IGSB Fellows

More than 70 faculty and scientists participate in IGSB. Fellows include faculty from the University of Chicago and Argonne National Laboratory, as well as faculty from other CBC institutions who participate as Associate or Visiting Fellows. All Fellows are engaged in activities related to the IGSB mission and help development of IGSB goals in the future. Appointments into the IGSB are made for a renewable term of five years.

Fellows and their laboratories benefit from being part of a community engaged in both large-scale and small-scale collaborative science in Genomics and Systems Biology. IGSB offers an environment which attracts some of the best young researchers in the field. The Institute’s goals are being accomplished through a variety of mechanisms including logistical and infrastructure support for collaborative grant applications, development of a junior Fellows program, and supporting applications for pilot funding of high risk projects. Fellows also have priority access to IGSB facilities and infrastructure including the Cellular Screening Center (CSC) and the High-throughput Genome Analysis Core (HGAC).

Habibul Ahsan

Habibul Ahsan

Dr. Ahsan’s research interests focus on studying the inter-relationships between environmental and genomic factors in cancer and other diseases and exploiting information on these relationships at a population level in developing and evaluating prevention interventions in humans.

Graeme Bell

Graeme Bell

Dr. Bell is using various genetic approaches to map and identify the genes that affect development of type 2 diabetes mellitus as well as diabetic complications. He carries out studies in both humans and mouse models to determine the mechanisms by which the diabetes genes they identify affect blood glucose levels. Their studies of pancreatic beta-cells are focused on understanding the transcriptional regulatory networks that determine normal cell function

Joy Bergelson

Joy Bergelson

Dr. Bergelson interested in the ecology and evolution of plant-enemy interactions. Her lab research focuses on the coevolutionary interactions between Arabidopsis thaliana and its bacterial pathogens.

Justin Borevitz

Justin Borevitz

Dr. Borevitz is interested in the genetics of adaptation to seasonal light environments. Quantitative and population genetic approaches in Arabidopsis thaliana are used in his lab to dissect local and regional phenotypic variation.

Jianjun Chen

Jianjun Chen

Dr. Chen’s major research interests is to conduct integrated analyses of cancer-omics on both protein-coding and non-coding genes (particularly, microRNAs) regarding both genetic and epigenetic changes in the development of leukemia and lymphoma.

Suzanne Conzen

Suzanne Conzen

Dr. Conzen’s laboratory uses both molecular approaches and animal models to study mechanisms that contribute to the development and progression of human breast cancer.

Nancy Cox

Nancy Cox

Dr. Cox research focus is on the identification and characterization of genetic variation influencing susceptibility to complex disorders. We work on both the localization of the genetic variation, via linkage studies and linkage disequilibrium mapping, as well as on the analytic component to positional cloning of genes for complex disorders.

John Crispino

John Crispino

Research in the Crispino lab is focused on investigating the regulatory mechanisms governing normal and malignant blood cell development,

John Cunningham

John Cunningham

John M. Cunningham, MD, is the Chief, Section of Pediatric Hematology/ Oncology at the University of Chicago. He is an internationally known expert in the treatment and research of childhood cancers and blood diseases. He has particular expertise in treating hemoglobinopathies, which are disorders that affect red blood cells, such as sickle cell disease and thalassemia. He is a recognized leader in the field of pediatric stem cell transplantation and has developed novel uses for this life-saving treatment.

Aaron Dinner

Aaron Dinner

The Dinner group develops and applies theoretical methods for relating cellular behavior to molecular properties. They are particularly interested in how proteins regulate access to genes in the context of the development of the immune system. Understanding how such complex behavior arises from physical and chemical features is a problem in fundamental statistical mechanics, but its solution has direct implications for treating autoimmune pathologies and improving gene therapy and vaccination strategies.

Anna Di Rienzo

Anna Di Rienzo

Ph.D. Department of Human Genetics- Dr. Di Rienzo’s group aims to characterize the amount and patterns of genetic variation in human populations, and to elucidate the forces that shape and maintain this variation. Forces such as demographic change or population structure exert genome-wide effects, while others, such as natural selection, result in locus-specific effects.

Eileen Dolan

Eileen Dolan

The major focus of Dr. Dolan’s research has been in the area of DNA damage/repair of anticancer agents that has been extended to the pharmacogenetics of DNA damaging agents.

Rick Fehon

Rick Fehon

Dr. Fehon interest center on the molecular mechanisms by which signal transduction pathways are organized into specialized membrane domains. In addition to their known role in organizing receptors and downstream effectors into functional signaling complexes, such organized complexes function to integrate signaling activities from multiple pathways and to segregate simultaneous but distinct functions of a single pathway.

Ian T. Foster

Ian T. Foster

Dr. Ian Foster, PhD, is Director of the Computation Institute, a joint institute of the University of Chicago and Argonne National Laboratory. He is also an Argonne Senior Scientist and Distinguished Fellow, and the Arthur Holly Compton Distinguished Service Professor of Computer Science. Ian received a BSc (Hons I) degree from the University of Canterbury, New Zealand, and a PhD from Imperial College, United Kingdom, both in computer science. His research deals with distributed, parallel, and data-intensive computing technologies, and innovative applications of those technologies to scientific problems in such domains as climate change and biomedicine. Methods and software developed under his leadership underpin many large national and international cyberinfrastructures. Dr. Foster’s honors include the Lovelace Medal of the British Computer Society and the Gordon Bell Prize for high-performance supercomputing.

Yoav Gilad

Yoav Gilad

Dr. Gilad research focuses on inter-primate comparisons at the sequence and expression levels with the long-term goals of identifying genomic regions of functional importance, understanding human gene regulatory processes and elucidating the genetic architecture of human-specific traits

Jack Gilbert

Jack Gilbert

My primary research interest revolves around modeling microbial ecosystem dyanmics using high-throughput sequencing data that describes the taxonomic and functional diversity of the system. Combined with physical, chemical and other biology variables measured in each ecosystem, I am working towards generating bioclimatic models of microbial ecosystems, that enable prediction of taxonomic and metabolic potential from remote sensing data (satellites and aircraft) across broad geographic and temporal space. Fundamentally I adhere to a system biology model, within which I aim to describe the community dynamics that yield the ecosystem services that humanity has come to rely on.

Conrad Gilliam

Conrad Gilliam

Dr. Conrad Gilliam, PhD, is the Dean for Research and Graduate Education at the University of Chicago Biological Sciences Division (BSD).  Dr. Gilliam completed his postdoctoral training in human genetics at the University of London before joining the faculty at Harvard Medical School in 1983. He moved to Columbia University in 1986, where he was a Professor in the Departments of Psychiatry and Genetics & Development and was named Director of the Columbia Genome Center in 2000.  He came to the University of Chicago in 2004 as chair of human genetics.  He is an authority on the identification and characterization of heritable mutations that affect the nervous system.

Benjamin Glick

Benjamin Glick

The main goal of Dr. Glick’s is to understand the processes that generate Golgi stacks. The cisternal maturation model provides a conceptual framework for studying Golgi formation. This model postulates that new Golgi elements arise at transitional ER (tER) sites, which are specialized for the production of ER-to-Golgi transport vesicles.

Michael Glotzer

Michael Glotzer

Dr. Glotzer is interested in cell cycle regulation of central spindle assembly and function. Central spindle assembly begins at the metaphase to anaphase transition, when chromosomes move polewards on shrinking kinetochore microtubules. At this time, non-kinetochore spindle microtubules become bundled to form the central spindle. His lab discovered an evolutionarily conserved protein complex, centralspindlin, consisting of a Rho family GAP, CYK-4, and a kinesin like protein, ZEN-4, that is directly involved in central spindle assembly.

Geoffrey Greene

Geoffrey Greene

The overall goal of Dr. Green’s research is to determine the molecular mechanisms by which female steroid hormones regulate development, differentiation and/or cellular proliferation and survival in hormone responsive tissues and cancers.

Robert Grossman

Robert Grossman

Dr. Grossman is the Director of Informatics at IGSB, a Senior Fellow at the Computation Institute, Chief Research Informatics Officer for the Division of the Biological Sciences, University of Chicago, and Professor of Medicine in the Section of Genetic Medicine at the University of Chicago.  His research group focuses on bioinformatics, data mining, cloud computing, data intensive computing, and related areas.  Current research projects include: Bionimbus (http://www.bionimbus.org), a cloud-based system for managing, analyzing and sharing genomic data and Sector/Sphere (sector.sourceforge.net), a cloud-based system for data intensive computing.  He is also interested in developing new algorithms for the large scale analysis of genomic and phenotypic data.

Richard Hudson

Richard Hudson

Dr. Hudson’s research concerns primarily on the analysis and interpretation of molecular variation within and between populations. The goal is to understand the evolutionary forces that have produced the observed patterns of variation within populations and between species. My work is entirely theoretical, focusing on the stochastic processes relevant to evolution in finite populations in which genetic drift, mutation, migration and selection may all be important. Monte Carlo computer simulations and methods of statistical inference are important aspects of the work

Andrzej Joachimiak

Andrzej Joachimiak

Dr. Joachimiak is a biophysicist who works in the area of protein structure, a critical aspect of drug design. Dr. Joachimiak and his team at ANL are working to improve methods that determine protein structures including new techniques in protein production, crystal growth, X-ray crystallographic structure.

Richard Jones

Richard Jones

Dr. Jones was jointly appointed Assistant Professor of the IGSB and the Ben May Institute for Cancer Research in September 2006. As a postdoc at Harvard, Jones pioneered the use of protein microarrays to study complex molecular signaling networks involved in human cancers and other diseases. His new IGSB laboratory utilizes advanced proteomics and genomics technologies to better understand the complex signal transduction mechanisms that result in cancer, diabetes, and other human disease. An understanding of these processes at the molecular level should enable the identification of many new therapeutic targets

Michael Kaminski

Michael Kaminski

Dr. Kaminski is interested in developed magnetic and non magnetic nano and microcarriers for targeted delivery of therapeutics and removal of blood borne toxins. He has been collaborating with The University of Chicago Medical Center clinicians including Drs. Axel Rosengart, Richard Kraig, Ravi Salgia, Bahktair Yamini, and others to design carriers for particular disease.

Shohei Koide

Shohei Koide

The major goals of Dr.  Koide research are to understand the molecular mechanisms underlying protein function at the atomic level and to exploit such knowledge to engineer proteins with novel shape and/or function.

Anthony Kossiakoff

Anthony Kossiakoff

Dr. Kossiakoff’s research interests centers around studying at atomic resolution the structural and functional properties that define molecular recognition systems that activate and regulate biological properties. In particular, we study the energetics of hormone-induced receptor activation and regulation of growth hormone and its receptor using X-ray crystallography, site-directed mutagenesis, phage display mutagenesis and biophysical analysis.

Thomas Krausz

Thomas Krausz

Dr. Thomas Krausz is an expert pathologist with broad interests in tumor pathology including melanocytic tumors, soft tissue tumors, breast tumors, lung tumors and mesothelioma.

Martin Kreitman

Martin Kreitman

Dr. Kreitman’s lab focuses on issues in molecular evolution, and especially on identifying forces governing the evolutionary process. The central effort has been to understand the evolution of the alcohol dehydrogenase locus (Adh) in Drosophila. We are studying the evolutionary process on three different time scales—-affecting populations, affecting species, and affecting long-term molecular evolution.

Stephen Kron

Stephen Kron

The Kron laboratory is a highly collaborative group of cell biologists, geneticists, biochemists and chemists. Their major basic research efforts are directed at 1) dissecting cyclin dependent kinase structure and function in yeast, 2) defining roles for chromatin modifications in DNA damage response, and 3) developing novel mass spectrometry methods for phosphoproteomics and high throughput screening.

Vinay Kumar

Vinay Kumar

Dr. Kumar’s laboratory is interested in the cellular and molecular biology of murine natural killer (NK) cells. These cells are believed to act as the first line of defense against tumors and viral infections. In addition they secrete a variety of cytokines including 1FN-g and GM-CSF that can influence the inflammatory response. Two aspects of NK cell biology are of particular interest to us: the development of NK cells from multipotent progenitor cells, and the identification of NK cell receptors and their ligands.

Bruce Lahn

Bruce Lahn

We are a mammalian biology lab interested in two major research topics: Genetic Basis of Human Brain Evolution & Stem Cell Biology. Our other research interests include neurogenetics, bioinformatics, and developing technologies for high-throughput functional genomics.

Michelle Le Beau

Michelle Le Beau

Dr. Michelle Le Beau, PhD, is the Director of the Comprehensive Cancer Center and the Cancer Cytogenetics Laboratory at the University of Chicago. For nearly a decade, Dr. Le Beau served as the head of cytogenetic studies of lymphoma for the Children’s Cancer Group (now COG), and was a member of the Cytogenetics Review Committee for Cancer and Leukemia Group B (CALGB). She also served as a member of the Board of Directors of the American College of Medical Genetics. She was a member of the NIH Pathology B Study Section (1996-2001) and CAMP Study Section (2001-2006), served as the Chair of this Study Section from 2004-2006, and was a member of the NCI Cancer Centers Review Parent Committee (2005-2009). Dr. Le Beau is an international leader in cancer cytogenetics and genetics, and is recognized for her work in identifying recurring cytogenetic abnormalities, in defining the clinical, morphological, and cytogenetic subsets of leukemia, in identifying the genetic pathways that lead to myeloid leukemias, and on the application of fluorescence in situ hybridization (FISH) technology for clinical diagnostics and gene mapping.

Wen-Hsiung Li

Wen-Hsiung Li

My major interest is in the processes and mechanisms of molecular and genomic evolution, using both experimental and theoretical approaches.

Chunyu Liu

Chunyu Liu

Our lab primary interest is to understand the connection between genetic factors and human psychiatric disorders or behaviors. Current research project is the genetic studies of bipolar disease (BD) using molecular genetics, genomics and bioinformatics approaches.

Manyuan Long

Manyuan Long

A fundamental problem in evolutionary biology is how genes with novel functions originate. My research focuses on this problem, although I am also interested in other issues of molecular evolution.

Michael Ludwig

Michael Ludwig

My research at the University of Chicago (in collaboration with Martin Kreitman) takes an evolutionary perspective to investigate the structure/function of eukaryotic cis-regulatory modules. Our approach has been to use transgenic analysis to functionally characterize evolved changes in the structure of a well-characterized enhancer controlling embryonic expression of even-skipped pair-rule stripe two in Drosophila.

Yves Lussier

Yves Lussier

The Lussier research group conducts research in the emerging field of phenomics, using computation to model phenotypes, integrate genomic with phenotypic datasets, and analyze phenomes in order to accurately individualize the understanding, the prediction, and the treatment of diseases.

Natalia Maltsev

Natalia Maltsev

My major scientific interest is the development of the approaches for representation and analysis of complex biological systems and how these approaches can be applied to the discovery of the molecular mechanisms contributing to complex heritable disorders.

Karl Matlin

Karl Matlin

The Matlin Laboratory studies the biogenesis of epithelial polarity in both cultured cells and epithelial injury models. Research in the Matlin Laboratory is focused on understanding the biogenesis of apical-basal polarity in epithelial cells. Epithelial polarity is critical for the normal functioning of epithelial organs, such as the kidney and the gastrointestinal tract. Furthermore, the loss of epithelial polarity is an important contributor to the pathogenesis of disease following epithelial injury and carcinogenesis.

Rima McLeod

Rima McLeod

Dr.  McLeod, is internationally recognized for her expertise and extensive research in toxoplasmosis. She specializes in the comprehensive care of congenital toxoplasmosis and other Toxoplasma gondii infections.

Folker Meyer

Folker Meyer

Dr. Meyer is a computational biologist with research interest in metagenomics. He currently has joint appointment with the Mathematics and Computer Science Divison, and the Computation Institute. He is working closely with researchers in the Biosciences Division at Argonne National Laboratory and the medical school at the University of Chicago. Dr. Meyer is the IGSB Associate Director who is responsible on the administrative unit at ANL

Michael Miller

Michael Miller

My research addresses mechanisms controlling the growth and allocation of mycorrhizal fungi. Our premise is that predictions about whole-plant responses, especially those associated with multiple forcing factors, will require a better understanding of how mycorrhizal fungi respond to alterations in host allocation of assimilated carbohydrates and soil nutrients and how fungal responses feed back to the host.

Richard Morimoto

Richard Morimoto

Dr. Morimoto is interested in the fundamental events that underlie the appearance of misfolded proteins and their consequence to protein homeostasis, cellular function, and organismal adaptation and survival. 

Ivan Moskowitz

Ivan Moskowitz

Our laboratory investigates the molecular basis of cardiac morphogenesis and Congenital Heart Disease. Congenital Heart Disease, or structural malformations of the heart present at birth, is the most common class of human birth defects. We employ forward and reverse genetic approaches in the mouse to address the genetic basis of structural heart disease. We use genetic, molecular, and biochemical methods to investigate the specific aspects of cardiac morphogenesis involved in Congenital Heart Disease.

Piers Nash

Piers Nash

We are currently studying the role of various ubiqutin linkages in regulating signaling events from activated cell surface receptors (the EGF-R and the T-cell receptor), and the role of specific deubiquitinating enzymes in modulating cellular signal transduction.

Marcelo Nobrega

Marcelo Nobrega

Our group is interested in dissecting the architecture and function of gene regulatory networks. We investigate how the multiple transcription activators, repressors, boundary elements connected to a gene interact and orchestrate the precise tissue-specific and temporal-specific expression pattern of that gene.

Carole Ober

Carole Ober

The major research objectives of my laboratory are to identify genes that influence complex phenotypes, to understand their evolutionary history, and to elucidate how variation in these genes influences function. Our laboratory focuses on phenotypes related to fertility and to common diseases, and are conducted in a founder population, the Hutterites, and in outbred patient populations.

Olufunmilayo Olopade

Olufunmilayo Olopade

My research interests are diverse and include: treatment of breast cancer, especially in young or pregnant women; familial cancers; molecular genetics of cancer; cancer risk assessment and chemoprevention; breast cancer and minority populations and disparities in health outcomes.

Kenan Onel

Kenan Onel

My lab studies the genetic basis of cancer susceptibility. Genetically, we are all very similar, but not identical. Some of this normal variation is insignificant, but some may have important functional consequences. Our goal is to discover the critical sources of functional heterogeneity in the pathways that are the barriers against the cellular transition from normal to cancer.

Tao Pan

Tao Pan

My lab developed a microarray methods that measure tRNA abundance, its fraction of aminoacylation and misacylation at the genomic scale. We are exploring roles of tRNA in translational control in yeast and in mammalian cells including cancer.

Jonathan Pritchard

Jonathan Pritchard

My research group tackles the following questions. What is the nature and extent of genetic variation within and between human populations? What are the biological and evolutionary processes that have produced the observed patterns of variation? How do genotypes contribute to phenotypes for complex traits (and how can we identify the relevant genetic variants)?

Molly Przeworski

Molly Przeworski

Our interest is in understanding how different evolutionary forces have shaped patterns of genetic variation in humans, and conversely, in learning about recombination, demography and selection from patterns of genetic variation observed in samples of extant humans. Our research combines modeling, the development of statistical tools and data analysis. The lab is “dry”, although we often collaborate closely with experimentalists.

John Reinitz

John Reinitz

My laboratory is engaged in a long term project to understand how DNA sequence specifies biological form. We are interested not only in the specification of typical form by a typical genome, but also in the effects of variability. Such variability might take the form of genetic variation in a population or intrinsic fluctuations in an individual

Ilaria Rebay

Ilaria Rebay

My laboratory works at the interface between signal transduction and developmental biology. The long term goal of our research is to understand how complex developmental decisions are controlled in time and space by multiple signaling pathways.

Marsha Rosner

Marsha Rosner

The focus of my laboratory is to determine the critical mechanisms that regulate cell growth and differentiation in response to growth factor or oncogenic stimulation and identify key targets for therapeutic intervention.

Janet Rowley

Janet Rowley

Dr. Janet Rowley, MD, is the Blum Riese Distinguished Service Professor of Medicine, Molecular Genetics & Cell Biology and Human Genetics at the University of Chicago. She is internationally renowned for her work in the discovery of molecular genetic alterations found in human malignancies, Rowley has studied chromosome abnormalities in leukemia and lymphoma to provide critical scientific insights that have led to cures for previously untreatable cancers. Her discoveries have resulted in more accurate diagnostic techniques and the development of effective treatment protocols targeted to particular patient subgroups. Among her numerous honors, Rowley was awarded the 2009 Presidential Medal of Freedom, the 1998 Albert Lasker Clinical Research Award, the 1998 National Medal of Science, the 1989 Charles S. Mott Prize from General Motors Cancer Research Foundation, and the AACR’s G.H.A. Clowes Memorial Award in 1989 and the Dorothy P. Landon-AACR Prize for Translational Cancer Research in 2005.  She is a member of numerous honorary societies including the National Academy of Sciences, the Institute of Medicine, the American Philosophical Society and the American Academy of Arts and Sciences.

Brenda Russell

Brenda Russell

Dr. Russell’s research focuses on the regulation of protein synthesis and remodeling of cell shape, and on development of a novel cell culture system using bioengineering and surface chemistry modification. Many of her studies have been done in close collaboration with clinicians (muscular dystrophies, urinary incontinence, heart failure).

Ilya Ruvinsky

Ilya Ruvinsky

Dr. Ruvinsky is interested in the evolution of development (Evo-Devo), evolutionary genomics and molecular evolution. The goal of his lab is to integrate developmental, genomic and computational approaches to understand the evolution of genes and gene functions.

Andrey Rzhetsky

Andrey Rzhetsky

Dr. Rzhetsky’s interest is in (asymptotic) understanding how phenotypes, such as human healthy diversity and maladies, are implemented at the level of genes and networks of interacting molecules. To harvest as much information about known molecular interactions as possible, his group runs a large-scale text-mining effort aiming at analysis of a vast corpus of biomedical publications. Currently they can extract from text automatically about 500 distinct flavors of relations among biomedical entities (such as bind, activate, merystilate, and transport)

Daniel Schabacker

Daniel Schabacker

Dr. Schabacker’s current research includes the development of 1) a point-of-care human diagnostic respiratory biochip capable of rapidly identifying both bacterial and viral pathogens, 2) Veterinary diagnostic biochips capable of identifying causative organism(s) as well as antibiotic resistance for bovine respiratory syndrome and bovine mastitis, 3) Threat agent detection systems for rapid analysis (<15 minutes sample-to-answer) of multiple targets providing diagnostic confidence level outputs, 4) Biochips and systems for biomarker discovery.

Olaf Schneewind

Olaf Schneewind

My laboratory examines the mechanisms and strategies whereby pathogenic bacteria cause human disease.

Jonathan Silverstein

Jonathan Silverstein

Dr. Silverstein’s research focuses on the integration of advanced computing and communication technologies into biomedicine, particularly applying Grid computing, and on the design, implementation, and evaluation of high-performance collaboration environments for anatomic education and surgery.

Neil Shubin

Neil Shubin

Dr. Neil Shubin, PhD, is the Robert R. Bensley Professor, Organismal Biology and Anatomy at the University of Chicago.  He is a paleontologist, evolutionary biologist, and science writer. Dr. Shubin is best know in the popular media as being one of three principal investigators who in 2004 discovered the fossil tetrapodomorph fish Tiktaalik roseae.  Dr. Shubin’s research interests center around trying to better understand how and why new anatomical features and faunas arose throughout evolutionary history. His studies focus primarily on two critical time periods during the history of our planet, the Devonian and the Triassic.

Seth Snyder

Seth Snyder

We focus on integrating technologies to sustainably produce biofuels and biobased products. The goal is to design fermentation and enzymatic conversion systems that will facilitate continuous product recovery. Currently we work on organic acids and alcohols.

Julian Solway

Julian Solway

Dr. Solway’s laboratory addresses molecular mechanisms underlying airway constrictor hyperresponsiveness in asthma.

Matthew Stephens

Matthew Stephens

My general interests include Bayesian and computational statistics, particularly when applied to problems in population genetics.

Rick Stevens

Rick Stevens

Dr. Rick Stevens, PhD, is the Associate Laboratory Director for Computing, Environment, and Life Sciences at Argonne National Laboratory.  He heads Argonne’s advanced computing initiative targeting the development of exascale computing technology and systems and computational biology. He is also a Professor of computer science at the University of Chicago and is a Senior Fellow of the University of Chicago & Argonne National Laboratory Computation Institute (CI), a multidisciplinary institute aimed at connecting computing to all areas of inquiry at the University and the Laboratory. In addition, he is the co-Director of the Argonne Futures Lab, a research group he started in 1994 to investigate problems in large-scale scientific visualization and advanced collaboration environments. His group in the Futures Lab has developed the widely deployed Access Grid collaboration system.

Everett E. Vokes

Everett E. Vokes

Everett Vokes, MD, is the John E. Ultmann Professor of Medicine and Radiation Oncology at the University of Chicago. He is an internationally renowned expert in the treatment of head and neck cancer. Born in New York City, Dr. Vokes was educated in West Germany, receiving his medical degree from the University of Bonn Medical School. He served his residency in internal medicine at Ravenswood Hospital Medical Center in Chicago and at the University of Southern California in Los Angeles. He arrived at the University of Chicago as a hematology/oncology fellow in 1983 and was promoted to professor in 1995. For eleven years he served as chief of the Section of Hematology/Oncology, before his appointment as chair of the Department of Medicine in March 2009. In October 2009, Dr. Vokes was named interim dean of the Division of Biological Sciences and the Pritzker School of Medicine and interim vice president for medical affairs at the University of Chicago. He served in these roles for one year.

Kevin White

Kevin White

Dr. White is a pioneer in combining experimental and computational techniques to understand the networks of factors that control biological systems during development and evolution. He has developed novel integrated systems biology approaches for studying complex diseases and identifying new diagnostic biomarkers for a variety of cancer types.

Chung-I Wu

Chung-I Wu

My lab is interested in molecular genetics of species differentiation