
Section 1
Introduction

Traffic incidents not only greatly impact individuals, but also affect the general population.
Depending on the incident severity, incidents are likely to cause both private and public property
damage and possibly cause injury and fatalities. Due to both economic and humanitarian
importance, maintaining roadway travel safety has aroused widespread interest in government
officials, industry, and researchers. The National Highway Traffic Safety Administration
estimates the cost of improving safety through various law enforcement activities to be as high as
$230.6 billion annually, nearly 2.3 percent of the nation’s gross domestic product (Blincoe et al.,
2002). Recently, a number of researchers (Steil and Parrish, 2009; Keskin et al., 2011; Lou et al.,
2011; Willemse and Joubert, 2012) study the effectiveness of law enforcement plans, including
how to improve patrolling plans. One way of improving patrolling efficiency is to focus on
patrolling critical locations with high crash frequencies.

Given historical crash data, a “hot spot”(HS) is defined as a certain stretch of highway with high
frequency of crashes of different severity over a given time period. In this problem, we are
interested in finding the right start and stop locations (temporary stations) for state troopers at the
beginning and end of their shift, respectively, as well as the patrol routes to visit time-critical HSs.
Our overall goal is to maximize the visibility of state troopers during the hot times of the HSs
while minimizing the costs associated with utilization of state troopers, traveling from one HS to
another, and potential fees for temporary stations. Therefore, we tackle a bi-criteria (benefit
maximization and cost minimization) optimization problem.

Specifically, we assume that at the beginning of a shift, state troopers start their patrol at
temporary stations whose locations need to be determined from a list of potential stations. During
their shift, starting at their selected temporary stations, the state troopers travel from one HS to
another and stop at HSs during the effective coverage time, i.e. during the time interval that
particular HS is critical. At the end of the shift, the state troopers go to other temporary stations
so that the travel time from the last covered HS in the previous shift and the travel time to the next
HS in the next shift is optimized. The locations of the ending temporary stations need to be
determined as well. With these characteristics, this problem is similar to a multi-depot (multiple
temporary stations), dynamic location (changing locations), and routing problem (LRP). At the
same time, since we are aiming to maximize the presence of the state troopers at the defined HSs
and the service time at a HS can be viewed as the “variable profit,” the problem has resemblance
to the team orienteering problem with time windows (TOPTW).

We note that our paper is closely related to the work by Keskin et al. (2011), which focuses on
patrol coverage of HSs. Considering a single station, Keskin et al. (2011) propose a mixed integer
linear optimization model, called the maximum covering patrol routing problem (MCPRP), to
maximize the presence of state troopers at the defined HSs for a given patrol shift. They show that
the problem of interest is related to the TOPTW and prove that the MCPRP is NP-hard. They
develop efficient local search- and tabu search-based heuristics to solve real life instances. In their
results, they note that despite the effectiveness of the solutions, even with unlimited number of
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state troopers, it is not possible to cover all of the time-sensitive HSs by just starting from a single
station. HSs are geographically dispersed and time sensitive. By the time the state troopers reach
a distant HS, the effective coverage would have already lapsed. Our work extends their paper in
three directions:

(i) We consider multiple temporary stations whose locations need to be determined as opposed
to a single depot. This way, more HS are covered which are located out of the accessibility
range with just one station.

(ii) Our model spans multiple periods (shifts) as the locations of the HSs and temporary stations
dynamically change and temporary station locations tie the multiple periods together.

(iii) In addition to “coverage benefit” maximization, we also consider the minimization of total
system costs (cost of utilization of troopers, travel costs, and temporary station location
costs). With the addition of temporary stations, the coverage is expected to go up. But, it is
also important to account for how much this coverage is going to cost. The costs included
in the analysis create an immediate trade-off with respect to resource utilization and hot
spot coverage. For instance, if fewer state troopers are dispatched or fewer temporary
stations are available, the state troopers need to travel farther and spend more time on the
road rather than covering HSs. On the other hand, if more state troopers are dispatched and
more temporary stations are opened, there may not be enough monetary resources to pay
for patrolling costs.

Since the MCPRP, which arises as a subproblem for our problem, and the dynamic
location-routing problem are shown to be NP-hard, we resort to heuristic approaches. We first
present a mixed integer programming formulation of the problem that can be solved via
off-the-shelf software. Then, we develop efficient, tailored heuristics based on effective
neighborhood searches embedded within a simulated annealing framework. When we compare
the tailored heuristics with the off-the-shelf software, we see that our solutions provide good
quality solutions in short periods of time. Additionally, we provide additional service measures
including the percentage of number of HSs covered and percentage of coverage length based on
the outcome of the heuristics. These service measures provide additional insights into the
solutions.

The remainder of this paper is structured as follows: in Section 2, we present the literature review.
In Section 3, the details of the general mathematical model are discussed, including necessary
assumptions and notations. Next, in Section 4, we present the analysis of the problem and the
solution approaches based on the characteristics of the problem. In Section 5, we discuss the
computational results based on the heuristics and their implications. Finally, in Section 6, we
summarize our results and offer recommendations for effective implementation.
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Section 2
Literature Review

As our problem has similarities to TOPTW and LRP, we review both of these areas.

2.1 TOPTW

The OP is first introduced by Tsiligirides (1984) for the orienteering competition. The goal is to
identify a circuit that maximizes collected profit such that travel costs do not exceed a preset value
C. Some of its important variants include the team orienteering problem (TOP) where a fixed
number of paths is considered, the orienteering problem with time windows (OPTW), and the
team orienteering problem with time windows (TOPTW).

Boussier et al. (2007), Montemanni and Gambardella (2009), and Vansteenwegen et al. (2009) are
the only people known to have solved the TOPTW. The exact branch-and-price algorithm
proposed by Boussier et al. (2007) is generic enough to handle different kinds of OP, including
the TOPTW. Montemanni and Gambardella (2009) develop local search and ant colony system
algorithms based on the solution of a hierarchic generalization of TOPTW. Lastly, Vansteenwegen
et al. (2009) present a straightforward and very fast iterated local search heuristic, which
combines an insertion step and a shaking step, reverse insertion operation, to escape from local
optima. Note that all of these papers only consider single period problems. To the best of our
knowledge, only Tricoire et al. (2010) work on a multi-period OPTW problem. They design a
variable neighborhood search based metaheuristic. However, they specify a fixed starting depot
and a fixed stopping depot for each period for only one car, whereas in our case, the starting and
ending locations are decision variables for multiple state troopers.

2.2 LRP

Since Salhi and Rand (1989) show that LRP consistently produces better solutions than solving
sub-problems of facility location and vehicle routing sequentially, LRP has received increased
attention from researchers. Laporte (1988) summarizes two-index or three-index vehicle flow
formulations for static, deterministic LRP. For more information, please refer to the reviews by
Balakrishnan et al. (1987), Min et al. (1998), and Nagy and Salhi (2007).

Both exact algorithms and heuristics are designed to solve LRP, but exact algorithms (see Labbé
et al. (2004) and Laporte et al. (1986)) are still limited to small to medium size problems and
heuristics are far more prevalent. Nagy and Salhi (2007) categorize heuristics into sequential,
clustering, iterative (Hansen et al. (1994), Perl and Daskin (1985), and Wu et al. (2002)), and
hierarchical heuristics (Albareda-Sambola et al. (2007), Melechovskỳ et al. (2005), and Nagy and
Salhi (1996)). Among these four categories, the last two are preferred as sequential and clustering
heuristics fail to utilize feedback between location and routing subproblems. Especially when
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there is hierarchy involved, hierarchical heuristics are shown to be more effective. A hierarchical
heuristic divides LRP into a master problem location and its subordinate routing problem. We
follow this logic in the development of our heuristics.

We note two important differences between our work and the literature. First, our problem has
time window limitation that has not been addressed in LRP literature before to the best of our
knowledge. Even though Nagy and Salhi (2007) point out in their survey that work by Semet and
Taillard (1993) belongs to this category, that paper should be viewed as VRPTW literature instead
of LRP since there are no location decisions. Second, instead of locating long-term depots, we
locate temporary stations while optimizing routing schedules. For our problem, both location and
routing are short-term decisions, avoiding the common criticism that LRP has conflicting
planning horizons in the short and long run.
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Section 3
General Model

3.1 Problem Definition

As discussed earlier, it is assumed that at the beginning of each shift, state trooper cars are
dispatched from temporary stations (TS), where the potential locations are given as
i ∈ I = {1,2, ..., |I |}, that also include state trooper posts. K = {1,2, ..., |K |} is the set of the
available state troopers, and each trooper on duty incurs a cost of v ($/shift/trooper). Let
P = {1,2,3} be the set of shifts, representing morning, afternoon, and night shifts, and
D = {1,2, ..., |D|} be the set of days, where 1 represents the first day and so on. As a
simplification, pairs of p ∈ P and d ∈D can be represented by a single period index
t ∈ T = {1, ..., |P |× |D|}.

Within a subset of regions with given potential locations for TS i ∈ I and during a particular
period t ∈ T , there are historically established HS, j = 1, . . . ,n. In a period t ∈ T , HS j has three
attributes: (i) location on the mile-posted road network; (ii) the time window [et

j, l
t
j] when HS j

becomes “hot” where et
j and lt

j are the start and end times of the “hotness” window; and (iii)
weight wt

j representing severity level. By definition, et
j ≤ lt

j. Furthermore, we assume that without
loss of generality, N is an ordered set according to et

j such that et
1 ≤ et

2 ≤ . . .≤ et
n. Note that a

location can be listed as two different HSs i and j, where et
i < et

j if it becomes “hot” twice within
the same period.

Let V = N ∪ I denote the union of the sets of HS and locations of potential TS. Additionally, we
let E = {(i, j) : i, j ∈N ∪ I , i 6= j} define the set of edges. The connected graph G = (V ,E)
represents the underlying road network. dt

i j > 0 denotes the shortest travel time from HS i to j,
∀(i, j) ∈ E , and in period t ∈ T . Meanwhile, we define:

• 4+(i) = { j ∈ V , t ∈ T : (i, j) ∈ E ,et
i +dt

i j ≤ lt
j} as the set of vertices that are directly

reachable from i ∈ V within the time window, and
• 4−(i) = { j ∈ V , t ∈ T : ( j, i) ∈ E ,et

j +dt
i j ≤ lt

i} as the set of vertices from which i is
directly reachable.

The additional assumptions of the model include the following:

1. The fixed cost of TS is negligible.
2. There is no capacity limit at TS; i.e., multiple state trooper cars can start/stop at the same

TS, if desired.
3. Visits of state troopers at HSs are only effective within the time windows of HSs.
4. At the beginning of a shift, a state trooper leaves a selected TS, and at the end of the shift,

he may or may not come back to the same TS.
5. State trooper cars travel at a constant speed of 60 miles/hour, thus 1 minute corresponds to

1 mile. This way, distance and time can be easily translated to one other.
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6. State troopers can choose whether to visit a HS or not, as well as time to begin and end the
coverage. If a HS is chosen by a state trooper, it cannot be visited by others.

Our goal is to optimize the dynamic selection of TS utilized each period, allocate state troopers to
TS, and route state troopers to HSs simultaneously. Figure 1 shows an example with 5 potential
TS, 3 available state troopers, 2 periods, and 16 HSs per period. At the beginning, these 3 cars are
parked at TSs 2, 3, and 5. The routes, represented by the directed arrows, form a feasible solution
while meeting the time windows of the visited HSs. In the first period when t = 1, all 3 troopers
are utilized; when t = 2, only 2 troopers are utilized due to budget limitations. That is, the cost
minimization outplays the benefit maximization. When t = 1, k = 1 starts at TS= 2 but ends at
TS= 1, k = 3 starts at TS= 5 but ends at TS= 3, and only k = 2 starts and ends at the same TS.
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Figure 1: A representative example

3.1.1 Decision Variables

We define five sets of decision variables: (i) xt
i jk = 1, if state trooper car k ∈K travels from i to j,

(i, j) ∈ E during t ∈ T , and 0, otherwise. (ii) st
ik ≥ 0, the starting time of service for state trooper

car k ∈K at HS i ∈ V during t ∈ T . (iii) f t
ik ≥ 0, the time state trooper car k ∈K leaves HS

i ∈ V during t ∈ T , i.e., the end of service. (iv) yt
ik = 1 if state trooper k serves i ∈ V during

t ∈ T , 0, otherwise. (v) Rt
i jk = 1 if state trooper car k ∈K is relocated from one TS i to another

TS j at the end of t ∈ T , i, j ∈ I .
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3.1.2 Objective

We have a multi-objective optimization problem, including cost (trooper utilization cost, routing
cost, and facility cost) minimization and benefit (coverage) maximization. All cost parameters are
scaled down to the same time span, that is, one shift. We set v = $36.63/shift/trooper assuming
an average wage of $40,000/year/trooper. We set the trip cost as c = $0.14/mile or
$0.14/minute assuming that fuel price is $3.5/gallon and fuel consumption is 0.04 gallon/mile.
Then our objective is:

min
x

(
v ∑

t∈T
∑
i∈I

∑
j∈N

∑
k∈K

xt
i jk + c ∑

t∈T
∑

(i, j)∈E
∑

k∈K
dt

i jx
t
i jk

)
(1)

max
f,s ∑

t∈T
∑
j∈N

∑
k∈K

( f t
jk− st

jk)w
t
j (2)

For multi-objective optimization problems, it is very common that objectives may not be
commensurate with each other. Similarly, for our problem, the coverage benefit is measured in
minutes whereas the total cost is measured in dollars. Facing this dilemma, the vast majority of
researchers use either weighted sum of the objectives or ε-constraint approach. The first group of
researchers (Alçada-Almeida et al., 2009; Alumur and Kara, 2007; Caballero et al., 2007)
transformed conflicting objectives into a weighted sum by attaching each objective with a
coefficient. However, due to the arbitrary choices of coefficients, we adopt the other commonly
used method: ε-constraint approach (Bérubé et al., 2009; Chankong and Haimes, 1983; Laumanns
et al., 2005, 2006; Mavrotas, 2009; Miettinen, 1999). This approach considers the single most
important objective and puts all of the other objective(s) into the formulation as constraint(s).
Thereafter, our problem is transformed into a benefit maximization problem by setting an upper
limit on the budget, say B, v∑t∈T ∑i∈I ∑ j∈N ∑k∈K xt

i jk + c∑t∈T ∑(i, j)∈E ∑k∈K dt
i jx

t
i jk ≤ B. In our

computational experiments, we test different levels of B to demonstrate the effect of costs and
available budgets on the patrol routes.

3.1.3 Constraints

We categorize our constraints under five groups: schedule feasibility constraints (1a)-(1d), route
structuring constraints (2a)- (2e), TS updating constraints (3a)-(3d), car related constraints (4),
and last but not the least, integrality and non-negativity constraints (5a)-(5b). In constraints (1a),
Mt

i j = max{lt
i +dt

i j− et
j,0} ≥ 0, and in constraints (3d), Dlimit is a constant that is set to 20

minutes.
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Schedule feasibility f t
ik +dt

i j− st
jk ≤ (1− xt

i jk)M
t
i j, ∀t ∈ T , (i, j) ∈ E , k ∈K . (1a)

et
i ∑

j∈4+(i)
xt

i jk ≤ st
ik, ∀t ∈ T , i ∈ V , k ∈K . (1b)

lt
i ∑

j∈4+(i)
xt

i jk ≥ f t
ik, ∀t ∈ T , i ∈ V , k ∈K . (1c)

st
ik ≤ f t

ik, ∀t ∈ T , i ∈ V , k ∈K . (1d)

Route structuring ∑
i∈4−( j)

xt
i jk = ∑

i∈4+( j)
xt

jik, ∀t ∈ T , j ∈N , k ∈K . (2a)

∑
j∈4+(i)

xt
i jk ≤ yt

ik, ∀t ∈ T , i ∈ I , k ∈K . (2b)

∑
j∈4−(i)

xt
jik ≤ yt+1

ik , ∀t ∈ T , i ∈ I , k ∈K . (2c)

∑
j∈4+(i)

xt
i jk = yt

ik, ∀t ∈ T , i ∈N , k ∈K . (2d)

∑
k∈K

yt
jk ≤ 1, ∀t ∈ T , j ∈N . (2e)

TS updating Rt
i jk ≤ yt

ik, ∀t ∈ T , i, j ∈ I , j 6= i, k ∈K . (3a)

Rt
i jk ≤ yt+1

jk , ∀t ∈ T , i, j ∈ I , j 6= i, k ∈K . (3b)

Rt
i jk ≥ yt

ik + yt+1
jk −1, ∀t ∈ T , i, j ∈ I , j 6= i, k ∈K . (3c)

dt
i jR

t
i jk ≤ Dlimit, ∀t ∈ T , i, j ∈ I , j 6= i, k ∈K . (3d)

Car related ∑
i∈I

yt
ik ≤ 1, ∀t ∈ T , k ∈K . (4)

Integrity and non-negativity st
ik, f t

ik ≥ 0, ∀t ∈ T , i ∈ V , k ∈K . (5a)

xt
i jk,y

t
ik,R

t
i jk ∈ {0,1}, ∀t ∈ T , i, j ∈ V , k, g ∈K , g > k. (5b)

This model generalizes the MCPRP by Keskin et al. (2011) from single-depot to multi-depot and
from a static depot location to dynamic depot locations. The main modification to the formulation
involves the newly added third and fourth sets of constraints. The third set of Constraints
(3a)-(3c) are confining Rt

i jk = 1 if and only if yt
ik = yt+1

jk = 1, i.e., we relocate a state trooper from
one TS to another. If relocation occurs, the distance between the starting and the stopping TS
should not exceed Dlimit, which is achieved by Constraints (3d). This is a practical constraint
required by the state troopers. In the fourth set, Constraints (4) stipulate that one car can only be
parked at one TS.

3.1.4 Overall Model

The overall model is subject to constraints (1a)–(5b). We call this model, the dynamic
multi-depot MCPRP, in short, DMD-MCPRP.
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Remark 1 If a state trooper must go back to where he starts his shift, Rt
i jk and its related

constraints are not needed any more. This is a special case of DMD-MCPRP, which can be solved
by period and independently.

3.2 Extension with Fixed Charge Considerations

We now consider the case when there is a fixed cost associated with each utilized TS. This case is
more applicable if, for instance, each TS is charged with some parking fee, denoted as Fi.

To incorporate the fixed costs into the model, another set of decision variables is needed. We
define zt

i = 1 if TS i ∈ I is open in t ∈ T , 0, otherwise. With this new variable, the model requires
the following two updates. First, the budget constraint has one additional term of the total fixed
cost, that is,

v ∑
t∈T

∑
i∈I

∑
j∈N

∑
k∈K

xt
i jk + c ∑

t∈T
∑

(i, j)∈E
∑

k∈K
dt

i jx
t
i jk + ∑

t∈T
∑
i∈I

Fizt
i ≤ B.

Second, the model is augmented with one additional set of constraints, guaranteing that TS is
marked as open if selected.

TS selection zt
i ≥ yt

ik, ∀t ∈ T , i ∈ I , k ∈K . (7)
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Section 4
Solution Approaches

We observe that both DMD-MCPRP and its extended model are mixed integer linear programs
(MILP) and can be solved by CPLEX 12.1∗. Unfortunately, even for very small instances such as
the example in Figure 1, CPLEX runs out of memory.

Among different solution options, we choose a hierarchical heuristic as our problem has an
obvious hierarchical structure. As our objective is transformed into a benefit maximization by
stating the incurred costs under a budget limit, we first solve the multi-depot MCPRP
(MD-MCPRP), and then the locations of the temporary stations are determined. This
decomposition makes the multi-depot MCPRP problem solvable by period and by shift.
Therefore, it provides an opportunity to utilize the solution of Keskin et al. (2011) with slight
modifications due to multi-depot considerations. We solve the location problem via a greedy
heuristic. We iterate among these two problems to search for better feasible solutions for the
overall problem. We first discuss the details of the heuristic for the base model (without TS
location costs) and then present a modified heuristic to handle the extended model (with TS fixed
costs) next.

4.1 Heuristic for DMD-MCPRP

For the base model when the fixed costs of TS are negligible, the optimal solution has the
following characteristic:

Observation 1 If the optimal HS routes in MD-MCPRP are known, the nearest TSs to the first
and last HSs in the routes are selected as start and stop locations.

Based on this observation, we build our heuristic approach. First, note that the first problem is the
multi-depot MCPRP that determines the multi-car routing among HSs to maximize the benefits of
visiting HSs. This problem ignores the selection of locations for TSs (depots) and the budget limit
temporarily. However, in order to initiate the building of the routes, we need initial starting
locations for the routes. For this purpose, we use three initialization strategies: (i) STR1: start at
the HS with the earliest time window; (ii) STR2: start at the HS with the highest weight; (iii)
STR3: use a combination of STR1 and STR2: that is, out of the first 5 earliest HSs, pick the HS
with the highest weight. The heuristic is run using one of these strategies, and we report the
computational results with different strategies in Section .

The heuristic has five components that include initialization, MCPRP algorithm (Keskin et al.,
2011), add/drop, insert/erase, and simulated annealing. The pseudo-code of the algorithm that
explains how these components are utilized is given in Display 1. Next, we explain the details of
each component.
∗CPLEX is a trademark of IBM.
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Display 1 DMD−MCPRP heuristic(Ob j∗, Res∗, Rou∗, Car∗t )

1: Initialization: Ob j∗ = ∞, Res∗ = 0, Rou∗ = /0, Car∗t = 0. Equally allocate Car∗t = min{(1−
p) B
|T |v , |K |} cars ∀t ∈ T . Use a starting strategy to pick starting location for Car∗t , ∀t ∈ T .

2: MCPRP[Ob j∗, Res∗, Rou∗].
3: Add/Drop[Ob j∗, Res∗, Rou∗, Car∗t ].
4: Simply pick the closest TS to the starting and stopping end points within Dlimit.
5: if Budget allows then
6: Insert[Ob j∗, Res∗, Rou∗] between the starting TS and starting end point;
7: else
8: Erase[Ob j∗, Res∗, Rou∗, Car∗t ].
9: end if

10: Simulated annealing[Ob j∗, Res∗, Rou∗, Car∗t ].
11: Return Ob j∗, Res∗, Rou∗, Car∗t .

4.1.1 Initialization

In the Initialization step, we first initialize the objective coverage Ob j∗, resource consumption
level Res∗, and the set of route sequence information Rou∗. To determine the number of cars
available in each period Car∗t , we compare the available budget for employees with the total
number of cars. To allocate the budget per car appropriately, we assume that employee salary
portion of the budget is divided equally among each period and that the maximum number of cars
in a given period cannot exceed (1− p) B

|T |v , where (1− p) is the portion of the budget spent on
employee salary. Then, the initial number of available cars in period t is calculated as
min{(1− p) B

|T |v , |K |}. Afterwards, using one of the aforementioned starting strategies, we
initialize the starting locations of each car.

Given the number of cars and their starting locations, we utilize the MCPRP algorithm developed
by Keskin et al. (2011). This algorithm builds Car∗t routes in a greedy fashion, improved with
exchange and relocate operators.

4.1.2 Add/Drop Component

After the MCPRP algorithm, the initial routes are built up for all periods. Using this information,
we calculate the resource consumption Res∗ by taking into account the travel costs incurred by the
formed routes. If the consumed resource level Res∗ is less than B− (1+ p

1−p)v and there is an
available (unused) state trooper car, we can add one more patrol route to the period with the
largest number of uncovered HSs, i.e., Cart ←Cart +1. Note that (1+ p

1−p)v is an approximate
cost for utilizing one car (v) and traveling to hot spots ( pv

1−p ). Until all of the budget is used or all
of the state trooper cars are utilized, we keep adding a new patrol route. Each new route is again
built using the MCPRP algorithm.

On the other hand, if the total resource consumption Res∗ after the initial route construction
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exceeds the available budget by more than v, i.e., Res∗ > B + v, we eliminate the route with the
least coverage time until the total budget is controlled.

4.1.3 Selecting TS Locations

The next step in the overall algorithm involves selecting TS locations. By observation 1, for each
state trooper, we simply pick the closest TSs to the starting and stopping HSs in his route to begin
and end his shift as long as the start and end TSs are within distance Dlimit. In other words, as
opposed to considering all of the candidate TS locations, we only consider the ones within
distance Dlimit. We repeat this process for all t ∈ T . In essence, this step achieves the goal of
picking a common TS which has the shortest travel distance from the ending HS of one period to
the starting HS of the next period in a myopic fashion. After all of the TS locations are selected,
the routes are formed. After this component, the heuristic completes a location-routing cycle.
However, the budget may still be violated. Therefore, the next two components (Insert and
Erase) improve this location-routing solution by taking the budget limit into account.

4.1.4 Insert/Erase Component

As traveling from the selected TS locations to the HSs increases the resource consumption, the
new resource consumption may exceed the budget limit. If the budget is exceeded, Erase keeps
deleting the HS with the least coverage time until the resource consumption is within budget
limits. One possible result of this operation is that all of the HSs of a route are removed. If this is
the case, then that route does not cover any HS other than TS, and this route is closed. The state
trooper car is, therefore, freed up. The number of cars used in that period decreases by one and
the resource consumption is reduced by the utilization cost v. Since now additional resources are
made available, the Insert component is called to insert any uncovered HS while considering the
travel costs as well as the coverage benefit obtained from the inclusion of this HS.

On the other hand, if the inclusion of travel costs from and to selected TS locations into the
resource consumption does not exceed the budget limitation, we may re-call the Insert
component to include uncovered HSs until all of the budget is utilized.
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Display 2 Procedure SA(Ob j0,Res0,Rou0,Car0
t ,T0,α,β,M,MaxTime)

1: T = T0.
2: Rescurrent = Res0; Roucurrent = Rou0; Carcurrent

t =Car0
t ; Ob jcurrent = Ob j0.

3: Time = 0.
4: while Time≤MaxTime do
5: Discard chosen TS, and update Ob jcurrent , Rescurrent , and Roucurrent .
6: Res∗ = Rescurrent ; Rou∗ = Roucurrent ; Car∗t =Carcurrent

t ; Ob j∗ = Ob jcurrent .
7: Add/Drop[Ob jnew, Resnew, Rounew, Carnew

t ].
8: Select TSs.
9: if Budget allows then

10: Insert[Ob jnew, Resnew, Rounew];
11: else
12: Erase[Ob jnew, Resnew, Rounew, Carnew

t ].
13: end if
14: Call Metropolis(Rescurrent ,Roucurrent ,Carcurrent

t ,Ob jcurrent ,T,M);
15: Time = Time+M;
16: T = α ·T ; M = β ·M.
17: end while
18: return Res∗,Rou∗,Car∗t ,Ob j∗.

4.1.5 Simulated Annealing Component

To optimize the patrol routes and TS locations, we develop a simulated annealing algorithm.
Simulated annealing (SA), first proposed by Kirkpatrick et al. (1983), is one of the most
well-developed and widely used iterative techniques for solving optimization problems (Sait and
Youssef, 1999). The basic requirements of the SA algorithm are a neighborhood structure on the
set of feasible solutions and a number of parameters which govern the acceptance or rejection of
new solutions generated during the search. In our SA implementation, we utilize relocate and
exchange neighborhoods to improve the routes by considering different HS inclusions.

SA is a randomized search method that tries to improve a solution by a random walk in the
solution space and gradually adjusting a parameter called temperature. The sequence of
temperatures and the number of iterations, for which they are maintained, are called the annealing
schedule. The quality of the solution is very sensitive to both of these factors. Therefore, the SA
algorithm requires an initial temperature, T0; a cooling rate, α; a progressive factor, β; the total
allowed time for the annealing process, MaxTime; and, finally, the time until the next parameter
update, M (Sait and Youssef, 1999, pages 53-55). In our implementation, we experimented
extensively to find an effective combination of these parameters. We set T0 = 1000, α = 0.9,
β = 2, MaxTime = 8000, and M = 2. The details of the simulated annealing metaheuristic are
given in Display 2. The core of the SA algorithm is the Metropolis procedure. The Metropolis
procedure, after receiving the current solution Rescurrent ,Roucurrent ,Carcurrent

t , the temperature, T ,
and the number of metropolis loops, M, as inputs, simulates the annealing process at a given
temperature T . In the Metropolis procedure, we utilize exchange and relocate neighborhoods,
similar to Keskin et al. (2011), to define a new solution. We accept the “first-best-solution” in the
neighborhoods. The Metropolis procedure is presented in Display 3.

13



Display 3 Procedure Metropolis(Rescurrent ,Roucurrent ,Carcurrent
t ,Ob jcurrent ,T,M):

1: while M > 0 do
2: Relocate & exchange operator[Ob jnew, Resnew, Rounew].
3: ∆Ob j = Ob jcurrent −Ob jnew.
4: if ∆Ob j ≤ 0 then
5: Roucurrent = Rounew;Carcurrent

t =Carnew
t ; Ob jcurrent = Ob jnew.

6: if Ob jnew ≤ Ob j∗ then
7: Rou∗ = Rounew; Car∗t =Carnew

t ; and Ob j∗ = Ob jnew.
8: end if
9: else

10: if Random < exp(−∆Ob j
T ) then

11: Roucurrent = Rounew; Carcurrent
t =Carnew

t ; and Ob jcurrent = Ob jnew.
12: end if
13: end if
14: M = (M−1).
15: end while
16: return Ob j∗, Res∗, Rou∗, Car∗t

4.2 Modification of the Heuristic for the FC Model

For the extended model, we revise DMD-MCPRP heuristic to encompass the fixed cost of TS.
Specifically, the inclusion of fixed costs changes two main components of the algorithm. First,
instead of locating the TS locations based on proximity to the starting and ending HSs in the
route, we utilize a cost-based approach. We select TS locations with the smallest cdt

i jFi among the
potential TS locations that conform to Dlimit. Secondly, since Add/Drop most aggressively
adjusts the resource consumption by changing the number of routes Cart , the algorithm moves
onto the modification of TS locations after the resource consumption reaches the total available
budget. To improve on the selection of TS locations, we include a Decrease TS component that
adjusts the resource consumption less aggressively by dropping one open TS at one time until the
resource consumption Res drops to B + pv. The rest of the algorithm, including the SA
component, stays intact.
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Section 5
Computational Experiments

In order to test the proposed models and solution approaches, we design small- to medium-size
instances from crash history data in the state of Alabama. All of the crash data in the state of
Alabama since 2001 is collected by Critical Analysis Reporting Environment (CARE), a data
analysis software package developed by researchers at the University of Alabama (Steil and
Parrish, 2009). To determine the effects of various factors on the performance of the heuristics as
well as the coverage benefits, we design a set of experiments by varying the number of periods
|T |, the number of HSs per period |N |, the number of depots |A |, the number of cars |K |, and the
number of TSs |I |. We assume |K | is correlated with |A | and |I | is correlated with |T | and |N |.
That is, if there are more depots, there should also be proportionally more cars; likewise more |I |.
Once the number of HSs are determined by the experimental design, we use CARE to extract the
necessary HS information related to location, HS duration, and time window considerations. With
this construction, our design has 25 = 32 instances. The details are provided in Table 1.

Table 1: Design of experiment.
Item Small Medium
|T | 2 4
|N | 16 32
|A | 2 3
|K | 2|A | 3|A |
|I | 1/8|T |× |N | 1/4|T |× |N |

Based on the aforementioned design, we test all instances for

• two weight schemes wt
j: high variance (1, 1.5, 2), and low variance (1, 1.1, 1.2);

• three starting strategies: STR1, STR2, and STR3;

• three routing cost allocation percentage levels p: 0.25, 0.5, and 0.75; and

• five budget levels: 20%B, 40%B, 60%B, 80%B, and 100%B, where B is the total cost
estimated when all |K | troopers are used for each period, and all HSs are covered on a
straight-and-back basis.

In total, we run 32×2×3×3×5 = 2880 instances. We conduct all of these experiments using
C++ on an Intel Core 2 Duo E8400 with 2.94GB of memory. Our proposed metaheuristics return
the coverage benefit under the given budget limit. Meanwhile, since our model is a MILP,
CPLEX is able to generate lower bound (LB)- a feasible solution as a benchmark to heuristics.
Note that in many instances, CPLEX could not solve the problem. Therefore, it is possible that
the heuristics developed are better than the lower bound of the CPLEX. To avoid running out of
memory, CPLEX is set to run up to 3600 seconds.
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5.1 Experiment for DMD-MCPRP

After obtaining the coverage objective from the heuristic and the LB from CPLEX, we evaluate
our solution approach by examining the gap: (Ob jective−LB)/LB. If the gap is positive, our
heuristic finds better solution than the best feasible solution that CPLEX is able to find within the
given runtime. However, it is also possible that the LB of CPLEX is better than our heuristic, i.e.,
the gap is negative. We report both the average and maximum gap, in short “Avg.” and “Max.” in
Table 2.

Table 2: Performance gap between the metaheuristic and CPLEX.
wt

i =(1, 1.1, 1.2) wt
i =(1, 1.5, 2)

Avg. (%) Max. (%) Avg. (%) Max. (%)
p=0.25 Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best
100%B 2.3 0.8 1.4 2.6 22.2 20.9 18.9 22.2 0.6 -0.4 0.0 1.2 22.8 19.7 19.6 22.8
80%B 1.7 0.2 0.8 2.0 18.0 14.8 16.0 18.0 1.1 0.0 0.4 1.6 23.4 20.2 20.2 23.4
60%B 1.6 0.1 0.8 2.0 20.5 19.2 17.3 20.5 0.6 -0.4 0.0 1.2 13.6 11.1 10.4 13.6
40%B 0.4 -1.6 -0.7 0.8 21.5 19.9 18.1 21.5 0.9 -0.5 -0.2 1.4 21.3 20.0 19.3 21.3
20%B -1.4 -5.0 -2.8 -0.6 55.9 53.3 55.9 55.9 -0.2 -3.7 -1.7 0.9 56.1 56.1 51.5 56.1
p=0.5 Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best

100%B 2.3 0.8 1.4 2.6 22.2 20.9 18.9 22.2 0.6 -0.4 0.0 1.2 22.8 19.7 19.6 22.8
80%B 1.7 0.2 0.8 2.0 18.0 14.8 16.0 18.0 1.1 0.0 0.4 1.6 23.4 20.2 20.2 23.4
60%B 1.2 -0.5 0.5 1.7 20.5 19.2 17.3 20.5 0.6 -0.6 -0.3 1.0 13.6 11.1 10.4 13.6
40%B -1.6 -2.2 -1.4 -0.2 21.5 19.9 18.1 21.5 -0.5 -1.0 -0.3 0.6 21.3 20.0 19.3 21.3
20%B -3.7 -4.8 -4.6 -2.2 57.0 57.9 58.5 58.5 -3.1 -2.9 -2.5 -0.4 60.0 53.7 53.5 60.0
p=0.75 Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best
100%B 1.6 -0.1 0.8 2.0 22.2 20.9 18.9 22.2 -0.1 -1.1 -0.8 0.5 22.8 19.7 19.6 22.8
80%B -0.5 -1.2 -0.4 0.6 18.0 14.8 16.0 18.0 -0.6 -0.8 -0.4 0.6 23.4 20.2 20.2 23.4
60%B -1.9 -1.5 -0.8 0.2 17.7 16.0 16.5 17.7 -2.3 -1.4 -1.7 -0.3 13.1 12.1 14.1 14.1
40%B -4.6 -3.7 -3.6 -2.4 19.4 18.8 18.5 19.4 -4.5 -2.0 -2.5 -1.0 15.5 18.4 20.0 20.0
20%B -6.7 -6.6 -5.5 -3.5 54.8 57.9 56.7 57.9 -3.8 -3.2 -3.7 -1.1 52.1 52.5 56.7 56.7

In Table 2, if we compare different budget levels, there is a general trend: as the budgets become
tighter and tighter, the average gaps become slightly worse. At 100%B , 80%B , and 60%B , with
the best starting strategy, our heuristic outperforms the LB returned by CPLEX. Therefore, if
there is enough budget, our metaheuristic displays a dominating advantage over CPLEX. On the
other hand, if the budget is tight, this dominance is only compromised slightly. The inclusion of
the budget limit allows us to conduct the benefit-cost tradeoff analysis; its result shows how much
a change in the budget will affect the patrol effectiveness.

Next, we compare different starting strategies. Both with lower and higher variance weights, Str1
has the best gap for p = 0.25 with all budget levels and for p = 0.50 with most budget levels.
However, for p = 0.75, there is no consistent result with respect to which one is the best. For
instance, with lower variance weights, Str3 has the best gap for most budget levels and with high
variance weights, Str2 has the best gap for budget levels 60%B , 40%B , and 20%B . Because of
the lack in consistency, we recommend to try all of the starting strategies and proceed with the
best one. Since the heuristic is running fast, this does not create additional problems.

Third, different route cost allocation factors p do not affect the coverage benefit. Especially, in the
first two rows with p = 0.25 and those with p = 0.5, the results are exactly the same. Regardless
of how much budget is allocated to gas consumption in the beginning of the algorithm, the
inherent Add/Drop component adjusts the number of cars very effectively. Therefore, the
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proposed metaheuristic is robust. This point is substantiated further, if we compare different wt
i.

Low-variance weights and high-variance weights have quite similar coverage benefits and similar
heuristic performances. The robustness of our approach is critical when decision makers have
different perceptions of different crash types and assign different weights to them.

Overall, the best performances by the heuristic outperform those by CPLEX. The largest
improvement reaches up to 60.0%, that is, optimistically speaking, our method provides state
troopers with 60.0% more coverage than the commercial software does. All five factors have
positive impacts on the objective. Especially, the positive relation between the number of TSs and
the coverage objective forms the root cause of the necessity to incorporate the choice of TSs in
the patrol routes of state troopers.

As for runtime, our metaheuristic takes a couple of seconds, while CPLEX takes an hour to obtain
a LB. The solution time is very critical, especially when state troopers need to respond to
accidents in a timely manner. Therefore, our solution approach is more favorable.

5.2 Experiment for the Extended Model

Next, we investigate the performance of the revised metaheuristic to solve the extended model
with Fi. Keeping all other parameters the same, we test our algorithm with identical Fi = {2,8}
$/TS/period, since each TS is charged the same. If Fi is TS dependent, our algorithm is generic
enough to handle as well. Since weights (1, 1.1, 1.2) and (1, 1.5, 2) have very similar results, we
only report the results of one weight scheme - (1, 1.1, 1.2) to avoid redundancy. The reported
items are the gaps compared with CPLEX, shown in Table 3.

Table 3: Performance gap between the revised metaheuristic and CPLEX for wt
i =(1, 1.1, 1.2) with

different fixed costs.
Fi = 2 Fi = 8

Avg. (%) Max. (%) Avg. (%) Max. (%)
p=0.25 Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best
100%B 0.6 -0.8 -0.2 1.0 23.6 22.3 20.4 23.6 -0.6 -2.0 -1.4 -0.2 27.9 26.5 24.5 27.9
80%B 0.2 -1.2 -0.6 0.6 13.5 14.1 13.2 14.1 0.4 -1.0 -0.4 0.8 15.4 14.2 12.4 15.4
60%B 0.1 -1.3 -0.7 0.5 16.1 14.9 13.0 16.1 -0.2 -1.7 -1.1 0.1 28.1 26.8 24.7 28.1
40%B 0.7 -1.3 -0.2 1.2 21.6 20.3 18.4 21.6 -0.3 -1.9 -0.9 0.5 16.6 17.2 16.3 17.2
20%B -2.5 -4.4 -3.7 -1.1 34.8 28.7 36.4 36.4 -4.2 -6.4 -4.6 -1.0 71.4 66.0 75.5 75.5
p=0.5 Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best

100%B 0.6 -0.8 -0.2 1.0 23.6 22.3 20.4 23.6 -0.6 -2.0 -1.4 -0.2 27.9 26.5 24.5 27.9
80%B 0.2 -1.2 -0.6 0.6 13.5 14.1 13.2 14.1 0.4 -1.0 -0.4 0.8 15.4 14.2 12.4 15.4
60%B -0.3 -1.9 -1.0 0.2 16.1 14.9 13.0 16.1 -0.7 -2.3 -1.4 -0.2 28.1 26.8 24.7 28.1
40%B -1.3 -2.2 -1.3 0.1 21.6 20.3 18.4 21.6 -2.0 -2.6 -1.8 -0.6 16.6 17.2 16.3 17.2
20%B -5.4 -4.4 -5.1 -2.6 30.6 37.0 34.6 37.0 -3.6 -3.2 -3.1 -0.1 80.1 89.9 76.9 89.9
p=0.75 Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best Str1 Str2 Str3 Best
100%B 0.0 -1.7 -0.8 0.4 23.6 22.3 20.4 23.6 -1.2 -2.9 -2.0 -0.8 27.9 26.5 24.5 27.9
80%B -2.0 -2.6 -1.8 -0.8 13.5 14.1 13.2 14.1 -1.8 -2.4 -1.7 -0.6 15.4 14.2 12.4 15.4
60%B -3.3 -2.9 -2.2 -1.3 13.4 11.8 12.9 13.4 -3.7 -3.3 -2.7 -1.7 25.1 23.4 23.7 25.1
40%B -4.5 -3.5 -3.7 -2.3 18.5 16.5 18.2 18.5 -4.9 -4.3 -4.4 -2.9 16.8 13.9 14.6 16.8
20%B -6.0 -6.6 -5.8 -3.0 28.1 27.5 34.9 34.9 -5.1 -5.7 -3.4 -1.6 86.8 80.4 79.5 86.8

When we compare the results for different budget levels, starting strategies, and p values, we get
similar results as in the previous subsection. However, if we compare the results with the fixed
cost and those without the fixed cost, additional insights can be drawn. When Fi = 0, state
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troopers are more spread out with respect to where they start and stop; when Fi > 0, state troopers
tend to share the starting or stopping places in order to save money on paying for the fixed cost of
TS. The tighter the budget and the higher the fixed cost of TS, the more obvious this phenomenon
is. It can be projected that if the budget is really tight and the fixed cost of TS is high enough, all
state troopers will share only one TS each period, which becomes a single depot problem.

5.3 Performance Measures

In addition to comparing with CPLEX, we also benchmark on work by Keskin et al. (2011), since
DMD-MCPRP is an extension of MCPRP. Other than the objective, Keskin et al. (2011) also
introduce two performance measures to evaluate the proposed coverage plan. They are
“Percentage of Hot Spots Covered (HS%)” and “Percentage of Coverage Length (TW%)”. For
the sake of completeness, we present the following definitions:

HS%: This performance measure calculates, among all of the hot spots, the percentage covered

as a result: HS% =
∑t∈T ∑i∈N ∑k∈K yt

ik
|T |×|N | , where the numerator represents the total number of

visited HSs.

TW%: This performance measure calculates the percentage of total available time serviced:

TW% =
∑t∈T ∑i∈N ∑k∈K ( f t

ik−st
ik)

∑t∈T ∑i∈N (lt
i−et

i)
. In this measure, the numerator is the service time returned,

and the denominator is the total time window length.

We compare the objectives, HW%, and TW% of DMD-MCPRP with those of MCPRP. Since
MCPRP does not have a budget limit, it is only compared with DMD-MCPRP without the fixed
cost when the budget is 100%B . The best objectives of all p and all starting strategies of
DMD-MCPRP are compared with objectives of MCPRP returned by local search. Therefore,
there are a total of 32 pairs of comparisons for each weight scheme. We report the results of
weight (1, 1.1, 1.2) in Table 4.

To compare objectives, we report the improvements Obj of DMD-MCPRP−Obj of MCPRP
Obj of MCPRP ,

referred to as “Imp” in the last column of the table. The results confirm our intuition that
DMD-MCPRP outperforms MCPRP. The worst performance of DMD-MCPRP is a tie with
MCPRP in instance 7, in which both DMD-MCPRP and MCPRP cover all of the HSs. In contrast
to the best performance, the biggest improvement is as high as 9.7%, found in instance 3. The
improvement is attributed to the dynamic selection of a TS, with state troopers starting at a TS
closer to a HS than the central depot and stopping at a TS closer to a HS in the next period. In the
meantime, we report the average values of all reported items “Avg.” at the bottom of the table.
DMD-MCPRP, on average, has 3.1% more time coverage benefits than MCPRP. Even though this
percentage may seem low, in real terms, this translates to almost two extra hours of effective
coverage. Improvement at such scale helps state troopers increase their patrol effectiveness.

TW% performances of both MCPRPR and DMD-MCPRP are consistent with objectives, as they
have the same denominators. On average, DMD-MCPRP returns 88% and MCPRP returns 85%
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TW% coverage, thus DMD-MCPRP manages to stay effectively at a HS longer. With respect to
HS%, sometimes DMD-MCPRP is better than MCPRP; at other times MCPRP is better. On
average, DMD-MCPRP returns 90% and MCPRP returns 92% HS% coverage, thus MCPRP is
forced to switch more often from one HS to another due to reaching the latest time window.
Interestingly, in some instances TW% is 100%, but HS% is less than 100%, e.g. instances 7 and
8. The reason lies in the fact that there are some HSs whose time window length is 0. On average,
both performance measures are higher than 80%, which is quite satisfactory.
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Table 4: Comparison of performance measures between MCPRP and DMD-MCPRP.
MCPRP DMD-MCPRP

Inst Obj TW% HS% Obj TW% HS% Imp
1 1654 86% 88% 1699 89% 91% 2.7%
2 3379 91% 98% 3436 93% 97% 1.7%
3 1959 91% 100% 2148 100% 100% 9.7%
4 3774 94% 95% 3952 98% 98% 4.7%
5 2178 94% 100% 2272 98% 100% 4.3%
6 3581 97% 98% 3606 98% 98% 0.7%
7 1947 100% 97% 1947 100% 97% 0.0%
8 4299 99% 98% 4322 100% 98% 0.5%
9 1708 89% 94% 1751 91% 91% 2.5%

10 3516 82% 88% 3633 84% 91% 3.3%
11 1978 95% 97% 2018 97% 97% 2.0%
12 3843 95% 98% 3934 97% 95% 2.4%
13 2044 96% 100% 2101 99% 100% 2.8%
14 3910 94% 95% 4030 97% 98% 3.1%
15 2301 98% 100% 2349 100% 100% 2.1%
16 3847 98% 100% 3901 99% 100% 1.4%
17 2556 63% 73% 2591 64% 70% 1.4%
18 4628 59% 70% 4783 61% 66% 3.4%
19 2903 71% 88% 2969 72% 81% 2.3%
20 6547 83% 90% 6758 85% 91% 3.2%
21 3278 76% 92% 3366 78% 84% 2.7%
22 7018 81% 92% 7130 82% 91% 1.6%
23 4022 92% 97% 4049 93% 98% 0.7%
24 8336 90% 98% 8498 99% 91% 1.9%
25 2589 57% 61% 2727 60% 56% 5.3%
26 4685 58% 66% 4799 60% 64% 2.4%
27 3469 76% 91% 3645 80% 94% 5.1%
28 6822 76% 92% 7032 78% 86% 3.1%
29 2854 79% 91% 3119 87% 91% 9.3%
30 6445 74% 88% 6654 88% 76% 3.2%
31 3530 86% 98% 3721 90% 100% 5.4%
32 7393 90% 98% 7608 92% 99% 2.9%

Avg 3843 85% 92% 3955 88% 90% 3.1%
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Section 6
Conclusions

In conclusion, to improve the efficiency of state trooper patrols, we allow for dynamically
changing patrol routes and starting and stopping locations. For this purpose, we develop a new
dynamic, multi-depot, location-routing model, extending MCPRP in the literature. Gaining
insights from solutions of LRP, we decompose this problem into multi-depot MCPRP and facility
location, and then solve them in an iterative way with custom built heuristics. We test the model
and solution approach for the situations without and with a fixed cost of TS, and compare with the
LB of CPLEX. We also compare the time and HS coverage performances of this model with the
single depot MCPRP, and significant improvements are found in the objectives.

There are several possible extensions for future research. One possible extension is to include
dynamic travel times with real time traffic conditions. Another one, in addition to covering
predetermined HSs, is to consider on-call responses of state troopers.

21



Section 7
References

Albareda-Sambola, M., E. Fernandez, G. Laporte. 2007. Heuristic and lower bound for a
stochastic location-routing problem. European Journal of Operational Research 179(3)
940–955.
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