About PCMDI

CMIP3

CMIP5

Other CMIPs

CAPT

Software

Publications

Calendar


Site Map

UCRL-WEB-152471

Privacy & Legal Notice

Thanks to Our Sponsors:

PCMDI > WCRP CMIP3 Model Output > Diagnostic Subprojects Printer Friendly Version
 
<< Back to WCRP CMIP3 Subproject Publications

  • Wang, G.L., 2005: Agricultural drought in a future climate: results from 15 GCMs participating in the IPCC AR4. Climate Dynamics, 25, 739-753, 10.1007/s00382-005-0057-9.

This study examines the impact of greenhouse gas warming on soil moisture based on predictions of fifteen global climate models by comparing the after-stabilization climate in the SRESA1b experiment with the pre-industrial control climate. The models are consistent in predicting summer dryness and winter wetness in only part of the northern middle and high latitudes. Slightly over half of the models predict year-round wetness in central Eurasia and/or year-round dryness in Siberia and mid-latitude Northeast Asia. One explanation is offered that relates such lack of seasonality to the carry-over effect of soil moisture storage from season to season. In the tropics and subtropics, a decrease of soil moisture is the dominant response. The models are especially consistent in predicting drier soil over the US Southwest, the Mediterranean, Australia, and the South Africa in all seasons, and over much of the Amazon and West Africa in the JJA season and the Asian monsoon region in the DJF season. Since the only major areas of future wetness predicted with a high level of model consistency are part of the northern middle and high latitudes during the non-growing season, it is suggested that greenhouse gas warming will cause a worldwide agricultural drought. Over regions where there are considerable consistency among the analyzed models in predicting the sign of soil moisture changes, there is a wide range of magnitudes of the soil moisture response, indicating a high degree of model dependency in terrestrial hydrological sensitivity. A major part of the inter-model differences in the sensitivity of soil moisture response are attributable to differences in land surface parameterization.


Last Updated: 2006-03-30

<< Back to WCRP CMIP3 Subproject Publications
 
For questions or comments regarding this website, please contact the Webmaster.
 
Lawrence Livermore National Laboratory  |  Physical & Life Sciences Directorate