

Please note that this presentation was given during the United Nations Climate Change Conference (COP-15) in Copenhagen, December 7-18, 2009 for more information please visit <u>http://www.cop15.state.gov/</u>.

Tools and Methods for Adaptation

COP 15

December 14th 2009

John Furlow, USAID

Climate Change Impacts

Select Impacts:

- Changes in water availability
- Changes in pollutant loading
- Infrastructure damage
- •Change in forest cover
- Amplified hazards
- •Sea level rise
- Increased hunger
- Spread of disease
- Loss of biodiversity

Why Adapt to Climate Change?

- Developing country economies concentrated in climate sensitive sectors
- ~70% of developing country populations derive income from agriculture

Ethiopia: Rainfall, GDP, and Ag GDP

Source: The World Bank. "Managing Water Resources to Maximize Sustainable Growth: A Country Water Resources Assistance Strategy for Ethiopia." 2005.

What Is Adaptation?

- IPCC: adaptation is "Adjustment in systems in response to actual or expected climatic stimuli or their effects..."
 - Process of examining and understanding vulnerabilities
 - Responding in some way to reduce vulnerability, build resilience

What Is Vulnerability?

- Vulnerability: f(exposure, sensitivity, adaptive capacity)
- Exposure: Is an asset out in the elements?
 - Flooding, drought, erosion, sedimentation
 - Agriculture is exposed, highly dependent on weather/climate
- Sensitivity: Does exposure matter?
 - Are crops suitable to a range of temperatures and precipitation profiles?

- Adaptive Capacity: Can you respond to the impact to reduce the vulnerability
 - -Ag sensitivity can be reduced with irrigation, drainage, crop selection
 - -Crop and economic diversification can reduce damages
 - -Insurance spreads risk

(Exposure + Sensitivity) – Adaptive Capacity = Vulnerability

Some Challenges to Adaptation

<u>Technical</u>

- Poor historical records
- Poor current weather data
- Low local capacity
- GCM uncertainty
- Poorly adapted to current conditions

<u>Social</u>

- Competing Interests
- Too many challenges
- "More pressing needs"
- Poor understanding of climate change
- Intimidating topic
- Limited experience

USAID's Challenges

- Remain true to Development Mission
- Cope with data limitations
- Build support, capacity, confidence to address climate change
- Simplify, streamline the adaptation process for nonclimate experts
- Build resilience while pursuing development gains

Adapting to Climate Change and Variability

USAID Adaptation Goals:

- Educate project planners: -Provide climate change information for non-experts
- Increase resilience of projects Identify opportunities for adaptation
- Improve planning processes
 - Incorporate adaptation into project planning
- Approach
 - -Tools
 - -Guidance
 - -Stakeholder engagement

ADAPTING TO CLIMATE VARIABILITY AND CHANGE

A GUIDANCE MANUAL FOR DEVELOPMENT PLANNING

Adaptation Guidance Manual

FROM THE AMERICAN PEOPLE

Figure I. Steps to Incorporate Climate Variability and Change into Project Planning and Design

USAID's Adaptation case studies

- Honduras: coastal zone development
- Mali: rice and potato production
- South Africa: municipal water sources
- **Thailand:** fisheries, rice production
- Madagascar: protected areas management and livelihoods
- **Coastal Hazards:** building resilience to multiple hazards
- Andes/Himalaya: adapting to a world without glaciers
- Ghana: urban water quality

La Ceiba, Honduras: Coastal Issues

- Coastal city at mouth of two rivers
- Tourism destination and staging site for tourism in islands, on Cangrejal River
- Climate-related concerns include flooding and storm surge
- Coordinated with the USAIDfunded MIRA (Integrated Management of Environmental Resources) Project implemented by IRG

La Ceiba: Development Project Objectives

- Develop Coastal Tourism
- Develop river-based tourism (rafting, hiking)
- Watershed Protection, restoration
- Construction of beachfront boardwalk
- Reduce flooding

Asset: Coastal tourist infrastucture

•Vulnerabilities:

- Exposure (Clim): flooding from storm surge, urban rains, river flooding
- Sensitivity (NC): Buildings right on beach, no set back, poor building design
- Adapt. Cap (NC): Low codes not enforced, drainage not understood

La Ceiba: Uncertainties

Uncertainties:

- Change in Temp
 - +~1.5 °C
- Change in Rainfall
 - +~11% heavy events, less total rain annually
- Change in Sea Level
 - +~20cm
- Change in Storm
 frequency/intensity

La Ceiba Adaptation Options

- Risk management (1) Determine acceptable risks; (2) Environmental education
- Coastal zone (developed areas) (1) Build groins to protect against erosion; (2) Sand pumping; (3) Build breakwaters
- Coastal Zone (less developed areas) (1) Set-backs; (2) Zoning and building codes; (3) Construction of houses on stilts
- Rio Cangrejal flooding (1) Improved design and higher levees in most vulnerable locations; (2) Limit deforestation and promote reforestation; (3) Construct a flood control dam; (4) Dredging of river; (5) Flood warning system
- Urban drainage (1) Accommodate/adapt to flooding; (2) Install drainage systems

SERVIR: Tools to Assist Development

File Edit View Tools Plug-Ins Help

SERVIR: Climate Mapper

_ 8 ×

Data Description:

Observed Data: The observed data are for temperature for the base period (1961-1990). The data are taken from the University of East Anglia's Climate Research Unit(CRU) database of monthly climate observations from meteorological stations and interpolated onto a 0.5 degree grid covering the global land surface.

Tools and Information: SERVIR

Climate Mapper	Cuba Turks an Cayman Islands Jamaica Navassa Island
Eile Help *Users of this tool have read and u	understand the Disclaimer
Location: Lat: 9.2987 Lon: -79.6606 Average Annual Increase in Temperature (deg C)(Dry) =+1.4 Average Annual Increase in Temperature (deg C)(Wet) =+1.2 Average Annual Increase in Temperature (deg C)(Wet) =+1.2 Average Increase in Temperature for 2031-2040 by Month: A1B Scenario using GCM Model(s) 	Actions: Map! Opacity: Opacity: Cancel Cancel Show Spatial Average Grid Show Country Boundaries Export Graph

Thank you

