Return to NETL Home
 
Go to US DOE
 

Oil & Natural Gas Projects
Exploration and Production Technologies
Nanoparticle-stabilized CO2 Foam for CO2-EOR Application Last Reviewed 1/8/2013

DE-FE0005979

Goal
The goal of this project is to develop and evaluate, through coreflood tests at reservoir conditions, a nanoparticle-stabilized carbon dioxide (CO2) foam system that can improve CO2 sweep efficiency in CO2 enhanced oil recovery (EOR) and minimize particle retention in the reservoir.

Performer
New Mexico Institute of Mining and Technology/Petroleum Recovery Research Center, Socorro, NM 87801-4681

Background
Improving oil production is becoming more crucial as worldwide oil demand rapidly increases, and the development of new technology is needed to fulfill this demand. In particular, EOR with CO2 is regarded as a promising technology to not only improve oil production, but also to mitigate carbon emissions through their capture and storage in deep geologic formations. A revised national resource assessment for CO2-EOR (July 2011) prepared for DOE by Advanced Resources International indicated that “Next Generation” CO2-EOR can provide 137 billion barrels of additional technically recoverable domestic oil, with about half (67 billion barrels) economically recoverable at an oil price of $85 per barrel. However, CO2 flooding processes frequently experience poor sweep efficiency despite the favorable characteristics CO2 has for achieving dynamic miscibility with oil under most reservoir conditions. Because the mobility of CO2 is high compared to that of oil, channeling that initially results from reservoir heterogeneity can be further increased, thus strengthening the need for mobility control during CO2 flooding.

Research results have demonstrated that surfactant-induced CO2 foam is an effective method for mobility control in CO2 foam flooding. However, surfactant-stabilized CO2 foams have some potential weaknesses. Because the foam is by nature ultimately unstable, its long-term stability during a field application is difficult to maintain. This is especially true when the foam contacts the resident oil. Under high-temperature reservoir conditions surfactants generally tend to degrade before they fulfill their long-term function. In addition, surfactant loss in a reservoir due to adsorption in porous media results in a large consumption of chemicals and is a major factor governing the economic viability of CO2 foam flooding.

New nano-science technologies may provide an alternative for the generation of stable CO2 foam. It is known that small solid particles can adsorb at fluid/fluid interfaces to stabilize drops in emulsions and bubbles in foams. The solid-stabilized dispersions may stay stable for years upon storage. The use of nanoparticles instead of surfactant to stabilize CO2 foam may overcome the long-term instability and surfactant adsorption loss issues that affect surfactant-based CO2-EOR processes. The high adhesion energy of the particles enables adsorption and is essentially irreversible, thus solid nanoparticles strongly and preferentially adsorb to either the water or gas phase at the water/CO2 interface and create a protective barrier around each dispersed bubble of gas (if the nanoparticle is hydrophilic) or drop of water (if the nanoparticle is hydrophobic) to produce highly stable and durable foam. These properties imply that long-term stabilization of nanoparticle-stabilized CO2 foam may be obtained.

Impact
Successful results of the planned experiments, together with the development of the nanoparticle-stabilized CO2 foam and an evaluation of its potential for field testing, will benefit the oil industry in its enhanced recovery efforts. Nanoparticles are solid and can withstand harsh environments and high temperatures; thus, a successful project will extend the benefits of CO2 flooding to those high-temperature reservoirs in which surfactant-stabilized CO2 foam cannot survive. A successful project will provide an alternative CO2-EOR technology that may drastically reduce the costs of a CO2-EOR operation and, in addition, provide promising economic benefits from further oil recovery.

Accomplishments
Silica nanoparticles easily passed through the sandstone core without changing its permeability. Little adsorption was observed as nanosilica particles flooded the limestone core and core permeability remained unchanged. Core plugging did occur and core permeability was changed with injection of nanoparticles into a dolomite core.

Very stable and uniform CO2 foam was generated when CO2 and nanosilica dispersion flowed through a sandstone core sample. Carbon dioxide foam could be generated at a nanosilica concentration as low as 500 ppm. Increasing nanosilica concentration reduced foam mobility and increased the foam resistance factor. Increasing foam quality from 20% to 60% decreased CO2 foam mobility; however, an additional increase in foam quality from 60% to 80% increased CO2 foam mobility. Carbon dioxide foam mobility decreased with an increase in total flow rate and increased with an increase in core permeability.

Research also demonstrated that the addition of a small amount (30–50 ppm) of surfactant to a nanoparticle solution significantly improved CO2 foam generation and foam stability.

Nanoparticle-stabilized CO2 foam was observed to improve the residual oil recovery in sandstone core. The residual oil saturation decreased from 39.2% (after water flooding) to 9.95% after 5 PV of nanosilica and CO2 were injected.

Current Status (January 2013)
Current studies focus on nanosilica particle-stabilized CO2 foam for residual oil recovery at various pressures (1200, 1800, and 2500 psi) and temperatures (25, 45, and 60°C). Limestone core samples are being flooded with brine to obtain a residual oil saturation. Then 5 PV nanosilica dispersion and CO2 are injected into the core to improve residual oil recovery. Pressure drop across the core is monitored during the experiments and oil recovery attributable to CO2 foam is estimated. Particle retention and CO2 captured in the core sample are being measured and calculated. The effects of pressure and temperature on foam performance and residual oil recovery are being investigated.

Researchers will continue to investigate CO2-nanoparticle foam flooding with dolomite and limestone cores to investigate interactions between nanoparticles and other rock types and determine residual oil recovery.

Project Start: October 1, 2010
Project End: January 31, 2014

DOE Contribution: $772,934
Performer Contribution: $385,888

Contact Information:
NETL – Sinisha (Jay) Jikich (sinisha.jikich@netl.doe.gov or 304-285-4320)
NMIMT/PRRC - Ning Liu (ningliu@prrc.nmt.edu or 575-835-5739)
If you are unable to reach the above personnel, please contact the content manager

Additional Information

CO2 EOR: Nanotechnology for Mobility Control Studied [PDF-1.65MB] - News Release July, 2012

Printer Icon Printer Friendly