesolution than the IASI
(0.5 degree) and operational AIRS (1 degree) mgit8E product.
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Figure 8. (Top left) the retrieved SEVIRI LSE frodagust 1 2006 for 8.7 um, (top right)
IASI monthly LSE product for 8.7 um from August Z0(after convolved using SEVIRI
spectral response function), (lower left) operaioAIRS monthly LSE product for 8.7
pm from August 2006, and (lower right) operationdDIS/Aqua LSE product for 8.55
pm (collection 4.1) from August 2007. The blankaarare either cloudy or no data.
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Figure 9. The scatter plots of 8.7 pum LSE produats (left) SEVIRI, (middle)
operational monthly AIRS, and (right) IASI using NdC5/Aqua operational monthly
LSE product as reference. The SEVIRI product agnats MODIS/Aqua product better
than both AIRS and IASI.
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Figure 10. Same as Figure 8 except for 10.8 um.
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Figure 11. Same as Figure 9 except for 10.8 um.

According to Li et al., 2010, the operational MOA§ua monthly LSE product has
better precisions than both IASI and AIRS. It iediss reference to evaluate the SEVIRI
LSE product. Figure 9 shows the scatter plots ef8¥ pum LSE using MODIS/Aqua
operational monthly LSE product (collection 4.1) asference. Compared with
operational AIRS and IASI monthly LSE products, 8#VIRI LSE product has smaller
STD (0.0388) and bias (-0.000878), indicating tieVERI LSE product has more
similarity to the MODIS/Aqua product than AIRS alA®bI.

37



SEVIRI-2006-08-01 (12 pm)
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Figure 13. Same as Figure 9 except for 12 um.

Figures 10 and 12 show the LSE product imagery @8 and 12 pm. Figures 11 and 13
show the scatter plots using MODIS/Aqua as referdac10.8 and 12 um. For both 10.8
and 12 um, the SEVIRI LSE products agree with MQBtfsia operational monthly LSE
products better than AIRS and IASI.
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Figure 14 The SEVIRI LST products (left) compared with BEMWF analysis (right
for three time steps: 6 (upper), 12 (middle) andla®er) UTC on August 1 20C The
SEVIRI LSE product better agrees with the actualing pattern (from east to wes

An indirect way to qualitatively evaluate SEVIRI ESroduct is to compare the -

product of LST retrieved by the SEVIRI LSE algonithSince the LSE and LST &
simultaneously retrieved from the SEVIRI LSE algbnit, it is expected that the LS
product has reasonable value if the Ls reasonably retrieved. Figure shows the time
series of the SEVIRI LST compared with ECMWF anialysver north Africa. In th
moming at 6 UTC, the Sun arises from the east, arel $3EVIRI LST produc
successfully reveals that the surface temperataeient is from the west (low LST)

the east (high LST). The ECMWEF analysis, on theeothand, fails to capture th
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gradient. At 12 UTC, the Sun is directly overheBdth the ECMWF and SEVIRI LST
show that the heating is all over the place, aedstirface temperature gradient is not that
much, although the latter shows much better spaggadlution than the former. In the late
afternoon at 18 UTC, the Sun moves to the far wesé SEVIRI LST successfully
shows the surface temperature gradient is frometst (low LST) to the west (high
LST). Again, the ECMWEF analysis fails to capture tradient.

Without LSE measurements, it is difficult to validathe SEVIRI LSE product.
According to Li et al. (2010), the LSE precisiomdze objectively derived using satellite
observations. This will be included in the 100 %BLX.

4.2.1 Precision and Accuracy Estimate

The SEVIRI LSE product has not been validated duné lack of LSE measurements.
However, the simulation study with various sengiivests shows that the algorithm is
stable and efficient. It is expected that the estl accuracy and precision are less than
0.03 for the LZA less than 67 degree. Both meetréogiirement of 0.05. An objective
method, recently developed by Li et al., 2010, iMdlused to evaluate the LSE precision.

4.2.2 Error Budget

Sensitivity studies were conducted to test therélyo’s sensitivity on the first guess, the
local zenith angle, the radiance noise and theradi biases. The simulation study shows
that

The algorithm is effective at bringing the LST an8E at 8.7 um to the true state, no
matter how good the first guesses are.

The algorithm is also able to improve the LSE aBlénd 12 um, although it is more
dependent on the quality of the first guesses.

It is found that the retrieval is less sensitive #A, but more sensitive to the value of the
weighting functions of LSE and LST. As long as theighting functions are large
enough (large sensitivity), the retrieval precisi@me good. However, when applying to
real data, the retrieval might not be as good dkarsimulation when the LZA is large as
there might have more radiative transfer uncergaanid cloud contamination in the large
LZA. An LZA cut-off of 67 degrees is recommendedrir the study.

The algorithm is found to be weakly sensitive t@ tbbservational random noise,
including the observation noise and the forward ehashcertainty, while the retrieval is
partially sensitive to the radiance biases. Theara® bias in the 8.7 um from dust
contamination only affects the retrieval of the Bm LSE, while the radiance bias in the
12 pm from the radiative transfer calculation affebe retrieval of LST and all the LSE.
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5 PRACTICAL CONSIDERATIONS

5.1 Numerical Computation Considerations

Both the regression and the physical iterative ¢udace are mathematically
straightforward. The requirement of the computai®mot high since there are only 9
variables and 9 equations (for SEVIRI). Besideg, #hgorithm only runs four times
(every 6 hours) a day.

5.2 Programming and procedural Considerations

The LSE algorithm requires knowledge of clear mask NWP forecast information
within each FOR. The LSE is implemented sequegt{pite-process, regression followed
by iterative physical approach). The LSE is pur@lf¥OR by FOR algorithm. Then it
could be parallelized in future version for progegswith several CPU. The only task
that is not made inside LSE code is spatial intiatpm of NWP before retrieval process
upon the arrival of new NWP data to avoid repeatdtocess every slot.

5.3 Quality Assessment and Diagnostics

Currently, there is no quality assessment to peaidy quality flag of the LSE retrieval.
Both the simulation and the application to the obsg SEVIRI show that LSE retrievals
are reasonable except that some FORs have LSHgligtger than 1.0 for 12 um. In the
100 % ATBD, the following procedures will be implented to diagnose the
performance of the LSE.
» Derive BT residuals between observations and catioms with forecast and
retrieval.
* The absolute value of LSE should be reasonablythess1.0.
* The temporal variation of LSE should be small ie 8urface condition is not
changed dramatically.
» The LSE retrieval precision is usually not good wiige LST and LSE weighting
functions of 12 pm are small.

5.4 Exception Handling

Algorithm cannot be run if any of the mandatorydifannels data, ABI CM and NWP
forecast is bad or missing. It is required thabélhe 3 by 3 FOVs are in clear sky and
over land.

5.5 Algorithm Validation

5.5.1 Pre-launch Validations
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The application to both the simulated and the oleseSEVIRI radiances shows that the
LSE algorithm is effective and efficient. The simitibn study shows that the algorithm is
particularly effective on retrieving LSE of 8.7 pand LST, despite of the quality of the
first guesses of these two. The algorithm is aféectve on retrieving LSE of 10.8 and
12 um although more dependent on the quality offiisé guesses of these two. The
inter-comparison to the MODIS/Aqua operational bt SE product shows that the
SEVIRI LSE agrees with MODIS/Aqua better than btte AIRS and IASI, both of
which are hyperspectral instruments.

Recently, an efficient method for quantitativelyakating the land surface emissivity
(LSE) precision using satellite radiance observetics introduced by Li et al. (2010).

The LSE Tb deviations, defined as the standardatiewvis of Tb differences between
satellite observations and radiative transfer datmns, can be estimated by minimizing
the impacts from land surface temperature (LST) atrdospheric profiles. This is

followed by the estimation of LSE precision. Thigthod does not need the true LSE
measurements. It only needs ancillary informatiochsas atmospheric profiles and LST,
both of which do not require high accuracy and thas be obtained from an NWP
forecast or analysis. The SEVIRI LSE will be congmhwith AIRS operational products,

the MODIS operational products, and the IASI resleaproduct. Results will be

presented in 100 % ATBD.

5.5.2 Post-launch Validations

Similar as the pre-launch validation, the stratefiythe post-launch validation mainly
consists of two approaches. One, the GOES-R/ABI p&iducts will be inter-compared
with other LSE products, such as MODIS, AIRS, 1A®8Id CrIS. Second, the objective
method developed by Li et al., 2010 will be usedjtantitatively evaluate the GOES-
R/ABI LSE precisions. If possible, the ABI LSE prads will be compared with

laboratory measurements.
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6 Assumptions and Limitations

6.1 Performance

The factors impact LSE performance include the aoescy of CM, uncertainty of fast
RTM, radiance and calibration bias, and imperfddirst guesses of the LSE of the split
window channels. The strategies for mitigatioriude:

(1) For CM improvement, collaborate with cloud teamd provide feedback on using
their CM product, identify the problematic areasewh CM algorithm needs to be
improved.

(2) Compare the LSE products retrieved using PFAASTTOV and CRTM. Evaluate
the products and choose the one that has the taessipn.

(3) For radiance bias, compare the ABI observedarmgs to the more accurate
hyperspectral observations, such as IASI and AIRSive the radiance bias adjustment
coefficients, and these coefficients should be tgztieoutinely.

(4) The first guesses of the split window channetslld also be from other LSE
databases, such as AIRS, MODIS and IASI. Evaluatidhbe conducted to determine
which one serves the best first guess.

6.2 Assumed Sensor Performance
Good ABI radiometric performance is required. Themsstivity study shows that the
algorithm is only weakly sensitive to the instrurmeaise. However, as another source of

random noise, the forward model uncertainty migitehmore impacts on the retrieval.
Therefore, an accurate RT model is preferred.

6.3 Pre-planned Product Improvements

Here are pre-planned product improvements basedhenoperational priority and
feasibility.

6.3.1 Improvement 1: using emissivity database as firstiugess.

Evaluation will be conducted to determine the di®E database (from MODIS, AIRS,
IASI and UW Baseline Fit) as the first guess.

6.3.2 Improvement 2: Radiance bias adjustment
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The more accurate hyperspectral radiances from k8l AIRS will be used to correct
SEVIRI/ABI radiances.

6.3.3 Improvement 3: Using more sophisticated RT model.

Evaluation will be performed to determine if CRTMRTTOV is necessary.

6.3.4 Improvement 4: Using regional high resolution foreast model

The algorithm benefits from more sophisticated acclrate NWP model. It is believed
using regional high resolution NWP model improve LUSE retrieval.

6.4 Assumptions
* The single FOV ABI CM is available before the LSHrieval
» Forecast temperature and moisture profiles, as wa®llsurface pressure are
available
* NeDR and calibration for all ABI IR bands are knoamd reasonably good
» Afast and accurate RTM along with K-Matrix compiga are available
» Retrieval is performed on FOR basis
» Spectral response knowledge is stable and known
» ABI satellite position is known
» SSEC quality ABI data with respect to striping béity, cross-talk, etc.

6.5 Limitations
» LSE products are only available over “clear” FOR$/dall FOVs within the
FOR are clear)
» Effect of emissivity short-term variation is notrfued.
» Surface roughness and skin temperature non-homogsness are not handled
* Since itis an iterative physical retrieval, congiign is relative expensive and
increase the width of the FOR could be necessdarge region processing
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8. APPENDIX
Table Al: LSE output variables — quality flags

Variable Name

Unit

Type

Sizé

Description

Quality Flag

none

Int8

NX_NY

Overall quality flag :
=0 : good
=1: space
=2 : latitude greater than threshold
=3 : satellite zenith angle greater than
threshold
=4 : number of clear pixels less than
threshold
=5 : missing NWP data
=6 : fatal processing error

Quality Flag_Rtvl

none;

Int8

NX_NY

Retrieval qualitag:
=0: good retrieval
=1: non-convergence
=2: residual too large
=3: non-completed converge
=4: bad retrieval

Quality_Flag_Ks1zum | None

Int8

NX_NY

Surface sensitivity quality:
=0: Kis 12,m>0.3, good

=1: Kts,lZum<:0-3 bad

TNX_NY refers to the number of FORs in the x-direntby the number of FORs in the y-direction

#: Kis,12um is the LST weighting function of 12 micron.

Table A2: LSE output variables -- quality infornuati

Variable Name Unit | Type Sizé Description

Num_Iteration nonel Int8 NX_NY Number of iterations
RMSE_BrtTemp_Nex{ K Float32| NX_NY RMSE of average BT residual after retriev
Num_Clr_Pix none| Int8 NX_NY Number of clear pixéisFOR?

TNX_NY refers to the number of FORs in the x-direntby the number of FORs in the y-direction
@: this number changes with the FOR size.

Table A3: LSE meta-data

Name Details/Comment:
Date swath beginning and swath end
Time swath beginning and swath end

Bounding Box

product resolution

number of rows and

number of columns,
bytes per pixel
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data type
byte order information
location of box relative to nadir (pixel space)

Product Name

Product Units

Ancillary Data to Produce Product

product precedenc

Version Number

Origin

where it was produced

Quality Information

Name

Satellite

GOES-16, etc.

Instrument

ABI

Altitude

Nadir pixel in the fixed grid

Attitude

Latitude

Longitude

Grid Projection

Type of Scan

Product Version Number

Data compression type

Location of production

Citations to Documents

Contact Information

For each LSE product, the following
information is required:

Mean, Min, Max and Standard deviatio
of retrievals from first guess

=]

for LSE

Number of IR channels, channel 8 to
channel 16

For each IR channel, the following
information is required:

Mean difference between calculated B|

(from first guess) and observed BT for {

IR channel

=2 —

Number of QA flag values

For each QA flag value, the following

information is required:

Percent of retrievals with the QA flag
value

Definition of QA flag

Total number of attempted retrievals
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