http://www.cop15.state.gov/ .

International Capacity Building Training Program: Planning for Climate Change in the Coastal and Marine Environment

Russell Jackson

NOAA Coastal Services Center

December 9, 2009

Developed through a partnership between:

NOAA Office of National Marine Sanctuaries
International MPA Capacity Building, Management Planning

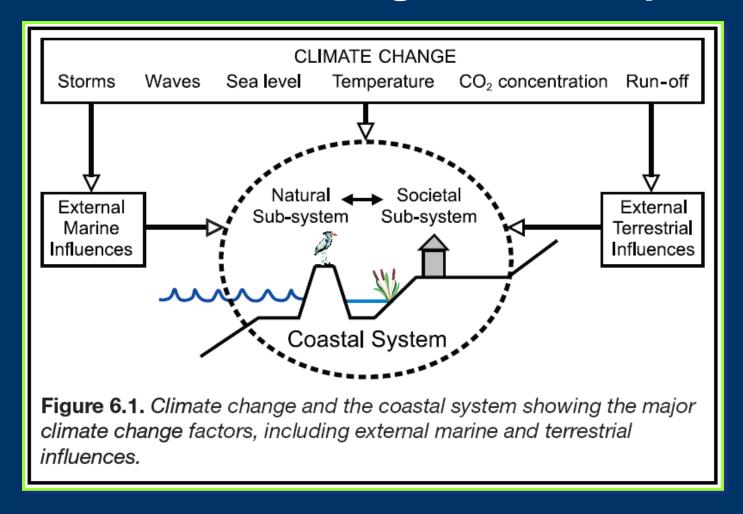
NOAA Coastal Services Center

Hazard Mitigation Planning, Coastal Community Resilience

University of Rhode Island, Coastal Resources Center Coastal Zone Management, Adaptation Planning

State of California, San Francisco Bay Conservation and Development Commission

Sea Level Rise Modeling, Climate Change Outreach

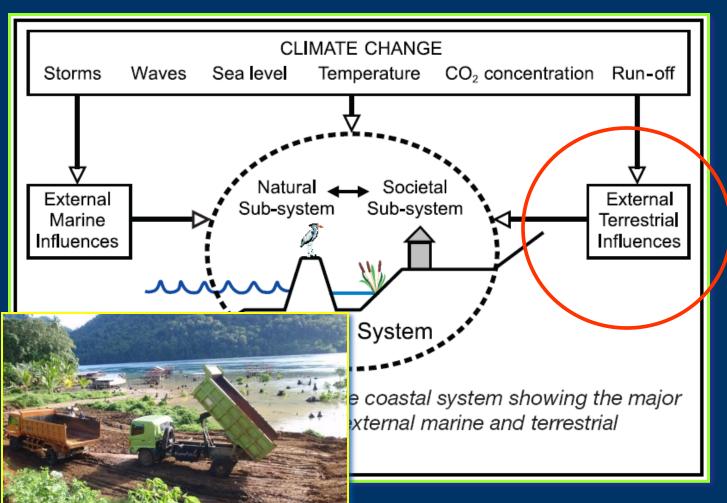

Purpose and need for trainings

"Climate Change Capacity Building"

Target audience: MPA managers, coastal managers, planners, key decision-makers

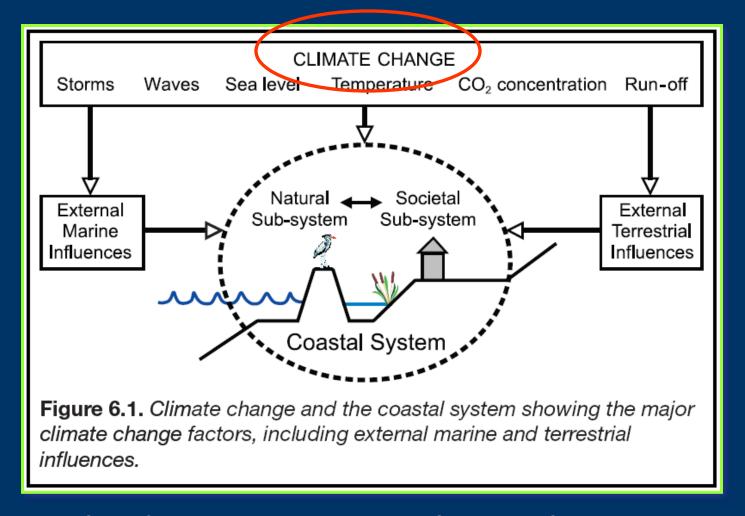
A Coastal/MPA Management Perspective

Source: Coastal systems and Low-lying Areas, WGII, FAR, 2007. Ch. 6, pg. 318.

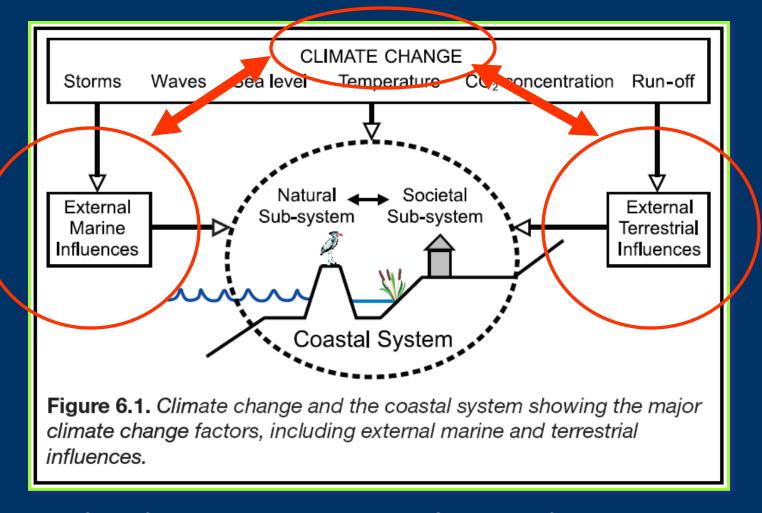


A Coastal/MPA Management Perspective

- over-fishing
- illegal fishing practices
- gear impacts
- vessel spills
- tourism impacts


A Coastal/ MPA Management Perspective

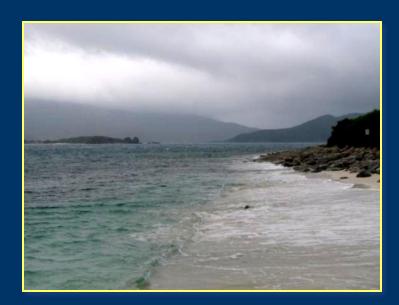
- non-point source pollution
- coastal development
- sediment loads
- upland logging
- tourism impacts


A Coastal/ MPA Management Perspective

Source: Coastal systems and Low-lying Areas, WGII, FAR, 2007. Ch. 6, pg. 318.

A Coastal/ MPA Management Perspective

Source: Coastal systems and Low-lying Areas, WGII, FAR, 2007. Ch. 6, pg. 318.



IMPORTANCE OF PLANNING FOR CLIMATE CHANGE

Management Approaches – Risks and Opportunities

Conserving biodiversity and human communities will require implementing a two-pronged approach:

- **MITIGATION**: Reducing green house gas emissions significantly to slow the rate and extent of global climate change.
- 2. **ADAPTATION**: Responding swiftly to changes already inherent in the system to buy some time for ecosystems (as emissions are reduced).

enter NOLOGY

IMPORTANCE OF PLANNING FOR CLIMATE CHANGE

Build local capacity to develop strategies that effectively reduce risk from climate change:

PLANNING FOR CLIMATE CHANGE IN THE COASTAL & MARINE ENVIRONMENT

MODULE 1:

Understanding Climate Change

MODULE 2:

Impacts on the Coastal and Marine Environment from Climate Change

MODULE 3:

Overview of the Process Model for Planning for Climate Change

MODULE 4:

Human and Natural Resource Coastal Community Resiliency

MODULE 5:

From High Tech to Low Tech:

The Role of Information in Predicting and Managing Impacts from Climate Change

MODULE 6:

Gathering Information from Local Communities on Resiliency (Prep and Field Trip)

MODULE 7:

Moving From Resiliency Analysis to Building Adaptation Strategies

MODULE 8:

Selecting and Evaluating Adaptation and Resiliency Strategies

MODULE 9:

Measuring Success (Prep and Field Trip)

MODULE 10:

Communication and Awareness Building

Conceptual Framework for Adaptation Planning

Climate Change Planning Model

UPFRONT ASSESSMENT ⇒⇒⇒ PLANNING STAGE ⇒⇒⇒⇒ IMPLEMENTATION STAGE

Ctarting t

Implementing the Plan

Scoping Climate Change Impacts

collecting and reviewing information identifying the threats making the commitments

Building and Maintaining Support

cultivating a champion building political will developing a preparedness message

Developing Planning Team

stakeholder identification selecting planning team members defining roles and responsibilities

Identifying Management Area

Starting the Planning Process

establishing a vision for resilience setting goals

Conducting a Vulnerability Assessment

site assessment evaluating vulnerability evaluating capacity to address vulnerability

Conducting a Climate Change Risk Assessment

assessing risks identifying priority areas to manage risks

Selecting Adaptation Options

developing issue statements identifying adaptation options prioritizing adaptation options

bundling implementation partnerships managing uncertainty and risk

Measuring Progress and Adaptive Management

measuring progress
reviewing assumptions
updating the plan
communicating results and lessons learned

IMPORTANCE OF PLANNING FOR CLIMATE CHANGE

10 STEPS

to the coastal climate change adaptation planning process.

STEP ONE: SCOPING THE CLIMATE CHANGE IMPACT TO THE COASTAL AND MARINE ENVIRONMENT IN YOUR AREA

1. Collecting and Reviewing Information

Projected Impacts of Climate Change in Your Region

2. Define the Planning Boundaries

- Identification of management area is a critical step
- Identifying species of concern
- Identifying human communities of concern

STEP TWO: BUILDING AND MAINTAINING SUPPORT TO PREPARE FOR CLIMATE CHANGE

1. Building and maintaining support for preparedness planning

STEP THREE: BUILDING YOUR CLIMATE CHANGE PLANNING TEAM

Build Your Climate Change Planning Team

- Recruit a cross-section of representatives
- Include key stakeholders
- Pick a team scaled to your geographic area and complexity of climate change impacts

STEP FIVE: STARTING THE PLANNING PROCESS

Establishing a vision and guiding principles for a climate resilient community

A CLIMATE RESILIENT COMMUNITY is one that takes proactive steps to prepare for (i.e., reduce the vulnerabilities and risks associated with) projected climate change impacts.

- What is the ideal future condition of your community
- What is the ideal future condition of your natural and cultural resources
- What is the ideal economic condition of your community

STEP SIX: CONDUCTING A CLIMATE CHANGE VULNERABILITY ASSESSMENT

Evaluating vulnerability

- a. A sensitivity analysis for the systems associated with the planning areas
- b. An evaluation of the adaptive capacity of the systems associated with each of these planning areas
- An assessment of how vulnerable the systems in your planning areas are to the effects of climate change

STEP SEVEN: CONDUCTING A CLIMATE CHANGE RISK ASSESSMENT

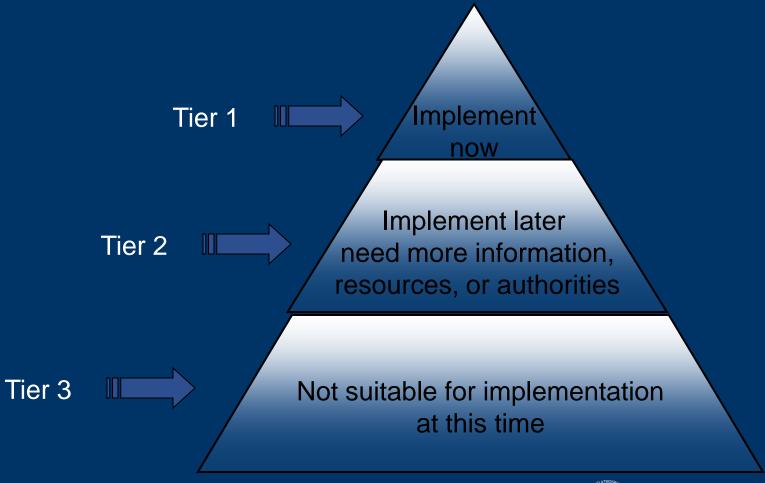
Evaluating risk

- a. Assessing risks for the systems associated with the planning areas
- b. Identifying priority areas to manage risks

STEP EIGHT: BUILDING MANAGEMENT ACTIONS

Developing issue statements

Identifying adaptation options



STEP EIGHT: BUILDING MANAGEMENT ACTIONS

Prioritizing adaptation options

STEP NINE: IMPLEMETING THE PLAN

Implementing your preparedness plan

- bundling adaptation options
- building and maintaining political will
- identifying champions
- make long-term commitment

Medium-term

short-term

- Information
- Education
- Policy

Strategy

- Mitigation
- Adaptation

Long-term

- Improvement
- Construction
- Adaptation

STEP TEN: MEASURING PROGRESS AND ADAPTIVE MANAGEMENT

Steps to ensure preparedness plan and actions are working:

Update climate change preparedness plans and actions regularly, based on the information collected from measuring progress and reviewing assumptions.

Communicate results. Look beyond preparedness plans for opportunities to share climate change information.

Testing the model.

East Asia Bratsk RUSSIA Sea of Okhotsk Sakhalin Komsomol'sk KAZAKSTAN Kuril Islands **→** Ulaanbaatar Harbin, MONGOLIA Bishkek Sapporo Russia, claimed by Japan MORTH North KOREA Pacific Ocean New Delhi BHUTAN * Thimphu Okinawa Năgpur • Torr BURMA Philippine Sea Vishākhapatnam (U.S.) Rangoon Bay of Bengal PHILIPPINES Islands (INDIA) * Phnom FEDERATED STATES OF SRI LANKA Nicobar's Islands Bandar MALAYSIA ★ Kuala Lumpur MALAYSIA Equator Manado. Singapore PAPUA NEW GUINEA Indian Ocean Scale 1:46.000.000 AUSTRALIA 800 Kilometers 400 800 Nautical Miles Dampier

First Pilot: HUE, VIETNAM

December 2008

funded by Denmark (DANIDA) and WWF

36 trainees

First Pilot Site: Hue, Vietnam

- 10-day training
- MPA managers, Ministry level officials, researchers
- coordinated withInstitute of Hydrology &Meteorology
- focused on lagoon system

First Pilot Site: Hue, Vietnam

What we learned:

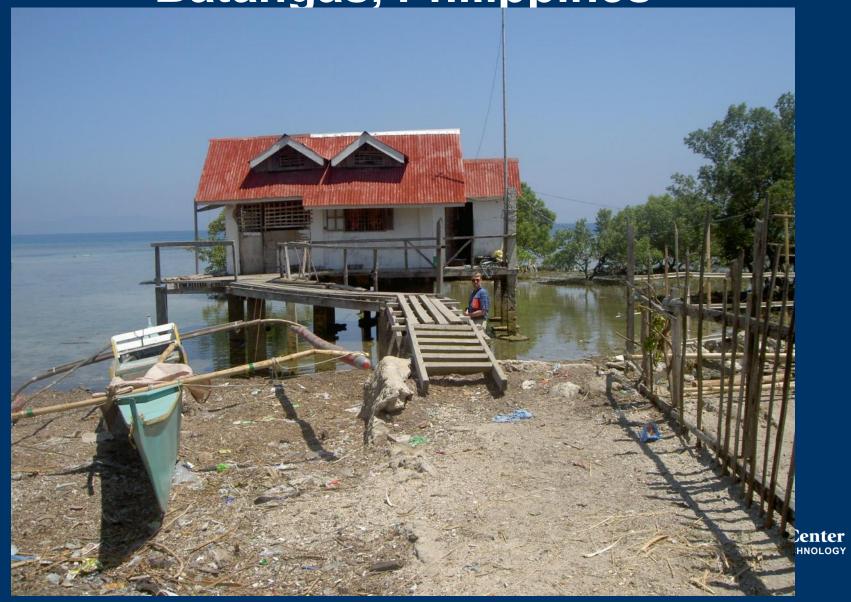
- highly altered environment is more vulnerable to impacts of climate change leaving few "soft" adaptation options
- community has become resilient on its own terms
- after examining all other options, sometimes the best solution is relocation (this option was determined by Vietnamese government officials)

Hue, Vietnam – stakeholder engagement

ISTAL SERVICES CENTER INFORMATION, AND TECHNOLOGY

Second Pilot: VERDE PASSAGE, PHILIPPINES March 2009

- funded by Conservation International
- 40 trainees


Second Pilot Site: Calatagan, Philippines

- 13-day training (combined with management planning)
- focused on 7 MPAs from Verde Passage Seascape
- coordinated with scientifically-based vulnerability assessment

Verde Island Passage, Calatagan, Batangas, Philippines

Second Pilot Site: Calatagan, Philippines

- Worked well to combine climate change with site and regional level management planning
- Planning capacity high
- Extensive experience working with the community, already had a lot of input

SOUTH AMERICA Caribbean Sea North Atlantic Ocean COLOMBIA ECUADOR Fortaleza Natal BRAZ South PLATEAU Pacific Brasília BOLIVIA HIGH LANDS Ocean PARAGUAY Antofagasta Isla San Ambrosio Florianópolis Isla San Félix (CHILE) CHILE Cerro Aconcagua URUGUAY South ARCHIPIÉLAGO JUAN FERNÁNDEZ Atlantic Concepción ARGENTINA Ocean Scale 1:35,000,000 Azimuthal Equal-Area Projection Falkland Islands (Islas Malvinas) South Georgia and the South Sandwich Islands (administered by U.K., claimed by ARGENTINA) 802909AI (R02108) 6-02

Third Pilot:

Eastern Tropical Pacific Seascape April 2009

- Funded by Conservation
 International
- 32 participants

Third Pilot Site: Galapagos, Ecuador

- included MPAs from 4
 Eastern Tropical Pacific
 Seascape countries (Costa
 Rica, Panama, Colombia,
 Ecuador)
- 8-day training
- held in conjunction with scientifically-based vulnerability study
- Galapagos National Park as field study site
- community already engaged in climate change

Third Pilot Site: Galapagos, Ecuador

- Data rich area contributing to vulnerability assessment
- Community already well engaged in planning processes
- High awareness level of climate change due to extreme ENSO events

East Asia RUSSIA Okhotsk Sakhalin KAZAKSTAN Kuril ★ Ulaanbaatar Harbin. MONGOLIA Hokkaido Sapporo Russia, claimed by Japan MORTH North KOREA Pacific Ocean SOUTH KOREA CHI New Delhi BHUTAN **₽**Okinawa Taipei INDIA Någpur • Taiwan BURMA Philippine Sea (PORT. Vishåkhapatnam (U.S.) Rangoon Bay of Bengal South CAMBODIA Andaman China PHILIPPINES Islands (INDIA) * FEDERATED STATES OF Spratty SRI LANKA Islands Nicobar's Islands Bandar MAI AVSIA Kuala Lumpur Singapore PAPUA NEW Sumatra Ujungpandan Indian Ocean D (ALISTRALIA) (AUSTRALIA) Scale 1:46,000,000 AUSTRALIA 800 Kilometers 400 800 Nautical Miles

Fourth Site: Bali, Indonesia

October 2009

- Part of the Coral Triangle Initiative
- 35 Participants

Fourth Pilot Site: Bali, Indonesia

- 5-day training
- CZM managers,
 Ministry level officials,
 University researchers,
 NGOs

focused on small island impacts – Nusa Penida

KALMEN SWELLAN # Maduchan 11分分子和 ! UK किर्य किरी mitaduchen [HI] Hene, Will MAN WHAT A Ry mulai di Ny bibit de 111, spinoun 26-26 LOOZ A. COACH PAIN. CAG FUR MISH 8861. 1961 2000 1990 1980 960 1970 wat this lyupod f mutual of sing to Kirim Jayung tallage. om at Inlump Suching **Framos** Library to 12 towns Apid क्षान प्रमा / में क्षेत्र हैं। Aud Millary dikirim makaran de muloi makmur, tak persah gual on belong (still boat lovue) Conting strike

Fourth Pilot Site: Bali, Indonesia

- Limited data for contributing to vulnerability assessment
- NGOs already well engaged in community planning processes
- Low community awareness level of climate change
- Areas already experiencing climate change impacts

East Asia Bratsk RUSSIA Sakhalin KAZAKSTAN ★ Ulaanbaatar Harbin. MONGOLIA Hokkaido Sapporo Russia, claimed by Japan MORTH North KOREA Pacific Ocean New Delhi BHUTAN **₽**Okinawa Någpur • Taiwan BURMA Philippine Sea (U.S.) Rangoon Bay of Bengal Andaman PHILIPPINES Islands (INDIA) FEDERATED STATES OF SRI LANKA Nicobar's Islands MAI AVSIA Kuala Lumpur Manado. Singapore PAPUA NEW Sumatra Indian Ocean Scale 1:46,000,000 nuthal Equal-Area Projection AUSTRALIA 800 Kilometers 400 800 Nautical Miles

Fifth Site:

Mekong Delta,

VIETNAM

November 2009

funded by Denmark (DANIDA) and WWF

41 trainees

Fifth Pilot Site: Mekong Delta, Vietnam

- 10-day training
- MPA managers,
 Ministry level officials,
 University researchers
- coordinated with the DRAGON Institute

- focused on delta and wetlands
- •rural agricultural systems

Fifth Pilot Site: Mekong Delta, Vietnam

- extremely vulnerable area
- data-rich with local downscaled projection models developed by local University and DRAGON Institute
- community has already demonstrated high adaptive capacity
- limited adaptation options
- built capacity of mentors

What we learned from the pilot projects as a whole.

Lessons Learned

- no similar planning models as reference
- science is changing very quickly
- takes a strong planning background
- offers a new opportunity for CZM implementation
- current predictions at a scale mismatched with local ability to address climate change
- ability to implement adaptation options is often limited and needs to be coordinated with other management priorities

Future Plans

South Africa – April 2010

Indonesia – August 2010

India – 2010

Maldives – 2010?

Future Plans - Domestically

- Working with additional partners to develop a U.S. version of the training
 - Utilizing lessons learned from international experience
- Test run portion of training in Hawaii in January
- San Francisco Bay Area February 2010
 - 5 day training
- American Samoa February or March 2010
 - 5 day training

Thank You

Russell Jackson
Russell.Jackson@noaa.gov

