

Advanced Scintillator Detector R&D

Towards a 50 kt Ultra-High Segmentation Fe-Scintillator Detector

• Very Rich Physics program at a v Factory

- Long Baseline v oscillation program at 20 GeV v Factory pointing to a 50 kt detector
 - $\cdot \ \nu_{e} \rightarrow \nu_{\mu}$
 - $\cdot \nu_{e} \rightarrow \nu_{\mu}$
 - $\cdot \ v_{e} \rightarrow v_{\tau}$

Detector capabilities

- Detect muons and determine sign
 - At as low a threshold as is possible
 - \cdot < 4 Gev/c
 - 2 Gev/c would be desirable
- Detect electrons/positrons
 - Determine sign??
- Detect τ leptons
 - This is a difficult task in a massive detector $-\tau$ detection best suited to specialized detectors
 - Kinematics can be used in fine-grained detectors, however
- Compared to what is required at D0 or CDF (or LHC) – this is rather simple

Detector Scenarios

- Options
 - Liquid Argon TPC
 - Fully reconstructed events Bubble chamber-like event topologies
 - Excellent! Electron and hadronic calorimetry
 - External muon system required for muon sign and momentum
 - Unless very-large magnet used
 - Magnetized Fe-Scintillator
 - Unmatched muon detection capability
 - Electron/hadronic energy detection dependent on segmentation
 - Water Ĉerenkov
 - Scalable to very large detector
 - Best cost to size Surface area detectors
 - Full containment excellent only for low energy v beam
 - Poorest pattern recognition capabilities

Detector Development at Fermilab

- Scintillation Detector work, however, has been a major R&D and construction effort over the last decade at Fermilab
 - CDF end-caps and shower max
 - CDF TOF
 - D0 Fiber tracker
 - · VLPC Development
 - D0 Preshower detectors
 - DO Central muon counters
 - CMS Calorimeters
 - MINOS

- This work has driven the development of significant infrastructure
 - Scintillation Detector Development Laboratory
 - Extruded scintillator
 - Fiber characterization and test
 - Thin-Film facility
 - Fiber processing
 - Mirroring and coatings
 - Photocathode work
 - Diamond polishing
 - CNC Routing
 - Tile-fiber detectors
 - Machine Development
 - Diamond polishing
 - · Optical connector development
 - High-density Photodetector packaging (VLPC)

- Detector R&D on scintillation detectors is appealing, since even if a large Fe-Scintillator neutrino detector is not the optimal choice for a future v physics programs - the detector technology is general purpose
 - + Not the case with LAr TPC or Water $\hat{\mathcal{C}}$
 - These are not likely to see major application outside v physics
- Scintillation detectors
 - + EM and hadronic calorimetry
 - Shower max detectors
 - Preshower detectors
 - Photon vetos
 - Fiber tracker
 - Muon tracking/hodoscopes
 - General purpose trigger hodoscopes
 - Time-of-Flight

Strawman 50 kt UHS Fe-Scint v Detector

- A detector with 10X the fiducial mass of MINOS
- ¹/₈ ¹/₄ X_o longitudinal sampling (2.2-4.4mm Fe ≈ 5-10 X MINOS)
- 1 cm transverse segmentation
 - 1 cm base triangles yields about 1 mm position resolution for mips
 - From DO preshower test data

- This begins to look like a magnetized Soudan with much better energy resolution
- What does this imply?
 - Scintillator
 - · 0.3 kt \rightarrow 12 kt (24)
 - Steel
 - Straightforward extrapolation
 - Photodetector
 - · 1.5 X10⁵ fibers \rightarrow 25 (50) X 10⁶!
 - Note: MINOS reads out both ends of the fiber and then multiplexes fiber to photodetector 4:1
 - This example is non-multiplexed

- Can this detector be built today?
 NO!
- What are the issues? There are three:
 - Scintillator
 - Fiber
 - Photodetector
- Lets take the first, first
 - Can we make this much scintillator?

- 1992
 - P860 v Oscillation exp. proposal Using Fermilab Debuncher
 - Considered Fe- Scintillator MUCH TOO EXPENSIVE!
- 1993
 - R&D began in PDG on high-quality, low-cost extruded scintillator
 - Driving Motivation: Large-Scale neutrino oscillation experiments
- 1996
 - Triangular scintillator extrusions chosen for DO preshower detectors
- 1998
 - MINOS selects extruded scintillator
 - First very-large application of technique
 - 0.3 kt of scintillator required
 - Price approximately 10% of conventional cast scintillator plate
- 1999
 - STAR experiment uses scintillator extrusions for shower max
- 2001
 - In-house facility approved for Fermilab

Fermilab Facility

- All equipment for basic system has been specified – PO to be placed this week!
 - Up to 4X the production rate of MINOS
 - Expect better quality/uniformity
 - Some cost reduction over MINOS
 - $\cdot \leq $5/kg?$
 - Can extrapolate to many kt with outside vendor involvement

- The scintillator production will be challenging, but can be done
- The Fiber/Photodetector issues are more difficult
- Readout Optimization

 For a given detector cell: dE/dx →
 → Scintillation light (ε)
 → Readout light (WLS fiber) (χ)
 → Signal Charge (photodetector) (θ)
 - ε = Scintillation efficiency 3%
 - χ = WLS fiber capture efficiency 5%
 - θ = QE X gain 0.8 X 50k (VLPC)

Note: Both fiber and PD costs go like the cross-sectional area

- MINOS light yield (my apologies if this is not the latest&best data)
 - 1X4 cm extrusion
 - 1.2 mm WLS readout fiber to MAPMT

- The product of Quantum Efficiency X Gain is the real figure or merit in this type of detector
 - Nothing is better than the VLPC
 - QE 80-85%
 - Gain Typically 50k
 - For low rate detectors (<500k pe/sec) 100k

VLPC Readout of MINOS extrusions

Number of photoelectrons vs fiber length

- MINOS 1 X 4 extrusion, 1.2 mm readout fiber
- 1.2 mm VLPC Data
 - Since the VLPC cassette uses 0.965mm fiber, this is corrected data [X(1.2/0.965)²]
- 0.5 mm VLPC Data No correction needed

• A number of caveats

- These measurements do not use the latest VLPC type (Gen. VI) [1.25]
- A 5 m waveguide was used for the VLPC data – likely only 2 m will be needed in a neutrino detector with distributed cryogenics [1.25]
- The scintillator extrusion is not optimized for small diameter fiber and is wider than one that would likely be used in a final detector [1.25]
- The proposed application would use single ended fiber with far end mirrored

Single-ended fiber readout

Results from D0 fiber tracker Cosmic Test

- + 2.5 m active fiber
 - · 0.83 mm readout 1 end far end mirrored
- 11.5 m waveguide
- Effective Attenuation Length = 16 m!

- All of this indicates that the light yield for Fe-Scintillator detector with VLPC readout will be very high!
 - Even with 0.4 mm fiber estimate at this time that the yield would be higher than MINOS baseline at all positions up to 8– 10m fiber length.
- This has an enormous impact on fiber cost
 - For example MINOS
 - \$4M is reduced to roughly \$450k
- The same is true for the photodetector
 - A 5 X 10 element array (.4mm) would cost the same or less than D0's 2 X 4 element array (1mm) - ≈\$240

- We plan to continue tests with the VLPC system – now using latest version (Gen VI)
 - Baseline measurements with 1.2 mm, 1.0 mm, and 0.5 mm readout fiber with MINOS extrusion.
 - Try for better optimization of VLPC
 - Measure Near/Far ratios
 - Measure single-ended 0.5 mm fiber with mirror
 - We have 1X2 cm extrusions available also and can setup for 0.5 mm tests with this cell geometry

VLPC R&D

- Lawrence Semiconductor Research Laboratory (LSRL) has completed a SBIR Phase I grant to develop the next generation VLPC (\$100k).
 - Collaborated with Boeing
 - Boeing now has LSRL make all the silicon epitaxy for their IR sensors – similar technology to VLPC
 - Better equipment than was used at Boeing for DO
 - Better yield/higher uniformity
 - 5" to 8" wafer (DO used 3")
 - All projects to lowering cost
 - Very successful
 - Better uniformity demonstrated
 - X10
 - Much lower defect density (X40)
 - Higher yield
 - Produced enough epitaxial material in this phase to produce 320k pixels of the D0 type
 - Very low cost compared to DO

• Phase II grant has been awarded \$750k

- Continue optimization
- Process wafers from Phase I
 - Produced DO-type arrays for detailed device analysis
 - Produce higher density arrays
- Goal: Demonstrate cost reduction at X10

VLPC R&D

- The major difficulty to go to smaller VLPC pixel is the higher density
 - The D0 system uses "Cassettes" that hold 1024 channels each
 - To get to 10X the density requires cold end electronics
 - · Cannot individually bring signals out
 - This has been done at Boeing
 - For space applications
 - · Will be expensive to develop
 - \$1M estimated program cost
 - Maybe cheaper if some CMOS MUX design help can be provided by Fermilab or others
 - Part of program cost might be part of Phase II SBIR
 - However, Boeing believes that a X10 cost reduction from D0 is possible - \$5/ch

- Scintillator detector technology R&D will be part of Fermilab's program
 - Plastic Scintillator development
 - New scintillator systems
 - Scintillator extrusions
 - Co-extrusion of scintillator and WLS fiber readout
- Fe-Scintillator detector with high-QE, high-gain photodetectors is a good candidate for future neutrino detectors
 - Hard to beat LAr TPC in magnetic field
 - Optimization of scintillator/cell geometry/WLS fiber readout is needed
 - Significant R&D is required to develop a high-density, cost effective photodetector system