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e www.nnsa.doe.gov/ASC

ASC Roadmap

Computational Weapons Science and Simulation:
Targets to address Nuclear Weapons Issues
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FOCUS AREA 1: ADDRESS NATIONAL FOCUS AREA 2: ESTABLISH A VALIDATED FOCUS AREA 3: QUANTIFY AND AGGREGATE FOCUSAREA 4 : PROVIDE MISSION-RESPONSIVE
SECURITY SIMULATION NEEDS PREDICTIVE CAPABILITY FORKEY PHYSICAL PHENOMENA UNCERTAINTIESIN SIMULATION TOOLS COMPUTATIONAL ENVIRONMENTS
< 2008: National code strategy 4 2007: Launch Thermonuclear Burn Initiative (TBI) coll aboration <= 2008: National verification & validation strategy 22007 Initiate new National User Facility model for capability
=i 2009 Modular physics and engineering packages for national 4 2008: Realisticplutonium aging simulations <% 2008: Assessment of major simulation uncer tainties supercomputing
weapons codes 4 2009: Science-based replacement for Knob #1 <% 2009: Shared weapons physical databases ~< 005 Seamless user environments for capacity computin
<& 2012 Tested capability to address emerging threats, effects, 4 2010: Science-based models for neutron tube simulations <& 2010: Uncertainty Quantification (UQ) methodology for QMU Z22009: Petascale computing
and attribution 4 2012: Validated scence-based replacement for Knob #2 <& 2012. 20% reduction in overall prediction emor bars {with respect to 2006) 122013 Seamless user environments for capability computing
=i 2013 50% improvementin setup-to-solution time for SFI 4 2014: NiF-validated simulations supporting replacement of #% 2013: Re-assessment of major simulation uncer ainties #2016 100x petascale computing
simulations (with respect to 2006) knob #3 <% 2014: Demonstrated uncertainty aggregation for QMU 222018 Exascale computing
<& 2014: Full-system engineering and physics simulation 4 2015: Science-based models for fire excitation simulations <% 2017: 20% Reduction in overall prediction error bars {with respect to 2012)
capability 4 2016: Predictive model for Knob #4

== 2016 Capability to certify fire safety for an unfielded weapon
< 2019 50% improvementin setup-to-solution time for SF
simulations (with respect to 2013)
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Software Trends

Science is getting harder to solve on Leadership systems

Application trends

Scaling limitations of present algorithms
More complex multi-physics requires large memory per node

Need for automated fault tolerance, performance analysis, and
verification

Software strategies to mitigate high memory latencies

Hierarchical algorithms to deal with BW across the memory hierarchy
Innovative algorithms for multi-core, heterogeneous nodes

Model coupling for more realistic physical processes

Emerging Applications
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Growing importance of data intensive applications
Mining of experimental and simulation data
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Industry Trends

Existing industry trends not going to meet HPC application needs

e Semi-conductor industry trends
* Moore’s Law still holds, but clock speed now constrained by power and cooling
limits
* Processors are shifting to multi/many core with attendant parallelism

« Compute nodes with added hardware accelerators are introducing additional
complexity of heterogeneous architectures

* Processor cost is increasingly driven by pins and packaging, which means the
memory wall is growing in proportion to the number of cores on a processor
socket

 Development of large-scale Leadership-class supercomputers from
commodity computer components requires collaboration

« Supercomputer architectures must be designed with an understanding of the
applications they are intended to run

« Harder to integrate commodity components into a large scale massively parallel
supercomputer architecture that performs well on full scale real applications

» Leadership-class supercomputers cannot be built from only commodity
components
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Moore’s Law + Multicore —
Rapid Growth in Computing Power

2007 -1 TeraFLOPs on a chip
* 275 mm? (size of a dime) & 62 W

1997 -1 TeraFLOPs in a room
« 2,500 ft2 & 500,000 W
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The Memory Wall significantly impacts
the performance of our applications
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« Most of DOE’s Applications (e.g., climate, fusion, shock physics, ...)
spend most of their instructions accessing memory or doing integer

computations, not floating point

 Additionally, most integer computations are computing memory
Addresses

« Advanced development efforts are focused on accelerating memory
subsystem performance for both scientific and informatics
applications
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The Need for HPC Innovation and
Investment is Well Documented

Divergence

N
w

»n
o

-
o

— Peak
— SSP

TeraFlop/s
=

w

e e e

o

1996 2000 2003 2006
Years (actual to 2003 - 2006 Estimate)

Figure 1: Divergence Problem for HEC Centers (SSP = Sustained System Performance)
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Report of the High-End Computing
Revitalization Task Force (HECRTF),
May 2004

“Requirements for ASCI”,

Jasons Report, Sept 2002

National Research Council, “Getting Up To Speed The Future of
Supercomputing”, Committee on the Future of Supercomputing, 2004

“Recommendation 1. To get the maximum leverage from the national effort, the
government agencies that are the major users of supercomputing should be
jointly responsible for the strength and continued evolution of the
supercomputing infrastructure in the United States, from basic research to
suppliers and deployed platforms. The Congress should provide adequate and

sustained funding.”
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Impediments to Useful Exascale Computing

« Data Movement « Scalability

— Local — 10,000,000 nodes
» cache architectures — 1,000,000,000 cores
* main memory architectures _

_ Remote 1.0.,000,000,000 threads
. Topology  Resilience
« Link BW — Perhaps a harder
* Injection MW problem than all the
- Messaging Rate others

— File /O — Do Nothing: an MTBI of
 Network Architectures 10’s of minutes
* Parallel File Systems +  Programming Environment
- Disk BW

— Data movement will

» Disk latenc - .
y drive new paradigms

* Meta-data services
« Power Consumption
— Do Nothing: 100 to 140 MW
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IAA Mission and Strategy

TAA is proposed as the catalyst for co-design and development of architectures and
algorithms/applications to create synergy in their respective evolutions

* Focused R&D on key impediments to high performance in
partnership with industry and academia

* Foster the integrated co-design of architectures and algorithms to
enable more efficient and timely solutions to mission critical
problems

« Partner with other agencies (e.g., DARPA, NSA ...) to leverage our
R&D and broaden our impact

 Impact vendor roadmaps by committing National Lab staff and
funding the Non-Recurring Engineering (NRE) costs of promising
technology development and thus lower risks associated with its
adoption

« Train future generations of computer engineers, computer
scientists, and computational scientists, thus enhancing American
competitiveness

 Deploy prototypes to prove the technologies that allow application
developers to explore these architectures and to foster greater
algorithmic richness
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Uniqueness

* Partnerships with industry, as opposed to contract management
 Cuts across DOE and other government agencies and laboratories
« A focus on impacting commercial product lines

— National competitiveness

— Impact on a broad spectrum of platform acquisitions
A focus on problems of interest to DOE

— National Security

— Science

« Sandia and Oak Ridge have unique capabilities across a broad and
deep range of disciplines

— Applications
— Algorithms
— System performance modeling and simulation
— Application performance modeling
— System software
— Computer architectures
* Microelectronics Fab, Packaging Lab, ...
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Execution Plan

Project Planning

Joint SNL/ORNL meetings

Workshops

OAK

Work with industry and academia
to define thrust areas

“Memory Opportunities for High-
Performance Computing”, Jan
2008 in Albuquerque (Fred
Johnson and Bob Meisner were
on the program committee)

Planning started for an
Interconnect Workshop, Summer
2008

Planning started for an Algorithm
Workshop, Fall 2008
Training
Fellowships, summer internships,
and interactions with academia to

help train the next generation of
HPC experts.
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« Define and prioritize focus areas

High-speed interconnects *
Memory subsystems *
Power

Processor microarchitecture
RAS/Resiliency

System Software

Scalable 1/0

Hierarchical algorithms *
System simulators *

Application performance
modeling

Programming models
Tools

*FY ‘08 Project Starts
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Memory Project 7‘ -B

Vision: Create a commodity memory

part with support for HPC data movement
operations.

Approach: new high-speed memory e ?:,Eﬁcr

signaling technology inserts an ASIC (the : Metory
Buffer-on-Board, or BOB) between the Interconnect

CPU and memory. Add data movement
support in the ASIC.

Near Term Goals:

>

X-BOB
(Scatter/Gather/Etc)

.{

X-BOB
(Scatter/Gather/Etc)

{

* Define in-memory operations (scatter/gather, atomic memory operations, etc.)

* Define CPU/X-BOB coherency
Long Term Goals:

® Create a commodity memory part that increases effective bandwidth utilization

Potential Partners:

® Industry: Micron (since June 05), AMD, SUN, Intel, Cray, IBM

® Academia: USC/ISI (Draper/Hall), LSU (Sterling)
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Interconnect Project

Vision: Ensure next generation interconnects satisfy HPC

needs
Approach: Provide understanding of application needs,

explore designs with simulation, prototype features with

vendors
Long Term Goals:

» Scalability: >100,000 ports (including power, cabling, cost, failures, etc.)

» High Bandwidth: 1TF sockets will require >100GBps
» High Message Throughput. >100M for MPI; >1000M for load/store
* Low Latency: Maintain ~1us latency across system
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* High Reliability: <10-23 unrecovered bit error rate
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Near Term Goals:

* |dentify interconnect simulation strategy 25000 -
» Characterize interconnect requirements on mission apps g zw |

s)

* Develop MPI models & tracing methods
» Pursue small collaboration project with industry partner

Bandwidtl

10000

Potential Collaborators:
« Academic: S. Yalamanchili (parallel simulation), B. Dally

15000 |

5000

HEETY, Meslsagessecor;d

10M Messages/second ===+

15M Messages/second

(topologies, routing), K. Bergman (optics) °

* Industry: Intel, Cray
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Simulator Project

Long Term Vision: Become the
HPC community standard simulator

Front End Back End
Long Term Goals | ) T || 3 @\ [,
 Highly scalable parallel simulator ‘= :gg
« Multi-scale simulation ELEPISA | pisa s 2 2 < sim-outorder]
e Technology model interface ——°§
Near Term-Goals Mach-0PPC | ppcre || B mcpme P p o

* Prototype parallel simulator

e x86 Front-/Back-end models

e Integrate MP| Models

e Tracing for Interconnect Sim.

Potential Partners

e B. Jacob (U. Maryland): Improve
DRAM model

e S. Yalamanchili (Georgia Tech):
Parallel SST

e D. Chiou (Texas): FPGA
Acceleration of Simulation
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The modular simulation structure allows
flexible simulation
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