Advanced Neutrino Sources

(Neutrino Factories and Beta Beams)

Experiments at advanced neutrino sources would be designed to go beyond the planned few-sigma discoveries (θ_{13} , mass hierarchy, CPV) and make precision measurements of the oscillation parameters, and precisely test the 3-flavor mixing framework. If θ_{13} is small, they may also have to make the initial few-sigma discoveries.

- Design
- R&D Status
- Remaining R&D Needed
- Cost and Illustrative Schedule Information

Appendix: Physics reach

INTRODUCTION: ADVANCED NEUTRINO SOURCES

• Neutrino Factories (NF) & Beta Beams (BB) produce v beams by storing unstable particles in a ring with long straight sections:

NF
$$\mu^{+} \rightarrow e^{+} V_{e} \overline{V}_{\mu} \Rightarrow 50\% V_{e} + 50\% \overline{V}_{\mu}$$

$$\mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \Rightarrow 50\% \overline{V}_{e} + 50\% V_{\mu}$$

- The stored beam properties & decay kinematics are well known → uncertainties on neutrino flux & spectra are small → PRECISION
- Initial beams are flavor "pure" (BB) or "tagged" by final lepton charge (NF) \rightarrow **PRECISION**
- The NF has the additional advantages of very low background rates (wrong-sign muon signature) & a wealth of information (to obtain oscillation parameters can measure and simultaneously fit 6 spectra with μ^+ & 6 spectra with μ^- stored) \rightarrow **PRECISION**.

BETA BEAMS

- Need beta-decaying ion sources for v_e & anti- v_e
- Accelerate to high energy (E_√≤2γQ with Q~few MeV)
 a need fast ramp
- Store in decay ring
- Would also like conventional ν_{μ} beam with same L/E

CERN EXAMPLE

EURISOL+SPS

 $\gamma \le 150$ (⁶He) or 250 (¹⁸Ne) Ring length ~ 6km Beam \rightarrow Frejus (L=130km)

FNAL BETA BEAM SCENARIO

ILLUSTRATIVE SCENARIO

- Proton Source = Project X
- New ion source: 8Li and 8B
 - Target
 - ECR to strip & bunch
- Ion Acceleration
 - New Linac → ~100 MeV/u
 - New Synchrotron→~500 MeV/u
 - Booster → γ = few
 - $-MI \rightarrow final energy$
- New decay ring (circum= ~3 Km)

EXAMPLE

$$γ$$
 <**E**_ν> $τ$ ₀ (rest)

⁸Li 60 1.0 GeV 0.84s

⁸B 101 1.7 GeV 0.77s

Baseline L~300km

R&D ISSUES

General

- 8B production (sticks to target)
- High freq. ECR source (to deal with intensities)

Fermilab specific

- Accumulator ring design
- Decay ring design
- Detailed study of intensity limitations due to e.g. activation of machines (estimate 1 W/m from decay in Booster for 10¹⁹ decays/yr in straight).
- Detailed study of RF required manipulations

NOTE: Following the 2004 APS Neutrino Study recommendation with limited U.S. resources, have not invested in BB R&D→ No FNAL BB Feasibility Study.

NEUTRINO FACTORY DESIGN STUDIES

In the U.S. (with international partners) we have been investing in NF R&D for the last decade (NF idea proposed in 1997) → component development, systems testing, & 4 generations of design studies:

• First Generation "Feasibility" Studies:

Feasibility Study 1 (FNAL 2000) Japanese Study 1 (2001) CERN Study (2004)

• Second Generation "Performance & Cost-Reduction" Studies:

Study 2 (BNL 2001): performance Studies 2a & 2b (2001-6): cost effectiveness

- Third Generation "International" Study: International Scoping Study (RAL 2006): International baseline design
- Fourth Generation Study:
 International Design Study: ZDR by ~2010, RDR by ~2012)

Steve Geer

NEUTRINO FACTORY INGREDIENTS

- Proton Source

- primary beam on production target
- Target, Capture, and Decay
 - create π ; decay into μ
- Bunching & Phase Rotation
 - reduce ∆E of bunch
- Cooling
 - reduce transverse emittance
- Acceleration
 - 130 MeV \rightarrow E_{NF}
- Storage Ring
 - store for 500 turns; long straight section

US Design schematic: 20 GeV NF (Phys. Rev. ST Accel. Beams 9, 011001 (2006))

NEUTRINO FACTORY: ISS DESIGN

- International Neutrino Factory design study sponsored by RAL
- Participation & leadership from Europe, U.S., & Japan.
- Selected 25 GeV NF design similar to Study 2b 20 GeV design

- Report: RAL-TR-2007-23

NEUTRINO FACTORY: 4 GeV DESIGN

- During the ISS a new concept emerged for a NF detector that can measure the muon charge from low energy neutrino interactions.
- 4 GeV NF combines strengths of Wide Band Beam (spanning several oscillations) & NF \rightarrow outstanding performance for **both large & small** θ_{13}
- Cheaper (less acceleration) & matched to FNAL–DUSEL baseline

PROTON SOURCE REQUIREMENTS

- Need beam power (at least 2MW) and short bunches (3ns).
- Optimum beam energy = 10 ± 5 GeV (ISS study) but at fixed power, muon yield drops slowly with energy lose ~30% for E=120 GeV (Mokhov)
- Project X is well suited to drive a NF. To get ≥2MW use either:
 - (i) Project X + MI (50 GeV, say) + new 50 GeV rebunching ring, or
 - (ii) Upgraded Project X (2MW at 8 GeV) + new 8 GeV rebunching ring.

TARGET STATION

- A 4MW target station design study was part of "Neutrino Factory Study 1" in 2000 → ORNL/TM-2001/124
- Facility studied was 49m long = target hall & decay channel, shielding, solenoids, remote handling & target systems.
- Target: liquid Hg jet inside 20T solenoid.

4MW Target Station Design

HOT NEWS: MERIT RESULTS

NF Studies 1 & 2 identified the target technology (a liquid Hg jet injected into a 20T solenoid) as the one of the most challenging parts of a NF \rightarrow target R&D program.

• In Fall 2007 the target R&D culminated in the MERIT expt which successfully demonstrated a liquid Hg jet injected into a 15T solenoid, & hit with a suitably intense beam from the CERN PS (115 KJ / pulse!)

MERIT EXPERIMENT

• The jet is disrupted, but this happens on a ms timescale (disruption length <28 cm ~ 2 int. lengths. The jet was observed to re-establish itself after 15ms ... before the next beam pulse arrives.

Preliminary analysis suggests this target technology is good for beams up to 8 MW!

Hg jet in a 15T solenoid Observed with high-speed camera

BUNCHING, PHASE ROTATION, COOLING

A clever arrangement of RF cavities bunches the muons & reduces their energy spread.

An ionization cooling channel reduces trans. phase space, increasing useful number of muons by ×1.7 (believed cost effective c.f. increasing detector mass)

Two R&D efforts must be completed for all this to be "can build":

- RF in magnetic fields
- MICE

Normal Conducting RF in MAGNETIC FIELDS

Need NCRF cavities operating in few-Tesla magnetic fields

• Could use open iris copper cavities (multi-cell 805 MHz cavity tested in few Tesla field)

• Since muons are penetrating particles, we have the option of closing the iris with a thin conducting window. At fixed peak power this doubles the

gradient on-axis → more compact channel & half the number of klystrons!

• Two closed-cell cavity options being explored (vacuum cavities & cavities filled with high pressure H₂). We are in the middle of the R&D needed to see if these options give the desired performance.

•Need to complete this R&D before locking in to the choice of RF technology.

Closed-cell 201 MHz cavity processed with SCRF-type treatment (electropolishing etc) ... exceeded design gradient without any conditioning. Will be tested in appropriate magnetic field next year.

INTERNATIONAL COOLING EXPERIMENT: MICE

GOALS: Build a section of cooling channel capable of giving the desired performance for a Neutrino Factory & test in a muon beam. Measure performance in various modes of operation.

Honization Cooling Instrumentation

- Multi-stage experiment.
- First stage currently being installed at a purpose-built muon beam at RAL.
- Anticipate final stage complete by ~2010

ACCELERATION

- Designs for the acceleration scheme use
 201 MHz SCRF
- 201 MHz SCRF R&D at Cornell observed substantial "Q-slope", but achieved
 11 MV/m
- 11 MV/m may be OK for 4 GeV NF (although higher gradients preferred)

201 MHz SCRF cavity at Cornell

Need to continue R&D on Q-slope, demonstrate ≥11 MV/m performance can be achieved routinely for several cavities, & design and prototype the required cryo-modules.

DETECTOR MAGNET

- Detector must measure muon-sign \rightarrow magnetized \rightarrow Finegrain MINOS-like detector will work for a NF with E \geq 20 GeV.
- For low energy NF (e.g. 4 GeV) need affordable large volume magnet (B \sim 0.5T) so we can use a low-Z fully active detector.

• Initial engineering study looks promising -- must prototype & test.

LOW ENERGY NF DETECTOR at DUSEL

• Initial simulation study performed for a 4 GeV NF detector

15m long scintillators triangular cross-section (base=3cm, ht=1.5cm)

Good muons reconstruction eff. for CC interactions with $E_v > 500$ MeV/c. Muon momentum resolution better than few % below 3GeV/c, & charge mis-id rate < 10^{-4} .

• Detector R&D needed to better understand performance & reduce cost associated with large number of channels – O(10⁷)

(Note: LAr detector may also be an option)

ILLUSTRATIVE TIMELINE

R&D SUPPORT and NF COST ESTIMATES

• FY07/08 annual U.S. funding level for NF+Muon Collider R&D:

5.5M\$ (SWF) + 2.4M\$ (M&S)=7.9M\$ (of this 2M\$ is Muon Collider specific)

R&D esti	nates	corr	espo	ndin	g illu	strat	ive t	imel	ime
	FY09	FY10	FY11	FY12	FY13	FY14	FY1	5 FY1	6 FY17
MICE M&S	8.0	1.3	0.2	0.2					
NCRF M&S	1.0	1.0	1.0	2.0					
SCRF M&S	1.0	1.0	2.0	3.0					
DET M&S	0.1	0.2	1.0	1.0					
OTHER M&S	0.8	8.0	8.0	1.5	Σ =	= ~10%	6 of pr	oiect o	cost
M&S TOTAL	3.7	4.3	5.0	7.7			<u> </u>	-,	
SWF+Indir.	8.5	10.4	12.1	13.8	←		<u> </u>		→
TOTAL	12.2	14.7	17.1	21.5	30	30	40	40	50

4 GeV NF Cost Estimate (excluding 2 MW proton source)

Start from Study 2 cost estimate scaled to account for post-study 2 improvements (ranges reflect uncertainties in scaling) →

ILC analysis suggest loading coeff = 2.07 for accelerator systems and 1.32 for CFS. Labor assumed $1.2 \times M\&S \rightarrow$

Loaded estimate = 2120 - 2670 (FY08 M\$)

Target Systems	110
Decay Channel	6
Drift, Ph. Rot, Bunch	112-186
Cooling Channel	234
Pre-Acceleration	114-180
Acceleration	108-150
Storage Ring	132
Site Utilities	66-156

Unloaded estimate (M\$)

881-1151

TOTAL (FY08 M\$)

CONCLUDING REMARKS

- Sensitivity to neutrino oscillation physics motivates the development of an advanced neutrino source see appendix
- We have a 10 year investment in NF R&D, with 3 generations of design study, R&D to develop the critical components, & two big international systems-demonstration experiments (MERIT & MICE).
- The international community is now working towards a "ZDR/RDR" by ~2010/2012. The R&D timeline & funding profile (last 2 slides) would enable the U.S. to step up to the plate and maintain our share of NF leadership, and give the U.S. a NF option that follows Project X.
- Building a muon source for a NF is a very desirable step in establishing the technologies needed for a multi-TeV Muon Collider, and might provide a staged path to a multi-TeV lepton collider.
- BB R&D has been proceeding in Europe. Physics comparisons of BB & NF are shown in the appendix.

APPENDIX: Discovery Reach for 25 GeV NF

• Physics reach for 25 GeV NF looks great & if θ_{13} is small may be the only option.

- All of these (WBB, BB, NF, T2HK) next-but-one generation neutrino experiment options are necessarily ambitious.
- The NF is the most sensitive option for very small θ_{13} .
- Not shown in the above plots is the low-energy NF which has great sensitivity for large (and small) θ_{13} .

APPENDIX: Discovery Reach 4 GeV NF

• Physics reach for 4 GeV NF looks great for both large and small θ_{13}

- Geer, Mena, & Pascoli, Phys. Rev. D75, 093001, (2007).
- Bross, Ellis, Geer, Mena, & Pascoli, hep-ph arXiv:0709.3889

- Bands cover range of run times (3-10y) & background levels (0 -10⁻³).
- Combines strengths of conventional Wide Band Beam (spanning several oscillations) with low systematics of NF.
- If $\sin^2\theta_{13}$ > few x 10⁻³ can go well beyond discovery, and make precision measurements. If θ_{13} small, have discovery reach down to $\sin^2\theta_{13}$ ~ few x 10⁻⁴

APPENDIX: Statistical Precision – 4 GeV NF

Wrong-sign μ Rates at L=1280 km for normal (inverted) hierarchies & θ_{13} =8°

statistics (Kt-decays)	$\delta(^{o})$	μ^+ stored (wrong-sign: μ^-)	μ^- stored (wrong-sign: μ^+)		
	0	3340 (1600)	870 (1770)		
3×10^{22}	90	4400 (2300)	475 (1200)		
20 Kt × 3 years	180	3400 (1660)	774 (1670)		
	270	2330 (930)	1170 (2240)		
	0	11140 (5335)	2900 (5900)		
1×10^{23}	90	14670 (7670)	1580 (4000)		
20 Kt × 10 years	180	11340 (5530)	2580 (5570)		
	270	7770 (3100)	3900 (7470)		

Table 2: Wrong sign muon event rates for normal (inverted) hierarchy, assuming $\nu_e \to \nu_\mu$ ($\bar{\nu}_e \to \bar{\nu}_\mu$)oscillations in a 20 Kt fiducial volume detector, for a L=1280 km baseline. We assume here $\theta_{13}=8^o$, i.e. $\sin^2 2\theta_{13}\simeq 0.076$. We present the results for several possible values of the CP-violating phase δ for both the low and the high luminosity scenario.

- If θ_{13} is large, the signal data samples in a 20 Kt NF detector would be a few $\times 10^3$ a few $\times 10^4$.
- Backgrounds would be expected to be ≤O(10⁻³) of the CC rate.

APENDIX: Precision Disappearance Measurements

• Physics reach plots are based on the $\nu_e \to \nu_\mu$ channel. There is also the ν_μ disappearance channel, which also offers precision.

• The Δm^2 sensitivity might be good enough to be able to determine the mass hierarchy even if θ_{13} = 0 ! (Note: $P(\nu_{\mu} \rightarrow \nu_{\mu})$ depends on both $|\Delta m^2_{13}|$ and $|\Delta m^2_{23}|$, & with sufficient sensitivity can determine who is larger than who).

APENDIX: Relationship between NF & Muon Collider R&D

APENDIX: Staging from NF to 1.5-4 TeV Muon Collider

