

APRF/AVTA Idle Stop Vehicle Testing

Downloadable Dynamometer Database August 18th, 2011

Henning Lohse-Busch, Mike Duoba, Eric Rask, Dan Bocci, Mike Kern Argonne National Laboratory

Sponsored by Lee Slezak

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

- SAE Idle stop definition
- 3 different approaches to the idle stop technology
 - Smart MDH (automatic)
 - Operation
 - Idle stop enable and disabled comparison
 - Mazda 3 iStop (manual)
 - Golf TDI Bluemotion (manual)
- Vehicle to Vehicle comparison
 - Vehicle technology comparison
 - Benefits of idle stop technology
 - Comparison of benefits between US cycles and European cycles
 - Impact for Air Conditioning

Categorizing Electrified Vehicles

SAE/ANL proposed vehicle terminology map for SAE J1715

Note: Manual Transmission Vehicle Shift schedules for Dynamometers

- Most cars in the US use automatic transmission, thus for most APRF test vehicles the shifting is 'taken care of', except for manual transmission powertrains
- We developed our own shift schedule using the shift indicator light
 - Mazda 3 i-Stop
 - Golf TDI
- Smart MHD uses an automated manual which does not require a shift schedule

Smart MHD (Micro Hybrid Drive) Benchmark goals

- FY2011 Level 1 Benchmark Test Vehicle
- Part of the AVTA program
- Part of the vehicle idle stop study

Smart MHD		
Vehicle architecture	Idle Stop Vehicle	
Curb weight	750 kg (1650 lb)	
Power plant	Gasoline 1.0 liter 3 cyl 52 kW @ 5800 rpm 92 N.m @ 4500 rpm 5 speed automatic	
Performance (0- 62 mph)	13.3 s	
Battery	Standard 12V battery	
Fuel economy	55 / 70 mpg NEDC (C/H)	
Idle stop features	Engine start-stop function: BAS Valeo system using the 12V battery	
Additional fuel efficiency factors	Small and light vehicle 2 seat vehicle Engine ON trigger: Brakes	

Smart MHD - Operation

Operation

- Engine OFF
- Below 5 mph
- Engine warmed up
- Engine ON
 - Foot off brakes
 - AC ON may turn engine ON based on cabin temperature
- Idle stop disable switch

Smart MHD - Idle stop enabled vs. disabled

Mazda 3 i-Stop Benchmark goals

- FY2011 Level 1 Benchmark Test Vehicle
- Part of the AVTA program
- Part of the vehicle idle stop study

Smart MHD		
Vehicle architecture	Idle Stop Vehicle	
Test mass	1475 kg (3250 lb)	
Power plant	Gasoline 2.0 liter 4 cyl DI (11.2:1) 111 kW @ 6200 rpm 191 N.m @ 4500 rpm 6 speed manual	
Performance (0- 62 mph)	10.4 s	
Battery	Secondary 12V power battery for engine start	
Fuel economy	25 / 44 mpg NEDC (C/H)	
Idle stop features	Engine start-stop function: engine assisted combustion start with 12V starter (0.35 sec to start compared to 0.7 sec)	
Additional fuel efficiency factors	Engine ON trigger: Clutch pedal	

Mazda 3 operation

Mazda 3 i-stop - Idle stop enabled vs. disabled

- The idle stop function decreases fuel consumption but for this vehicle the emissions are not increased
- The combustion assisted engine start process (controlled engine stop position and igniting start sequence) help provide a clean engine start

Eco:	<u>ON</u>	OFF
FE [MPG]	27.3	26.5
THC [mg/mi]	9.6	10.6
NOx [mg/mi]	16.8	16.4

Golf TDI Bluemotion Benchmark goals

- FY2011 Level 1 Benchmark Test Vehicle
- Part of the AVTA program
- Part of the vehicle idle stop study

Smart MHD		
Vehicle architecture	Idle Stop Vehicle	
Test mass	1645 kg (3625 lb)	
Power plant	Diesel 2.0 liter 4 cyl TDI (11.2:1) 103 kW @ 4200 rpm 236 N.m @ 1750 rpm 6 speed manual	
Performance (0- 62 mph)	9.3 s	
Battery	Standard 12V battery	
Fuel economy	44 / 62mpg NEDC (C/H)	
Idle stop features	Engine start-stop function	
Additional fuel efficiency factors	Engine ON trigger: Clutch pedal Aero tweaks Tall final drive	

Golf TDI Bluemotion - Operation

Operation

- Engine OFF
- Almost a complete stop required
- No engine warm up required from 23 C
- Engine ON
- Push clutch pedal in
- AC ON may turn engine ON based on cabin temp
- Idle stop disable switch

Golf TDI Bluemotion - Idle stop enabled vs. disabled

- The idle stop function decreases fuel consumption while decreasing emissions
- For this diesel the emissions always increase during the drive cycle independent of engine and exhaust operating temperature

Eco:	<u>ON</u>	OFF
FE [MPG]	41.7	40.6
THC [mg/mi]	25.4	31.3
NOx [mg/mi]	1034	1104

Overview

- SAE Idle stop definition
- 3 different approaches to the idle stop technology
 - Smart MDH (automatic)
 - Operation
 - Idle stop enable and disabled comparison
 - Mazda 3 iStop (manual)
 - Golf TDI Bluemotion (manual)
- Vehicle to Vehicle comparison
 - Vehicle technology comparison
 - Benefits of idle stop technology
 - Comparison of benefits between US cycles and European cycles
 - Impact for Air Conditioning

Comparison of final drive ratios

The higher the final drive the higher the average engine efficiency due to lower engine speed and higher torque

Steady State Speed Fuel Consumption

Fuel Consumption Improvement as a Function of Vehicle Stop Time for Different Cycles

- Start stop technology can provide a significant improvement in fuel consumption for a vehicle in city type driving with vehicle stop periods of over 20%.
- For those vehicle the idle stop technology can be a cost effective alternative to HEVs to improve fuel efficiency

Idle Stop Vehicle Benefits in US and Europe

Impact of Air Conditioning on Fuel Consumption

 The impact of Air Conditioning far outweighs the idle stop fuel savings

Idle stop vehicle summary

- Start stop technology can provide a significant improvement in fuel consumption for a vehicle in city type driving with vehicle stop periods of over 20%
- Tailpipe emissions may suffer from the idle stop technology
- The impact of Air Conditioning outweighs the idle stop fuel savings

