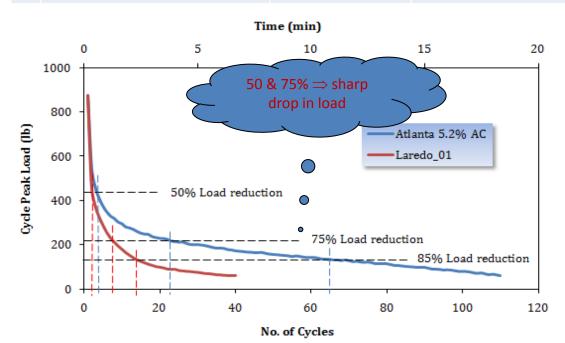


Project 0-6607

Alternative OT Data Analysis Methods

Lubinda, Abu, & Tom



2

Alternative OT Data Analysis Methods

#	ltem	Variable	Key Finding
1	Load reduction criterion	<mark>50, 75%, 85%, &</mark> 93%	 50 & 75% → Not viable, sharp drop in load with meaningless & hardly comparable cycles 85% gives reasonable COV with interpretable OT cycles → Validation
2	Pseudo fracture energy (Pseudo-FE)	Area under load- cycle curve	No improvement in variability with use of Pseudo-FE!!

OT Load Reduction Criterion

Load reduction criteria = 50, 75%, 85%, & 93%

#	District	Mix	Drying	Average No. of Cycles to Load Reduction of:-								
			metho <mark>d</mark>	50%	COV(%)		75%	COV(%)	85%	COV(%)	93%	COV(%)
1	Atlanta	Type D	Air	3	0.9		21	8.9	58	10.4	92	8.5
	5.2% AC		Oven	3	1.7		22	5.2	70	8.4	118	6.3
2	Atlanta	Type D	Air	7	4.4		70	10.5	390	1.9	527	26.1
	5.5% AC		Oven	4	4.3		40	21.3	185	21.0	520	19.5
3	Childress	Type D	Air	2	6.2		19	17.2	62	14.7	176	31.6
			Oven	3	3.9		22	9.8	106	16.2	560	7.5
4	Laredo	Type C	Air	2	3.1		5	19.8	8	15.5	25	22.3
			Oven	2	5.4		7	9.2	13	12.1	24	15.6

Pseudo Fracture Energy

Pseudo fracture energy \Rightarrow area under load-cycle curve

Source	Sample No.	No. of Cycles to Failure	COV (%)	Area under Load Vs. Cycle Curve	COV (%)
Atlanta Type D 5.2% AC	1	224	32.3	28964	33.6
(plant-mix)	2	170		24461	
	3	322		45498	
Atlanta Type D 5.5% AC	1	236	41.9	39554	35.4
(plant-mix)	2	402]	56515	
Γ	3	575	1	81189	
Bryan CAM 6.9% PG 76-22	1	866	4.7	70858	7.5
Valero+ Capitol limestone	2	791]	76329	
Γ	3	846	1	82359	
Bryan CAM 6.9% PG 76-22	1	236	40.4	26829	43.4
Martin+ Capitol limestone	2	100	1	10350	
Γ	3	169	1	24835	
Childress Type D 4.9%	1	534	7.5	33461	11.4
AC (plant-mix)	2	535	1	35456	
Γ	3	607	1	41541	
Laredo Type C 5.0% AC	1	64	44.3	10870	52.5
(plant-mix)	2	40	1	6158	
Γ	3	26	1	3729	

Alternative OT Data Analysis Methods

Analysis & Summary

- 85% gives reasonable COV with interpretable OT cycles
- 50 & 75% \rightarrow lowest COV, but very small OT cycles to sufficiently differentiate or screen mixes!!
- 50 & 75% \rightarrow sharp drop in load; thus very small OT cycles
- Proposal → if modification is desired, try 85%, otherwise stay at current 93%
- No improvement in variability with use of pseudo fracture energy!!

Tex-248-F Items 5.7.2 & 6.0

- No change recommended!
- Otherwise, 85% would be the tentative suggestion!!

Challenge would be how to relate to field data

