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ABSTRACT 
 
This Rainfall Rate Algorithm Theoretical Basis Document (ATBD) contains a high-level 
description (including the physical basis) of an algorithm for estimating pixel-scale 
rainfall rate from images taken by the Advanced Baseline Imager (ABI) flown on the 
Geostationary Operational Environmental Satellite-Series R (GOES-R) series of National 
Oceanic and Atmospheric Administration (NOAA) geostationary meteorological 
satellites.  A brief overview of the GOES-R observing system is followed by a more 
specific description of the Rainfall Rate algorithm, validation efforts, and planned 
improvements.  
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1  INTRODUCTION 

1.1 Purpose of This Document 

The Rainfall Rate Algorithm Theoretical Basis Document (ATBD) provides a high-level 
description of and the physical basis for the estimation of pixel-scale rainfall rate from 
images taken by the Advanced Baseline Imager (ABI) flown on the Geostationary 
Operational environmental Satellite-Series R (GOES-R) series of National Oceanic and 
Atmospheric Administration (NOAA) geostationary meteorological satellites.  The 
rainfall rate is produced as an Environmental Data Record (EDR) and the algorithm 
output is used by the rainfall potential algorithm to create nowcasts of rainfall rates and 
accumulations. 

1.2 Who Should Use This Document 

The intended users of this document are those interested in understanding the physical 
basis of the algorithms and how to use the output of this algorithm in a manner that is 
consistent with its underlying assumptions.  This document also provides information 
useful to anyone maintaining or modifying the original algorithm.   

1.3 Inside Each Section 

This document is broken down into the following main sections. 

• System Overview: Provides relevant details of the Rainfall Rate Algorithm and 
provides a brief description of the products generated by the algorithm. 

• Algorithm Description : Provides all the detailed description of the algorithm 
including its physical basis, its input and its output. 

• Test Data Sets and Output: Provides a description of the test data set used to 
characterize the performance of the algorithm and quality of the data products.  It 
also describes the results from algorithm processing using simulated input data. 

• Practical Considerations: Provides an overview of the issues involving 
numerical computation, programming and procedures, quality assessment and 
diagnostics and exception handling.  

• Assumptions and Limitations: Provides an overview of the current limitations of 
the approach and gives the plan for overcoming these limitations with further 
algorithm development. 

1.4 Related Documents 

This document currently does not relate to any other document outside of the Parallax 
Algorithm Theoretical Basis Document and to the specifications of the GOES-R Ground 
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Segment Mission Requirements Document (MRD) and Functional and Performance 
Specification (F&PS) and to the references given throughout. 

1.5 Revision History 

Version (0.1) of this document was created by Dr. Robert J. Kuligowski of 
NOAA/NESDIS [National Environmental Satellite, Data, and Information 
Service]/STAR [Center for Satellite Applications and Research] and its intent was to 
serve as a draft submission to the GOES-R Program Office (GPO) for initial comments. 

Version (1.0) of this document was created by Dr. Robert J. Kuligowski of 
NOAA/NESDIS and its intent was to accompany the delivery of the 80% algorithm to the 
GOES-R AWG Algorithm Integration Team (AIT). 

Version (2.0) of this document was created by Dr. Robert J. Kuligowski of 
NOAA/NESDIS and its intent was to accompany the delivery of the 100% algorithm to 
the GOES-R AWG Algorithm Integration Team (AIT). 
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2 OBSERVING SYSTEM OVERVIEW 

This section will describe the products generated by the ABI Rainfall Rate Algorithm and 
the requirements it places on the sensor.  

2.1 Products Generated 

The Rainfall Rate Algorithm produces a field of instantaneous rainfall rates associated 
with the most recently available GOES imagery.  In terms of the F&PS, it is responsible 
directly for the Rainfall Rate / QPE [Quantitative Precipitation Estimate] product within 
the Hydrology product sub-type, and meets the requirements listed in Table 1.  The 
Rainfall Rate Algorithm design calls for a quantitative rainfall rate in millimeters per 
hour on the same grid as the 2-km ABI IR bands.  These products are intended for use by 
operational meteorologists and hydrologists for flood forecasting.  There are no 
diagnostic products for external use aside from the official Rainfall Rate product and 
accompanying quality flags, but the calibration coefficient tables and rainfall class grids 
will be available internally for diagnostic purposes. 

 

Requirement Description Requirement Value 
Name Rainfall Rate / QPE 
User GOES-R 
Geographic Coverage Full Disk 
Temporal Coverage Qualifiers Day and night 
Product Extent Qualifier Quantitative out to at least 70 degrees LZA or 60 degrees 

latitude—whichever is less—and  qualitative beyond 
Cloud Cover Conditions Qualifier N/A 
Product Statistics Qualifier Over rain cases and mesoscale-sized surrounding regions 
Vertical Resolution N/A 
Horizontal Resolution 2.0 km 
Mapping Accuracy 2.0 km 
Measurement Range 0 – 100 mm/hr 
Measurement Accuracy 6 mm/hr at a rate of 10 mm/hr with higher values at 

higher rates (pending addition: “Quantitative for 
convective rainfall and qualitative for stratiform 
rainfall.”)  

Product Refresh Rate / Coverage 
Time (Mode 3) 

15 min 

Refreshment Rate / Coverage Time 
(Mode 4) 

15 min 

Vendor Allocated Ground Latency 266 sec 
Product Measurement Precision 9 mm/hr at a rate of 10 mm/hr with higher values at 

higher rates (pending addition: “Quantitative for 
convective rainfall and qualitative for stratiform 
rainfall.”)  
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Table 1. F&PS Requirements for the Rainfall Rate / QPE algorithm. 

Note that for pixels outside the local zenith angle and latitude cutoffs, rainfall rates will 
still be generated by the algorithm, but their use will be discouraged and they will not be 
validated for comparison against spec. 

2.2 Instrument Characteristics 

The rainfall rate will be produced for each pixel observed by the ABI between 60°S and 
60°N latitude that has a local zenith angle (LZA) of less than 70 degrees.  The final 
channel set is still being determined as the algorithms are developed and validated.   
Table 2 summarizes the current channel use by the Rainfall Rate Algorithm.  Note that 
these particular bands had METEOSAT Spinning Enhanced Visible InfraRed Imager 
(SEVIRI) equivalents and therefore are the only ones used in the current version of the 
algorithm.  However, the operational version of the code will be modified to include 
inputs from the available ABI bands without SEVIRI equivalents if they are shown to 
have a positive impact on algorithm performance.  

 

Channel Number Wavelength (µm) Resolution (km) Used in Rain Rate 
1 0.47 1.0  
2 0.64 0.5  
3 0.865 1.0  
4 1.378 2.0  
5 1.61 1.0  
6 2.25 2.0  
7 3.9 2.0  
8 6.19 2.0 � 
9 6.95 2.0  
10 7.34 2.0 � 
11 8.5 2.0 � 
12 9.61 2.0  
13 10.35 2.0  
14 11.2 2.0 � 
15 12.3 2.0 � 
16 13.3 2.0  

Table 2. Channel numbers, wavelengths, and footprint sizes of the ABI bands. 

In addition to the data from the individual bands, the algorithm also uses brightness 
temperature differences (BTD’s) between pairs of selected bands, and also uses some 
spatial gradient information from the infrared (IR) window band (14); see Section 3.4.1.1 
for details.  Therefore, the performance of the Rainfall Rate Algorithm is sensitive to any 
imagery artifacts or instrument noise.  The channel specifications are given in the 
Mission Requirements Document (MRD) section 3.4.2.1.4.0. The performance outlined 
therein was assumed during development efforts. 
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3 ALGORITHM DESCRIPTION 

This section contains a complete description of the algorithm at the current level of 
maturity (which will improve with each revision).  

3.1 Algorithm Overview 

The rain rate algorithm identifies raining pixels and derives rain rates on a pixel level in 
ABI imagery.  Its calibration is based on matches of ABI data with microwave (MW)-
derived rainfall rates, which are considered to be the most accurate estimates of 
instantaneous rainfall rate available from satellite data.  The ABI rain rate algorithm is 
based on the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm 
first described in Kuligowski (2002). 

The algorithm derives rainfall rate fields in two steps: 

1. Identify pixels that are experiencing rainfall.  The predictors and predictor 
coefficients for detecting rainfall are derived using discriminant analysis in a 
calibration against MW-retrieved rainfall areas. 

2. Retrieve rainfall rates for pixels where rainfall has been detected.  The predictors 
and predictor coefficients for retrieving rainfall rate are derived using stepwise 
forward linear regression in a calibration against MW-retrieved rainfall rates. 

The rain rate algorithm provides estimates of instantaneous rainfall rate at the same pixel 
resolution as the ABI.  In addition to its use in estimating rainfall rates from current ABI 
data, the estimates are also extrapolated forward in time in the GOES-R Rainfall Potential 
Algorithm, and these nowcasts are in turn used as input for the Probability of Rainfall 
Algorithm (see corresponding ATBD’s for additional details).   

3.2 Processing Outline 

The processing outline of the rain rate algorithm is summarized in Fig. 1.  The rain rate is 
designed to run on individual pixels, with some information required from pixels in the 
5x5 neighboring region. 
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Figure 1. High Level Flowchart of the rain rate algorithm, illustrating the main 
processing sections. 
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3.3 Algorithm Input 

This section describes the input needed to process the rainfall rates.  While the rainfall 
rate is derived for each pixel, it does require limited knowledge of the surrounding pixels 
(5x5).  The Rainfall Rate Algorithm can run with information from only one pixel, but 
only if certain predictors are removed from the predictor set. 

3.3.1 Primary Sensor Data 

The list below contains the primary sensor data used by the Rainfall Rate Algorithm.  
Primary sensor data refers to information that is derived solely from the ABI observations 
and geolocation information. 

• Parallax-corrected, calibrated brightness temperatures (or radiances that will then 
be converted to brightness temperatures) for channels 8, 10, 11, 14, and 15 (see 
separate ATBD for description of parallax correction algorithm) 

• Pixel latitude and longitude 

• Minimum channel 14 brightness temperature over a 5x5 array centered on the 
pixel of interest 

• Average channel 14 brightness temperature of the nearest 4 pixels along the scan 
line (2 on each side) and nearest pixel in the two adjacent scan lines 

• Any relevant ABI quality control flags 

3.3.2 Ancillary Data 

The following list briefly describes the ancillary data requited to run the Rainfall Rate 
Algorithm.  Ancillary data is defined as data that requires information not included in the 
ABI observations or geolocation data.  All three of these ancillary data sets would be 
considered to be non-ABI dynamic data (i.e., they are not other ABI-derived products); 
no static ancillary data (i.e., time-constant ancillary data such as topography or a land/sea 
mask) are required. 

• MW-derived rainfall rates 

Rainfall rates, presumably from MW data but also permissible from active radar, 
are required as a calibration target for the algorithm.  These rainfall rates do not 
need to be available in real time, though the accuracy of the rain rate estimates 
tends degrade slightly as the difference between the time period covered by the 
training data and the time of the retrieval from the ABI becomes longer. The MW 
rainfall rates will be obtained from an operational NESDIS Blended Microwave 
Rainfall Rate product that will combine rainfall rates from multiple platforms 
(e.g., SSMIS, AMSU-B/MHS) and match their statistical distributions in order to 
resolve inconsistencies between the two. 
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• Matched MW rain rates and ABI predictors 

These MW-derived rainfall rates are matched with ABI-derived predictors that 
have been aggregated to the spatial resolution of the MW rain rates (nominally 15 
km).  Each data point is on a separate data record (the data are not necessarily on 
a regularly-spaced grid, though they can be) and the contents of each record of 
this matched file are given in Table 3: 

 

4-Byte 
Word 

Variable Type Value 

0 MW pixel latitude Real*4 -60.0 to 60.0 
1 MW pixel longitude Real*4 -180.0 to 180.0 
2 MW rainfall rate (mm/h) Real*4 0 to 50 
3 SEVIRI band 8 brightness temperature (K) Real*4 174 to 325 
4 SEVIRI band 10 brightness temperature (K) Real*4 174 to 325 
5 SEVIRI band 11 brightness temperature (K) Real*4 174 to 325 
6 SEVIRI band 14 brightness temperature (K) Real*4 174 to 325 
7 SEVIRI band 15 brightness temperature (K) Real*4 174 to 325 
8 S = 0.568-(Tmin,11.2-217 K) Real *4 -107.432 to 43.568 
9 Gt = Tavg,11.2 - Tmin,11.2 Real*4 0 to 151 
10 MW satellite ID Integer*4  

Table 3. Contents of each data record of the IR-MW matched data file. 

• Retrieval coefficient table 

This table contains the ID’s (from the matched file) of the selected predictors 
along with their calibration coefficients for both rain / no rain discrimination and 
rain rate calibration.  A list of the contents of this table is provided in Table 4: 

 

 

4-Byte 
Word 

Variable Type Value 

0 Digital day Real*4 0 to 366.99 
1 Number of previous time periods required for 

training 
Integer*4 1 and higher 

2-13 Heidke Skill Score from rain / no rain calibration 
(1 value for each of 12 classes) 

Real*4 -1.0 to 1.0 

14-25 Correlation coefficient from rain rate calibration 
(1 value for each of 12 classes) 

Real*4 -1.0 to 1.0 

26 First rain rate predictor ID for class 1 Integer*4 1 to 16 
27 Second rain rate predictor ID for class 1 Integer*4 1 to 16 
28 First rain / no rain predictor ID for class 1 Integer*4 1 to 8 
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29 Second rain / no rain predictor ID for class 1 Integer*4 1 to 8 
30-33 Predictor ID’s for class 2 Integer*4 1 to 16 for rate; 1 to 

8 for rain / no rain 
34-73 Predictor ID’s for classes 3-12 Integer*4 1 to 16 for rate; 1 to 

8 for rain / no rain 
74-75 Rain rate intercept for class 1 Real*8  
76-77 Class 1 rain rate multiplier for predictor 1 Real*8  
78-79 Class 1 rain rate multiplier for predictor 2 Real*8  
80-85 Rain rate intercept and multipliers for class 2 Real*8  
86-145 Rain rate intercept and multipliers for classes 3-12 Real*8  
146-147 Class 1 rain / no rain multiplier for predictor 1 Real*8  
148-149 Class 1 rain / no rain multiplier for predictor 2 Real*8  
150-153 Class 2 rain / no rain multipliers Real*8  
154-193 Class 3-12 rain / no rain multipliers Real*8  
194-205 Class 1-12 rain / no rain threshold values Real*4  
206-207 Class 1 nonlinear transformation multiplier for 

predictor 1 
Real*8  

208-209 Class 1 nonlinear transformation multiplier for 
predictor 2 

Real*8  

210-213 Class 2 nonlinear transformation multipliers Real*8  
214-253 Class 3-12 nonlinear transformation multipliers Real*8  
254-255 Class 1 nonlinear transformation exponent for 

predictor 1 
Real*8  

256-257 Class 1 nonlinear transformation exponent for 
predictor 2 

Real*8  

258-261 Class 2 nonlinear transformation exponent Real*8  
262-301 Class 3-12 nonlinear transformation exponent Real*8  
302 Class 1 nonlinear transformation intercept for 

predictor 1 
Real*4  

303 Class 1 nonlinear transformation intercept for 
predictor 2 

Real*4  

304-305 Class 2 nonlinear transformation intercept Real*4  
306-325 Class 3-12 nonlinear transformation intercept Real*4  
326-
1325 

Look-up table values for adjusting rain rates for 
class 1 (1000 values at intervals of 0.1 mm/h) 

Real*4  

1326-
2725 

Look-up table values for adjusting rain rates for 
class 2 

Real*4  

2726-
12325 

Look-up table values for adjusting rain rates for 
classes 3-12 

Real*4  

Table 4. Contents of the retrieval coefficient table file. 

3.4 Theoretical Description  

As stated previously, retrieval of rainfall rate requires two steps: determining which 
pixels in satellite imagery will be associated with rainfall, and then deriving rainfall rates 
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for those pixels.  In the case of visible / IR instruments such as the ABI, the basic 
approach is to use the information about cloud-top properties that are inherent in the 
brightness temperature information (e.g., height, thickness, phase, particle size) to make 
inferences about the occurrence and rate of rain.  This algorithm develops statistical 
relationships between the brightness temperature values and the occurrence of rainfall 
and its intensity.  In the algorithm, discriminant analysis is used to determine the best 
predictors and predictor coefficients for occurrence, and stepwise forward linear 
regression is used for intensity.   

3.4.1 Physics of the Problem 

The difficulty in using visible- and IR-wavelength information for retrieving rainfall rates 
is that raining clouds are generally optically thick, meaning that the information at these 
wavelengths comes from the top portion of the cloud, and typically above precipitating 
hydrometeors that are actually of interest.  Microwave-frequency information is relatively 
more valuable because raining clouds are generally not optically thick in that portion of 
the spectrum, meaning that MW signals are sensitive to the total water or ice path in the 
cloud rather than just the properties of the cloud top.  However, since MW sensors are for 
the near future restricted to low-Earth orbit (LEO), rainfall information from such 
instruments will not be available on a continuous basis without a much more substantial 
LEO satellite constellation than is currently planned.  The compromise has been to use 
the intermittently-available but relatively more accurate MW-based rainfall rates as a 
calibration target for visible and IR data from geostationary platforms, and to use the 
resulting calibration to retrieve rainfall rates at the full spatial and temporal resolution of 
the geostationary data.   

The following subsections describe how this calibration process is performed in the 
Rainfall Rate Algorithm.  The first subsection describes the MW data set that is used as a 
calibration target and how it is matched against the ABI predictors, and the subsequent 
four subsections describe respectively how the training data are assembled, how the 
rainfall detection algorithm is calibrated, how the Rainfall Rate Algorithm is calibrated, 
and then how the resulting calibration is applied to independent data to product the rain 
rate product.  

3.4.1.1 Training Data: Matched ABI Predictors and Microwave 
Rain Rates 

The MW rain rates serve as the calibration target for the rain rate algorithm, both in terms 
of identifying raining areas and in retrieving the intensity of rainfall.  In practice, any 
reliable rainfall rate field could be used for calibration, including radar data, and it is not 
necessary that these fields be continuous in space or time—just that they represent 
instantaneous rates of rainfall rather than accumulations over time.  Since rainfall rates 
from multiple microwave instruments are used, the rates should be bias-adjusted since 
differences among the input data sets will effectively act as noise in the training data set.  
This blending and bias adjustment is performed by a separate algorithm that was 
developed by S. Kidder of the Cooperative Institute for Research in the Atmosphere 
(CIRA) and is currently moving toward operational implementation at NESDIS.  
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To properly match the ABI predictors with the MW rain rates in space, differences in 
footprint size between the ABI and the MW sensors must be addressed.  The procedure in 
this algorithm is to aggregate the ABI data onto the MW footprint.  For each available 
MW footprint, those ABI footprints that at least partially overlap the MW footprint are 
identified, and the fraction of the coverage of the MW footprint by the ABI footprint is 
computed based on the location of the footprint centers and assuming a circular footprint 
at the stated nadir spatial resolution of the instrument of interest.  (In the case of scanners 
such as the AMSU that have varying local zenith angles and thus varying footprint sizes, 
footprints with a scan angle exceeding 40 degrees are ignored to avoid egregious 
violations of this assumption of constant footprint size.)  The weight of each GOES 
footprint is proportional to the total computed overlapping area with the MW footprint 
such that all of the weights add up to unity.  For the aggregation process, the GOES 
brightness temperatures are converted to radiances and aggregated, and then the resulting 
radiance is converted back to brightness temperature.  This prevents errors from the 
nonlinear relationship between radiance and brightness temperature.   

Time matching of the ABI predictors with the MW rain rates should match the ABI and 
MW fields that are closest in time.  For the current requirement of 15-min update 
frequency, the ABI and MW pixels should be within 7.5 minutes in time; if in the future 
the requirement is changed to a 5-min update cycle, the ABI and MW pixels should be 
within 2.5 minutes in time.  Due to the latency of microwave data, previous ABI images 
will need to be available for matching with microwave data that may be up to 3 hours old 
at the time of availability. 

Note that the predictors in this algorithm are not necessarily restricted to ABI data; 
predictors from other GOES-R instruments (e.g., lightning) can also be used, in addition 
to any other ancillary data that might prove to be relevant (e.g., stability profiles from 
numerical weather models).  This point will be raised again in the subsections on training.  
The current list of predictors is presented in Table 5, where the subscript refers to the 
wavelength of the brightness temperature T; e.g., T7.34 is the brightness temperature at 
7.34 µm.  Note that the matched MW-ABI data file contains the component SEVIRI 
brightness temperature values and also the derived values in Predictors 2 and 3; the 
additional predictors in Table 5 (i.e., brightness temperature differences) are computed 
internally by the calibration program to reduce the required size of the matched data files.  
The constant adjustments are performed in order to optimize the nonlinear predictor 
transformation described in Sections 3.1.4.3 and 3.4.2.2.  In the case of brightness 
temperature differences, a constant is added in order to avoid negative values which have 
an undefined logarithm; in the case of the brightness temperature values, a constant is 
subtracted because lower (but positive) values are most sensitive to the nonlinear 
transformation. 

 

Input ID  Description 
1 T6.2 - 174 K 
2 S = 0.568-(Tmin,11.2-217 K) + 25 K 
3 Tavg,11.2 - Tmin,11.2 - S + 85 K 
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4 T7.34 - T6.19 + 30 K 
5 T8.5 - T7.34 + 30 K 
6 T11.2 - T7.34 + 20 K 
7 T8.5 - T11.2 + 30 K 
8 T11.2 - T12.3 + 20 K 

9-16 Nonlinear transformations of predictors 1-8 

Table 5. Predictors computed from the data in the matched MW-ABI data file. 

The performance of the rain rate algorithm has been shown to improve when the data are 
divided into classes that can be determined a priori from available data.  Specifically, the 
data have been divided into 4 latitude regions (60-30°S, 30°S-EQ, EQ-30°N, and 30-
60°N) and further into 3 rainfall types according to selected ABI brightness temperature 
values from the matched MW-ABI data set: 

− Type 1 (water cloud): T7.34<T11.2 and T8.5-T11.2<-0.3 

− Type 2 (ice cloud): T7.34<T11.2 and T8.5-T11.2≥-0.3 

− Type 3 (cold-top convective cloud): T7.34≥T11.2 

These types were determined by experimenting with the changes in the relationship 
between T11.2 and rainfall rate (T11.2 is the band typically used for rain rate retrievals 
because of its sensitivity to cloud-top temperature with relatively small water vapor 
effects) for various brightness temperature threshold difference regimes.  The thresholds 
are the points at which this relationship changes significantly from one side of the 
threshold to the other, which implies that they represent significantly different regimes 
for rainfall rate retrieval purposes. This results in a total of 12 rainfall classes in the 
algorithm.  Separate files of matched MW rain rates and ABI data are maintained for 
each class. 

Separate matched data sets are maintained for each rainfall class, with the data points in 
reverse time order (i.e., the most recent data in the first record and the oldest data in the 
last record).  These matched data sets are rolling-value data sets; i.e., older data are 
cycled out as newer data are brought in to keep the data set up-to-date.  Initial work with 
training data sets covering a fixed period of time (e.g., 24 hours) proved to be unsuitable 
because time variations in the intensity distribution of rainfall would affect the robustness 
of the calibration.  For example, if an extended period of light rain or no rain were 
followed by heavy rain, the algorithm might be preferentially calibrated for light rain and 
thus perform poorly when the heavy rain began.  To ensure a training data set that 
contains enough raining pixels for reliable results but is still short enough to reflect recent 
conditions, the number of raining (>0.25 mm/h) data points in the training data files are 
kept fixed.  Specifically, as newer data become available and are added to the training 
data file, the oldest data points are removed until the number of raining pixels returns to 
the same value as before the newer data were added.  Sensitivity studies showed that the 
best results were obtained when 5,000 raining pixels were required for Type 1 and Type 2 
clouds and 1,000 raining pixels were required for Type 3 clouds.  It should be noted that 
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the number of training pixels read is controlled by the training code rather than by the file 
size; i.e., the training code will read through the training file (i.e., backward in time) until 
the required number of raining pixels is read.  Therefore, it is not critical for the training 
file to be trimmed strictly to the required number of training pixels as extra pixels will 
simply be ignored. 

It is important to note that the training of the coefficients and the retrieval of the actual 
rain rates can be done in parallel to save time: the coefficients would be updated 
whenever new target data become available, and then these updated coefficients would be 
used in retrieving the rain rates from the next available set of ABI imagery.

3.4.1.2 Rainfall Detection 

The objective of the rainfall detection portion of the algorithm is to separate clear and 
cloudy but non-raining pixels from raining pixels.  The training of the separation portion 
of the algorithm is applied to each cloud class separately using discriminant analysis 
(similar to linear regression but with a binary predictand—the value is 1 if the MW rain 
rate exceeds 1.0 mm/h and 0 otherwise.  Note that the 1.0 mm/h threshold is used because 
of significant differences among MW instruments in sensitivity to drizzle and very light 
rain).  For each of the 12 algorithm classes, discriminant analysis is performed using each 
of the available predictors, and the predictor that produces the best Heidke Skill Score 
(HSS; see Section 3.4.2.1 for definition) for rain / no rain discrimination (compared to 
observations) is selected.  This first predictor is then combined with all of the remaining 
predictors for a second set of tests to determine the best 2-predictor combination.  The 
result is an equation for linearly combining one or two predictors, plus a threshold value 
above which the pixel is considered to be raining. 

This threshold value is then optimized to produce an unbiased result, since experience has 
shown that the best HSS value is not necessarily associated with minimum bias.  
Specifically, the maximum and minimum values for the rain / no rain discriminator are 
computed, and for 1,000 intervals of equal size the bias is computed for each selected 
rain / no rain discriminator value (such that no pixels would be classified as raining when 
the minimum threshold value is used and all of them would be classified as raining when 
the maximum threshold value is used).  A binary search is then used to identify the 
threshold value with a bias closest to unity (i.e., the number of pixels in the training data 
that are classified as raining by the scheme is as close as possible to the number of 
raining microwave pixels in the training data), and this is the threshold value that is used. 

Once the predictors and coefficients have been selected and the threshold value has been 
determined, the resulting predictor ID’s and coefficients are then written to a file for use 
by the prediction program.  A more detailed description of this process is contained in 
Section 3.4.2.1. 

3.4.1.3 Rainfall Rate Estimation 

The objective of the rainfall rate portion of the algorithm is to determine rainfall rates for 
those pixels that were classified as raining by the discriminant analysis scheme, with 



 

 21

separate equations for each algorithm class.  Consequently, only those pixels that have 
non-zero target rainfall rates are used in developing the equations for retrieving rainfall 
rates. 

Since the relationship between many of the predictors (e.g., IR window brightness 
temperature) and rainfall rates is known to be nonlinear, the first step is to supplement the 
predictor set with a second set of predictors that represent optimal nonlinear 
transformations of the original set: for each algorithm class, each original predictor is re-
scaled to eliminate negative values, and then the predictors and target rain rates are 
regressed against each other in log10-log10 space.  The resulting slope and intercept 
become an exponent and multiplier in linear space, and this slope and intercept are used 
to create a nonlinear transformation of each predictor. 

After creating the set of transformed predictors for each algorithm class (which are 
included with the original predictors in the predictor pool), all of the predictors are 
evaluated via linear regression against the target rain rates, with separate regressions 
performed for each algorithm class.  The predictor that has the best correlation with the 
target rain rates is then combined with each of the remaining predictors, and the 2-
predictor combination that produces the best correlation with the target data is selected.  
After this is done, a preliminary set of rain rates is retrieved and compared to the 
microwave training data to derive a set of coefficients for adjusting the retrieved rain fall 
rate distribution to match the distribution of the microwave rainfall rates.  All of the 
required coefficients are then written to a file for use by the prediction routine.  A more 
detailed description of this process is contained in Section 3.4.2.2. 

3.4.1.4 Independent rainfall rates 

The equations produced by the calibration of the rainfall detection and rainfall rate 
estimation are used to derive the rainfall rates from current ABI imagery that comprise 
the algorithm output at the full ABI resolution.  Note that the rainfall rates are produced 
using different equations for each of the 12 classes. 

3.5 Mathematical description 

3.5.1 Calibration: Rain / no rain discrimination 

Mathematically, a special case of multiple linear regression called discriminant analysis 
(in which the target values are 0 and 1 instead of continuous values) is used to separately 
calibrate the rain /no rain discrimination for each algorithm class.  A two-predictor 
additive multiple regression model is used for each algorithm class c: 

ccccccc xbxbby ε+++= 2,2,1,1,0,  (1) 

where y is the target MW rain rate or rain / no rain value; the x’s are the two selected 
ABI-derived predictors; the b’s are the calibration coefficients; and ε is the residual error, 
which is to be minimized by solving the following system of normal equations for the 
coefficients b0, b1, and b2: 
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where the first part of the subscript is the algorithm class, the second is the predictor 
number, and the third part is the data point number (all sums are over the total number of 
data points in the class nc.) 

The calibration procedure begins by solving the 1-predictor version of these equations 
(i.e., no terms containing bc,2,j or xc,2,j) for each of the first 8 (untransformed) predictors in 
the matched data set (see Table 5).  Since the outputs of these equations will be 
continuous (i.e., non-binary), a threshold value must be determined for converting the 
output to binary values:  outputs above the threshold are assigned a value of 1 (rain) and 
outputs below are assigned a value of 0 (no rain).  This threshold is selected to produce 
the minimum amount of bias; i.e., the number of pixels in the training data set that are 
classified as raining should match as closely as possible the actual number of raining 
microwave pixels in the training data set.  In order to do this, the equation outputs are 
computed for each training pixel and the highest and lowest values are preserved.  This 
range of values is divided into 1000 equally spaced intervals, and for each of these 1000 
threshold values the number of pixels classified as raining is computed.  Since this 
number decreases monotonically as the threshold value increases (the threshold value 
must be exceeded), a simple binary search can then be used to identify the threshold 
value that produces the best match to the microwave data in terms of the number of 
raining pixels. 

Once the bias has been optimized, the HSS is computed for that particular predictor, and 
the predictor the highest Heidke Skill Score (HSS) is selected.  The HSS is computed as 
follows: 

( )
( )( ) ( )( )31434221

32412

cccccccc

cccc
HSS

+++++
−

=  (3) 

where c1 is the number of correct no-rain estimates, c2 is the number of false alarms (i.e., 
the estimate has rain but the observation has no rain); c3 is the number of failed detections 
(i.e., the estimate has no rain but the observation has rain); and c4 is the number of correct 
rain estimates for the class of interest.  Higher HSS values indicate greater skill, with 1 as 
a perfect value (i.e., c2=c3=0). 

After the first predictor is selected, the procedure is repeated for each two-predictor pair 
containing the first selected predictor to obtain two predictors and the associated 
coefficients from Eq. (1) plus the threshold value for converting the continuous equation 
output into binary form. 
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It should be noted that the selection of only 2 predictors was the result of 
experimentation—additional predictors were shown not to have a positive impact on the 
performance of the algorithm.  This may be due to the high degree of correlation among 
the visible and IR bands when depicting optically thick clouds. 

3.5.2 Calibration: Rainfall rate 

For each class, a separate pair of predictors is selected for the rain rate retrieval, using 
Eqs. (1)-(2) as the basis for selection but with continuous output.  Prior to selection, the 
set of 8 predictors is supplemented by a set of non-linear transformations (see Table 5).  
These nonlinear transformations  for each predictor p and class c xp,c

T  use the power 
function; i.e., 

cp

cpcp
T

cp xx ,

,,,
βα=  (4) 

where the coefficients αp,c and βp,c are found by solving the equation 

.logloglog 10,,1010
T

cpcp xy βα +=  (5) 

Solving this equation separately for each predictor and class yields the following least-
squares solutions: 
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For each predictor p in each class c, the coefficients αp,c and βp,c are solved for by 
applying Eqs. (6) and (7) using the predictor values xp,c,i and the corresponding target 
microwave rainfall rates yc,i.  However, since the equation form in Eq. (4) has no 
intercept, it is constrained to pass through the origin (0,0), so a modified version was 
developed. 

( ) cp

cpcpcp
T

cp xx ,

,,,,
βγα +=  (8) 

The third unknown (γp,c) cannot be solved for with only two equations, so the equation is 
optimized using a “brute force” approach.  First, the value of γp,c is initially set to 0 and 
the equation is solved using Eq. (6) and (7).  The value of γp,c is then incremented by 25 
and Eq. (6) and (7) are solved again; i.e., the value of γp,c is added to the each predictor 
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value xp,c when solving the equation.  The Pearson correlation coefficient is then 
computed for the transformed data: 

yx

yx
nCorrelatio

σσ
),cov(=  (9) 

where cov(x,y) is the covariance of the predictor and target data, and σx and σy represent 
the standard deviations of the predictor and target data, respectively.  The predictor data 
in this case consists of the values of the transformed predictors (i.e., xT

p,c) and the target 
data consist of the microwave rainfall rates against which they have been matched (i.e., 
yc). 

If the equation fit (as measured by correlation coefficient) is improved, the value of γp,c is 
incremented by 25 and the process is repeated.  If the equation fit is degraded (i.e., lower 
correlation coefficient), then the process stops and the previous value of γ is used.  This 
process of determining the coefficients αp,c, βp,c, and γp,c is repeated for each predictor and 
each class and applied to create the supplemental set of 8 transformed predictors for each 
class. 

The total set of 16 predictors is then used for calibrating the rainfall rate retrieval.  For 
each class, each predictor is first regressed against the target rain rates using Eq. (2), and 
the predictor with the highest Pearson correlation coefficient against the target 
microwave rainfall rates is selected.  The Pearson correlation coefficient is computed 
using the same values as before, though for the first 8 predictors the values will be xp,c; 
i.e., the untransformed predictors. 

The process is then repeated with the 15 possible combinations of the selected first 
predictor and each of the remaining predictors, and the pair with the highest correlation 
against the target data is selected as the predictor pair (and associated coefficient set) for 
that class. 

As with the rain / no rain discrimination, experiments showed no positive impact from 
using more than two predictors, again perhaps because of the high degree of correlation 
among the visible and IR bands for optically thick clouds. 

Previous work has shown that the rainfall rates retrieved using this approach generally 
exhibit a strong systematic dry bias—too wet for low rainfall rates and much too dry for 
higher rainfall rates.  This is believed to be the result of significant scatter in the training 
data caused by spatial displacements between the coldest cloud tops and the heaviest 
rainfall rates.  To address this problem, an adjustment for the retrieved rainfall rate is 
derived that adjusts its distribution to match the training microwave rainfall rates. 

Specifically, for each rainfall class, the rainfall rates are retrieved using the coefficients 
derived above, and then are sorted from lowest to highest and matched against the 
training rainfall rates which have also been independently sorted lowest to highest.  The 
result of this match is a lookup table (LUT) whereby the value of the retrieved rainfall 



 

 25

rate is converted to the value of the corresponding microwave rainfall rate so that the 
distribution of the retrieved rainfall rate will match that of the microwave rainfall rates. 

To create a useful LUT, linear interpolation is used to create a table with evenly spaced 
increments of 0.1 mm/h for the training rainfall rates.  In addition, since the MW rainfall 
rates have a lower dynamic range (in part due to their coarser spatial resolution), but 
since extrapolation of the data could produce non-physical results, for all values between 
50 mm/h (the maximum rainfall rate from the TRMM Microwave Imager) and 100 mm/h 
the input and output values are set equal to one another (i.e., a retrieved rainfall rate of 75 
mm/h will be mapped to a final rainfall rate of 75 mm/h).  Linear interpolation is then 
performed between the data point with the highest rainfall rates and the (50 mm/h, 50 
mm/h) data point.  This LUT is then written to the end of the retrieval coefficient table in 
Table 4, Section 3.2.2. 

3.5.3 Application to independent data 

The predictors and coefficients obtained during the calibration outlined in the previous 
two subsections are then applied to the current ABI imagery using Equation (1) with the 
appropriate coefficients and predictor values.  The rain /no rain discriminator is computed 
first. For values below the threshold, a rain rate of zero is assigned; for values above the 
threshold, the rainfall rate is computed using Eq. (1) with the rain rate coefficients (and 
predictor transformations from Eq. (4) as needed), followed by the distribution 
adjustment in Eq. (10). 

3.6 Algorithm Output 

The final output of this algorithm is the Rainfall Rate product—a field of instantaneous 
rainfall rates in mm/h (rounded to the nearest integer) at the same resolution as the ABI 
IR data—2 km at nadir.  This product will also be accompanied by a grid of 
corresponding quality flags, with values of 0 for good data and non-zero for data that are 
of questionable quality due to deficiencies in the input data, as described in Table 6: 

 

Byte Bit  Flag Source Value 
0 0 Rainfall Rate output RR 1=bad data; 0=OK 
 1 Local zenith angle block-out zone SDR 1=local zenith angle>70° or 

lat>60°; 0=OK 
 2 Bad input data for 1st rain / no rain 

predictor 
SDR 
and RR 

1=bad data; 0=OK 

 3 Bad input data for 2nd rain / no 
rain predictor 

SDR 
and RR 

1=bad data; 0=OK 

 4 Bad input data for 1st rain rate 
predictor 

SDR 
and RR 

1=bad data; 0=OK 

 5 Bad input data for 2nd rain rate 
predictor 

SDR 
and RR 

1=bad data; 0=OK 

 6 Retrieval coefficients missing RR 1=no retrieval coefficients; 
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0=OK 
 7 Not used   

Table 6. Quality flags for the Rainfall Rate product. 

In addition, two quality information fields will be output: a gridded file containing flags 
indicating if the rainfall rate values were truncated at 0 mm/h or at 100 mm/h (Table 7) 
and a gridded file containing the rainfall class (1-12) of a particular pixel (Table 8): 

 

Byte Bit  Flag Source Value 
0 0 Rain rate > 

100 mm/h 
RR 1=rain rate >100 mm/h but truncated at 100 mm/h; 

0=rain rate <100 mm/h 
 1 Rain rate < 0 

mm/h 
RR 1=rain rate <0 mm/h but truncated at 0 mm/h; 

0=rain rate <100 mm/h 

Table 7. Diagnostic information for the Rainfall Rate product. 

 
Grid  Field Source Value 
1 Precipitation class identifier RR Value of rain class, ranging from 

1 to 12 

Table 8. Gridded quality information for the Rainfall Rate product. 

Finally, the metadata file will contain the information listed below in Table 9: 

 

Type Variable 
Float Total rain area (number of pixels in image with rain rates > 1 mm/h) 
Float Total rain volume (total rain in rain area, mm) 
Long Total number of pixels where retrieval was attempted 
Long Number of QA flag values: 8 
Long Number of retrievals with QA flag value 0 (all bits set to 0) 
String Definition of QA flag value 0: 

Good rain rate retrieval 
Long Number of retrievals with QA flag bit 0 set to 1 
String Definition of QA flag with bit 0 set to 1: 

Bad rain rate retrieval 
Long Number of retrievals with QA flag bit 1 set to 1 
String Definition of QA flag with bit 1 set to 1: 

Local zenith angle block-out zone 
Long Number of retrievals with QA flag bit 2 set to 1 
String Definition of QA flag with bit 2 set to 1: 

Bad input data for 1st rain / no rain predictor 
Long Number of retrievals with QA flag bit 3 set to 1 
String Definition of QA flag with bit 3 set to 1: 

Bad input data for 2nd rain / no rain predictor 
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Long Number of retrievals with QA flag bit 4 set to 1 
String Definition of QA flag with bit 4 set to 1: 

Bad input data for 1st rain rate predictor 
Long Number of retrievals with QA flag bit 5 set to 1 
String Definition of QA flag with bit 5 set to 1: 

Bad input data for 2nd rain rate predictor 
Long Number of retrievals with QA flag bit 6 set to 1 
String Definition of QA flag with bit 6 set to 1: 

Retrieval coefficients missing 
String Definition of Rain Classes 1-12 

Table 9. Metadata for the Rainfall Rate product. 

Additional diagnostic information will be provided by the corresponding retrieval 
coefficient table (Table 4, Section 3.3.2). All of these fields will be delivered to the 
GOES-R Archive System (GAS) and the Comprehensive Large Array-data Stewardship 
System (CLASS) as well as being retained in 2-day local storage for diagnostic purposes. 
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4 TEST DATA SETS AND OUTPUTS 

4.1 Simulated/Proxy Input Data Sets 

As described below, the data used to test the Rainfall Rate Algorithm included SEVIRI 
observations and blended MW rainfall rates.  The test period chosen was the 6th through 
the 9th of January, April, July, and October 2005.  While SEVIRI is obviously not 
operating over the GOES domain and does not have the exact same spectral coverage and 
spatial resolution, for rainfall rate applications, it is still preferred over simulated ABI 
data for objective validation, given the errors exhibited by the latter in depicting the 
correct intensity and location of precipitation features.  The rest of this section describes 
the proxy and validation data sets used in assessing the performance of the Rainfall Rate 
Algorithm. 

4.1.1 SEVIRI Data 

SEVIRI provides 11 spectral channels with a spatial resolution of 3 km at nadir (coarser 
than the 2-km resolution of the ABI) and a temporal resolution of 15 minutes, and thus 
represents the best source of data currently available for testing and developing the 
Rainfall Rate Algorithm.  Figure 2 is a full-disk SEVIRI image from 1200 UTC on 
January 7, 2005.  The SEVIRI data was provided by the GOES-R Proxy Data Team. 
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Figure 2. Full disk 10.8- µm color-enhanced image from SEVIRI for 1200 UTC on 
January 7, 2005. 

 

4.1.2 Microwave-Derived Rainfall Rates 

The target data for calibration is a blend of MW rain rates from multiple Special Sensor 
Microwave/Imager (SSM/I) and Advanced Microwave Sounding Unit (AMSU) sensors, 
plus the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the Tropical 
Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), all of which were 
reprojected onto a common 8-km grid and bias-corrected to match the rain rates of the 
TMI.  Additional details on this process (which is similar to the process described in 
Section 3.4.1.1 except that there will be no remapping in the operational alorithm) can be 
found in Joyce et al. (2004).  These fields are available every half hour, and include data 
from all of the MW overpasses during that time period.  An example is shown in Fig. 3. 
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Figure 3. Blended MW rainfall rates covering 1230-1300 UTC 7 January 2005. 

 

4.2 Output from Proxy Input Data Sets  

As part of an intercomparison exercise to select which algorithm would be used for 
GOES-R, the rain rate algorithm was applied to SEVIRI data from the 6th through the 9th 
of January, April, July, and October 2005.  The same time periods were used for the 
evaluation of algorithm precision and accuracy, along with all of January 2008.  Figure 4 
is an example of output from the Rainfall Rate Algorithm described in this document. 

 

 



 

 

Figure 4. Sample rain rate algorithm output from 1245 UTC January 7, 2005. 

 

4.2.1 Precision and Accuracy Estimates 

The F&PS specifications for the Rainfall Rate algorithm (see Table 1) refer to 
instantaneous rainfall rates, so radar data (both space-based and ground-based) must be 
heavily relied on since gauges generally do not provide reliable information on 
instantaneous rates.  However, such data are very difficult to obtain over Europe and 
Africa.  Comparisons will be made against Tropical Rainfall Measuring Mission 
(TRMM) Precipitation Radar (PR) data and Nimrod radar data over Western Europe 
obtained from the British Atmospheric Data Centre (BADC).  
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Because slight errors in the spatial location of rainfall can significantly degrade statistics 
that are computed on a pixel-by-pixel basis (e.g., Ebert 2008), a “fuzzy” approach for 
fine-scale rainfall validation has been selected whereby the Rainfall Rate pixel is 
compared with the pixel within a 10-km radius that has the most similar value rather than 
with the directly corresponding pixel.  This is a variant of the “single observation –
neighborhood forecast” strategy described in Ebert (2008). 

4.2.1.1 Validation against TRMM PR 

Validation against the 5-km resolution TRMM PR 2A25 product was performed for the 
5th-9th of January, April, July, and October 2005 plus all of January 2008.  For illustration 
purposes, Fig. 5 shows the coverage of the TRMM PR during a typical 24-hour period. 

 

Figure 5. Coverage of TRMM PR data during October 6, 2005. 

Figure 6 shows a scatterplot of the rainfall rates that was created using the “fuzzy” 
verification method described in the previous section, with the density of points indicated 
by color (red=more dense; purple=less dense) to eliminate the visually misleading effect 
of multiple overlapping points.  The Rainfall Rate product displays a significant wet bias, 
but the best-fit line still corresponds quite well with the 1:1 line (i.e., a high occurrence of 
matching values between the estimates and observations). 
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Figure 6. Scatterplot of Rainfall Rate algorithm vs. collocated TRMM rain rates; colors 
are related to pixel density with red highest and purpose lowest.  Solid line is the 1:1 line 

and the dashed line is the best-fit line. 

 

Because rainfall rates are highly skewed toward low rates that are of much less 
hydrometeorological interest than higher rain rates, the F&PS precision spec focuses on 
the performance of the algorithm for rain rates of 10 mm/h (see Table 1).  Specifically, 
when the rain rate at a given pixel is 10 mm/h, the corresponding observed value should 
be within 9 mm/h (i.e., within the range of 1 – 19 mm/h) 68% of the time.  This appears 
to be a very loose requirement compared to most products; however, instantaneous 
rainfall rate is far more variable in both space and time than most other geophysical 
parameters, and even a “fuzzy” validation approach will not resolve this without using a 
significantly larger radius than the 10-km radius used for this algorithm. 

The performance of the algorithm against the F&PS precision spec is illustrated in Fig. 7 
by the cumulative distribution function (CDF) of absolute error in the Rainfall Rate 
product (the values along the abscissa) with respect to the TRMM PR for only those 
pixels with algorithm values between 9.5 and 10.5 mm/h (there are too few pixels with 
rain rates of exactly 10.0 mm/h to enable a statistically significant analysis).  These errors 
were computed using the “fuzzy” verification strategy described in the previous section.  



 

 

The dashed line indicates t
spec value of 9.0 mm/h. 

Figure 7. CDF of errors of Rainfall Rate product with rates of 9.5

4.2.1.2 Validation against 

Validation against the 5-km 
9th of April, July, and October 2005 (January 5
archive) and all of January 2008
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The dashed line indicates that 68% of the errors are below 8.9 mm/h, which is within the 

CDF of errors of Rainfall Rate product with rates of 9.5-10.5 mm/h vs. TRMM.

Validation against Nimrod data 

km Nimrod composite radar product was performed for the 5
of April, July, and October 2005 (January 5-9 was not available from the BADC 

and all of January 2008.  The coverage of these radars is illustrated in Fig. 

, which is within the 

 

10.5 mm/h vs. TRMM. 

was performed for the 5th-
9 was not available from the BADC 

The coverage of these radars is illustrated in Fig. 8. 
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Figure 8. Coverage of Nimrod mosaic radar data. 

Figure 9 shows a scatterplot analogous to Fig. 6 (and using the same “fuzzy” validation 
as against TRMM PR), but here the Rainfall Rate product displays a very strong 
systematic dry bias (indicated by the small slope of the dashed best-fit line), which in this 
case translates into a volume bias of approximately 14% (i.e., the retrieved rainfall 
volume is 14% lower than the Nimrod volume).  This is not at all unexpected given that 
IR-based algorithms can exhibit significant detection problems for stratiform 
precipitation at higher latitudes. 
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Figure 9. Same as Fig. 6, but vs. Nimrod. 

Figure 10 is analogous to Fig. 7, except that it is for Nimrod. As the red dashed line 
indicates, approximately 68% of the errors are below 9.8 mm/h, which is outside the spec 
value of 9.0 mm/h; however, the requirement is for quantitative validation only for 
convective precipitation, and Western Europe is a region that is largely dominated by 
stratiform rainfall.   A comparison of Fig. 10 with Fig. 7 illustrates the difficulty of 
retrieving precipitation from the midlatitudes, where stratiform precipitation is much 
more prevalent and for which cloud-top imagery does not contain sufficient information 
to estimate rainfall to the same degree as in the tropics. 



 

 

Figure 

4.2.2 Error Budget 

The validation of retrieved
April, July, and October 2005
the “fuzzy” verification described in Section 4.2.1.1
section, the precision and accuracy 
algorithm does not meet either spec against
algorithm for stratiform rainfall; however, since the 
for convective rainfall this is 
algorithm against both TRMM and 
the F&PS spec. 

 

 Accuracy (mm/h) 
at 10 mm/h

Vs. TRMM 
Vs. Nimrod 
Proposed F&PS 

Table 10. Comparison of Rainfall Rate algorithm validation with F&PS.
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Figure 10. Same as Fig. 7, but vs. Nimrod. 

retrieved rain rates against TRMM PR data for the 5th

April, July, and October 2005 plus all of January 2008 is summarized in Table 
the “fuzzy” verification described in Section 4.2.1.1.  As discussed in the previous 

and accuracy specs are both being met for the TR
algorithm does not meet either spec against Nimrod data largely due to the low bias of the 
algorithm for stratiform rainfall; however, since the accuracy and precision 
for convective rainfall this is acceptable. Table 10 summarizes the performance of the 
algorithm against both TRMM and Nimrod data at the 10 mm/h threshold compared to 

Accuracy (mm/h) 
at 10 mm/h 

Precision (mm/h) 
at 10 mm/h 

Number of data 

4.9 8.9 
8.6 9.7 
6.0 9.0 

. Comparison of Rainfall Rate algorithm validation with F&PS.

 

th-9th of January, 
is summarized in Table 10 using 

.  As discussed in the previous 
being met for the TRMM PR.  The 

due to the low bias of the 
accuracy and precision specs are only 

es the performance of the 
data at the 10 mm/h threshold compared to 

Number of data 
points 
13887 
501 
----- 

. Comparison of Rainfall Rate algorithm validation with F&PS. 
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5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 

The calibration portion of the algorithm creates / updates a series of external files 
containing matched MW rainfall rates and ABI predictors, and whenever a file is 
updated, ingests the data into an array and uses L-U (Lower-Upper) matrix 
decomposition to solve the resulting matrix for calibration coefficients (Eq. 2) and 
predictor ID’s that are stored in a separate external file.  The retrieval portion of the 
algorithm ingests the calibration coefficient files and the ABI predictor fields that are 
indicated within these files and applies the coefficient files to the predictor fields, 
resulting in a rainfall rate field on the same grid as the ABI predictors. 

The calibration and retrieval portions of the Rainfall Rate Algorithm do not need to be 
run sequentially; in fact, parallel processing is preferred as long as care is taken to make 
sure that coefficient files are available whenever needed for the retrieval portion of the 
algorithm.  The only stipulation is that for optimal performance the calibration should be 
updated as frequently as new Rainfall Rate fields are retrieved (i.e., every 15 minutes).  
Note that since the input microwave data may have a latency of as much as 3 hours, 
previous ABI data will need to be available for calibration purposes. 

5.2 Programming and Procedural Considerations 

The Rainfall Rate Algorithm requires knowledge of spatial uniformity metrics that are 
computed for each pixel using pixels that surround it.  Beyond this reliance, the Rainfall 
Rate Algorithm is purely a pixel by pixel algorithm; no information from previous time 
periods is required for the retrieval step (though it is needed for the calibration step—see 
below).  Note that although the current requirement for refresh rate (15 min) is longer 
than the planned ABI refresh rate of 5 min, no temporal averaging is performed to 
generate the 15-min products; the most recently available ABI image is used to generate 
the current Rainfall Rate product. 

A collection of MW rainfall rates during the previous 2-3 days should be available for 
use as calibration targets.  However, if necessary the rainfall rate algorithm can run using 
pre-computed calibration coefficients which will be adjusted whenever target MW 
rainfall rates become available and a sufficient supply of matched data pairs has thus 
been built up.  Furthermore, if the availability of MW rainfall rates is interrupted, the 
algorithm will continue to produce estimates using the most recently computed 
calibration coefficients. 

5.3 Quality Assessment and Diagnostics 

Quality flags will be produced and provided along with the rainfall rate fields, with non-
zero values for pixels whose inputs have values outside the acceptable range.  These flags 
are described in detail in Section 3.6.  Table 11 lists acceptable range values for the 
inputs.  Note that the minimum values in the table are for computational purposes: values 
lower than that would produce negative predictor values, which will in turn result in 
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errors when the nonlinear predictor transformation described in Section 3.5.2 is 
performed. 

 
Input ID  Predictor Description Minimum Value 

1 T6.2 174 K 
2 S=0.568-(Tmin,11.2-217 K) -25 K 
3 Tavg,11.2-Tmin,11.2-S -85 K 
4 T7.34-T6.19 -30 K 
5 T8.5-T7.34 -30 K 
6 T11.2-T7.34 -20 K 
7 T8.5-T11.2 -30 K 
8 T11.2-T12.3 -20 K 

Table 11. Minimum acceptable values for each algorithm predictor. 

 
The following procedures are recommended for diagnosing the performance of the 
rainfall retrieval algorithm. 

• Periodically image the individual test results to manually identify artifacts or non-
physical behaviors. 

• Automatically evaluate the time series of the total rainfall area and total rainfall 
volume and flag excessively large changes for further investigation. 

5.4 Exception Handling 

The Rainfall Rate Algorithm includes checking the validity of each input ABI band 
before retrieving a rainfall rate, and a ‘missing’ (negative) value is assigned to a pixel if 
any of the input values are outside the acceptable range.  The bits 1-4 (depending on the 
predictor; see Table 6 in Section 3.4.3) of the quality flag for that pixel will also be set to 
1.  The Rainfall Rate Algorithm also expects the Level 1b processing to flag any pixels 
with missing geolocation or viewing geometry information. 

If the microwave data are unavailable, the algorithm will continue to produce estimates of 
rain rate using the most recently available calibration coefficient tables; performance will 
degrade slightly as a result but the degradation will be limited.  If one or more individual 
ABI bands used by the algorithm become unavailable, the algorithm will first output 
missing values (and corresponding quality flags) for any pixels that use the missing ABI 
band, and then subsequent updates to the calibration coefficients will ignore the missing 
bands and retrieval will continue as normal.  The degree of degradation in performance 
will depend on the band(s) that are lost. 

5.5 Algorithm Validation 

Prior to launch, validation efforts will focus on Europe and Africa using SEVIRI data as a 
proxy for ABI given the previously discussed concerns about using simulated data for 
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rainfall rate validation.  The validation data will consist of TRMM PR data over the 
Tropics and Nimrod ground-based radar data over Western Europe, plus any ground-
based radar data from field campaigns that can be obtained.  These data sets were 
described in Section 4.2.1.1.  However, it should be noted that ground-based radars have 
numerous well-documented limitations, so any ground-based radar data used for 
validation will need to be carefully quality-controlled, including comparisons between 
radar-derived rainfall total fields and corresponding rain gauges to determine the extent 
of such errors. 

During the pre-launch period, validation tools will also be developed: one set to be used 
by operations to monitor the performance of the algorithm in real time and identify any 
anomalies; the second to be used by the algorithm developers to identify systematic 
algorithm deficiencies, their possible causes, and potential remedies.  The former will be 
transferred to the NOAA / NESDIS Office of Satellite Data Processing and Distribution 
(OSDPD) while the latter will remain at STAR for use by the algorithm developers and 
collaborative partners outside STAR. 

The post-launch phase will consist of monitoring of the product stream by OSDPD using 
the aforementioned tools, and close collaboration between STAR developers and the 
NOAA / NESDIS / OSDPD / Satellite Services Division (SSD) Satellite Analysis Branch 
(SAB) analysts who are responsible for real-time monitoring of satellite rainfall.  They 
will evaluate the performance of the algorithm both from an “eyeball” perspective of day-
to-day performance and from the perspective of systematic behavior of the algorithm as 
identified using the statistical tools.  Modifications to the algorithm to address any 
deficiencies will then be identified and implemented. 

Additional details about algorithm validation can be found in the corresponding Product 
Validation Plan. 
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6 ASSUMPTIONS AND LIMITATIONS 

The following sections describe the assumptions and limitations of the current version of 
the Rainfall Rate Algorithm. 

6.1 Performance 

Several assumptions have been made in developing and estimating the performance of 
the Rainfall Rate Algorithm.  They are listed below, accompanied by proposed mitigation 
strategies in parentheses. 

1. The calibration target (MW) rainfall rates are accurate.  (No mitigation 
possible) 

2. The calibration target rainfall rates are available with a reasonably short lag 
time.  Note that in the absence of calibration data, the algorithm will continue 
to produce retrievals based on the last available set of calibration coefficients.  
The potential impact on doing so for an extended period of time will be 
determined via testing. 

3. The ABI data have been corrected for parallax prior to retrieval of rainfall 
rates.  Mitigation is in progress via a coordinated parallax correction effort. 

4. The available validation data (TRMM for the tropics and Nimrod for Western 
Europe) provide a sufficiently representative sample for evaluating whether 
the algorithm will meet spec over GOES-R coverage area. (Investigating 
additional radar validation data from field campaigns such as NAMMA, and 
COPS.) 

5. The processing system allows for processing of multiple pixels at once for 
application of the spatial uniformity tests.  (No mitigation possible) 

6. Striping (i.e., when two or more detectors have slightly different calibrations, 
producing scan lines that are biased with respect to one another) and spectral 
shifts are minimal. (No mitigation possible) 

7. No data aggregation is performed in time; i.e., if the frequency of ABI 
imagery exceeds the product refresh rate, only one ABI image will be 
processed per product.  (No mitigation possible) 

In addition, a number of limitations in the ability to retrieve rainfall rates from satellite 
data have been identified and are listed here, along with proposed mitigation strategies: 

1. Satellite-based rainfall algorithms generally exhibit much better skill for 
convective (warm-season) rainfall than for stratiform (cold-season) rainfall, 
because the relationship between cloud-top temperature and rainfall rate is much 
stronger for the former than the latter.  The inclusion of additional ABI bands 
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provides some mitigation by implicitly including information about cloud-top 
properties (particle size and phase); the potential impact of explicitly retrieved 
cloud top properties from the ABI processing system will be investigated as a 
mitigation effort. 

2. The current version of the algorithm does not account for any influences on 
precipitation below cloud level; e.g., modulation by topography or evaporation of 
hydrometeors in dry sub-cloud air.  Mitigation of the former is being explored 
through a GOES-R Critical Path project to develop an orographic correction for 
the algorithm that accounts for topographically-induced wind flows.  The 
mitigation of other subcloud effects will be investigated by examining the impact 
of relevant numerical weather model fields (e.g., total precipitable water and/or 
low-level relative humidity) on precipitation estimates.  Note that ABI-derived 
fields cannot be used for this application since they will not be available for 
cloudy regions. 

Finally, the channel mapping between SEVIRI and ABI has been used in the 
development and pre-launch validation of the algorithm is shown in Table 12: 

 

ABI Band SEVIRI Proxy 
Number Central Wavelength (µm) Number Central Wavelength (µm) 

8 6.19 5 6.2 
10 7.34 6 7.3 
11 8.5 7 8.7 
14 11.2 9 10.8 
15 12.3 10 12.0 

Table 12. Channel mapping associated with ABI proxy data from SEVIRI during 
algorithm development and validation. 

6.2 Assumed Sensor Performance 

It is assumed that the sensor will meet its current specifications.   However, the Rainfall 
Rate Algorithm will be dependent on the following instrumental characteristics.  

• The spatial variation predictors in the Rainfall Rate Algorithm will be critically 
dependent on the amount of striping in the data.  Note that this will affect the 
retrieval only when any texture-related predictors are among the selected 
predictors selected by the algorithm. 

• Unknown spectral shifts in some channels will affect the BTD calculations and 
thus compromise some of the predictors.  Note that this will affect the retrieval 
only when any BTD’s are among the predictors selected by the algorithm. 
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6.3 Pre-Planned Product Improvements 
A number of potential improvements are being investigated for the “day-2” Rainfall Rate 
product: 

6.3.1 Smoothing along Region Seams 

The current version of the algorithm does not attempt to smooth any discontinuities that 
may occur along the seams between regions (i.e., 30°S, the equator, and 30°N).  The code 
will be modified to overlap the regions somewhat and apply a weighted average to the 
two overlapping regions to produce a smoother result. 

6.3.2 Incorporation of Numerical Model Moisture Fields to Correct for 
Subcloud Evaporation of Rainfall 

The current operational Hydro-Estimator rainfall rate algorithm uses National Centers for 
Environmental Prediction (NCEP) North American Mesoscale (NAM) model total 
column precipitable water and mean-layer relative humidity from the lowest third of the 
troposphere to enhance rainfall rates in moist regions and reduce them in dry regions.  
Such a correction for the GOES-R Rainfall Rate algorithm is being investigated. 

6.3.3 Correction for Orographic Modulation of Rainfall 

A GOES-R Critical Path Project in collaboration with Hampton University is  working to 
develop a correction for the orographic modulation of rainfall based on wind, topography, 
and stability information from an operational numerical weather model.  

6.3.4 Incorporation of Time Change Information 

Another GOES-R Critical Path Project, in collaboration with City College of New York 
(CCNY), involves determining Lagrangian (i.e., cloud-following) time changes in cloud 
properties and using them as predictors in the rainfall algorithm.  This is an effort to 
address the tendency of satellite rainfall algorithms to underestimate rainfall early in the 
convective cycle. 

6.3.5 Incorporation of Retrieved Cloud Microphysics Information 
 
A third GOES-R Critical Path Project, in collaboration with ESSIC involves 
incorporating retrieved cloud effective radius and cloud liquid water path information in 
an improved regime classification and as direct predictors in the algorithm. 
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