Understanding Biometric Technology

International Biometric Industry Association December 5, 2005

About IBIA

- Non-profit trade association based in Washington, D.C.
- Chartered under Section 501(c)(6) of the U.S. Tax Code
- Advances the collective interests of the biometrics industry
- Members include leading biometric manufacturers, integrators and solution providers

Biometric Overview

- What are Biometrics?
 - Biometrics are automated methods of recognizing a person based on a physiological or behavioral characteristics.
 - Examples of Biometric Types:

- Fingerprint

- Face

- Iris

- Hand

- Signature

- Retina

- Speech

- Keystroke

- Palm

- Veins

- DNA

- Skin

Benefits of biometrics

- Biometrics link an event to a particular individual not just to a to a password or token
- Convenient nothing to remember
- Can't be guessed, stolen, shared, lost, or forgotten
- Prevents impersonation
 - Protects against identity theft
 - Higher degree of non-repudiation
- Enhances privacy
 - Protects against unauthorized access to personal information
- Complementary with other authentication mechanisms
 - Smart cards
 - Public Key Infrastructure

Example Uses of Biometrics

- Commercial
 - Access to facilities and information systems
 - Employee timekeeping
 - Retail point-of-sale transactions
- Law enforcement
 - Investigations
 - Forensic analysis
- Civil systems
 - Border and immigration control
 - Entitlement benefit eligibility screening and verification

Biometric system components

- What do I need to make it work?
 - Capture device (sensor)
 - Fingerprint reader, video camera, etc.
 - Algorithms
 - Processing (feature extraction)
 - Matching
 - Repository
 - Place to store enrolled biometric templates (for later comparison)
 - Should be protected (secure area, signed/encrypted, etc.)

How do biometrics work?

Enrollment:

Three Basic Functions

- Enrollment
 - Adding biometric information to a data file
 - Can include screening for duplicates in database
- Verification (one-to-one)
 - Matching against a single record
 - Answers "Is this person who they claim to be?"
- Identification (one-to-many)
 - Matching against all records in the database
 - Answers "Do we have a record of this person?"

Sub-Functions Common to Most Biometrics

Capture

- Measure biometric characteristic using a sensing device
- Data may be a bitmapped image, audio stream, etc.
- A series of samples may be captured
- Sometimes includes a quality value

Process

- Converting the data into a numeric identifier (template)
- Generally involves "feature extraction", but can also include include other manipulations

Example

Minutiae Based Fingerprint Algorithm

Sub-Functions (cont'd)

Match

- Comparing a processed biometric template to a previously enrolled biometric template(s) to determine level of similarity
 - Many methods (types of algorithms) used
- Output of match process is a score
 - Probability of match (i.e., belonging to the same subject)

Decision

- Determination of match results
- Match results compared against a threshold score
 - Above threshold = Match
 - Below threshold = No-match

Accuracy

- Generally defined in terms of two parameters:
 - False Reject Rate (FRR):
 - Measures how often an authorized user, who should be granted access, is not recognized
 - FRR = Percentage of false rejections of the total number of of valid recognition attempts
 - Also called "False Non-Match Rate"
 - False Accept Rate (FAR):
 - Measures how often a non-authorized user, who should not not be granted access, is falsely recognized
 - FAR = Percentage of false acceptances of the total number number of imposter recognition attempts
 - Also called "False Match Rate"

Accuracy (cont'd)

- Equal Error Rate (EER):
 - Point where FRR = FAR
- FAR/FRR are inversely related

Score distribution

Additional Performance Consideration

- Failure to Enroll Rate (FTER)
 - Measures how often users are unable to enroll a biometric biometric characteristic
 - Physical characteristic of user prevents creation of template template
 - Characteristic not present or obscured
 - User is not capable or willing to present biometric properly
- FTER = Percentage of failures to enroll of the total number of enrollment attempts

What Makes a Good Biometric?

- Unique
- Permanent
- Easy to use
- Fast
- Accurate
- Low cost
- Positive public perception

Biometric

Fingerprints

- Measures characteristics associated with the friction ridge ridge pattern on the fingertip
- One of the oldest and most widely used biometrics
- Capture techniques
 - Flat scan or swipe across
 - Rolled ("ten print")
 - Slap (four flat fingers at a time)
- Sensor types
 - Optical
 - Silicon
 - Ultrasonic

Fingerprints (cont'd)

- Two general algorithm categories
 - Minutiae based
 - Maps the points where individual ridges start/stop or branch (bifurcate)
 - Image/pattern based
 - Aligns and "overlays" images to determine similarity
- Other measurements
 - Pattern type
 - Ridge counts
 - Distance between ridges
 - Core
 - Pores

Fingerprints (cont'd)

Features

- Long time use proven
- High accuracy
- General ease and speed of use use
- Supports both 1:1 verification and 1:N identification applications
- Numerous vendor selections

Considerations

- Small % of population have poor prints due to injury, age, disease, or occupation
- Requires physical contact with with sensor
- Historical association with law law enforcement

Facial recognition

- Analyzes geometry of the face or the relative distances between features (e.g., nose and mouth)
 - Can combine geometry features with skin texture
- Algorithm categories
 - Local feature analysis
 - Eigenfaces
 - Neural networks
 - Surface texture analysis (skin)
- Capture methods
 - Still camera
 - Video
 - Thermal imaging

Facial recognition (cont'd)

Features

- Can use standard video cameras cameras
- No physical contact required
- Supports both 1:1 verification and and 1:N identification applications applications
- Can be used with previously compiled photo databases
- Can be fused with skin biometrics biometrics to enhance accuracy

Considerations

- Can be affected by lighting
- Sometimes affected by eyeglasses, facial hair, or expression
- Appearance can change over time

Iris recognition

- Measures features associated with the random texture of the the colored part of the eye
- Measures up to 266 unique features
- Uses near infrared sensor from a distance of 6 in. to 2 ft.
- Popular for facility access and transportation/border security

Iris recognition (cont'd)

Features

- Highly accurate
- Very stable over lifetime
- Works through glasses and contacts
- No physical contact required
- Not affected by common eye surgeries
- Supports both 1:1 verification and 1:N identification applications

Considerations

- Can be affected by some eye eye diseases (cataracts)
- Often confused with more invasive retinal scanning

Hand geometry

- Measures dimensions of hand, including shape and length of fingers
- Used extensively for physical access control
 - High-traffic doors
 - All U.S. nuclear power plants
 - DoD
 - Airports
- Widely used for employee timekeeping
- Hand reader configuration
 - Typically lay hand flat
 - Pegs guide placement
 - Camera positioned above and to side

Access Control Terminal

Hand geometry (cont'd)

- Features
 - Easy to use, fast
 - High public acceptance
 - Very low Failure to Enroll Rate
 - Proven over many years of use
 - Primary applications are physical access and time/attendance
 - Very small, adaptive template
 - Fits on any card media
 - Works well in outdoor environments
 - Rugged

- Considerations
 - Best used in 1:1 contexts

Speech verification

- Compares live speech with previously created speech model of of person's voice
- Measures pitch, cadence and tone to create voice print
- Uniqueness based on vocal tract differences
 - Length, shape of mouth, nasal cavities, etc.
- Can be text dependent or independent
- Behavioral & physiological biometric
- Not speech recognition

Speech verification (cont'd)

Features

- Can use standard microphone or telephone handset
- Can use existing audio channels, such as telephone lines
- Can be combined with challenge/response techniques
- Algorithms typically language independent

Considerations

- Background noise can interfere
- Can be affected by illness or stress
- Best when using similar instruments for enrollment and verification
- Best used in 1:1 contexts

Dynamic signature verification

- Measures characteristics of handwritten signatures
 - Shape, speed, pressure, pen angle, sequence, etc.
- Devices:
 - Signature or graphics tablets
 - Special pens
- Behavioral biometric
- Intended for point-of-sale applications

Dynamic Signature Verification (cont'd)

Features

- Works in conjunction with familiar signing process
- Can be used with devices that have built-in graphics components - PDAs, PDAs, etc.

Considerations

- Can be affected by behavioral factors (stress, distractions, standing/sitting) standing/sitting)
- Periodic update (adaptation)
 of templates may be
 necessary due to changes
 over time
- Best used in 1:1 contexts

Retinal scanning

- Measures the blood vessel patterns at the back of the eye
- Light source is shone through the pupil to illuminate the retina retina
- Generally used for high-end security applications, primarily for for physical access control
- First commercial system available in 1984
- Not iris recognition

Retinal scanning (cont'd)

- Features
 - High accuracy/stability
 - Clear contacts usually not a problem
 - Supports both 1:1 verification and 1:N1:N identification applications

- Considerations
 - Generally considered intrusive; uncomfortable user interface
 - Requires removal of eyeglasses
 - Capture can take 10-15 seconds
 - Not commercially marketed

Keystroke dynamics

- Also known as "typing rhythm" or "typing pattern"
- Analyzes the way a person interacts with a computer keyboard keyboard
- Measures variables such as key depression time (duration), latency between keystrokes, inter-keystroke times, typing error error frequency, force keystrokes, etc.
- Generally used in conjunction with passwords/pass-phrases
- Behavioral biometric

Keystroke dynamics (cont'd)

Features

- No special capture device required (low cost)
- Leverages existing infrastructure (hardware and process)
- Text dependent
- Can be transparent to the user
- Pass phrase text can be changed

Considerations

- Not suitable for non-touch typists typists (too inconsistent)
- Pass phrase should be at least 88 characters long
- Periodic update (adaptation) of templates may be necessary due due to changes over time
- Enrollment process somewhat lengthy (15 captures)
- Affected by "typos" and changes changes in typing patterns

DNA

- Deoxyribonucleic acid is the hereditary material in humans and almost all other organisms
- Chemical found in the nucleus of all cells
- Persistent throughout life and beyond
- Used primarily in criminal forensic investigations and in resolving questions of paternity/heredity
- Identification application uses consistent portion of DNA strand for measurement (CODIS system)
- DNA can be stored in a database

DNA (cont'd)

- Features
 - Highly accurate (one person in 6 billion billion accuracy)
 - Persistent (never changes)
 - Accepted by global justice system
 - Capable of 1:1 verification and 1:N identification applications

- Considerations
 - Requires collection of a DNA sample
 - Not instantaneous currently takes 12 hours for match result result
 - Research being done to develop "instant" DNA
 - Identical twins share the same same DNA

Biometrics and Smart Cards

- Complementary technologies
- Smart card provides portable and personalized secure storage
 - Local security agent of the issuer
 - Ensures a strong chain of trust for the biometric credential

Multi-factor authentication

Source: Smart Card Alliance

December 5, 2005

Biometric Standards

- Biometric interoperability standards do exist and are evolving evolving
 - Application interface
 - Biometric data interchange formats
 - Application profiles (e.g., border security)
- Largely driven by government and industry working in partnership through accredited standards organizations
- Essential for industry growth and widespread adoption

The Future of Biometrics

- Smaller, cheaper, faster, more accurate
- Fusion of multiple biometrics (e.g., face and skin)
- Combination of biometrics with other authentication mechanisms
 - Smart cards and Public Key Infrastructure (PKI)
- Governments are sponsoring widespread adoption
- Public awareness and acceptance is growing
 - Technology will affect a growing percentage of the population population
- Existing standards being expanded and adopted
- Industry focus on privacy and securing biometric data
 - Biometric data protection
 - Device anti-spoofing

For More Information about IBIA

International Biometric Industry Association

The Homer Building
601 Thirteenth Street N.W.
Suite 370 South
Washington, D.C. 20005

Phone (202) 783-7272 Fax (202) 783-4345 www.ibia.org ibia@ibia.org

