

This is a figure showing the locations of hydrogen (H), oxygen (O), carbon (C) , nitrogen (N) and phosphorus (P) atoms in one molecule of adefovir dipivoxil, which is a drug designed to treat hepatitis B.

Problem 1 - How many atoms of each element are present in one molecule of tannic acid?

Problem 2 - Write the molecular formula of this molecule by filling-in the blanks with the number of counted atoms in the following:

Problem 3 - The mass of each element is given in terms of Atomic Mass Units (AMUs). If the masses of the atoms in adefovir dipivoxil are $\mathrm{H}=1 \mathrm{AMU}, \mathrm{C}=12$ AMU, N= 14 AMU, $\mathrm{O}=16$ AMU, and $\mathrm{P}=31$ AMU, what is the total mass of a single molecule in AMUs?

Problem 4-If 1 AMU equals 1.7×10^{-27} kilograms, how many molecules are present in a sample with a mass of 1 microgram?

Problem 1 - How many atoms of each element are present in one molecule of tannic acid?

Answer: Carbon (C) = 20
Oxygen (O) = 8
Hydrogen $(\mathrm{H})=32$
Nitrogen (N) = 5
Phosporus (P) = 1

Problem 2 - Write the molecular formula of this molecule by filling-in the blanks with the number of counted atoms in the following:

$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P}$

Problem 3 - The mass of each element is given in terms of Atomic Mass Units (AMUs). If the masses of the atoms in adefovir dipivoxil are $H=1 \mathrm{AMU}, \mathrm{C}=12 \mathrm{AMU}$, $\mathrm{N}=14 \mathrm{AMU}, \mathrm{O}=16 \mathrm{AMU}$, and $\mathrm{P}=31 \mathrm{AMU}$, what is the total mass of a single molecule in AMUs?

Answer: $\mathrm{M}=20(12)+32(1)+5(14)+8(16)+1(31)=501$ AMU.

Problem 4 - If 1 AMU equals 1.7×10^{-27} kilograms, how many molecules are present in a sample with a mass of 1 microgram?
Answer: One molecule has a mass of 501 AMU $\times\left(1.7 \times 10^{-27} \mathrm{~km} / 1 \mathrm{AMU}\right)=8.5 \times 10^{-25}$
kg . The sample has a total mass of 1.0×10^{-6} grams which equals 1.0×10^{-9} kilograms.
So the number of molecules is $\mathrm{N}=1.0 \times 10^{-9} / 8.5 \times 10^{-25}=1.2 \times 10^{15}$ molecules.

