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Polarized Radiative Transfer for Zeeman-Split
Oxygen Lines in the EOS MLS Forward Model

Michael J. Schwartz, William G. Read, W. Van Snyder

Abstract— The EOS MLS clear-sky unpolarized forward
model [1] is supplemented by algorithms for the modeling of
polarized emission from Zeeman-split spectral lines. This model
accounts for polarization-dependent emission and correlation
between polarizations with complex, 2x2 intensity and absorption
matrices.
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I. INTRODUCTION

The EOS Microwave Limb Sounder (MLS) instrument [2],
one of four instruments on the Aura spacecraft launched on 15
July 2004, measures thermal millimeter-wave emission from
the Earth’s limb. Atmospheric composition and temperature
from roughly 8 km to 96 km are inferred from these mea-
surements. At the highest-altitude pointings of the MLS limb
scan, the primary source of temperature information is the line
center of the 118-GHz oxygen line, which is opaque up into
the lower thermosphere when viewed through the limb. This
line is Zeeman-split into three components by the coupling of
oxygen’s electronic spin with the geomagnetic field. Doppler-
broadened Zeeman components in the mesosphere and lower
thermosphere are resolved by two MLS 100-kHz-resolution
digital autocorrelator spectrometers (DACS) with orthogonal
linear polarizations.

Absorption and emission in a given direction by the resolved
Zeeman components depends upon the relative orientations of
the geomagnetic field, the direction of radiation propagation
and its polarization. The magnetic susceptibility has off-
diagonal elements that mix polarizations as the wave propa-
gates, so that the equations of radiative transfer for orthogonal
polarizations are coupled. Lenoir [3][4] developed methods of
doing radiative transfer calculations with 2x2 coherence matrix
tensors, and applied this theory to the case of Zeeman-split
microwave oxygen lines. Further relevant work has been done
by Rosenkranz and Staelin [5] and Stogryn [6].

II. SPECTROSCOPY

The electronic ground state of diatomic oxygen (O2) is a
triplet state (electronic spin quantum number s = 1); the spin
has an associated magnetic dipole moment, µ = gssh̄, where
gs = −2.0023 µB/h̄ is the electron gyro-magnetic ratio and µB

is the Bohr magneton. Oxygen’s microwave spectrum consists
of magnetic dipole transitions that reorient this spin relative
to the molecule’s end-over-end rotation (quantum number N ).
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Fig. 1. The 1− line has three Zeeman components. This figure is not to
scale as all three transitions are approximately 118751 MHz, while the Zeeman
splitting in typical geomagnetic fields is only of order 1 MHz.

The 118-GHz oxygen line is a transition between two states
that are both approximately N = 1. (N is actually not
a “good” quantum number as stationary states have small
admixtures of different N ’s, but the predominant value is
a useful label.) The upper state of the 118-GHz line has
total angular momentum J = 1, and the lower has J = 0.
Transitions are labeled N+ when J=N −→ J=N+1 and N−

when J=N → J=N−1, so the 118-GHz line is 1−. The upper
state has three possible projections (quantum number m) of J
on the direction of an externally applied magnetic field, and the
associated time-averaged projection of µ on the external field
results in Zeeman splitting of the line, as shown schematically
in Fig. 1. The magnitude of the energy shift of a given state
is mgµBBgeo, where g is from the JPL line database [7] and
Bgeo is the magnitude of the geomagnetic field, Bgeo. For the
upper state of the 1− line, g = 1.0011, the same value that
one obtains from a simple, Hund’s case b vector model [8].
The splitting of the upper state is ±1.4012 MHz per gauss of
applied field, less than ±1 MHz in typical geomagnetic fields.

III. TENSOR MAGNETIC SUSCEPTIBILITY

Dispersion and absorption by magnetic dipole lines are
governed by the real and imaginary parts of the magnetic
susceptibility, χ. In the scalar case, the wave equation for H ,

∂2H

∂z2
H(ω, z) + k2

0 [1 + χ(ω)]H = 0 (1)

has independent solutions for each transverse mode

H = H0e
ı(k0(1+

χ(ω)
2 )z−ωt). (2)

Resolved Zeeman components have a 3x3, rank-2 tensor
magnetic susceptibility, χ(3),
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B = (1 + 4πχ(3))H , (3)

that couples the two radiation modes.
Magnetic dipole transitions can change the magnetic quan-

tum number, m, by +1, 0 or −1; these types of transitions are
called σ+, π, and σ− respectively. The three eigenvectors of
the tensor magnetic susceptibility, χ(3), link three radiation
polarizations to these three allowed values of ∆m. The fac-
toring of a common angular dependence for all lines in each
of σ+, π, and σ− is a manifestation of the Wigner-Eckart
theorem [3].

Linearly-polarized radiation with its ĤRF vector along the
imposed field direction couples only to π transitions while
right and left-circular polarizations propagating along the ex-
ternal field couple only to σ+ and σ− transitions, respectively.
Knowing these eigen polarizations, we can write the angular
dependence of χ(3) in a right-hand, Cartesian basis where the
third dimension is the direction of the externally applied field.

χ(3) =





(χ+ + χ−)/2 −ı(χ+ − χ−)/2 0
ı(χ+ − χ−)/2 (χ+ + χ−)/2 0

0 0 χ0



 . (4)

Here, χ+, χ− andχ0 are the eigenvalues of χ(3).
Now we rotate χ(3) (a rank-2 tensor rotates with a pair of

3x3 rotation matrices) so that ẑ is the direction of propagation
of a plane wave and x̂ and ŷ are its linear (defined by ÊRF)
polarization basis. The rotation angles, θ and φ, are defined in
Fig. 2.

If the magnetic-dipole coupling is weak (χij � 1) waves
propagating through the medium will be approximately trans-
verse [3] and the ẑ dimension may be dropped from the
radiation field equations. As ĤRF is confined to the x−y plane,
there is no need for z-components of χ(3) and we project it
into the two transverse dimensions.

χ = χ+ρ+ + χ0ρ0 + χ−ρ− , (5)

where

ρ± = Rφ

[

1 ∓ı cos θ
±ı cos θ cos2θ

]

R
†
φ , (6)

ρ0 = Rφ

[

0 0
0 sin2 θ

]

R
†
φ , (7)

and

Rφ =

[

cosφ sinφ
− sin φ cosφ

]

. (8)

The coefficients χ+, χ− andχ0 are complex scalars, sums of
the lineshapes of all lines of a given ∆m, while the ρ contain
the matrix nature of the polarized radiative transfer equation.
A more detailed and pedagogical presentation of the origins of
the polarized radiative transfer equations may be found in [9].

IV. POLARIZED RADIATIVE TRANSFER

The polarized radiative transfer expressions give the evolu-
tion of an intensity matrix, I , as radiation propagates through

θ

φ

z

y

x

Bgeo

Fig. 2. Angles θ and φ define the orientation or the geomagnetic field Bgeo
relative to the x and y linear polarization basis for a wave propagating in the
z direction.
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Fig. 3. This indexing scheme labels layer boundaries along a limb path.

the atmosphere. The form of I that we use in this paper is
Lenoir’s definition [3], and has elements,

I =

[

I‖ I| + ıI◦
I| − ıI◦ I⊥

]

, (9)

where I‖ and I⊥ are radiated power (scalar brightness tem-
peratures) in linear polarizations respectively parallel and
perpendicular to some reference direction, such as the linear
polarization direction of an antenna. I◦ and I| are their circular
and linear coherences.

We adopt the limb-path layer indexing scheme of the
unpolarized algorithm [1], in which the first layer boundary is
the top of the atmosphere closest to the observer, the tangent
point is doubly-labeled t and 2N − t + 1, and the top of the
atmosphere beyond the tangent point is 2N . This indexing
is shown in Fig. 3. Double-indexing of the tangent point
facilitates insertion of a surface term when rays intersect the
earth’s surface.

An expression for polarized radiation emerging from the
top of the atmosphere closest to the observer may be cast in
a differential-temperature form identical to that used in the
unpolarized model [1],

I =
t
∑

i=1

T i ∆Bi +
2N
∑

i=2N−t+1

T i ∆Bi . (10)

The differential temperature, ∆Bi, is a function of Bi,
the scalar Planck source function for thermal radiation in
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equilibrium at layer-boundary temperature, Ti,

Bi =
hν

k(exp{ hν
kTi

} − 1)
. (11)

∆Bi =
Bi+1 − Bi−1

2
,

with special cases

∆B1 =
B1 + B2

2
,

∆B2N = B(Tcosmic) −
B2N + B2N−1

2
,

and to handle the jump at the tangent point,

∆Bt =
Bt − Bt−1

2
,

∆B2N−t+1 =
B2N−t+2 − Bt

2
. (12)

Radiances are in Kelvin, so the leading factor in (11) is hν/k
rather than 2hν3/c2.

T i is the power transmittance tensor from the ith layer
boundary to the top of the atmosphere. It the product of a pair
of field transmittances, P i,

T i = P i P
†
i . (13)

P i is constructed of field layer transmittances, Ei, using the
recursion relation,

P 1 = 1 ,

P i = P i−1 Ei ,

with a special case for the transmittance between the two
instances of the tangent point,

P 2N−t+1 = P t Υf . (14)

For rays that intersect the geoid, Υf is the field surface reflec-
tivity matrix, the square root of the power surface reflectivity
of [1]. Otherwise, Υf is unity. Field layer transmittances Ei

are defined in terms of field incremental opacities,∆δk
i→i−1

E 1 = 1 ,

E i = exp

{

−
species
∑

k

∆δk
i→i−1

}

. (15)

T i is manifestly Hermitian, and may be thought of as
a sandwich of Ei and E

†
i matrices with the earliest times

(largest indices) in the middle. Order is important as the E i

matrices generally do not commute with one another.
The incremental opacity integral due to polarized O2 lines

is

∆δO2

i→i−1 =

∫ si−1

si

ık0

2
χ ds (16)

=
∆srefr

i→i−1

∆si→i−1

+1
∑

∆m=−1

ρ
∆m

(θ, φ) ξ
m,∆m

×
∫ ζi−1

ζi

f
O2(ζ) βO2

∆m (ζ), ν)
ds

dh

dh

dζ
dζ ,

TABLE I

ZEEMAN FRACTIONAL INTENSITIES, ξ(m,∆m)

∆m N+ N− 1−

σ+ +1 3(N+m+1)(N+m+2)
4(N+1)(2N+1)(2N+3)

3(N−m)(N−m−1)
4N(2N+1)(2N−1)

1
2

π 0 3[(N+1)2−m
2]

(N+1)(2N+1)(2N+3)
3(N2

−m
2)

N(2n+1)(2N−1)
1

σ− -1 3(N−m+1)(N−m+2)
4(N+1)(2N+1)(2N+3)

3(N+m)(N+m−1)
4N(2N+1)(2N−1)

1
2

where ξ
m,∆m

is from Table I, f
O2(ζ, φ(ζ)) is the O2 mixing

ratio on its species representation basis. Here, we are chain-
ruling from pathlength s to height h to negative-log-pressure,
ζ. Expressions for ds

dh
and dh

dζ
are as in [1, Eqn. 48]

As is discussed in Section III, the ρ terms are purely
functions of the orientation of the propagation direction with
respect to the geomagnetic field. They contain all of the
angular dependence and all of the 2x2 tensor-nature of the
expression. These terms are common for all lines with the
same ∆M , though in the case of the 118-GHz line, there is
only one Zeeman component for each ∆M . All of the other
terms in (16) are scalars.

For species that are isotropic absorbers, (i.e. k 6= O2), the
field incremental opacity matrix is half of the scalar power
incremental opacity of [1] times the identity matrix.

∆δk
i→i−1 =

1

2
∆δk

i→i−1 1 . (17)

Polarized power transmittance, T , is formed from products of
pairs of field transmittances, which depend exponentially upon
the cross-sections. The two half-power cross-sections add so
that each of the diagonal elements correctly gives the scalar
result for unpolarized radiation. We can restrict the lineshapes
for unpolarized species to their real (absorptive) parts; when
all of the ρ matrices are multiplied by the same complex
coefficient, they add to a multiple of the identity matrix and the
imaginary parts of the coefficients cancel in the construction
of T .

A. Cross-Section β

For oxygen Zeeman components, field cross-sections, β,
have the same form as the power cross-sections of the scalar
model, but in addition to the factor of one half, they require
complex lineshapes, and line center positions are Zeeman
shifted by the geomagnetic field. Following the notation of [?],
the field cross-section βk is

βk =
1

2
Rk

√

ln 2

π

10−13

kTwk
d

P
∑

j

10S
k
j F
(

xk
j , yk

j

)

, (18)

where

Sj = Ij (T0) + log

[

Qk(T0)

Qk(T )

]

+
hc

k
E

′′k

j

(

1

T0
− 1

T

)

+ log

[

tanh

(

hν

2kT

)]

+ log

[

1 + exp {−hνj/kT}
1 − exp {−hν0j/kT0}

]

.
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• the index k is the species label (k=O2)
• the subscript j identifies the individual lines of the

molecule.
• Fj is the complex lineshape function,
• Rk is the isotopic fraction,
• T is temperature in Kelvins,
• T0=300 K,
• P is pressure in hPa,
• Ij (T0) is the logarithm of the integrated intensity in

nm2 MHz at T0,
• νpj is the pressure-shifted (but not Doppler-shifted) line

center frequency in MHz,
• ν0j is the unshifted line frequency, as it appears in the

JPL Catalog.

• E
′′k

j is the lower-state energy for the jth transition in
cm−1,

• Qk(T0) is the partition function at T0,
• Qk(T ) is a log-linear interpolation of tabulated partition

function values,

• wd = 3.58117369× 10−7ν
√

T
M is the Doppler width,

• M is the absorber molecular mass,

B. Lineshape

The lineshape that we use for each of the Zeeman com-
ponents is the Fadeeva function, or complex error function,
modified to include line interference. The Fadeeva function is
the convolution of a Gaussian thermal Doppler lineshape with
a Lorentzian collisional lineshape. It has a simple form,

F(z) =
ı

π

∫ ∞

−∞

e−t2

z − t
dt

for complex z, or

F(x + ıy) =
1

π

∫ ∞

−∞

e−t2
(

y

(x − t)2 + y2

+
ı(x − t)

(x − t)2 + y2

)

dt

= U(x, y) + ıV(x, y) . (19)

The real part of the Fadeeva function, U(x, y), is the Voigt
function.

Terms involving line mixing coefficients, Y , are included to
model the first-order effects of interference with the lines of
the 60-GHz band [10]. The contribution of these terms is negli-
gible for the pressures where Zeeman-splitting is resolved, but
they are included so that this model will merge smoothly with
the unpolarized model at high pressures. The same mixing
coefficient that is tabulated for the unpolarized case [1] is used
for each Zeeman component. Line interference can occur only
between Zeeman components of the same ∆m, so there is no
interference among the Zeeman components of the 118-GHz
oxygen line.

The expression that we use for the lineshape, including

interference, is

F (xj , yj) =
1

π

ν

ν0j

∫ ∞

−∞

e−t2

(

yj − Yj(xj − t)

(xj − t)2 + y2
j

(20)

+
ı(yjYj + xj − t)

(xj − t)2 + y2
j

)

dt

=
ν

ν0j

(1 + ıYj)F(xj + ıyj), (21)

where

xj =

√
ln 2

(

ν − νk
j − ∆νj,m,∆m

)

wk
d

,

yj =

√
ln 2 wcjP

wk
d

(

T0

T

)nk
cj

,

Yj = P

[

δk
j

(

T0

T

)nk
δj

+ γk
j

(

T0

T

)nk
γj

]

,

wk
d =

√

2 ln 2 kB/c

√

T

Mk
ν,

and the line center frequency is shifted according to

νk
j =

[

νk
0j + ∆νk

0jP

(

T0

T

)nk
∆ν0j

]

(

1 +
vlos

c

)

. (22)

Line parameters, which are tabulated in the scalar forward
model algorithm description [11]; these include unshifted
line center frequency, ν0j , [7] collisional linewidth parameter,
wk

cj , collisional linewidth temperature dependence exponent,
nk

cj , line pressure shift parameter, ∆νk
0j line pressure shift

temperature dependence exponent, nk
∆ν0j

and line interference
parameters, δk

j , nk
δj

, γk
j , nk

γj
.

A line pressure shift, ∆νk
0j = −0.14 MHz/hPa, [12] was

used in the initial version of software, but radiance residuals of
retrievals using MLS band 1 (a 25-channel filterbank centered
on the 118-GHz O2 line) show a pressure-shift-like residual
consistent with a shift of nearly this magnitude, but of opposite
sign. Laboratory measurements [13] indicate a shift magnitude
of less than 0.1 MHz/hPa. The current version (v01.51) of the
Level 2 software uses ∆νk

0j = 0.
The line-of-sight velocity, vlos, due to spacecraft motion,

Earth rotation, and wind results in a Doppler shift of all
Zeeman components that may be considered constant across
the bandwidth of interest. This velocity is considered positive
if the observer and atmosphere are moving toward one another.

The Zeeman frequency shifts are

∆ν
J,m,∆m

= (mu/Jugu − ml/Jlgl)Bgeo , (23)

where g values for the upper and lower states are from the
JPL database. For the 118-GHz line, the shifts are

∆ν
σ+

= κBgeo (24)

∆ν
σ−

= −κBgeo

∆ν
π

= 0

where κ=1.4012 MHz/gauss.
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The leading ν
ν0j

, which gives agreement with the Debye
non-resonant shape at low frequencies, is nearly constant
over the Doppler width and taking it outside of the integral
introduces negligible error.

The cross section is summed over all of the lines that
contribute significantly. The zj dependence of the lineshape
in [1, Eqn. 30] explicitly includes the absorptive part of the
negative-frequency resonance of each line. These terms give
the absorption due to the far wing of the emission line at −ν0j ,
but are neglected here.

V. GEOMAGNETIC FIELD MODEL

The geomagnetic field, Bgeo, is provided by the International
Geomagnetic Reference Field (IGRF) model [14][15], an
empirical representation of the Earth’s core magnetic field rec-
ommended for scientific use by the International Association
of Geomagnetism and Aeronomy (IAGA). In the absence of
magnetic storms and outside of the auroral belts, we estimate
that field variation at the altitudes below 120 km may be on
the order of 5 percent, but there is significant uncertainty in
this value.

Profiles of IGRF in the Earth centered rotating (ECR)
frame are included in the Level 2 state vector. They are
interpolated, as needed, to positions along the integration path
and rotated to the instrument field of view polarized pointing
(IFOVPP) coordinate system. The IFOVPP is defined such that
the instrument boresight is in the −ẑ direction and receives
polarized radiation with Poynting vector in the ẑ direction,
whose electric field is in the x̂ direction, and whose magnetic
field is in the ŷ direction.

The EOSDIS Science Data Production (SDP) Toolkit [16],
provides ECR-to-ECI and ECI-to-Spacecraft rotations, and the
EOS MLS Calibration Report [17] includes the transformation
from spacecraft coordinates to the field of view of each of
the radiometers. The FOV defined in [18], has its +ẑ along
the antenna boresight and x̂ in the direction of the magnetic
field vector, so this frame of reference may be transformed
to IFOVPP by ẑ → −ẑ, x̂ → ŷ, ŷ → x̂. The R1B antenna
polarization is almost exactly orthogonal to that of the R1A
antenna and the antennas are nearly co-aligned, so calculated
R1B radiances on the pointing grid (before frequency and
spatial convolution) are the cross-polarization of the R1A
calculation.

ECR-to-IFOVPP rotation matrices are provided for each
minor-frame integration (MIF), for the polarization and point-
ing of the central axis of the R1A antenna at the middle
of each integration. These matrices are required to transform
geomagnetic field into the frame in which radiative transfer
calculations are performed. However, the radiative transfer
calculations are actually done on a uniform pointing grid
and then convolved with the antenna pattern to give MIF-
modeled radiances. We need ECR-to-IFOVPP, not for the MIF
pointings, but on the forward model pointing grid. Rather
than interpolate (and extrapolate) the rotation matrices from
the MIF grid to the radiative transfer pointing grid, we use
the rotation matrix from the closest MIF. Pointings in the
radiative transfer grid that have higher tangent points than that

of the highest tangent-point MIF center all use the rotation
matrix from the highest MIF. Errors introduced should be
small compared to those from other sources of uncertainty
in the magnetic field.

VI. DERIVATIVES

A. General Form of Polarized Derivatives

The equation of polarized radiative transfer, (10), may be
differentiated with respect to a state vector element, x, to give
the derivatives required by retrievals. As always, care must
be taken in the tensor case to preserve matrix order. In the
following expressions, we do not explicitly show the break in
indexing at the tangent point.

∂I(x)

∂x
=

∂

∂x

2N
∑

i=1

T i ∆Bi

=
2N
∑

i=1

∂T i

∂x
∆Bi + T i

∂∆Bi

∂x
(25)

The derivative of T i may be built up, for successive layers,
by differentiating the recurrence relation, P i = P i−1Ei−1.

∂P i

∂x
=

∂P i−1

∂x
Ei−1 + P i−1

∂Ei−1

∂x
(26)

with

∂T i

∂x
=

∂P i

∂x
P

†
i +

(

∂P i

∂x
P

†
i

)†

. (27)

B. Mixing Ratio Derivatives

Mixing ratio coefficients are fk
lmn where k refers to the

species, l is vertical coordinate (ζ), m is horizontal coordinate
(φ) and n is frequency (ν). Frequency is included for the
case of EXTINCTION (see [1]), which may be treated as a
frequency-dependent species. The expression for incremental
opacity (16) is a sum of terms linear in mixing ratio, so the
derivatives themselves are trivially expressed by dropping f k

and the summation over species k.

∂∆δk
i→i−1

∂fk
lmn

=

+1
∑

∆m=−1

ρ
∆M

(θ, φ)

×
∫ ζi−1

ζi

βk
∆m(ζ, ν, T, Bgeo)

ds

dh

dh

dζ
dζ . (28)

The term in (25) involving ∂∆Bk

∂x
is zero for mixing ratio

derivatives because ∆Bk depends only upon temperature.
The volume mixing ratio (VMR) of 16O2 is not retrieved. In

the thermosphere, where O2 VMR begins to drop significantly,
O2 lines are Doppler broadened and there is not enough
information to separate temperature from mixing ratio. We cur-
rently use the same a priori O2 profile as was used with UARS
MLS, which is piecewise-linear in ζ ≡ − log10(P/1 hPa). The
break-points of this profile are given in Table II. Its adequacy
is a research topic.
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TABLE II

a priori O2 VMR PROFILE LINEAR BREAK-POINTS

ζ O2 VMR approx. height

surface 0.2095 0 km

2.10 0.2095 82 km

2.78 0.2080 91 km

3.52 0.2032 100 km

4.18 0.1447 110 km

C. Temperature Derivatives

Temperature derivatives are complicated in that atmospheric
absorption, the source function and the path length (through
the hydrostatic model) all depend upon temperature. Fortu-
nately, most of this complexity is identical to that of the
unpolarized case. In the polarized expressions, β for each ∆m
multiplies an appropriate tensor, ρ, and is summed over ∆m.
Temperature coefficients, with respect to which we want to
differentiate, are fT

lm where l is vertical coordinate (ζ) and m
is horizontal coordinate (φ).

As in the unpolarized case, a simplified incremental opacity
is used that neglects the temperature dependence in refraction
and uses a simplified dh

dζ
. The frequency representation basis

is dropped since temperature has no frequency dependence.
The simplified incremental opacity has the form

∆δk
i→i−1 =

∆srefr
i→i−1

∆si→i−1

+1
∑

∆m=−1

ρ
∆m

(θ, φ)

×
∫ ζi−1

ζi

f
k (ζ, φ (ζ) , ν) βk

j,∆m (ζ, ν, T, Bgeo)

× H3

√

H2 − H2
t

Tk ln 10

goR2
oM

dζ . (29)

Differentiating with respect to temperature gives

d∆δk
i→i−1

dfT
lm

=
∆srefr

i→i−1

∆si→i−1

+1
∑

∆m=−1

ρ
∆m

(θ, φ)

×
∫ ζi−1

ζi

{

f
k

dβk
j,∆m(ζ)

dfTlm

ηT
l (ζ) ηT

m (φ (ζ))
ds

dh

dh

dζ

+ f
kβk

j,∆m(ζ)
2H2 dH

dfT
lm

− 3H2
t

dH
dfT

lm

+ HHt
dHt

dfT
lm

(H2 − H2
t )

3
2

dh

dζ

+ f
kβk

j,∆m(ζ)
ηT

l (ζ) ηT
m (φ (ζ))

T

ds

dh

dh

dζ

}

dζ .

(30)

Apart from the summation over ∆m and the ρ matrices, this
expression is identical to the unpolarized case [1, Eqn. 55]
except that here we have both the real and imaginary parts of
the lineshape in the temperature derivative of β. The derivative

of the lineshape, (20), is

dF (xj , yj)

dT
=

ν

ν0j

[

(1 + ıYj)
dU
dx

dx

dT

+ (1 + ıYj)
dU
dy

dy

dT

+ ı
dY

dT
U + ı(1 + ıYj)

dV
dx

dx

dT

+ ı(1 + ıYj)
dV
dy

dy

dT
− dY

dT
V
]

. (31)

The derivatives of the real and imaginary parts of the Fadeeva
function are

∂U
∂y

=
∂V
∂x

= 2yV − 2xU ,

∂U
∂x

= −∂V
∂y

= 2yV + 2xU − 2/
√

π. (32)

From the unpolarized ATBD[11, Equation 9.8],

dνk
j

dT
=

(νk
0jvc − νk

j )nk
∆ν0j

T
,

dxk
j

dT
= −

xk
j

2T
−

√
ln 2 (νk

0jvc − νk
j )nk

∆ν0j

Twk
d

,

dyk
j

dT
= −

yk
j (nk

cj + 1
2 )

T
,

dY k
j

dT
= −P

[

nk
δj

δk
j

T

(

T0

T

)nk
δj

+
nk

γj
γk

j

T

(

T0

T

)nk
γj

]

. (33)

D. β Derivatives

Derivatives of quantities on which ∆δk
i+1→i has dependence

only through β can be written

∂∆δk
i→i−1

∂xj

=

+1
∑

∆m=−1

ρ
∆M

∫ ζi−1

ζi

fk
lmn

dβk
∆m

dxj

ds

dh

dh

dζ
dζ .

(34)
This class includes derivatives with respect to spectroscopic
parameters, wind-induced Doppler shifts, and magnetic field.

VII. FIELD OF VIEW CONVOLUTION

The method of field-of-view convolution is discussed in [1,
Eqn. 64].

I (Ωt) =
Tr
∫

ΩA
I (Ω) G (Ω − Ωt) dΩ

Tr
∫

ΩA
G (Ω − Ωt) dΩ

, (35)

where Ω is the solid angle over which radiative transfer has
been calculated, Ωt is the pointing of the antenna to be mod-
eled and ΩA is the solid angle over which the polarized, far-
field antenna pattern tensor, G (Ω − Ωt) has been measured.
For both R1A and R1B, the cross-polarized antenna patterns
are 30 dB or more below the co-polarized patterns [17].
Currently, the cross-polarization is ignored, permitting the use
of the same software as is used in the unpolarized case.
Resulting errors in calculated brightness are estimated to be
less than 0.2 K.

After field-of-view convolution, power is a scalar so the
unpolarized, scalar algorithm for frequency averaging may be
followed without approximation.
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VIII. POLARIZED L2PC MODEL

The MLS Level 2 retrieval software [19] requires Jaco-
bians, partial derivatives of the radiances with respect to
state vector elements. Unfortunately, the cost of producing
polarized derivatives during routine processing is currently
prohibitive. To speed processing, radiances and derivatives
are precomputed for climatological conditions and tabulated
as Level 2 processing coefficient (L2PC) files for use as the
linearization point and Jacobian of a fast, linear retrieval.

Polarized L2PCs contain temperature derivatives for DACS
bands 22 and 26 calculated on a grid of magnetic field
strengths and orientations. In the current version (v1.5) of
Level 2 software, the closest bin to the field strength and
elevation angle (the angle between the field and the line-of-
sight) is used.

Interpolation in azimuth angle, φ, is done analytically, since
the 2x2 intensity matrix, I , or any of its derivatives, may be
rotated to give values for any φ. Given (9) and (8), we can
write

I‖(φ) = cos2(φ)I‖(0
◦) + sin2(φ)I⊥(0◦)

+ 2 cos(φ) sin(φ)I|(0
◦) . (36)

This expression may be recast in terms of double-angle sines
and cosines, and in terms of I‖ (the [1,1] element of I) for
three values of φ rather than three elements of I for φ = 0.

I‖(φ) =
1 + cos(2φ) − sin(2φ)

2
I‖(0

◦)

+
1 − cos(2φ) − sin(2φ)

2
I‖(90◦)

+ sin(2φ)I‖(45◦) . (37)

This formulation is particularly useful because the forward
model software is designed to select the parallel (‖) component
of the radiance or radiance-derivative tensor, and to send arrays
of these real, scalar values through the antenna convolution and
passband convolution of the host scalar model. The polarized
code can be run for φ = 0◦, 45◦ and 90◦, and these values
may be added as in (37) to produce a model for any φ.

In its current configuration, the polarized L2PC model as-
sumes a constant geomagnetic field magnitude and orientation
along the integration path. This permits the model to be
parameterized by the field value at the tangent point. However,
the full forward model (and the real atmosphere) have geomag-
netic field variations along the path with resulting radiances
that cannot be modeled with a constant field. For example,
changes in the field magnitude move the σ± components
in and out, resulting in a broadened spectral feature with
weighting functions that depend upon the details of the field
along the path. The impact of this approximation upon EOS-
MLS retrievals is an area for further research.

IX. MATRIX EXPONENTIATION AND DERIVATIVES

The exponential of a 2x2 matrix (Sylvester’s identity) is

exp(A) = eλ2

[

e2d − 1

2d
(A − λ21) + 1

]

, (38)

where λ1, λ2 are eigenvalues of A, d ≡ 1
2 (λ1 − λ2) and 1 is

the 2×2 identity matrix. This form is well behaved as d → 0.
The derivative of a matrix exponential with respect to p is

d exp(A)

dp
= es

{

sinh d

d
[s′A + A

′ + (d′d − s′s)I]

+
d coshd − sinh d

d2
[d′A + (s′d − d′s) I)]

}

,

(39)

where s ≡ 1
2 (λ1 + λ2), d′ = dd

dp
, s′ = ds

dp
, A′ = dA

dp
. As the

eigenvalues coalesce, no cancellations occur, and no infinities
arise if the elements of A and A

′ are finite.

X. RESULTS FROM EARLY MLS DATA

Fig. 4 shows simulated, single-frequency, single-ray limb
radiances for the centers of the 61 DACS channels that are
used in MLS retrievals. Seven limb-pointings are shown, with
tangent pressures ranging from 100 hPa to 0.0001 hPa. The
six panels are for six orientations of geomagnetic field, Bgeo,
with inset axes showing the orientation Bgeo with respect
to the propagation direction (ẑ) and the linear polarization
mode under consideration. The geomagnetic field magnitude
is 0.5 gauss in all cases. Single-frequency, single-pointing
simulated radiances such as these are convolved with MLS
channel frequency response functions and antenna patterns to
produce simulated channel radiances.

In the upper right panel, Bgeo is along ĤRF and the π line
center is saturated at roughly the physical temperature of the
lower thermosphere for the 0.001-hPa pointing. Similarly, in
the upper center panel, with Bgeo perpendicular to both ĤRF

and the propagation direction, the two σ lines are opaque for
the 0.001-hPa pointing.

In the upper left panel, the σ lines are coupled to circularly
polarized modes (σ+ is right, σ− is left) and the π line
is transparent. On the 0.001 hPa tangent pointing, a right-
circularly-polarized antenna would see only the σ+ line, and
would be a shifted version of the upper right panel, saturated
at something just below 200 K. The MLS linearly polarized
antenna sees half of the saturated right-circular and half of
the transparent left-circular modes at the σ+ line center, and
appears to saturate for the 0.001-hPa pointing at roughly
half of the physical temperature of the lower thermosphere.
Not until the 0.1-hPa tangent pointing does the collisionally-
broadened wing of the σ− line saturate at the σ+ line center.

Fig. 5 and fig. 6 show comparisons of MLS measurements
and the corresponding forward model calculations from a
retrieval that uses these radiances. This early version of MLS
level-2 retrieval software is not optimized for the mesosphere
and lower thermosphere and does not have necessary degree(s)
of freedom in the thermospheric temperature profile to fit the
saturated line centers. This inadequacy will be addressed in
further work. Line placement and general morphology show
good agreement between modeled and measured radiances.
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ĤRF

Ẑ
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