Liquid Argon Time Projection Chambers and Project X

> Mitch Soderberg Yale University November 17, 2007

Introduction

- Physics Goals (accelerator and non-accelerator)
- Liquid Argon Time Projection Chambers (LAr TPCs)
- Current LAr TPC Work (focus on the U.S.)
- LAr TPCs possiblities in the Project X and DUSEL Era

Physics Goals

Accelerator Based

- Observe $v_{\mu} \rightarrow v_{e}$ transitions, measure θ_{13}
- Determine Mass Hierarchy
- Measure the CP-violating phase, δ_{CP}

Non Accelerator Based • Proton Decay (e.g. - $p \rightarrow K^+ v_{\mu}$) • Supernovae searches • Solar neutrinos

"Nucleon Decay Searches with large Liquid Argon TPC Detectors at Shallow Depths: atmospheric neutrinos and cosmogenic backgrounds" - A. Bueno et. al, hep-ph/0701101

LAr TPC Advantages

e/ γ separation \rightarrow reduced ν_{μ} induced backgrounds (NC π^{0})

80% signal (CC v_e) efficiency, ≈96% background (NC π⁰) rejection
Topological cuts will also improve signal/background separation
PID from dE/dx (proton/pion/kaon separation)

New GEANT4 simulation... work in progress

dE/dx for electrons and gammas in first 2.4 cm of track

Noble Liquids: Properties

Ionization and scintillation light used for detection (transparency to own scintillation).
Ionization electrons can be drifted over long distances in these liquids.
Very good dielectric properties allow high-voltages in detector.
Argon is cheap and easy to obtain (1% of atmosphere).

	Water	-6	Me	Ar	Kp	Xe
Boiling Point [K] @ Iatm	373	4.2	27.1	87.3	120.0	165.0
Density [g/cm ³]	I	0.125	1.2	1.4	2.4	3.0
Radiation Length [cm]	36.1	755.2	24.0	14.0	4.9	2.8
Scintillation [γ/MeV]	-	19,000	30,000	40,000	25,000	42,000
dE/dx [MeV/cm]	1.9		1.4	2.1	3.0	3.8
Scintillation λ [nm]		80	78	128	150	175

LAr TPCs can be scaled to massive sizes.

How LAr TPCs Work

•Drift velocity controlled by E-field.

- •Timing + wire location = track position.
- Multiple planes allow 3-d track reconstruction.
- •Calorimetry by collecting charge.

	Bias/ Filter	Amplify	Digitize
--	-----------------	---------	----------

Open Issues:

Long wires = lots of noise
Purification level necessary for long drift
Purification of large volume of LAr
Surface cosmic-ray rates

E-Field

How LAr TPCs Work

•Drift velocity controlled by E-field.

- •Timing + wire location = track position.
- Multiple planes allow 3-d track reconstruction.

•Calorimetry by collecting charge.

	Bias/ Filter	Amplify	Digitize
--	-----------------	---------	----------

E-Field

Open Issues:

Long wires = lots of noise
Purification level necessary for long drift
Purification of large volume of LAr
Surface cosmic-ray rates

How LAr TPCs Work

•Drift velocity controlled by E-field.

- •Timing + wire location = track position.
- Multiple planes allow 3-d track reconstruction.

•Calorimetry by collecting charge.

Bias/ Filter	Amplify	Digitize
-----------------	---------	----------

E-Field

Open Issues:

•Long wires = lots of noise

- Purification level necessary for long drift
- •Purification of large volume of LAr

•Surface cosmic-ray rates

Argon Purity

•To drift electrons through argon, impurities (primarily Oxygen) must be removed from delivered LAr to increase ionization electron lifetimes.

•Pass LAr through filter before sending it into detector vessel.

•Drift charges through filtered LAr to measure purity.

•Fermilab has developed its own reusable filters for liquid argon.

Very nice FNAL Purity signal (4ms)

ICARUS style Purity Monitor

FNAL TRIGON Filter

LArTPC Roadmap

Materials Test Stand

20 Ton Purity Demonstration

Poster Session

"R&D on Liquid Argon Time Projection Chambers and Physics Potential for Future Neutrino Oscillation Experiments" -Niki Saoulidou (Fermilab), Dave Finley (Fermilab)

50-100 kTons

Massive LArTPCs:

FLARE

GLACIER

LANNDD

MODULAR

"MicroBooNE" - Joshua Spitz (Yale)

kTons

ArgoNeuT: ~175 LiterTracks at YaleTPC in NUMI beam.

MicroBooNE

- ArgoNeuT = Argon Neutrino Test, scheduled to start running in Feb. 2008
- Fermilab, <u>INFN</u>, Michigan State, UT Austin, Yale ← International collaboration!
- ~175 Liter LAr TPC exposed to NUMI beam.
- 480 channels of readout, 4mm pitch
- Use Minos as muon catcher to calibrate, then move elsewhere in tunnel when Minerva arrives
- Excellent opportunity to gain experience (in the U.S.) with LArTPCs in a neutrino beam:
 - Recirculation system with Fermilab filters.
 - Electronics made in U.S. (by MSU)
 - Underground running and all its issues....
 - Develop GEANT4 Simulation

LArTPC Potential with Project X

Mass Ordering

CPViolation

Curve	Beam	Detectors	POT/mode (10 ²⁰)	Energy (GeV)
	NuMI	NOvA	15	120
	sNuMI	NOvA	30	120
	Project X	NOvA	60	120
	Project X / NuMI	100kT LArTPC at 700km 100kT LArTPC at 810km	60	120
	Project X / wideband	100kT at 1300km	120	60

Conclusions

- Liquid Argon TPCs are an exciting technology for next generation experiments.
- There are several LArTPC projects in progress, or in the proposal stage, all of which will ready the technology for the Project X /DUSEL era.

One of top 4 level recommendations from the NuSAG report, 2007:

"A phased program with milestones and using technology suitable for a 50-100kton detector is recommended for the liquid argon detector option. Upon completion of the existing R&D project to achieve purity sufficient for long drift times, to design low noise electronics, and to qualify materials, construction of a test module that could be exposed to a neutrino beam is recommended."

