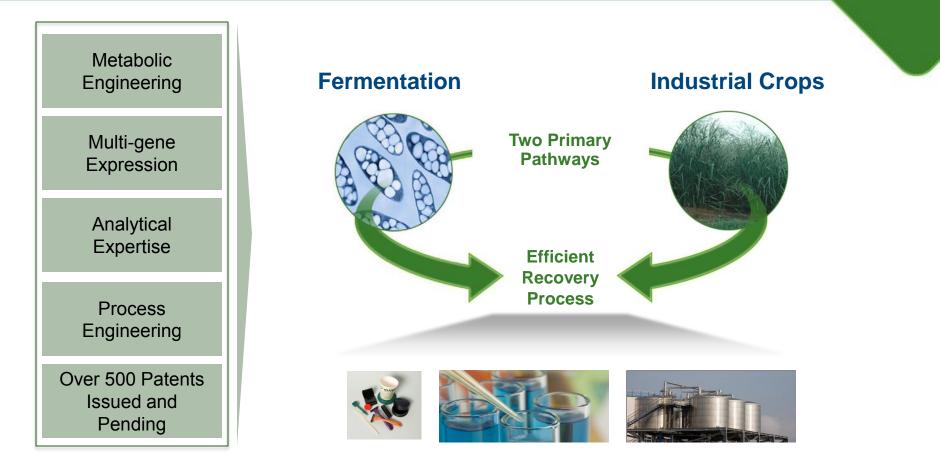


Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

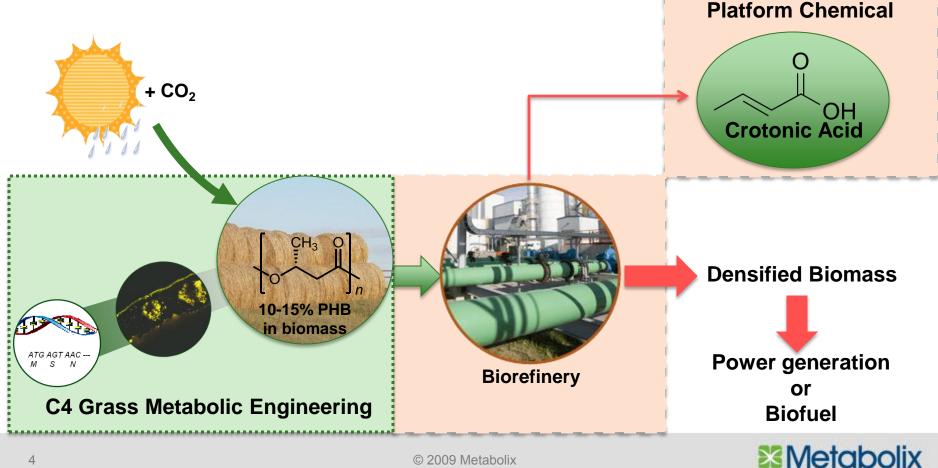
Kristi D. Snell, PhD Director, Plant Sciences November 15th, 2012

Metabolix Vision

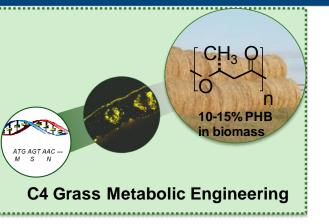

Bio-Industrial Evolution

Through bioscience and engineering, we bring clean, sustainable, and economically viable solutions to the world in materials and chemicals.

Our Core Capabilities



Strong integrated technical and operational expertise is at the core of our success


Metabolix Biocracker Technology Produce Chemicals Directly from PHB Biomass Crops

DOE- BRDI Office of Biomass Funded Program

Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

C4 Grass Metabolic Engineering Key enabling Technology

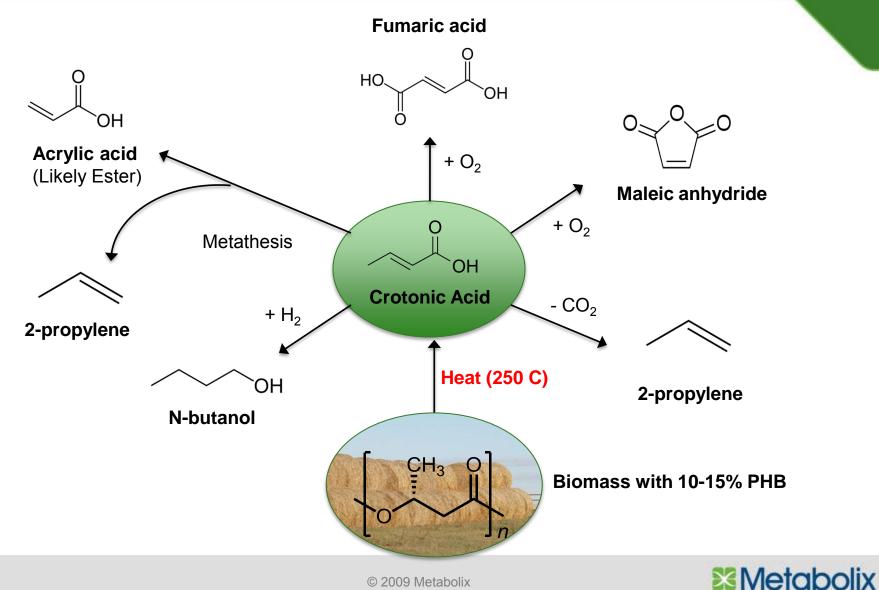
Status: 6% PHB in switchgrass leaf ~ 2% in biomass

Challenge: Robust engineered biomass crop with >10% PHB in biomass

Key metabolic engineering needs:

- Advanced metabolic modeling
- Next generation plant genetic engineering systems including advanced multi-gene constructs and transformation systems
- High throughput screening
- Gene containment technology

Torrefaction *Key process technology*



Biorefinery

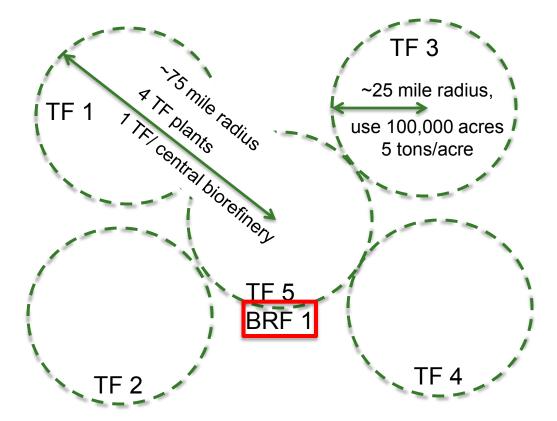
- Densify biomass to retain ~80% of energy content
- PHB depolymerizes to volatile crotonic acid and is readily recovered
- CapEx per distributed torrefaction facility processing 500,000 TPY biomass ~\$90 million
- Low CapEx enables direct farmer/grower participation in facilities

Metabolix Biocracker Platform Chemical PHB Derived Crotonic Acid as Commodity Platform Chemical

© 2009 Metabolix

Biocracker Chemical Market Opportunity Large Addressable Markets for Chemical Co-Products

PHB-based chemicals have large addressable markets:


			Existing Petro Industry
Product	Revenue/yr	Annual Capacity	CO ₂ emission/yr
Butanol	\$ 3.5 billion	3 million ton	~5 million ton
MAN	\$ 2.5 billion	2 million ton	~3 million ton
Acrylic acid	\$ 8.0 billion	4 million ton	~8 million ton
Propylene	\$80 billion	65 million ton	~50 million ton

- Fuel production offsets at least 10 million ton CO_2 per million ton chemical
- Low capital torrefaction facilitates biomass power or gasification cycle
- Products cost advantaged with oil at \$50/bbl

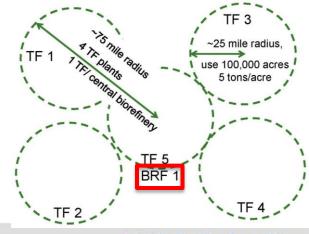
Biorefinery Deployment Model

Biomass from \sim 5 torrefaction facilities is aggregated at central refinery for further conversion achieving scale

Metabolix Biorefinery Overall Impact Environmental and Economic Impacts for 0.5M Acres

Each Centralized Biorefinery Supports:

Torrefaction facilities
 Five (ea. process biomass from ~100,000 acres)


2,500,000 tons

- Total farm acres
- Total biomass processed
- Farm revenue \$200 million (\$80/ton energy crop)
- Factory jobs 400 (40 at each torrefaction facility and 200 at central facility)
- Total revenue \$500-600 million from chemical and fuel/power sales

500,000 acres (<5% of land in a 75 mile radius)

- Each Centralized Biorefinery Saves or Eliminates:
 - Greenhouse gases
 - Fossil fuel
 - Electricity
 - Petrochemicals

- ~ 3.5 million tons CO_2/yr
- ~ 2.75 million bbl/yr or
- $\sim 300 \text{ MW}_{e}$
- 340,000 ton/yr

Metabolix Biocracker: Solutions for Dedicated Biomass Crop Challenges

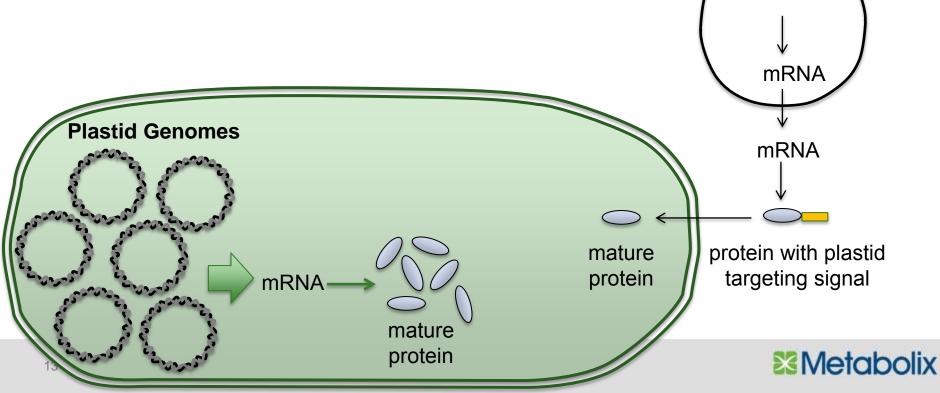
Challenge	Solution	
 Grower commitment to supply on a continuous basis 	Low CapEx distributed processing plants to enable farmers as co- investors	
 Logistics to aggregate quantities of biomass consistent with world scale thermal plants (1-2 million tpy) Cost of densification relative to value 	Densification of biomass to enable transportation and storage, economics driven by value added co-product	
 Co-products must scale with the bioenergy/fuel sector 	Focus on commodity chemical markets paralleling the existing petro industry	

Metabolix

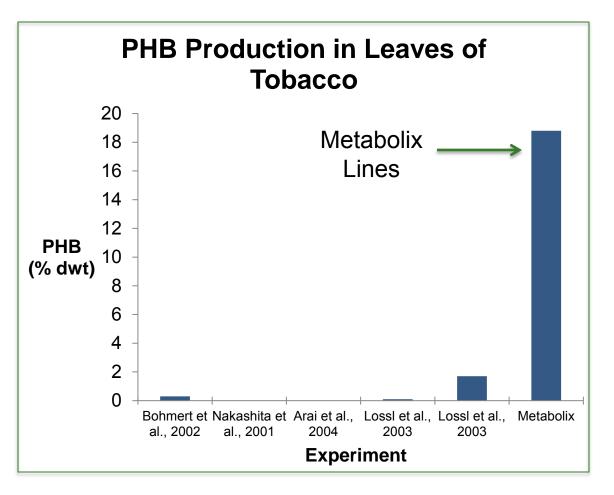
Summary of REFABB Program (Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts)

Task A. Core plant science activities for producing high levels of PHB in switchgrass

- Develop C4 crop model system
- Increase carbon flow to PHB in C4 model system
- Increase carbon flow to PHB in switchgrass
- Develop novel gene containment technology in switchgrass
- Increase transgene expression via alternative plastid transformation strategies


Increase transgene expression via alternative plastid transformation strategies

Reproducible plastid transformation procedures for monocots are not available despite repeated efforts in multiple labs


Nuclear DNA

Benefits of plastid transformation

- High levels of gene expression
- Little to no transgenic pollen

Production of PHB in Tobacco using Plastid Transformation

- Achieved up to 18% dwt in leaf samples
- 8.8% in whole tobacco plant
- Within commercial target levels for biomass crops
- Obtained fertile plants that set seed

Published in Bohmert-Tatarev et al., 2011, Plant Physiology Focus Issue on Plastid Biology

Task B. Develop and validate key process technologies for an integrated biorefinery

- Develop and optimize torrefaction process and crotonic acid recovery
 - Working with Kwesi Boateng and Charles Mullen
 - Eastern Regional Research Center (EERC) of USDA-ARS
- Develop catalyst technology to convert crotonic acid to commodity chemicals
 - In-house at Metabolix
 - Select catalysts evaluated at EERC

Achieving a Sustainable Biobased Industry

- Innovation is essential to create a successful sustainable biomass based industry for the production of biobased products, bioenergy and biofuels
- Innovation requires real scientific and technological breakthroughs
- RISK taking is essential for innovation if every experiment works as predicted – this is not consistent with game changing technology
- Continued government support is needed to help fund the research

Thank you

