RHIC Polarimetry

A.Bazilevsky For the RHIC Polarimetry Group

RHIC&AGS User's Meeting May 29, 2008

Polarization Measurements

Absolute polarization

p-Carbon

Polarization profile Polarization vs time in a fill Bunch-by-bunch polarizations Fill-by-fill polarizations

Local Polarimeters

Monitor spin direction at collision regions (Confirmation of long. polarization)

Capable to monitor polarization decay vs time in a fill and bunch-by-bunch polarization

HJet

Left-right asymmetry in elastic scattering: Interference between electromagnetic and hadronic amplitudes in the Coulumb-Nuclear Interference (CNI) region

$$A_N \approx \operatorname{Im} \left(\phi_{SF}^{em} \phi_{NF}^{had} + \phi_{SF}^{had} * \phi_{NF}^{em} \right) / \left| \phi_{NF}^{had} \right|^2$$

P_{target} is provided by Breit Rabi Polarimeter

HJet: P_{target}

Source of normalization for polarization measurements at RHIC

Polarization cycle (+/0/-) = (500/50/500) seconds

Very stable for entire run period !

Nuclear polarization of the atoms measured by BRP: $95.8\% \pm 0.1\%$

Correct for H₂, H₂O contamination.

HJet: Identification of Elastic Events

Array of Si detectors measures $T_R \& ToF$ of recoil proton. Channel # corresponds to recoil angle θ_R . Correlations ($T_R \& ToF$) and ($T_R \& \theta_R$) \rightarrow the elastic process

HJet:

Example from Run6

HJet

Agreement within stat. errors

HJet performance is very stable through the Years Background is small and doesn't change from Year to Year, for Blue and Yellow (within 2-3%)

 \Rightarrow Beam polarization is measured reliably by HJet

Hjet: Two Beam Mode

Yellow beam on target

Blue beam on target

Both beams on target

- ✓ Background level is the same as in single beam mode
- Will allow to monitor both beam polarizations by HJet simultaneously in all fills

HJet: A_N in pp

$$A_N \approx \operatorname{Im}\left(\phi_{SF}^{em}\phi_{NF}^{had} + \phi_{SF}^{had}*\phi_{NF}^{em}\right) / \left|\phi_{NF}^{had}\right|^2$$

 \mathcal{E}_{target}

arget

100 GeV: calculations with no hadronic spin flip amplitude contribution are consistent with data

24 GeV: calculations with no hadronic spin flip amplitude contribution are not consistent with data

 A_N almost constant vs beam energy \rightarrow Reliable polarimetry in wide range of beam energies

More data to come: 24 GeV: take more data in Run9/10 31 GeV: finalize analysis of data from Run6 250 GeV: take data in Run9/10

pC:

Left-right asymmetry in elastic scattering: Interference between electromagnetic and hadronic amplitudes in the Coulumb-Nuclear Interference (CNI) region

5

pC: A_N

Elastic scattering: interference between electromagnetic and hadronic amplitudes in the Coulumb-Nuclear Interference (CNI) region

$$A_N \approx C_1 \phi_{flip}^{em} \phi_{non-flip}^{had} + C_2 \phi_{non-flip}^{em} \phi_{flip}^{had}$$

pC: goals/strategy

Polarization measurements for experiments

Target Scan mode

Provides polarization at beam center, polarization profile, average polarization over profile

20-30 sec per measurement For stat. precision 2-3%

4-5 measurements per fill, per ring Controls polarization decay vs time in a fill

Polarization profile, both vertical and horizontal

Normalized to HJet measurements over many fills Knowledge on polarization profile in one transverse direction is required

Fill-by-fill polarization

Knowledge on polarization profile in both transverse directions is required

Feedback for accelerator experts

Beam emittance measurements, bunch-by-bunch Polarization Polarization profile, both vertical and horizontal Polarization at injection (and polarization loss in transfer) Polarization on the ramp (and polarization loss during ramp)

pC: polarization in a fill

Some fills may show polarization decay vs time Run6: average polarization drop during a fill 0.3-0.4% per hour

pC: Polarization Profile

Examples of pC measurements in Run5

Beam polarization profile is different for different beams, different fills \Rightarrow Correction for **average polarization** depends on beam/fill

Average Polarization

$$\left\langle P \right\rangle = \frac{\int P(x, y)I(x, y)dxdy}{\int I(x, y)dxdy} \qquad \left\langle P \right\rangle = \frac{\int P(x0, y)I(x0, y)dy}{\int I(x0, y)dy} \quad \left\langle P \right\rangle = \frac{\int P(x, y)I_1(x, y)I_2(x, y)dxdy}{\int I_1(x, y)I_2(x, y)dxdy}$$

P(x,y) – polarization profile, I(x,y) – intensity profile

Average Polarization

$$P(x) = P_{\max} \cdot \exp\left(-\frac{x^2}{2\sigma_p^2}\right) \quad I(x) = I_{\max} \cdot \exp\left(-\frac{x^2}{2\sigma_l^2}\right) \qquad R = \frac{\sigma_l^2}{\sigma_p^2}$$
H-Jet
$$\left\langle P \right\rangle = \frac{\int P(x, y)I(x, y)dx}{\int I(x, y)dxdy} = \frac{P_{\max}}{\sqrt{1 + R_x}}$$
pC
$$\left\langle P \right\rangle = P_{\max} \qquad \qquad \text{If target positioned at beam peak intensity/polarization}$$
Collider
Experiment
$$\left\langle P \right\rangle = \frac{\int P(x, y)I_1(x, y)I_2(x, y)dxdy}{\int I_1(x, y)I_2(x, y)dxdy} \approx P_{\max} \frac{\sqrt{1 + \frac{1}{2}R_y}}{\sqrt{1 + \frac{1}{2}R_y}} \qquad \qquad \text{If } \sigma_{l2} = \sigma_l$$

Corrections due to polarization profiles are different when normalizing pC to H-Jet and when propagating pC measurements to experiments Polarization profile in both trans. directions (X,Y) required

pC: Polarization Profile

1. Directly measure σ_l and σ_p :

 $R = \frac{\sigma_I^2}{\sigma_P^2}$

 Obtain R directly from the *P(I)* fit:

$$P(x) = P_{\max} \cdot \exp\left(-\frac{x^2}{2\sigma_p^2}\right)$$

$$I(x) = I_{\max} \cdot \exp\left(-\frac{x^2}{2\sigma_l^2}\right)$$

$$P = P_{\max} \cdot \left(\frac{I}{I_{\max}}\right)$$

Precise target positioning is NOT necessary

pC: Polarization Profile

 $P = P_{\max} \cdot \left(\frac{I}{I_{\max}}\right)^{F}$

 $R \sim 0.1-0.3 \Rightarrow 5-15\%$ different polarization seen by HJet and by experiments

pC: Polarization vs Fill

Run6 results

$$\frac{\delta P_B}{P_B} = 4.7\% \qquad \frac{\delta P_Y}{P_Y} = 4.8\%$$
$$\frac{\delta (P_B P_Y)}{P_R P_Y} = 8.3\%$$

Hjet+pC: Run8 Analysis

Fast (~online) analysis – during the run

Offline analysis is almost completed and results will be released soon

pC: Upgrade

Detector upgrade

Photo-diode instead of Si strips

Target upgrade

 Possibility of using nano-tubes under investigation

pC vacuum chamber upgrade

- Two polarimeter setups per ring
- Double number of targets (to avoid a need to open chamber to install new targets during the run)
- Reduce the time required for successive measurements of horiz. and vert. profiles
- Allows installation and testing new detectors for higher rate capabilities

PHENIX Local Polarimeter

Utilizes spin dependence of very forward neutron production (PLB650, 325):

ZDC (energy) + SMD (position)

PHENIX Local Polarimeter

Asymmetry vs φ

Spin Rotators OFF Vertical polarization

Spin Rotators ON Current Reversed Radial polarization

Spin Rotators ON Correct Current ! Longitudinal polarization!

Monitors spin direction in PHENIX collision region

STAR Local Polarimeter

Utilizes spin dependence of hadron production at high x_{F} :

Bunch-by-bunch (relative) polarization

Monitors spin direction in STAR collision region Capable to precisely monitor polarization vs time in a fill, and bunch-by-bunch

Summary

RHIC Polarimetry consists of several independent subsystems

Hjet:

Absolute polarization measurements Absolute normalization for other RHIC Polarimeters

<u>pC:</u>

Separate for blue and yellow beams Normalization from HJet Polarization vs time in a fill Polarization profile

Fill-by-fill polarizations for experiments

PHENIX and STAR Local Polarimeters:

Monitor spin direction (through trans. spin component) at collision Polarization vs time in a fill (for trans. pol. beams) Polarization vs bunch (for trans. pol. beams)

Reliably provides RHIC beam polarizations

With relative uncertainty better than 5%

Continuously developing

Detector and target system upgrade to deal with high beam intensities, and to improve efficiency and reliability

RHIC CNI Polarimetry Group: a factory of CNI Polarimetrer experts

Each Run (Year) new students/postdocs are involved in the data monitoring and data analysis. They

Learn

Contribute

Leave (to use newly gained expertise in other projects)

A call for new volunteers to work on Run9/10 etc. Please come, learn, become an expert, contribute New challenges every Run/Year Physics is coming out (with more statistics, reduced systematics, different energies)

Backups

H-jet system

- Height: 3.5 m
- Weight: 3000 kg
- Entire system moves along
 x-axis -10 ~ +10 mm to
 adjust collision point with
 RHIC beam.

