WEST BANK OF THE MISSISSIPPI RIVER
IN THE VICINITY OF NEW ORLEANS, LA
EAST OF HARVEY CANAL
HURRICANE PROTECTION PROJECT

DESIGN MEMORANDUM NO. 2 EAST AND WEST OF ALGIERS CANAL

IN TWO VOLUMES VOLUME 2

DEPARTMENT OF THE ARMY

NEW ORLEANS DISTRICT, CORPS OF ENGINEERS

NEW ORLEANS, LOUISISANA

JANUARY 1999

WEST BANK OF THE MISSISSIPPI RIVER IN THE VICINITY OF NEW ORLEANS, LOUISIANA EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT DESIGN MEMORANDUM NO. 2 EAST AND WEST OF ALGIERS CANAL

TABLE OF CONTENTS

Paragraph	<u>Title</u>	Page
	PROJECT AUTHORIZATION	
1	Authority	. 1
2	Purpose and Scope	1
3	Other Pertinent Projects	1
	a. Mississippi River Levees	1
	b. Algiers Lock and Canal	2
	c. Westwego to Harvey	2
4	Local Cooperation	2
5	Status of Local Cooperation	2
6	Project Document Investigation	2 2 2 3
	a. General	2
	b. Future investigations required	3
	LOCATION OF PROJECT AND TRIBUTARY AREA	
7	Project Location	3
	PROJECT PLAN	
8	General	3
O	General	3
	HYDROLOGY AND HYDRAULICS	
9	General	4
10	Design Hurricane	4
11	Design Heights of Protected Structures	4
	SOILS AND FOUNDATIONS INVESTIGATION AND DESIGN	
12	General	4

Paragraph	<u>Title</u>	Page
13	Field Exploration	5
14	Laboratory Tests	5
15	Description of Subsoil Conditions	5
	a. Geology	
	b. Topography	5 5
	c. Stratigraphy	6
	d. Design Soil Parameters	6
16	Levee Analyses	6
	a. Levee Stability	6
	b. Settlement of Levees	7
17	Earth Ramp Analyses	8
	a. Levee Stability	8
	b. Settlement of Ramp Areas	8
18	I-Wall Analyses	9
	a. Cantilever Analyses	9
	b. Seepage	9
	c. Minimum Penetration	9
19	Floodgates/T-Walls	9
	a. Stability	9
	b. Seepage	10
	c. Allowable Pile Load Capacity	10
20	Pump Station	10
	a. General	10
	b. Additional Borings	10
	c. Stability	10
	d. Slope Stability and New T-Wall Analysis	11
	e. Seepage Analyses	11
21	Pile Foundation	11
	a. Allowable Pile Load capacity	11
	b. Horizontal Support	11
	c. Pile Group Effects	12
	d. Pile Driving	12
	e. Predrilling	12
	f. Driving Stresses	12
	g. Test Piles	12
	h. Load Tests	12
	i. Dynamic Pile Tests	12

Paragrap	<u>h</u> <u>Title</u>	Page
	DESCRIPTION OF PROPOSED STRUCTURES AND IMPROVEMENT	S
22	Levees	13
	METHOD OF CONSTRUCTION	
23	Recommended Levee Construction	13
	OTHER LEVEE PLANS CONSIDERED	
24	Alternative Levee Plans Considered	13
	ACCESS ROADS	
25	Access Roads	13
	RELOCATIONS	
26	Relocations	14
	RAMPS	
27	Ramps	15
	DESCRIPTION OF PROPOSED FLOODWALLS AND GATES	
28	Floodwalls and Gates a. Floodwalls b. Gates	16 16 17
	PUMP STATION FRONTAL PROTECTION	
29	General	17
30	Belle Chasse Pump Station No. 2	17
31	Planters Pump Station	18
32	Sewerage & Water Board Pump Station No. 11	18
33	Sewerage & Water Board Pump Station No. 13	18
34	Plaquemines Pump Station (Belle Chasse No. 1)	19
57		

Paragraph	Title	Page
	PUMP STATION BACK FLOW PROTECTION	
35	Belle Chasse Pump Station No. 2	19
36	Planters Pump Station	20
37	Sewerage & Water Board Pump Station No. 11	22
38	Sewerage & Water Board Pump Station No. 13	24
39	Plaquenines Pump Station (Belle Chasse No. 1)	26
	STRUCTURAL DESIGN	
40	Criteria for Structural Design	29
41	Basic Data	29
	a. Water Elevation	29
	b. Levee and Floodwall Net Grades	29
42	Design Methods	30
	a. Reinforced Concrete	30
43	I-Type Floodwalls	30
	a. General	30
	b. Loading Cases	30
	c. Joints	31
44	T-Type Floodwalls	31
	a. General	31
	b. Loading Cases	31
	c. Joints	31
45	Swing Gates and Gate Monoliths	31
	a. General	31
	b. Loading Cases	32
46	Cathodic Protection and Corrosion Control	32
	a. Cathodic Protection for Steel Sheet Piling	32
	b. Corrosion Control	32
	ENVIRONMENTAL EFFECTS	
47	Environmental Assessment	33
	a. General	33
	b. Recreation	33
48	Mitigation	33
49	Hazardous, Toxic and Radioactive Wastes	33

Paragraph	<u>Title</u> <u>P</u>	Page
50	Status of Environmental Compliance	34
	a. National Environmental Policy Act	34
	b. Clean Water Act	34
	c. Coastal Zone Management Act	34
	d. National Historic Preservation Act	34
	REAL ESTATE REQUIREMENTS	
51	General	34
	OPERATION AND MAINTENANCE	
52	Operation And Maintenance	35
	a. General	35
	b. Mitigation Feature	35
	ESTIMATE OF INCREMENTAL COSTS	
53	General	36
54	Schedule for Design and Construction	37
55	Funds Required by Fiscal Year	37
56	Recommendations	38
	TABLES	
No.	<u>Title</u>	Page
1	Consolidation Settlement	7
2	Utility Relocation Schedule	14
3	Ramp Schedule	15
4	Planters Pumping Station Minimum Seal Water Elevation for Air Suppression	20
5	Sewerage & Water Board Pumping Station No.11 Minimum Seal Water Elevations for Air Suppression	22

No.	<u>Title</u>	Page
6	Sewerage and Water Board Pumping Station No. 13 Minimum Seal Water Elevation for Air Suppression	24
7	Plaquemines Pumping Station Existing Pump Information	26
8	Relevant Structural Design Data	29
9	Pertinent Stresses for Reinforced Concrete Design	30
10	Schedule for Design and Construction	37
11	Funds Required by Fiscal Year	38
	PLATES	
<u>No.</u>	<u>Title</u>	
1	Project Location and Vicinity Map	
2	East Levee Plan and Profile Sta. 318+07.16 to Sta. 367+50.0	00
3	East Levee Plan and Profile Sta. 367+50.00 to Sta. 423+50.0	00
4	East Levee Plan and Profile Sta. 423+50.00 to Sta. 479+00.0	00
5	East Levee Plan and Profile Sta. 479+00.00 to Sta. 544+00.0	00
6	East Levee Plan and Profile Sta. 544+00.00 to Sta. 599+00.0	00
7	East Levee Plan and Profile Sta. 599+00.00 to Sta. 655+50.0	00
8	East Levee Plan and Profile Sta. 655+50.00 to Sta. 712+50.0	00
9	East Levee Plan and Profile Sta. 712+50.00 to Sta. 769+16.3	36
10	East Levee Plan and Profile Sta. 769+16.36 to Sta. 828+50.0	00

No.	<u>Title</u>
11	West Levee Plan and Profile Sta. 828+50.00 to Sta. 893+50.00
12	West Levee Plan and Profile Sta. 893+50.00 to Sta. 955+00.00
13	West Levee Plan and Profile Sta. 955+00.00 to Sta. 1018+50.00
14	West Levee Plan and Profile Sta. 1018+50.00 to Sta. 1071+00.00
15	West Levee Plan and Profile Sta. 1071+00.00 to Sta. 1125+50.00
16	West Levee Plan and Profile Sta. 1125+50.00 to Sta. 1181+50.00
17	West Levee Plan and Profile Sta. 1181+50.00 to Sta. 1230+43.21
18	Belle Chasse Pump Station No. 2 Plan
19	Belle Chasse Pump Station No. 2 Frontal Protection Profile
20	Belle Chasse Pump Station No. 2 Section Thru Station
21	Belle Chasse Pump Station No. 2 Frontal Protection T-Wall Details
22	Plaquemines Pump Station Plan
23	Plaquemines Pump Station Plan
24	Plaquemines Pump Station Frontal Protection Profile
25	Plaquemines Pump Station Section Thru Original Station
26	Plaquemines Pump Station Section Thru Pump Station Addition
27	Plaquemines Pump Station T-Wall Details
28	Planters Pump Station Plan
29	Planters Pump Station Foundation Plan
30	Planters Pump Station Frontal Protection Profile

<u>No.</u>	<u>Title</u>
31	Planters Pump Station Section Thru Original Pump Station
32	Planters Pump Station Section Thru Pump Station Addition
33	Planters Pump Station T-Wall Details
34	NOS&WB No. 11 Pump Station Plan
35	NOS&WB No. 11 Pump Station Foundation Plan
36	NOS&WB No. 11 Pump Station Frontal Protection Profile
37	NOS&WB No. 11 Pump Station Section Thru Original Station
38	NOS&WB No. 11 Pump Station Section Thru Station Addition
39	NOS&WB No. 11 Pump Station T-Wall Details
40	NOS&WB No. 11 Pump Station Discharge Tube Details
41	NOS&WB No. 13 Pump Station Plan
42	NOS&WB No. 13 Pump Station Section Thru Original Station
43	NOS&WB No. 13 Pump Station Section Thru Station Addition
44	Typical Levee Sections (Sheet 1 of 3)
45	Typical Levee Sections (Sheet 2 of 3)
46	Typical Levee Sections (Sheet 3 of 3)
47	Gates 1 thru 4 (Profile)
48	Gates 5, 6, 7 & 10 (Profile)
49	Gates 8, 9, 11 & 12 (Profile)
50	Gates 13, 14, 15 & 16 (Profile)

No.	Title
51	Typical Floodwall/Floodgate Sections
52	Typical Wall Joint (Sheet 1 of 2)
53	Typical Wall Joint (Sheet 2 of 2)
54	Typical Swing Gate
55	Swing Gate Upper Hinge Details
56	Swing Gate Lower Hinge Details
57	Hinge Details
58	Swing Gate Seal
59	Latching Details
60	Details of Utility Penetrations
61	Utility Crossing - South Central Bell
62	Typical Ramp Plan & Profiles
F-1	Soil Boring Location Plan
F-2	Subsoil Profile "A-A"
F-3	Subsoil Profile "A-A"
F-4	Subsoil Profile "B-B"
F-5	Subsoil Profile "B-B"
F-6	Design Soil Parameters Reaches 1 & 2
F-7	Design Soil Parameters Reaches 3 & 4

<u>No.</u>	Title
F-8	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 1 Westbank
F-9	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 1 Westbank
F-10	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 1 Eastbank
F-11	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 1 Eastbank
F-12	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 2 Westbank
F-13	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 2 Westbank
F-14	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 2 Eastbank
F-15	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 2 Eastbank
F-16	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 3 Westbank
F-17	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 3 Westbank
F-18	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 3 Eastbank
F-19	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 3 Eastbank
F-20	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 4 Westbank

No.	<u>Title</u>
F-21	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 4 Westbank
F-22	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 4 Eastbank
F-23	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 4 Eastbank
F-24	Slope Stability Analysis of Ramp on One Side of Levee Reach 1
F-25	Slope Stability Analysis of Ramp on One Side of Levee Reach 2
F-26	Slope Stability Analysis of Ramp on One Side of Levee Reach 3
F-27	Slope Stability Analysis of Ramp on One Side of Levee Reach 4
F-28	Slope Stability Analysis of Ramp Toward Canal at Low Water Reach 1
F-29	Slope Stability Analysis of Ramp Toward Canal at Low Water Reach 2
F-30	Slope Stability Analysis of Ramp Toward Canal at Low Water Reach 3
F-31	Slope Stability Analysis of Ramp Toward Canal at Low Water Reach 4
F-32	Slope Stability Analysis and I-Wall Design - Reach 2 - Westbank
F-32a	Replacement I-wall Design at Discharge of Modified Belle Chasse Pump Station No. 2
F-33	I-Wall Design Near Floodgates - Reaches 1 &2

No.	<u>Title</u>
F-34	I-Wall Design Near Floodgates - Reaches 3 & 4
F-35	Floodgate/T-Wall Analysis - Reach 1
F-36	Floodgate/T-Wall Analysis - Reach 2
F-37	Floodgate/T-Wall Analysis - Reach 3
F-38	Floodgate/T-Wall Analysis - Reach 4
F-39	Slope Stability Analyses Belle Chasse Pump Station No.2
F-40	Slope Stability Analyses of Units 1 Through 5 Planters Pump Station
F-41	Slope Stability Analyses of Units 6 Through 9 Planters Pump Station
F-42	Slope Stability Analyses Plaquemines Pump Station
F-43	Slope Stability Analyses Addition to Plaquemines Pump Station
F-44	Slope Stability Analyses N.O. S&WB Pump No. 11 West
F-45	Slope Stability Analyses of N.O. S&WB Station No. 11 East
F-46	Slope Stability Analyses of East Units 1 Though 3 N.O. S&WB Pump Station No. 13
F-47	Slope Stability Analyses of East Units 4 Though 7 N.O. S&WB Pump Station No. 13
F-48	Slope Stability/T-Wall Analyses Modified Belle Chasse Pump Station No. 2
F-49	Slope Stability/T-Wall Analyses Modified Units 1 Though 5 Planters Pump Station
F-50	Slope Stability/T-Wall Analyses Modified Units 6 Though 9 Planters Pump Station

No.	<u>Title</u>
F-51	Slope Stability/T-Wall Analyses Modified Plaquemines Pump Station
F-52	Slope Stability/T-Wall Analyses Modified Addition to Plaquemines Pump Station
F-53	Slope Stability/T-Wall Analyses Modified N.O. S&WB Pump Station 11 West
F-54	Slope Stability/T-Wall Analyses Modified N.O. S&WB Pump Station 11 East
F-55	Floodgate/T-Wall Structures - Reaches 1&2
F-56	Floodgate/T-Wall Structures - Reaches 3 & 4
F-57	T-Wall Foundation Allowable Pile Load Capacities
F-58	T-Wall Foundation Allowable Pile Load Capacities
F-59	T-Wall Foundation Allowable Pile Load Capacities
F-60	Axial and Horizontal Resistance of Batter Piles
F-61	Modulus of Horizontal Subgrade Reaction
F-62	Modulus of Horizontal Subgrade Reaction
F-63	Capacity of Pile Groups And Pile Spacing
	APPENDIX
	VOLUME 1
Α	Detailed Cost Estimate

VOLUME 2

F-I	Geotechnical Boring Logs and Laboratory Data
F-II	Geotechnical Computer Data
В	Design Calculations

WEST BANK OF THE MISSISSIPPI RIVER IN THE VICINITY OF NEW ORLEANS, LA EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT DESIGN MEMORANDUM NO. 2 EAST AND WEST OF ALGIERS CANAL

APPENDIX F-I

GEOTECHNICAL BORING LOGS AND LABORATORY DATA

APPENDIX F-I BORING LOGS AND LABORATORY TEST DATA

LEGEND AND NOTES FOR LOG OF BORING AND TEST RESULTS

PP	Pocket p	penetro	meter	resistance ir	n tons per squa	re foot				
TV	Torvane	shear	strengt	th in tons pe	r square foot					
SPT	Standard 2-in O.D	d Pene J., 1.4-ir	tration in. I.D. s	Test. Numbe sampler a di	er of blows of a stance of one f	140-lb. hammer oot into the soil,	drop afte	ped 30 inche r first seatin	es required (g it 6 inche:	to drive s
SPLR	Type of	Sampli	ng	Shelby	SPT	Auger		No Sample	;	
SYMBOL		Silt	Sand	Humus	Predominant of Modifying type	type shown heav e shown light	vy;			
DENSITY	Unit weig	ght in p	oounds	per cubic fo	oot					
USC	Unified S	Soil Cla	ssificat	ion						
TYPE	UC OB UU CU	Unco shea overt Unco Cons	onsolida r on on burden onsolida solidate	e specimen pressure ated undraind d undrained	n shear ined triaxial confined at the ed triaxial comple triaxial compre	approximate oression shear				
	DS CON		ct shear colidation	•						
	PD k SP	Coef	ficient d	distribution of permeabil essure in pou	ity in centimete unds per square	ers per second e foot				
ø	Angle of	interna	al frictio	n in degrees	s					
С	Cohesion	n in pou	unds pe	r square foc	ot					
Other labo	oratory tes	st resul	lts repo	rted on sepa	arate figure					
Ground W	ater Meas	sureme	ents	▼ ir	nitial	∑ Final				
GENEDA	I MOTES									

- (1) At the time the borings were made, ground water levels were measured below existing ground surface. These observations are shown on the boring logs. However, ground water levels may vary due to seasonal and other factors. If important to construction, the depth to ground water should be determined by those persons responsible for construction, immediately prior to beginning work.
- (2) While the individual logs of borings are considered to be representative of subsurface conditions at their respective locations on the dates shown, it is not warranted that they are representative of subsurface conditions at other locations and times.

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

(Sheet 1 of 2)

cale	PP	SPT	Symbol	Visual Classification	usc	Sample	Depth	Water	Den	sity	She	ar Te	sts	Atte	erberg	Limits		Other
In eet	PP	371	R Symbol	Visual Classification	USC	Number	in Feet	Content Percent	Dry	Wet	Туре	φ	С	LL	PL,	PI	7	Tests
0			1111	Stiff brown silty clay w/roots, shells,	CL	1	0	30	 				·	†	<u> </u>	<u></u>	 	
-	1.25	i		\& organic matter Stiff gray & tan clay w/organic matter	СН	2	1.5	44			1						· [1
-	1.00			& clayey silt lenses w/silty sand lenses & layers	sc	3	4	50										
]	0.60			Medium dense tan & gray clayey sand	30	4	6.5	28	}								ļ	
٥-	0.50			Soft gray clay w/sandy silt lenses & layers, organic matter, & small roots	СН	5	9	49										
4	0.50			Soft gray silty clay w/roots	CL	6	11.5	36										
1	0.50			w/small roots & silty sand lenses		7	14	34										1
]	0.50			Soft gray clay w/sandy silt lenses & few roots	СН	8	16.5	36						Ī				
٥-	0.50					9	19	120						İ				
-	0.60			Medium stiff gray clay w/clayey silt lenses & layers, & trace of wood	СН	10	21.5	96									1	ŀ
-	0.50			Soft gray clay w/trace of small roots, clayey silt lenses, & few shell	СН	11	24	74									1	
	0.50			fragments w/shells, clayey silt lenses		12	26.5	79										ļ
۰ -	0.50			& layers, & organic matter w/organic matter & clayey		13	29	57										
\dashv	0.50			silt pockets & lenses w/clayey silt lenses, layers, & pockets		14	31.5	46									.	
1				Loose gray sandy silt w/silty sand layers	ML	15	34	25										
4		4	X.	Loose gray fine sand w/sandy silt & clayey silt layers	SP	16	37	27		Ì							ŀ	
\neg				Loose gray silty sand w/few small clay lenses	SM	17	39	26										
4	0.50			w/clay lenses & pockets		18	41.5	33		Ì								
1				Medium dense gray silty sand w/clay layers	SM	19	44	29										
1	0.50			Soft gray silty clay w/silt lenses & trace of wood	"	20	46.5	31		ŀ							1	:
٦	0.50			w/few silt lenses & wood		21	49	40		- 1				l			į	l

Comments: Coordinates: North 484688.370, East 3685189.805

LOG OF BORING AND TEST RESULTS U.S. ARMY CORPS OF ENGINEERS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

#

round	Elev.:	9.69			n: NGVD Gr. Water Depth: See	Text	Job No.	14638	Date [Drill	led: 3/	15/9	6		Bori	ng:	AL	GE1	Refer to	Legends & Not
Scale In	PP	SPT	S P L	ymbol	Visual Classification	usc	Sample Number	Depth In Feet	Water Content	<u> </u>	ensity	<u> </u>	hear 1				erg Li			Other
Feet	···		Ř						Percent	Dr	y Wet	Тура	ø	C	LL		PL	PI		Tests
50	0.50				Soft gray clay w/silty sand lenses & layers	СН	22	51.5-52.5	57						İ					
-	0.50						23	54-55	44						1			ļ		
]	0.50						24	56.5-57.5	45									İ		
6 0	0.50				w/silt lenses		25	59-60	55						İ					
1	0.50							61.5-62.5	61						1			ļ		
]	0.50						27	64-65	55						1			- [
4	0.50						28 29	66.5-67.5	56									ĺ		
70 ㅡ	0.50							69-70 71.5-72.5	63 57									ł		
]	0.60				Medium stiff gray clay w/clayey silt	СН	31	74-75	55											
-	0.50				lenses Soft gray clay w/shell fragments, & clayey sand pockets & lenses	СН		76.5-77.5	37		ł									
80-	0.50				clayey sand pockets & lenses		33	79-80	36											
\dashv									Ì									ŀ		
-																				
,]											;								ļ	
4																		- [
1																				:
00					·										1			- 1	-	

Comments: Coordinates: North 484688.370, East 3685189.805

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

Julia	Elev.:	-0.70		m: NGVD Gr. Water Depth: Se	1	1			Orilled: 3				Boring				Legends & Note
Scale In Feet	PP	SPT	S P Symbol	Visual Classification	usc	Sample Number	Depth In Feet	Water Content Percent	Density Dry Wet	ļ	ear Tes φ	C	Atte LL	rberg L	imits Pl		Other Tests
0 -	1.50			Stiff brown & tan clay w/organic matter & roots	CH CH	1 2	0-1 1.5-2.5	31 58			<u> </u>						
	1.00			Stiff gray & tan clay w/silt lenses, pockets, & organic matter	CH	3	4-5	114									
-	0.40			Medium stiff gray clay w/clayey silt pockets & roots Soft gray clay w/clayey silt & silty	СН	4	6.5-7.5	29									
10	0.40			sand layers w/shells & alternating silty		5	9-10	38						•			
-	0.50			sand layers w/shells		6	11.5-12.5	96									
-	0.50					7	14-15	97								n.	
-	0.50					8	16.5-17.5	102									
20-	0.40			w/silty sand layers & lenses		9	19-20	44									
-	0.40					10	21.5-22.5	68							`		
٦	0.50			w/silty sand layers		11	24-25	63							1		
1	0.50					12	26.5-27.5	49									
30-	0.50					13	29-30	41	:				ĺ				
-	0.50					14	31.5-32.5	60					Ì				
4	0.50			w/few silt lenses		15	34-35	64							'		
	0.50					16	36.5-37.5	65									
40-	0.40			Loose gray sandy silt w/silty clay layers	ML	17	39-40	33									
4	0.50			Soft gray clay	СН	18	41.5-42.5	65									
+	0.50					19	44-45	61									
-	0.50					20	46.5-47.5	60									:
50	0.50	i		w/clayey silt lenses		21	49-50	57		1					ď		

Comments: Coordinates: North 488130.438, East 3689961.091

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Ground	Elev.:	-0.73	Datur	n: NGVD Gr. W ater Depth: Se	e Text	Job No.	: 14638	Date I	Drilled:	3/	14/96			Boring	g: AL	GE2	Refer to	"Legends & Notes'
Scale	PP	SPT	Symbol	Visual Classification	USC	Semple	Depth	Water Content	Density	y	She	ear Te	sts	Atte	rberg L	mits		Other
Feet			R			Number	In Feet	Percent	Dry W	et	Туре	φ	С	LL	PL	PI		Tests
50 -	0.50			Soft gray clay	СН	22	51.5-52.5	53								-		
_	0.50					23	54-55	56						1				
[0.50					24	56.5-57.5	63		1				ĺ				
60 —	0.50			w/few silt lenses		25	59-60	58									•	
-	0.50					26	61.5-62.5	59		-								
-	0.50					27	64-65	58		Ī								
	0.50					28	66.5-67.5	54						ļ				
70-	0.50			w/sandy clay layers, sand pockets, & shell fragments		29	69-70	33										
-	0.60			Medium stiff gray clay w/sandy clay pockets & layers, shell fragments, & sand layers & pockets	СН	30	71.5-72.5	49										
-	2.00			\sand layers & pockets Very stiff greenish-gray & gray sandy clay w/clayey sand lenses & pockets	СН	31	74-75	20		ŀ								
	2.25	i		Very stiff greenish-gray & tan clay	CH	32	76.5-77.5	20		1								
80-			FF-14	W/Clayey sand lenses & layers Dense greenish-gray & tan silty sand	SM	33	79-80	27										
-				w/clay pockets	الـ													
90																		
-																	İ	
										-							i	:
100																		•

Comments: Coordinates: North 488130.438, East 3689961.091

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Ground	Elev.:	9.07 Datum:	NGVD Gr. Water Depth: See Tex	ct Job	No.: 14	638 C	ate Drille	•d: 3/08	/96			Bori	ng: A	LGE	3	Refer to	"Legends & Notes"
Scale In	PP	SPT Symbo	Visual Classification	usc	Sample Number	Depth In Feet	Water Content	Density		Shea	er Tes	its	Atte	rberg	Limits		Other
Feet		Ř		<u> </u>	Number	III Feet	Percent	Dry We	t Ty	уре	ø	С	LL	PL	PI		Tests
0 -	1.25		Stiff gray & tan silty clay w/roots & sand pockets	CL SM	1 2	0 1.5	24 25										
-	1.00		Loose gray silty sand w/clay layers w/clay layers & lenses		3	4	26].									
	1.00				4	6.5	26						ļ				
10-	0.75		Medium stiff gray clay w/sandy silt lenses & layers, & organic matter	CH	5	9	66							•		ļ	
_	0.50		Loose gray silty sand w/clay layers & pockets, & few roots	SM	6	11.5	27										
-	0.50		Soft gray & tan clay w/clayey silt pockets, organic matter, & much wood		7	14	48										
	0.50		w/wood		8	16.5	41						ļ				
20 —	0.50		Loose brown & black humus w/clay layers & much wood	PT	9	19	245										
-	0.50		Loose gray silty sand w/clay lenses & pockets, & roots	SM	10	21.5	33										
1			Loose gray silty sand w/wood, sandy silt layers, clay pockets, & roots	2M	11	24	28										
	0.50		Medium stiff gray clay w/many shell fragments, organic matter, & small	СН	12	26.5	69										
30-	0.50		silty clay layers		13	29	98										
4	0.50		w/shells, clayey silt lenses, & silty sand pockets		14	31.5	54										
1	0.50		w/clayey silt lenses, few silty sand lenses, & pockets		15	34	56										
]	0.50		w/clayey silt lenses & silt lenses		16	36.5	54					i					
40-	0.50		w/many sandy silt lenses		17	39	50										
-	0.50		Soft gray clay w/silt lenses	СН	18	41.5	67										
	0.50				19	44	61										
]	0.50				20	46.5	67										
50	0.50			1	21	49	60		1						- 1		1

Comments: Coordinates: North 491737.652, East 3694801.079

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

#

round	Elev.:	9.07	Datum:	NGVD Gr. Water Depth: See Te	xt Job	No.: 14	638 D	ate Drille	ed: 3/08/9	96		Borir	ng: A	LGE	3	Refer to	"Legends & Not
Scale In	PP	SPT	S P Symbo	Visual Classification	USC	Sample Number	Depth In Feet	Water Content	Density	She	ear Te	sts	Atte	rberg L	imits		Other Tests
Feet			R		.]	Number	In Feet	Percent	Dry Wet	Type	ф	U	LL	PL	PI		Tests
50	0.50			Soft gray clay w/clayey silt lenses & silt lenses	СН	22	51.5	65					}				
4	0.50					23	54	61									
- 1	0.50					24	56.5	54									
60 —	0.50				ĺ	25	59	56						•			
_	0.50					26	61.5	[.] 58									
+	0.50					27	64	63									
+	0.50					28	66.5	59				;					
,,	0.50					29	69	58									
۳٦	0.50					30	71.5	58									
4	0.50					31	74	58						-			
-	0.50					32	76.5	56	i								
во —	0.50			Soft gray sandy clay w/clay layers & shells	CL	33	79	24			•						
~				Sildus	'												
4																•	!
┪																	
	i	ļ						İ									
" —								ļ									
4																	
4																	
00		,															;

Comments: Coordinates: North 491737.652, East 3694801.079

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale			S P Symbol			Sample	Depth	Water Content	D∈	ensity	Sh	ear Te	sts	Atte	rberg l	Limits		Other
n eet	PP	SPT	Symbol	Visual Classification	USC	Number	In Feet	Percent	Dry	Wet	Туре	φ	С	LL	PL	PI		Tests
-	2.25			Very stiff tan & gray silty clay w/roots w/roots & sand pockets	CL	1 2	0-1 1.5-2.5	45 25										
4	0.50			Soft to medium stiff black & gray organic clay w/organic matter & wood	ОН	3	4-5	57										
1	0.05			Very soft gray silty clay w/silt lenses & roots	CL	4	6.5-7.5	37										
٦	0.05			Loose gray clayey silt w/sandy silt layers	ML	5	9-10	32										
4	0.05			Loose gray sandy silt w/smail clay lenses & silty clay layers	ML	6	11.5-12.5										1	
4	0.05			Very soft gray clay w/silt lenses, organic matter & few roots	Cn Cn	7	14-15	85	1									
•]	0.05			w/few sand pockets, organic matter & shell fragments		8	16.5-17.5		ı									· .
٥؎	0.05			w/shells & organic matter	į	9	19-20	58	ļ									!
-	0.05			w/organic matter		10	21.5-22.5											
1	0.05			w/organic matter & few shell fragments		11	24-25	62										
	0.05			w/silty sand lenses & layers	İ	12	26.5-27.5				ŀ							
ю_	0.05					13	29-30	61						,				
_	0.05	ļ		w/silty sand lenses		14	31.5-32.5	76										J i;
-	0.05			w/few silty sand lenses		15	34-35	67										
	0.05					16	36.5-37.5	72										
, -	0.05					17	39-40	64										
4	0.05					18	41.5-42.5	69										
4	0.05				1	19	44-45	69										
-	0.05	1		Soft gray clay	СН	20	46.5-47.5	58	1								ļ	

Comments: Coordinates: North 493957.230, East 3697224.019

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale	PP	SPT	S P Symbol	Visual Classification	usc	Sample	Depth	Water Content	De	nsity	She	ar Tes	its	Atte	rberg L	imits	1	Other
n et	PP	3F1	R	Visual Classification	000	Number	in Feet	Percent	Dry	Wet	Туре	ø	С	LL	PL	PI	1	Tests
;o -	0.10			Soft gray clay	СН	22	51.5-52.5	55		-								
+	0.10					23	54-55	58										
]	0.10					24	56.5-57.5	62									<u> </u>	
٥-	0.10					25	59-60	63							•			
\dashv	0.20					26	61.5-62.5	60										
1	0.20					27	64-65	70										
4	0.20			w/sand layers & lenses		28	66.5-67.5	64										:
·-	0.10			Loose gray clayey sand w/shell fragments	sc	29	69-70	29										
1	0.10					30	71.5-72.5											
]	0.30			Medium stiff gray clay w/sand lenses	СН	31	74-75	41										
\dashv	1.25			Stiff greenish-gray & light gray sandy clay w/clayey sand layers	CL	32 33	76.5-77.5 79-80	24 22										
0-	1.75					33	79-80	22										
1							}										i	
4																		
\dashv								-										
'																		
]												•						

Comments: Coordinates: North 493957.230, East 3697224.019

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

#

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale			S		USC	Sample	Depth	Water	Density	Sh	ear Te	sts	Atte	rberg L	imits	Other
n et	PP	SPT	S P Symbo	Visual Classification	USC	Number	In Feet	Content Percent	Dry Wet	Type	ф	С	LL	PL	PI	 Tests
٥	1.25			Stiff gray & tan silty clay w/roots & organic matter	CL	1 2	0-1 1:5-2.5	33 54								
1	1.50			Stiff gray clay w/clayey silt lenses, organic matter, & roots	CH	3	4-5	31							-	!
4	0.60			Medium stiff dark gray clay w/organic matter & clayey silt layers	СН	4	6.5-7.5	76								
10-	0.50			Soft dark gray clay w/organic matter & small roots	СН	5	9-10	97						,		
	0.50	i		Soft gray clay w/organic matter & wood	СН	6	11.5-12.5	67		ŀ						
4	0.60			Medium stiff gray clay w/wood, organic matter, & clayey silt lenses	СН	7	14-15	50								
	0.60			w/clayey silt lenses & sandy silt lenses) - <u></u>	8	16.5-17.5	64							ĺ	
:0-	0.50	•	7777	Soft brown humus w/wood & organic clay	PT CH	9	19-20	224								ı
\dashv	0.50			Soft gray clay w/wood & organic matter		10	21.5-22.5	142								
1	0.40					11	24-25	66		Ì						
]	0.30			w/sandy silt lenses & layers	<u> </u>	12	26.5-27.5	33								
	0.50			Loose gray sandy silt	ML	13	29-30	49								
4				Loose gray silty sand w/sand layers	SM	14	31.5-32.5	•								
4		31	A	Dense gray fine sand	SP	15	34-35									
]		30	\boxtimes			16	37-38								İ	
		10	\boxtimes ////	Soft gray clay w/sand lenses & layers	СН	17	39-40	42							ļ	
4	0.50			Soft gray silty clay w/silty sand layers	CL	18	41.5-42.5									
4	0.50	l		Soft gray silty clay w/clay layers	CL	19	44-45	65								
1	0.50			Soft gray clay	СН	20	46.5-47.5	38				1			1	
50 1	0.50			w/few silt lenses		21	49-50	51		l					- 1	:

Comments: Coordinates: North 497996.807, East 3699266.828

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

Ground	Elev.:				Gr. Water Depth: S	ee Text	Job No.	: 14638	Date (Drille	ed: 3/	07/96		E	Boring	ı: Al	.GE5	Refer to	"Legends & Notes"
Scale In	PP	SPT	S P L Symb	ol	Visual Classification	usc	Sample Number	Depth In Feet	Water Content Percent	<u> </u>	ensity	ļ	ear Tes		ļ		imits		Other Tests
Feet 50	0.50	<u> </u>	R	Soft gray c	slay w/clayey silt lenses &	СН	22	51.5-52.5		Dity	Wet	Туре	φ	С	LL	PL	Pl		
	0.50			POCKETS				ł											
	0.50						23	54-55	49										
	0.50						24	56.5-57.5	58										
60-	0.50						25	59-60	61	Ì									
_	0.50							61.5-62.5	64					·					
-	0.50	!					27	64-65	63										
	0.50						28	66.5-67.5	65	l									
70-	0.60		144	7. }	ff gray clay	СН	29	69-70	60										1
	0.50			Soft gray c	lay w/few sandy silt lenses	СН	30	71.5-72.5	59										
-	0.50						31	74-75	57								:		
	0.50						32	76.5-77.5	61										
80-	0.50			1			33	79-80	56										
-										Ì									
-				1															
]																			
90-																		,	
-				1															
4											:								
-											j								:
100				1															

Comments: Coordinates: North 497996.807, East 3699266.828

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

Scale	PP	SPT	S P Symbol	Missal Classification		Sample	Depth	Water	De	nsity	She	ar Te	sts	Atte	rbera	Limits		"Legends & Notes
In Feet	PP	SPI	R Symbol	Visual Classification	USC	Number		Content Percent	Dry	Wet	Туре	•	С	LL	PL		-∤	Other Tests
0 -	1.50			Medium compact gray & tan clayey silt	ML	1 2	0-0.3 1.5-2.5	39 63		·L					<u> </u>	<u>.:i::</u>	 	
_	0.40			Stiff brown clay w/sand pockets, roots, & shell fragments	ОН	3	4-5	81										
-				Stiff dark gray organic clay w/clayey silt lenses & pockets	CL	4	6.5-7.5	37			<u> </u>							
10-	0.25			Medium stiff dark gray & brown organic clay w/clayey silt pockets & clay layers	СН	5	9-10	74									Ì	
-	0.25			Soft gray silty clay w/clay layers & lenses]	6	11.5-12.5	100										
-	0.25			Soft gray clay w/sandy silt pockets w/organic clay layers & pockets, & wood		7	14-15	74										
_	0.25			w/trace of organic matter & sandy silt pockets		8	16.5-17.5	76										
20 —	!		M	w/clayey silt pockets, lenses, trace of organic matter, & trace of wood	ML	9	19-20	31					i					
-		11		Medium compact gray clayey silt w/clay pockets	SM	10	21.5-22.5	30									·	
		7		Medium dense gray silty sand		11	24-25	33										
4		,	X	Loose gray fine sand w/clay pockets	SP	12	26.5-27.5	40									.	
30-			77777	Losoe gray silty sand	SM	13	29-30	31										İ
-	0.30			Loose gray clayey silt w/clay lenses	ML	14	31.5-32.5	34										
				Very soft gray silty clay w/clay layers	CL	15	34-35	31										
]	0.30			Soft gray clay w/clayey silt layers	СН	16	36.5-37.5	39									·	
40	0.30			Loose gray silty sand w/clay layers	SM	17	39-40	29										
+	0.30			Soft gray clay w/clayey silt pockets	СН	18	41.5-42.5	38		İ			İ					
	0.30			Soft gray clay		19	44-45	48										
]	0.30					20	46.5-47.5	55										
50	0.30					21	49-50	62		·								

Comments: Coordinates: North 501517.478, East 3701098.846

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

ale In	PP	SPT	S P Symbol	Visual Classification	usc	Sample	Depth	Water Content	C	ensity	Sh	ear Te	sts	Atte	rberg !	Limits		Other
eet			R	7.5021 5.6531116211611		Number	In Feet	Percent	Dr	y Wet	Туре	ø	С	LL	PL	PI	1	Tests
50 -	0.40			Soft gray clay	СН	22	51.5-52.5	59				<u>' </u>	<u> </u>		<u> </u>			
4	0.40					23	54-55	62			1			ł				
1	0.40					24	56.5-57.5	63			İ							1
٥-	0.40					25	59-60	64										
4	0.40			w/fine sand lenses		26	61.5-62.5	64			ļ							
4	0.40			w/silty sand layers		27	64-65	53										
]	0.40			w/sand pockets & shell fragments		28	66.5-67.5	33		•								
$\circ \dashv$	0.40			w/clay pockets & shell fragments		29	69-70	33									ļ	
\exists	0.40			Loose gray fine sand w/clay pockets	SP	30	71.5-72.5	28						Ì				
1				Very dense gray fine sand	SP	31	74-75	28					,					
4		22		Very stiff gray clay w/sand pockets & shell fragments	СН	32	76.5-77.5	28									}	
$\circ \dashv$	1.00			Medium stiff gray sandy clay w/shell fragments & trace of wood	CL	33	79-80											
1		i																
]																		ļ
4																		
٥ - 																		
]																		
		,												!				
4					1 1								- 1					:

Comments: Coordinates: North 501517.478, East 3701098.846

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

#

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Ground	Elev.:	7.79	Datur	n: N	IGVD Gr. Water Depth: See Tex	ct Job	No.: 14	638 D	ate Drille	ed: 3/06/	96	Bori	ng: A	LGE7	'	Refer to	'Legends & Notes"
Scale			S		A. 1. 1. 1. 1. 1. 1.	usc	Sample	Depth	Water Content	Density	Shear	Tests	Atte	rberg L	imits		Other
In Feet	PP	SPT	PSy	mbol	Visual Classification	USC	Number	in Feet	Percent	Dry Wet	Type 4	p C	LL	PL	PI		Tests
0					Stiff gray & brown silty clay w/limestone & roots	CL	1 2	0 1.5	56								
	1.25				Stiff gray & tan clay w/clayey silt	СН											
1 1	1.00			\mathcal{A}	lenses & organic matter w/clayey silt lenses	СН	3	4	69								
1 1	0.80				Medium stiff gray & tan clay w/clayey silt pockets, organic matter, & wood	J.,	4	6.5	44		Ì						
1 7	0.75				Medium stiff gray clay w/wood, clayey silt lenses, & roots	СН	5	9	33				ļ	•			
10	0.50				Soft gray clay w/sandy silt lenses.	СН	6	11.5	54								
					wood, & organic matter		7	14	64								
	0.50				w/sandy silt lenses, roots, & clayey silt lenses	СН	1										
]	0.20				Very soft gray clay w/wood, humus layers, & pockets	ļ	8	16.5	104		1		ŀ				
20	0.40		~ <u>`</u>	\approx	Soft brown humus w/wood	PT	9	19	293								
-	0.60				Medium stiff gray clay w/wood	СН	10	21.5	67								
1 4	0.50				Soft gray clay w/roots & organic matter	СН] 11	24	33						,		
1 4					w/roots		12	26.5	75								
4	0.50					1					İ						
30 —	0.50				w/clayey silt lenses & trace of roots	1	13	29	46								
4	0.50				w/clayey silt lenses & layers		14	31.5	53								
1 -	0.50				w/clayey silt lenses	1	15	34	53				ļ				
1 -	0.50		4	// /	Loose gray sandy silt w/clay lenses	ML	16	36.5									
-					w/clayey silt layers	""-	17	39			[
40-	0.30				Soft gray clay w/clayey silt lenses	СН	1				İ		ļ				
	0.50						18	41.5	. 39								
-	0.50						19	44	48							·	
	0.50				w/clayey silt lenses & layers		20	46.5	51								
50	0.40						21	49	41								·

Comments: Coordinates: North 506135.743, East 3703397.032

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

cale		SPT	S P Symbol	NGVD Gr. Water Depth: See Te	1100	Sample	Depth	Water	Π	Densit	y	Sh	ear T	Bori		erberg				*Legends & Not
In eet	PP	521	R	Visual Classification	USC	Sample Number	Depth In Feet	Content Percent	<u></u>	ry W			,	С	LL	PI		PI		Other Tests
50	0.40			Soft gray clay	СН	22	51.5	39		<u></u>				1		1	<u>. </u>			
1	0.50	,				23	54	45												
]	0.50			w/clayey silt lenses		24	56.5	60			- 1				1					
$\circ \dashv$	0.50					25	59	63												
\dashv	0.50					26	61.5	62										l]
4	0.50					27	64	58			1	•								
]	0.50					28	66.5	59												
ہا	0.50					29	69	66			1									ł
4	0.50			w/silty sand lenses & layers		30	71.5	63			1									
1	0.50			w/silty sand layers		31	74	51										i		
]	0.50			w/clayey sand pockets & shell fragments		32	76.5	45										1		1
,	0.50			w/sand pockets & shell fragments		33	79	32			ı									
-				roginonta				.			١									
4						ļ													,	
1											1									
											1									
4																		-		
+						Ī									•					
1								j												
.]	1					ļ	[j			1									:

Comments: Coordinates: North 506135.743, East 3703397.032

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

(Sheet 1 of 2)

	Elev.:	5.50	Uatum:	: NC	GVD Gr. Water Depth: See Tex	T JOB	NO.: 14	038 D		_		1 6		Bori	ng: A	LGE	3	Refer to	Legends & Note
Scale In	pp	SPT	PSymi	bol	Visual Classification	USC	Sample Number	Depth In Feet	Water Content	L	Density	Sh	ear To	sts	Atte	rberg l	imits		Other
Feet			Ŕ				Number	in reet	Percent	D	ry Wet	Туре	ø	С	LL	PL	PI		Tests
0		10	KHH		oose gray clayey silt w/roots & glass	ML	1 2	0		П									
_		1 _			oose brown clayey silt w/roots, gravel,	ML	1 1	•							1				
		5			Medium stiff gray clay w/clayey silt, gravel, glass, & shells	СН	3	4	43		:								
_	1.00			1	Medium stiff dark gray & tan clay	CH] 4	7	40										
10-	0.30			// 3	w/organic matter & clayey silt pockets Soft gray clay w/clayey silt pockets & enses & organic matter	СН	5	9	50										
-	0.05	i			Soft gray organic clay w/humus layers &	ОН	6	12	141	1									
1	0.30				tecayed wood w/clay & humus layers		7	14	186										
_	0.70			7	Medium stiff gray clay w/organic matter	СН	8	17	86										
20	1.00				k clayey silt lenses w/organic matter & wood		9	19	54										
-	0.60				Medium stiff gray organic clay w/humus ayers & wood	ОН	10	22	180										
	0.60			<u> </u>	w/humus & clay layers		11	24	163							•			
	0.25				oft gray clay w/clayey silt lenses & rganic matter	СН	12	27	60										
30	0.50			71\ 8	Medium stiff gray clay w/trace of wood silt layers	CH	13	29	83										
				}: <u>'</u>	oose gray silty sand w/clay lenses		14	32		l	ł								
-	0.50			N S	fedium stiff gray & tan clay w/sandy ilt layers & lenses	СН	15	34	57										
اہ	0.60			7 N	fedium stiff gray clay w/clayey silt	CH	16	37	66										
40-	0.60			la	yers & lenses		17	39	68										
4	0.75				w/clayey silt pockets		18	42	67					;					
1	0.50						19	44	67										
]	0.60					.	20	47	67					į			·	j	:
50	0.60				w/sandy silt lenses	ŀ	21	49	55		i						Į		

Comments: Coordinates: North 511863.1, East 3706454.431

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

#

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale		-	S	15 10 11 1		Sample	Depth	Water	Density	,]	She	ar Te	sts	Atte	rberg !	imits	T	"Legends & No
n et	PP	SPT	P Symbol	Visual Classification	usc	Number	In Feet	Content Percent	Dry W	-4		φ	С	LL	PL	PI	1	Other Tests
50				Medium stiff gray clay w/silt lenses	СН					+	7,4	,			1	<u> </u>	 	
1	0.75	1				22	52	70	<u> </u>	j						•		
1	0.75			w/silt layers		23	54	66	[1								
1	0.75					24	57	58		1								
;. -	0.75					25	59	57		۱				1	•			[
4	0.60			w/silt pockets		26	62	60										
+	0.75					27	64	60										
1	0.75			w/sand lenses		28	67	65		1								
$\circ \dashv$	0.80			w/clayey sand layers		29	69	59		ĺ								
	0.80					30	72	58									j	ļ
1	1.00			Stiff gray clay w/shell fragments	СН	31	74	56		-							[
1	1.00					32	77	53		ļ								
,	1.20			Medium dense gray clayey sand w/shell fragments & clay layers	SC	33	79											
4			1 1 - f	g						İ								
\dashv							İ			ı								
1										1								
,]										۱								
٦'																		
4																		
4]						j					
, <u> </u>					[ł	ŀ			1								:

Comments: Coordinates: North 511863.1, East 3706454.431

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

(Sheet 1 of 2)

cale In	PP	SPT	Symbo	Visual Classification	USC	Sample	Depth	Water Content	Density	Sh	ear Te	sts	Atte	rberg L	Limits		Other
eet		<u> </u>	R		555	Number	In Feet	Percent	Dry Wet	Туре	Φ	C	LL	PL	PI	1	Tests
0				Stiff dark gray clay w/roots & grass	СН	1	0	32	 	 						 	
]	1.40			Stiff gray & tan clay w/clayey silt lenses & layers, & organic matter	СН	2	2	57	1								
4	1.40			Loose gray clayey silt w/silty sand pockets & lenses	ML	3	4	24									
4	1.20			Medium stiff gray & tan clay w/many silty sand pockets & lenses	СН	4	7	59					ļ			<u> </u>	
이	0.80			Medium stiff gray & dark gray clay w/organic matter	СН	5	9	71]			;				
1	0.80				1	6	12	73									İ
1	0.60			Soft brown & gray organic clay w/clay layers	ОН	7	14	174									
4	1.00			Stiff gray & dark gray clay w/organic clay & wood	СН	8	17	118									
\neg			*****	Loose black humus w/clay layers & wood	PT	9	19	270								:	
1	0.60			Medium stiff gray organic clay w/humus, wood, & decayed roots	ОН	10	22	155									
4	0.60			Medium stiff dark brown & gray organic clay w/clayey silt lenses, wood, roots, & organic matter	OH CH	11	24	229				٠					1
4	0.50			Soft gray & tan clay w/sandy silt		12	27	50							ľ		1
$^{\circ}$	0.50			layers w/sandy silt layers & lenses		13	29	56									
1	0.60			Medium stiff gray clay w/silty sand layers & lenses	СН	14	32	56									
4				Medium compact gray clayey silt w/silty sand layers	ML	15	34										
4	0.25			Soft gray & tan clay w/silty sand layers & lenses	СН	16	37	48									1
1	Ì			Soft gray clay w/silty sand layers & pockets	SM CH	17	39	51				İ					
1	0.50			Medium stiff gray clay		18	42	66									
]	0.75			w/silty sand pockets	i	19	44	64									
4	0.75			w/clayey silt layers		20	47	68							- 1		
	0.75				ŀ	21	49	54	ŀ			l			- 1		Į.

Comments: Coordinates: North 514667.790, East 3709519.893

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale	PP	SPT	S P Symbo	Visual Classification	usc	Sample	Depth	Water Content	D	ensity	She	ear Te	sts	Atte	rberg L	Limits		Other
et			R			Number	In Feet	Percent	Dry	Wet	Type	φ	С	LL	PL	PI	1	Tests
٥٦				Medium stiff gray clay	СН								· · · · · · · · · · · · · · · · · · ·			 -		
٦	0.75	1			1	22	52	72									ļ	
7	0.75				ļ	23	54	62										
]	0.80					24	57	68										
,	0.75			1		25	59	62		j					•	į		
4	1.00			3		26	62	75										
4	1.00					27	64	62		ľ								ļ
+										ĺ								
\dashv	1.20			w/few silty sand layers		28	67	67		- 1			j					Ì
\dashv				Medium dense gray clayey sand w/clay layers & shell fragments	sc	29	69	27					ı					
1	1.20			Stiff gray clay w/clayey sand layers & pockets, & shells	СН	30	72	44										
1	1.25			w/sand pockets & shell fragments		31	74	61					Ì					
]	1.00			Medium stiff gray clay w/clayey sand	СН	32	77	47					l			ļ		
4	0.30			pockets & shells w/clayey sand layers &		33	79	39					- [j		
4				pockets, & shells			i	ļ								l		
4			11	:			ł			ľ						1		
4				ł						1								
+	1			i .]	ļ	j		i								
\dashv			}				ļ			}						- 1		
+								-		- 1			ı					
+							ļ	1					1					
1					1		ļ	1								-		
1	ļ						ŀ	ľ		- 1			1			l		:

Comments: Coordinates: North 514667.790, East 3709519.893

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

cale In	PP	SPT	S	Symbol	Visual Classification	USC	Sample	Depth	Water	1	Density	Sh	ear Te	sts	Atte	rberg	Limits		Other
eet	r.	351	L R	Syllibol	Visual Classification	USC	Number	In Feet	Content Percent	Dr	y Wet	Type	φ	С	LL	PL	PI	1	Tests
0					Loose gray limestone & shells	GP	1	0						·		<u></u>			
1		8	\boxtimes	///	Medium stiff gray clay w/shells	СН	2	2	31						İ			Ĭ	i
	0.50				Medium stiff gray & tan clay w/silty sand pockets & shell fragments	СН	3	4	55										
.]	0.40				Soft gray clay w/clayey silt lenses & organic matter	СН	4	7	68										
10-	0.40				w/clayey silt pockets, organic matter, wood, & roots		5	9	59										<u> </u>
1	0.30				w/wood		6	12	92	ŀ					1				Ì
1	0.30				w/sandy silt lenses, pockets, & wood		7	14	46									1	
]					Very loose gray sandy silt w/clay lenses	ML	8	17											
20-				<i>YYY</i>	Medium stiff black organic clay w/humus	ОН	9	19	197									ļ	
\dashv					Medium stiff gray clay w/organic clay & humus layers	СН	10	22	83										
4	0.25	İ		Ш	Loose gray sandy silt w/clay pockets	ML	11	24	39									i i	
}					Medium dense gray silty sand	SM	12	27											
·-		6	A		Medium stiff gray clay w/silty sand layers	СН	13	29	61										
- 1					Loose gray fine sand w/clay layers	SP	14	32											
\dashv		28	Ø	H-H	Medium dense gray silty sand w/clay	SM	15	34			ł								
1		27	X:		layers		16	36											
٦		5	X		Medium stiff gray clay w/sandy silt	СН	17	39	37										
4	0.20				Loose gray silty sand	SM	18	42			j			İ					
+	0.20						19	44											
]	0.25				Soft gray clay	СН	20	47	66		ł								
١٥	0.25				w/silty sand layers & silt lenses		21	49	46		1			- 1	•			ľ	•

Comments: Coordinates: North 485906.337, East 3682390.777

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale n	PP	SPT	S P Symbo	Visual Classification	usc	Sample	Depth	Water Content	Der	nsity	She	ar Te	sts	Atte	rberg !	Limits	1	Other
et			R	Tisasi Glassination	000	Number	in Feet	Percent	Dry	Wet	Type	φ	С	LL	PL	PI	7	Tests
0				Soft gray clay	СН					<u> </u>	<u> </u>						- 	<u> </u>
- 1	0.30	1		w/clayey silt layers & silt lenses		22	52	51	ł								1	
1	0.40			w/few silt lenses		23	54	69										
]	0.30					24	57	58]
$\circ \downarrow$	0.30			w/silt layers		25	59	59										
4	0.50			Medium stiff gray clay	СН	26	62	54										
1	0.50					27	64	54										ĺ
]	0.50					28	67	67										
\downarrow	0.60				ŀ	29	69	65										ĺ
4	0.60					30	72	60										
1	0.60			w/sand layers & pockets, clayey sand layers, & shell		31	74	45		ł			ļ					
1				\ tragments /	sc	32	77			ł			1					
				Medium dense gray clayey sand w/clay layers & shell fragments		33	79	1					İ					·
4]		- 1			ı					
4													ı					
+		•								ļ								
1																		
7										j			İ					
1						-				İ								
4							İ	1		- 1			1					

Comments: Coordinates: North 485906.337, East 3682390.777

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

(Sheet 1 of 2)

Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 2/29 & 3/01/96 Boring: ALGW2 Ground Elev.: 3.58 Refer to "Legends & Notes" Scale Water Density Shear Tests Atterberg Limits Sample Depth Other PP SPT Visual Classification USC In Symbol Content Number In Feet Tests Percent Feet Drv Wet С LL Pi Type PL Loose tan & gray clayey silt w/trace of ML 0.0 2.40 fine sand 2 1.5 СН 25 Very stiff dark gray & tan clay w/thin clayey silt & sandy silt layers & 4 37 pockets. & trace of wood СН Stiff dark gray clay w/clayey silt 1.20 6.5 53 layers & decayed wood Loose gray clayey silt w/thin clay ML 0.70 5 9 10 lavers & few roots CH Soft gray clay w/clayey silt pockets & 0.25 6 11.5 46 trace of organic matter 0.25 w/clayey silt lenses, roots, 7 14 80 trace of organic matter, & shell fragments ML 0.50 8 16.5 Loose gray clayey silt w/organic matter & organic clay layers 0.40 19 20 . Medium stiff dark gray clay w/organic matter & organic clay layers СН 0.90 10 21.5 119 0.75 w/trace of organic matter 11 24 118 Medium stiff gray clay w/fine sand & CH 0.50 silt lenses 12 26.5 40 Loose gray fine sand w/trace of organic SP matter & few clay lenses 29 13 30 50=11 Very dense gray fine sand SP 14 31 Very loose gray clayey silt w/clay ML 15 33 СН Medium stiff gray clay w/clayey silt lenses & thin layers, & pockets 0.50 16 36.5 38 0.50 w/clayey silt layers 17 39 37 40 0.60 w/few fine sand lenses 18 41.5 44 0.75 19 55 20 46.5 0.70 w/few clayey silt lenses 43 21 0.70 49 48

Comments: Coordinates: North 485135.505, East 3684681.569

w/trace of organic matter

50

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

+

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Other	nits	Lim	rberg	Atte	its .	r Tes	hear	Sh	ity	Der	Water Content	Depth	Sample	USC	Visual Classification	S P Symbol	SPT	22	cale
Tests	PI		PL	LL	С	ø	T	Туре	Vet	Dry	Percent	In Feet	Number	USC	Visual Classification	R Symbol	561	PP	In Feet
		•					•••				45	51.5	22	СН	Medium stiff gray clay			0.75	50 -
											42	54	23		w/clayey silt layers			0.90	-
											61	56.5	24					0.90	-
			-								50	59	25					0.90	60
											60	61.5	26					0.90	-
											60	64	27					0.90	1
											58	66.5	28		w/few clayey silt lenses			0.90]
	ľ										58	69	29					0.90	$\circ \dashv$
											38	71.5	30	SC	w/sand layers, pockets, & shell fragments			0.75	4
												74	31	SP	Loose gray clayey sand w/clay pockets Dense gray fine sand w/shell fragments		22]
												76.5	32		& few clay lenses		33		4
											19	79	33	CL	Very stiff green & tan sandy clay				۰-
	[İ						4
									ı]
																			\dashv
	- }								Ì										ᅴ
																			1
]
]

Comments: Coordinates: North 485135.505, East 3684681.569

LOG OF BORING AND TEST RESULTS U.S. ARMY CORPS OF ENGINEERS

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

(Sheet 1 of 2)

	FIGA	1	isi	NGVD Gr. Water Depth: See Tex	7. 000	T 140 14		T	\top		70		DON	ng: A			Refer to	Legends & Note
Scale In Feet	PP	SPT	PSymbo	Visual Classification	usc	Sample Number	Depth In Feet	Water Content	-	Density	ļ	ear Te		├	,	Limits]	Other Tests
			R			<u>ļ</u>		Percent	Dr	ry Wet	Туре	φ	С	ш	PL	PI		18313
0_		1		Medium stiff gray clay w/roots, shells	СН	1	0	27	1									
		İ		Loose tan silt w/roots	ML	2	2		ĺ					l				
1	1.75			Stiff gray, tan, & brown clay w/silt layers & pockets	СН	3	4	29										
	0.75			Medium stiff gray & dark gray clay w/silty sand layers & pockets	СН	4	7	76						l				
10-	0.30			Soft gray clay w/silty sand pockets & shell fragments	СН	5	9	69					•		-			
-	0.30			w/clayey silt layers, silty sand lenses, & shells		6	12	52									ĺ	
				Medium stiff gray clay w/organic clay & clayey silt lenses	СН	7	14	55			i							
_			****	Loose black humus w/clay layers	Pt	8	17	133	l									
20-	0.30			Loose gray clayey silt w/silty sand layers & lenses	ML	9	19											
-	0.25	1		Loose gray silty sand	SM	10	22			ļ								•
-	0.25	į		Soft gray clay w/shell fragments	СН	11	24	80										
1	0.30			w/organic matter & shell		12	27	71										
30-	0.40			fragments w/silty sand layers & lenses		13	29	52										
	0.40			w/silty sand layers & pockets		14	32	45										
				Medium compact gray sandy silt w/clay layers	ML	15	34											
J	0.30			Soft gray clay w/silty sand layers	СН	16	37	43										
40		16		Medium dense gray silty sand w/clay layers	SM	17	39											
4		18				18	42											
4	l	14			<u> </u>	19	44	j		1								
				Medium stiff gray clay w/silty sand layers	СН	25		.	l	ľ]	
4	0.50			, i		20	47	45		ł						j		:
50	0.50				<u> </u>	21	49	57					- 1			- 1	I	

Comments: Coordinates: North 489031.072, East 3690060.058

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

le	PP	SPT	S P Sym	boil	Visual Classification	USC	Sample Number	Depth	Water Content		Density	5	hear	Tes	its	Att	erbei	rg Li	mits		*Legends & I
te		J	R		Visual Glassification	030	Number	In Feet	Percent	٥	ry Wet	Турс	,	φ	С	LL	Р	<u>ተ</u>	Pi	1	Other Tests
9				\overline{X}	Medium stiff gray clay	СН						1					<u> </u>			 	
1	0.50					ĺ	22	52	63	l		l		•		ļ			•	j	
1	0.60						23	54	63												
]	0.60						24	57	63	Ì											
\dashv	0.75						25	59	58							•	*			İ	
\dashv	0.60						26	62	55											ĺ	
1	0.60						27	64	58												
]	0.75						28	67	59												
4	0.75						29	69	57											İ	
+	1.00			7	Stiff gray clay	СН	30	72	59												
1	1.00				w/silty sand pockets		31	74	57												
]	0.80				Medium stiff gray sandy clay w/clay layers & shells	CL	32	77	32												
,-	0.80				Medium stiff gray clay w/clay layers, shells, sand pockets, & lenses	СН	. 33	79	43												
1																					
-	ŀ							1							İ						
+				-											ł						
\dashv						i i	1														
							-													1	
		:					1				- 1										
			1	1				- 1	1		- 1										

Comments: Coordinates: North 489031.072, East 3690060.058

LOG OF BORING AND TEST RESULTS U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

(Sheet 1 of 2)

çale			S	J		Sample	Depth	Water	De	ensity	Sh	ear Te	sts	Atte	rbera l	Limits	1	
in eet	PP	SPT	L Symt	ool Visual Classification	usc	Number	In Feet	Content Percent	Dry	Wet		φ	С	LL	PL	Pi	1	Other Tests
0 -	2.20			Loose brown medium to fine sand w/tr	ace SP ML	1 2	0 1.5						<u> </u>		L	·		
-	1.20			Compact gray & tan clayey silt w/silty clay pockets & layers, & clay layers Loose gray clayey silt w/clay layers	_/ ML	3	4											
-	1.20			Stiff dark gray & brown clay w/organic matter & organic clay layers	CH ML	4	6.5	168										
10—	0.50			Loose gray clayey silt		5	9								-			
-	0.25			Soft dark gray clay w/organic matter, shells, & shell fragments	СН	6	11.5	86						Ì				
-	0.25					7	14	55										
1	0.40			Soft gray clay w/organic matter & shell fragments	СН	8	16.5	76										ĺ
۰۷	0.30			Loose gray clayey silt w/sandy silt layers	ML	9	19							l				
-	0.70			w/silty sand layers & trace of wood	/ SM	10	21.5											
				Very loose to loose gray silty sand w/sandy silt layers	_/ ML	11	24											
	0.90			Loose gray clayey silt w/clay layers Soft gray clay w/clayey silt layers	СН	12	26.5											
۰-	0.40			Soft gray clay w/clayey siit layers	Ch	13	29	63										
\dashv	0.40			w/clayey silt lenses		14	31.5	67		ĺ								
4	0.40			w/few clayey silt lenses		15	34	59										
	0.40					16	36.5	58										
,_]	0.40			Medium stiff gray clay	СН	17	39	60										
4	0.40			ivieulum stiff gray clay	CH	18	41.5	47										
4	0.40					19	44	53		İ								
1	0.50					20	46.5	69		İ							į	
, 1	0.50			A		21	49	60		į						- 1		;

Comments: Coordinates: North 491181.668, East 3692925.745

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

Scale In	PP	SPT	S P Symbo	Visual Classification	USC	Sample Number	Depth	Water	Densit	y	She	ear Te	sts	Atte	rberg	Limits		Legends & Not
Feet			R		030	Number	in Feet	Content Percent	Dry W	et	Туре	φ	С	LL	PL	PI		Other Tests
50	0.60			Medium stiff gray clay	СН	22	51.5	58					L		<u> </u>	1		
4	0.60					23	54	59		ı	!							
]	0.70			w/few clayey silt lenses		24	56.5	67		1								
60	0.70					25	59	59		1								
	0.70					26	61.5	61										
	0.70					27	64	59										
]	0.50			Loose gray clayey sand w/clay pockets & shell fragments	SC	28	66.5			1								
70	0.60			Medium stiff gray clay w/sand lenses & layers, & shells	СН	29	69	37										
1	0.60			Loose gray clayey sand w/small clay layers & shell fragments	sc	30	71.5			1								
]	2.25			Very stiff greenish-gray & tan sandy clay w/sandy silt lenses	CL	31	74	21									ļ	
4	2.25					32	76.5	21									1	Į.
80-	1.75			Stiff greenish-gray & tan sandy clay	CL	33	79	28									 -	
4					1													
1																		
4																		
90-												•						
+		;				j												
]								İ										
	1				İ		i		•				- 1			•	1	1

Comments: Coordinates: North 491181.668, East 3692925.745

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

(Sheet 1 of 2)

Ground	Elev.:			n: NGVD Gr. Water Depth: See	Text	Job No.	: 14638	Date I	Drilled: 3	04/96		. [Boring	j: AL	.GW5	Refer to	"Legends & Notes"
Scale In	PP	SPT	S P Symbol	Visual Classification	USC	Sample	Depth	Water Content	Density	She	ear Te	sts	Atte	rberg L	imits		Other
Feet	,,,	J.,	R	VIS. 5.155.11.43.15.17		Number	In Feet	Percent	Dry Wet	Type	φ	С	LL	PL	PI		Tests
0 -	2.40			Medium compact dark gray & tan clayey silt w/shells & roots	ML	1 2	0-0.5 1.5-2.5									-	
-	1.90			Very compact tan & gray clayey silt w/fine sand pockets	ML	3	4-5										
	0.60			Dense brown & dark gray silty sand w/clay lenses & pockets	СН	4	6.5-7.5	45								•	
10-	0.30			Medium stiff gray & tan clay w/clayey silt lenses & pockets	СН	5	9-10	77									
	0.25			Soft gray & tan clay w/clayey silt pockets	СН	6	11.5-12.5	77									
-				Soft gray clay w/clayey silt lenses, pockets, shell fragments, & organic matter	СН	7	14-15	59									
-	0.60			Soft gray clay w/clayey silt lenses & organic matter	СН	8	16.5-17.5	47							,	!	
20	0.30		////	Medium stiff gray clay w/clayey silt, humus layers, wood, & organic clay	sc	9	19-20	31		Ì							
			iii	Loose gray clayey sand	ML	10	21.5-22.5										
-				Loose gray clayey silt w/clay lenses Loose gray clayey silt		11	24-25										
	0.40			Soft gray clay w/organic matter & shell fragments	СН	12	26.5-27.5	74									
30-	0.30			Soft gray & tan clay w/silty clay layers, shell fragments, & organic	СН	13	29-30	107									
-	0.30			matter w/organic matter		14	31.5-32.5	90									
	0.30					15	34-35	74									
	0.30			Soft gray clay w/clayey silt layers & lenses & silt lenses	СН	16	36.5-37.5	50									
40-	0.30			w/sandy silt layers & lenses		17	39-40	57									
-	0.40			w/clayey sand lenses & sandy silt lenses		18	41.5-42.5	63									
-	0.40			•		19	44-45	64									
	0.40	:		w/clayey silt lenses		20	46.5-47.5	67								j	
50	0.40			w/few clayey silt lenses		21	49-50	67									:

Comments: Coordinates: North 493544.923, East 3696054.745

LOG OF BORING AND TEST RESULTS U.S. ARMY CORPS OF ENGINEERS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Deturn NGVD Or Motor Donth, Soc Taxt Joh No. 14629 Data Dellada 2004/06

+

Elev.:	7.816	Datur	n: NGVD Gr. Water Depth: See	e l'ext	Job No.	14638		Drill	led: 3	<u>/04/9</u>	6			Boring): <i>P</i>	LG	<i>N</i> 5	Refer to	"Legends & Note:
PP	SPT	Symbol	Visual Classification	usc	Sample	Depth	Water Content					Test	3	Atte	rberg	Limi	ts		Other Tests
		R		J	MUITIDEL	III reet	Percent	Dr	y Wet	Туре	9 9	•	С	LL	PL	. 1	7		Tests
0.40			Soft gray clay	СН	22	51.5-52.5	69												
					23	54- 55	67			1									
					t			ĺ									ł		
					l .	i								i					
				ĺ	ĺ					İ									
					1	i i													
0.40					1														
0.40				1	30	71.5-72.5	60						ı						٠
0.40					31	74-75	66												
			w/clayey sand layers & pockets, & shell fragments	}	32	76.5-77.5	35												
					33	79-80	34						ļ						
													İ						•
													ı						
								•											
						ļ													
													ı				1		
						1							ı						:
	0.40 0.40 0.40 0.40 0.40 0.40 0.40	PP SPT 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	PP SPT Symbol Symbol Q.40 Q.40 Q.40 Q.40 Q.40 Q.40 Q.40 Q.40	PP SPT R Symbol Visual Classification 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	PP SPT S P R R P R P R P R P R P P R P P P R P	PP SPT P R Symbol Visual Classification USC Sample Number 0.40 22 23 24 23 24 0.40 25 26 27 28 29 29 0.40 30 31 32 32 32	PP SPT Symbol Visual Classification USC Sample Number Depth In Feet	PP SPT Section Visual Classification USC Sample Number Depth In Feet Water Content Percent 0.40 Soft gray clay CH 22 51.5-52.5 69 0.40 23 54-55 67 0.40 24 56.5-57.5 61 0.40 25 59-60 57 0.40 26 61.5-62.5 51 0.40 28 66.5-67.5 68 0.40 29 69-70 63 0.40 30 71.5-72.5 60 0.40 31 74-75 66 w/clayey sand layers & pockets, & shell fragments 32 76.5-77.5 35	PP SPT Symbol Visual Classification USC Sample Number Depth In Feet Feet Depth In Feet Dep	PP SPT P Symbol Visual Classification USC Sample Number Percent Percent Depth Percent Dry Wet 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	PP SPT	PP SPT	PP SPT Symbol Visual Classification USC Sample Number In Feet Depth Content Dry Wet Type \$\phi\$ 0.40 0.40 23 54-55 67 0.40 24 56.5-57.5 61 0.40 25 59-60 57 0.40 26 61.5-62.5 51 0.40 27 64-65 62 0.40 29 69-70 63 0.40 0.40 0.40 0.40 30 71.5-72.5 60 0.40 0.40 31 74-75 66 w/clayey sand layers & pockets, & shell fragments 32 76.5-77.5 35	PP SPT	PP SPT Symbol Visual Classification USC Sample Number Depth Numbe	PP SPT Symbol Visual Classification USC Sample Number Depth (In Feet Parcent Depth (In Feet Parcent Depth (In Feet Parcent Dry Wet Type φ C UL PL	SPT SPT Symbol Visual Classification USC Sample Number Depth Number Number	PP SPT Symbol Visual Classification USC Sample Number Depth Number Depth Number Depth Number Depth Number Depth Number Dry Wet Type O C LL PL Pl	PP SPT

Comments: Coordinates: North 493544.923, East 3696054.745

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

	Elev.:	1	Iel	m: NGVD Gr. Water Depth: So		1				T -				• • • •			 Legends & Note
cale in eet	PP	SPT	Symbol	Visual Classification	usc	Sample Number	Depth In Feet	Water Content Percent	Density Dry Wet			Test	S C	LL	rberg l	PI	Other Tests
0				Medium compact gray & tan clayey silt	ML	1	0-0.3	27	 -	1		1				-	
- 4	0.70			\\w/roots & gravel	_/ SP	2 3	0.3-1 1.5-2.5	5 46	}	1			1			. أ	
				Loose tan fine sand w/gravel	_/ CH	4	4-5	46		1							
7	0.30			Medium stiff gray, tan & black clay w/clayey silt lenses, pockets, organic	СН	7	7-5	70		1						- 1	
1	0.25			matter, organic layers, & brick fragments	╝	5	6.5-7.5	66								Î	
10 —			ant	Soft gray & tan clay w/clayey silt layers, lenses, pockets, & organic	ML	6	9-10	32									
_				matter w/sandy silt layers & trace	ОН	7	12-12.5	89						ı			
4	0.25			of organic matter Loose gray clayey silt w/clay layers	7 ***	8	14-15	210								ļ	
	0.25			Medium stiff dark gray & black organic	/											l	
٦				\clay w/clay layers w/decayed wood	/ CH	9	16.5-17.5	92		1						1	
	0.25			Soft gray clay w/trace of organic	СН	10	19-20	109	1								
۱ ٔ				Soft gray clay w/trace of organic matter & decayed wood	_	11	21.5-22.5	75		1						Ī	
				w/trace of organic matter		12	24-25	49								1	
- 1			atti	w/clayey silt layers & clayey silt pockets	ML	1 '-										l	
]		,		Loose gray clayey silt w/clay lenses	_	13	26.5-27.5	33								ŀ	
. 1				Loose gray silty sand w/clay layers &	SM	14	29-30	32									
»H		ļ	1-1-1	lenses		15	31.5-32.5	34								- 1	
		ŀ		Loose gray clayey silt w/clay lenses	ML	ļ '°	31.3-32.5	34					i			i	
\dashv				Medium compact gray sandy silt	ML	16	34-35	35								İ	
- 1	0.30	ĺ		Soft gray clay w/silty sand lenses	СН	17	36.5-37.5	47		1							
4				Soft gray diay w/sitty sails letted		٠	00.40	40		ŀ							
ᆈ	0.30	ĺ		Soft gray clay w/clayey silt lenses	CH	18	39-40	40		ŀ						ĺ	
4	0.30	!		Medium stiff gray clay w/clayey silt layers	СН	19	41.5-42.5	55									
4	0.30			·		20	44-45	55								1	
4	0.30					21	46.5-47.5	64									
<u>,</u> †	0.30	1]		22	49-50	57								ŀ	

Comments: Coordinates: North 500281.942, East 3699699.114

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

+

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Ground	Elev.:			m: NGVD Gr. Water Depth: See	Text	Job No.	14638	Date I	Dril	led: 4	/11	1/96	_		Borin	g:	ALC	3W6	Refer to	"Legends & Notes
Scale In	PP	SPT	S P Symbol	Visual Classification	USC	Sample Number	Depth In Feet	Water Content		Density		She	ar Te	sts	Att	erber	g Lir	nits		Other
Feet			Ř			IADIIIDAI	III Feet	Percent	Dr	y Wet	Ţ	уре	ф	С	LL	P	L	PI		Tests
50	0.30			Medium stiff gray clay	СН	23	51.5-52.5	58												
-	0.30					24	54-55	49											1	
	0.30					25	56.5-57.5	56												
60-	0.30					26	59-60	54								•				
-	0.30					27	61.5-62.5	66	j										<u> </u>	
	0.30					28	64-65	62			ĺ									
	0.40			Medium stiff gray clay w/silty sand lenses	СН	29	66.5-67.5	62												
70	0.40	l		w/silty sand lenses & pockets		30	69-70	60	1						ļ					
~-				Loose gray clayey sand w/shells & clay layers	SC	31	71.5-72.5	26												
			7777	Medium dense gray fine sand w/clay layers	SP	32	74-75	25												
] -	0.40			Medium stiff gray clay w/fine sand pockets & shell fragments	СН		76.5-77.5													
80-	0.40					34	79-80				l							ı		
-																		ı	1-	
				į			1													
90-																		ŀ		
-																				
-																				
]																				:
100		<u> </u>		·							L							- 1	1	

Comments: Coordinates: North 500281.942, East 3699699.114

LOG OF BORING AND TEST RESULTS U.S. ARMY CORPS OF ENGINEERS

(Sheet 1 of 2)

#

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

	Elev.:	i	Isl	NGVD Gr. Water Depth: See Tex	 	<u> </u>	1	14/0405	D				T			"Legends & Note
icale In Feet	PP	SPT	P L Symbo	Visual Classification	USC	Sample Number	Depth In Feet	Water Content Percent	Density Dry Wet	Type	ear Tes	C	LL	rberg L PL	imits	Other Tests
0	3.25		7777	Loose tan & gray clayey silt w/trace of fine sand	ML CH	1 2	0-1 1.5-2.5	32 23	<u> </u>					-		
-	2.25			Very stiff dark gray & tan clay w/thin clayey silt & sandy silty clay &	СН	3	4-5	29		i					·	
1	2.10			w/organic matter & silt lenses	СН	4	6.5-7.5	32					İ			ļ
10-	0.60		IIII	Very stiff dark gray & tan clay w/silt pockets, thin sandy silt layer & lenses, few pockets, & trace of organic matter	ML	5	9-10	43								
-	0.80			Stiff dark gray clay w/clayey silt	СН	В	11.5-12.5	56					İ			
-	0.70			Loose gray clayey silt w/thin clay layers & few roots	СН	7	14-15	53								
	0.50		ttu	Soft gray clay w/clayey silt pockets & trace of organic matter	ML	8	16.5-17.5	40								
٦٥	0.95			Medium stiff gray clay w/clayey silt lenses, roots, trace of organic matter,	1	9	19-20	45								
4	0.55			& shell fragments Loose gray clayey silt w/clay layers	СН	10	21.5-22.5	39								
	0.05			Medium stiff dark gray clay w/organic clay layers & organic matter	СН	11	24-25	43								
_	0.05			Very soft dark gray clay w/trace of organic matter		12	26.5-27.5	44							1	
۰	0.05			w/fine sand & silt lenses Loose gray fine sand w/few clay lenses	SP	13	29-30									
	0.05			& trace of organic matter		14	31.5-32.5	70							i	İ
\dashv	0.05			Very loose gray clayey silt w/clay layers	ML	15	34-35	34								
]	0.05			Medium stiff gray clay w/clayey silt lenses, pockets, & thin clay layers	СН	16	36.5-37.5			:						
$\circ \dashv$	0.05	!		Loose gray sandy silt w/clayey silt	ML	17	39-40									
4	0.05	_		w/clayey silt lenses, organic matter, & fine sand lenses		18	41.5-42.5	33								
4		6		Medium stiff gray clay w/silt lenses	СН	19	44-45	43							ŀ	
1	0.05			Soft gray clay w/silty sand layers & trace of organic matter	СН	20	46.5-47.5	34								· ·
0_	0.05			1		21	49-50	39								 <u> </u>

Comments: Coordinates: North 485135.505, East 3684681.569

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

2 of 2)

Ground	Elev.:	8.78	Datu	m: N	IGVD Gr. Water Depth: See Tex	t Job	No.: 14	638 D	ate Drille	ed:	3/04/	96		Bori	ng: A	LGV	٧7	Refer to	"Legends & Notes
Scale In	PP	SPT	S P L	mbol	Visual Classification	usc	Sample Number	Depth In Feet	Water Content Percent	<u></u>	ensity	ļ	ear Te				Limits		Other Tests
Feet 50	0.05		R	7	Soft gray clay Very soft gray clay w/silty sand layers	CH CH	22	51.2-52.2		טק	Wet	Туре	φ	C	LL	PL	PI		
-	0.05				Soft gray clay w/clayey silt layers	СН	23	54-55	28										
-	0.30						24	56.5-57.5	52										
60 —	0.30					!	25	59-60	46										ı
4	0.40						26	61.5-62.5	52										
-	0.40						27	64-65	53										
	0.35				w/few clayey silt lenses & layers		28	66.5-67.5	55										
70	0.35						29	69-70	55										
٦	0.30				w/fine sand lenses, layers & pockets, & shell fragments		30	71.5-72.5	51										
	0.55				Loose gray clayey sand w/clay pockets	sc	31	74-75	52					:					
4	0.60		7		Medium dense gray fine sand w/few clay lenses & shell fragments	SP	32	76.5-77.5	34										
80-	0.60			ZZZ	Stiff green & tan sandy clay w/sand pockets & shell fragments	CL	33	79-80	32										
]																			
-																			
-				l															
90-																			•
]					·														
4																			
100					:														•

Comments: Coordinates: North 485135.505, East 3684681.569

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

Porings ALCIMO Determine to a server

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Deturn NGVD Gr Water Donthy See Taxt Joh No.: 14638 Date Drillad: 2/04/96

Ground	Elev.:	3.951	Datur	n: NGVD Gr. Water Depth: See	Text	Job No.:	14638	Date	Drille	d: 3/	04/96			Boring	<u> 3: A</u>	LGW	Refer to	"Legends & Note:
Scale In	PP	SPT	S P Symbol	Visual Classification	USC	Sample	Depth	Water Content	De	nsity	She	ear Te	sts	Atte	rberg	Limits		Other
Feet	'']	R			Number	In Feet	Percent	Dry	Wet	Type	•	С	LL	PL	PI		Tests
0 -	0.75			Medium stiff gray & tan clay w/roots & organic matter w/roots & organic matter	СН	1 2	0-1 1.5-2.5	58 88										
_	0.50			Soft dark gray clay w/humus layers, organic matter, organic clay layers	СН	3	4-5	140						1				
	0.20			Extremely soft gray clay w/wood & organic matter	СН	4	7.5-8.5	196				•						
10-	0.20			w/wood, organic matter & humus layers		5	9-10	224										
-	0.20	<u>.</u>		Very soft gray clay w/clayey silt pockets	СН	6	11.5-12.5	78										:
-	0.20			w/wood		7	14-15	71										
1	0.25			w/trace of wood & organic matter		8	16.5-17.5	82					•		•			
20 —	0.20			w/clayey silt layers		9	19-20	85										
-	0.20			w/sandy silt lenses & layers	GU	10	21.5-22.5	40										
_	0.30			Soft gray clay w/clayey silt & sandy silt lenses	СН	11	24-25	41										<u> </u>
_	0.40			w/clayey silt lenses		12	26.5-27.5	70									ļ	
30 —	0.30					13	29-30	78										
-	0.30					14	31.5-32.5	76										
-	0.30					15	34-35	67										
j	0.30					16	36.5-37.5	61										
40 —	0.40					17	39-40	78										
-	0.40					18	41.5-42.5	69										
-	0.40					19	44-45	69										
4	0.40					20	46.5-47.5	68										:
50_	0.50					21	49-50	61						<u> </u>				

Comments: Coordinates: North 509148.427, East 3704175.151

LOG OF BORING AND TEST RESULTS U.S. ARMY CORPS OF ENGINEERS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

#

Ground	Elev.:	3.951	Datu	m: NGVD Gr. Water Depth: See	Text	Job No.:	14638		Drilled: 3	04/96	3		Boring	j: A	LGW	Refer to	"Legends & Notes
Scale in	PP	SPT	Symbol	Visual Classification	usc	Sample Number	Depth In Feet	Water Content	Density	 	ear Te		 		Limits		Other Tests
Feet 50	,,		R	Soft gray clay w/clayey silt lenses	СН			Percent	Dry Wet	Type	φ	С	ᄔ	PL	PI		16313
	0.50					22	51.5-52.5	60					l		•		
-	0.50					23	54-55	63									
]	0.50			w/sandy silt lenses	[-	24	56.5-57.5	65		İ							
60 —	0.50			w/sandy silt lenses & layers		25	59-60	69									
4	0.20			Loose gray clayey sand w/shell fragments	SC	26	61.5-62.5										
1	0.40	! !		Soft gray clay w/clayey sand layers & shell fragments	СН	27	64-65	51									
]	0.50			Soft gray clay w/sand lenses & shells	СН	28	66.5-67.5	61							:	ļ	·
70-	0.50			w/sand lenses & pockets, & shell fragments		29	69-70	35					1			i i	
-	0.50					30	71.5-72.5	48									
]	0.50					31	74-75	32	:								
]	0.50					32	76.5-77.5	60									
80-	0.70					33	79-80	67									
4						:										,	
1]									
]																	
90								i									•
4																	
]																	
]															ł		:
100			<u> </u>	<u></u>											[

Comments: Coordinates: North 509148.427, East 3704175.151

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale in	PP	SPT	PSymbol	Visual Classification	USC	Sample	Depth	Water	Dens	ity	She	ar Te	sts	Atte	erberg	Limi	its		0.5
eet	. Tr	JF.	R	Visual Classification	USC	Number	In Feet	Content Percent	Dry 1	Wet	Туре	φ	С	LL	PL	Т	PI		Other Tests
°-	1.90			Stiff gray & brown silty clay w/roots & organic matter	CL	1 2	0 1.5	25 41					L		 -	_ !			
	1.50			Very stiff gray & brown silty clay w/roots, organic matter, & trace of wood	СН	3	4	42											
]	0.50			Stiff gray & tan clay w/clayey silt lenses & organic matter	СН	4	6.5	74											
10-	0.60			Soft gray clay w/sandy silt lenses Medium stiff gray & brown clay	СН	5	9	153											
4	0.50			w/organic matter & organic clay layers Soft gray & brown clay w/humus layers,	СН	6	11.5	129						ł					
1	0.50		ŽŽŽŽ	\wood & roots \Soft brown humus w/roots	PT	7	14	388						ŀ			-		
]	0.50			Soft gray & brown organic clay w/roots & humus layers	J	8	16.5	194											
0-	0.50					9	19	126											
1	0.50			Soft black & dark gray clay w/humus layers & many roots	СН	10	21.5	193		ł							-		
]	0.50			Soft gray & brown organic clay w/clayey silt layers & organic matter	он	11	24	190		İ									
4	0.30			Soft gray clay w/clayey silt lenses	СН	12	26.5	75											
0-	0.30					13	29	80		- 1							-		
Ţ	0.30			Loose gray clayey silt w/small clay layers & sandy silt lenses & layers	ML	14	31.5										- [-		
4	0.30			Soft gray clay w/clayey silt lenses	СН	15	34	64											
4	0.30					16	36.5	75											
9	0.30					17	39	64										i	
]	0.30	•				18	41.5	70											
4	0.40					19	44	67			•								
, -	0.30					20	46.5	66		ı									:

Comments: Coordinates: North 513359.703, East 3707077.608

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

round	Elev.:	6.009	Datum:	NGVD Gr. Water Depth: See Te	xt Job	No.: 14	638 D	ate Drille	ed: 3/05/	96 Bor	ing: ALGW9	Refer to "Legends & Notes
Scale In Feet	PP	SPT	S P Symbol	Visual Classification	usc	Sample Number	Depth In Feet	Water Content	Density	Shear Tests	Atterberg Limits	Other Tests
			R	<u> </u>				Percent	Dry Wet	Type p C	LL PL PI	lests
50 -	0.50			Soft gray clay w/clayey silt lenses	СН	22	51.5	66				
_	0.50					23	54	63				
. =	0.50					24	56.5	61				
60 —	0.50					25	59	58				
-	0.50					26	61.5	62		İ		
-	0.50					27	64	61		•		
	0.50					28	66.5	55				
70 —	0.50			w/sand layers		29	69	68]	
-	0.30	!		Loose gray clayey sand	sc	30	71.5					
-	0.50			Soft gray clay w/shells & clayey sand lenses & layers	СН	31	74	58				
1	0.50			w/sandy silt lenses & layers	i	32	76.5	58			1	
80 —	0.50			w/sandy silt lenses	ļ	33	79	39		·	1	
							į					
							ĺ			•		
- 1								j			· [
90								İ				
••-							j					
4												
4											.	
100_				·								·

Comments: Coordinates: North 513359.703, East 3707077.608

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

Scale			S		J	,,,,,	Sample	Depth	Water		Density	SI	near To	ests	Atte	rberg l	Limits		Other
In Feet	PP	SPT	L R	Symbo	Visual Classification	USC	Number	In Feet	Content Percent	0	ry Wet	Туре	ø	С	LL	PL	PI		Tests
0					Medium compact tan clayey silt w/root		1	0	31	П									
	0.60				Medium compact tan & gray clayey silt w/silty clay layers & shell fragments		2	1.5	20						ŀ				
]	1.80				Stiff dark gray & tan clay w/clayey silt layers	СН	3	4	27										
- 1	2.50	ľ			Very stiff gray & tan clay w/clayey	СН] 4	6.5	32			Ì							1
10					silt layers & pockets Medium stiff gray & tan clay w/gravel	СН	5	9	52										
4	0.30				Soft gray & tan clay w/organic clay layers & organic matter	СН	6	11.5	89	ĺ									
4	0.30				Loose dark brown humus w/organic lay	ers PT	7	14	267										
1	0.30				Soft gray clay	СН	8	16.5	69										
20					Soft dark brown & gray organic clay w/humus pockets	ОН	9	19	178			ĺ							
4					Soft gray & tan clay w/silty sand layers	СН	10	21.5	54										
1					Soft gray clay	СН	11	24	81										
							12	29.5	51								i		
30						SM	4 -	-				i							
	0.30				Soft gray clay w/clayey silt lenses	СН	13	31.5	40						1			:	
]	0.30						14	34	69						Ì				
]	0.30				w/few silt lenses		15	36.5	69										
40-	0.30				3		16	39	65										
-	0.30						17	41.5	66										
4	0.30						18	44	68								ł		
]	0.30				w/few clayey silt lenses		19	46.5	59										:
50	0.30	1			4	1	20	49	56						Ī		- 1	ł	

Comments: Coordinates: North 517774.112, East 3712102.544

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale 1	PP	SPT	P Symbol	Visual Classification	usc	Sample Number	Depth	Water Content	Densit	γ	She	ar Te	sts	Atte	rberg L	Limits		Other
et			R			Number	in Feet	Percent	Dry W	/et	Type	φ	С	LL	PL	PI	1	Other Tests
° -	0.30			Soft gray clay	СН	21	51.5	62										
1	0.30					22	54	62										
]	0.50			w/few clayey silt lenses		23	56.5	61									1	
,	0.50	19		Madium dance grow time and		24 25	59 60	64							•			}
4		8		Medium dense gray fine sand	SP	1												· .
+	0.30	J		w/clay layers Soft gray clay w/sand pockets	СН	26 27	63 64	40		ı								
1	0.30			w/shell fragments & sand pockets		28	66.5	37									:	
\dashv	0.30			Loose gray clayey sand w/shell fragments	sc	29	69	25		Į								
1				Loose gray silty sand	SM	30	71.5	28										
]		11		Medium dense gray fine sand w/clay	SP	31	74	26		-								
4		22		layers		32	76	Ī		ł								
\dashv		22	N.			33	79			١								
1																	,	
]																	i	
4	- 1																	
\dashv	ĺ									-								
1																		
										İ								
1		4			1 1	1	1	ł										

Comments: Coordinates: North 517774.112, East 3712102.544

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

. 1			S		T .		1	10/00-5		**	~.							
le	PP	SPT	P Symbo	Visual Classification	usc	Sample Number	Depth In Feet	Water Content	<u> </u>	nsity	<u> </u>	ear Te		 		Limits	4	Other Tests
			R					Percent	Dry	Wet	Туре	ø	С	LL	PL	PI	<u> </u>	1000
				Medium stiff tan silty clay w/roots	CL	1											1	1
1				Medium stiff gray & tan clay w/wood, organic matter, & shells	СН													
4				Soft gray clay w/silt lenses & organic matter	СН	3C	6.0	32	88	117	υυ	4	377	33	19	14		:
1				w/humus pockets											٠			
				w/wood & sandy silt lenses														
٦		1		Medium stiff gray clay w/silt layers &	СН	5C	14.1	47	72	107	บบ	0	446	70	19	51	1	
1				lenses, & organic matter Wood	WD									1			1	l
4				11000							1			Ì			Ì	ŀ
		8	XMI	Loose gray fine silty sand w/clay	SM	1			Ì		1							
1		10		layers & wood layers w/thin clay layers	1						ľ			į]
		3		•	ļ_ <u></u>						Ī						1	
7				Soft gray silty clay w/clayey silt & silty clay layers, & organic matter	CL	!								İ			j '	
1				Soft gray clay	l Ch			0.5	ا								ľ	
\dashv				2		9C	27.2	35	85	114	UU	0	373	39	19	20	Į	
) <u>-</u>				Medium stiff gray clay w/sand layers, &	СН	1											1	
4				silt layers & lenses		10C	31.4 31.7	70	60 61	101 101	UC UU	0	297 359	92	30	62	ľ	
				Sata and allowed by the large	СН	10D	31.7	66	61	101	UU		359				1	
				Soft gray clay w/clayey silt layers	Сл												1	
1		_			<u> </u>													į
1		5		Loose gray clayey silt w/silty clay	ML]]												ŀ
		3	X////	Soft gray clay w/clayey silt lenses	СН													Ì
1	Ì			Medium stiff gray clay w/clayey silt	СН												-	
	1			lenses		13D	43.8	38	83	445	1211	^	524	_,	19	32		}
7	l			1	ł	130	43.5	35	83	115	UU	0	524	51	19	32	l	
1	- 1			4					-									} :
-4	l			Soft gray clay w/silt lenses & pockets	СН	14C	47.5	54	69	106	UC		414	Ī			1	1

Comments: Coordinates: North 483259.046, East 3683305.925 5-in. diameter samples

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

round	Elev.:	9.75	Datum: 1	NGVD Gr. Water Depth: See Te	xt Job	No.: 14	638 D	ate Drille	ed: 4	1/19/	96		Borir	ng: A	LGE-	1U	Refer to	"Legends & Note
Scale In	PP	SPT	S P Symbol	Visual Classification	usc	Sample Number	Depth In Feet	Water Content		nsity		ar Te		!	rberg L			Other Tests
Feet 50		ļ.——	R		1			Percent	Dry	Wet	Type	φ	С	LL	PL.	PI		
50				Soft gray clay w/silt lenses & pockets Medium stiff gray clay w/silt lenses & pockets	СН	15C 15D	51.4 51.7	36 43	84 77	115 110	UC	0	545 552	66	23	43		
-						16C	55.5	58	66	105	UC		538					
60				w/silt layers & layers		17C 17D	59.5 59.8	50 51	70 70	108 105	UC	0	603 670	81	25	56		
]						18C 18D	63.5 63.8	58 56	65 67	103 105	UC		606	88	27	61		CONS
70				w/silt lenses & pockets		19C	67.5	51	71	107	UC		606					
~_]						20B 20C	70.5 71.5	57 55	64 69	101 107	UU	0	488 570	94	27	67		
-				w/sandy silt lenses, layers, & pockets														
-				w/fine sand layers & lenses,		21C	75.5	58	65	103	uc		835					
80-				& shell fragments		228	78.5	37	84	115	UU	0	825	50	19	31		
4																- [.		
]																		
_																		
90-																		
-{																		
														•				:
00			<u> </u>										1					

Comments: Coordinates: North 483259.046, East 3683305.925 5-in. diameter samples

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

cale In	PP	SPT	S P Sy	mbol	Visual Classification	usc	Sample	Depth	Water Content	De	nsity	She	ear Te		1	rberg L			"Legends & No
eet	••		R		·		Number	In Feet	Percent	Dry	Wet	Туре	φ	С	LL	PL	PI		Tests
٥٦				<i>//</i>	Stiff gray & tan silty clay w/roots & organic matter	CL								•					
7					Medium stiff gray & brown clay	/	1					ŀ							İ
٦		1			w/organic matter & roots Soft gray clay w/clayey silt lenses &	CH	1 1												
1					layers												1		ļ
-					w/shells, & sandy silt lenses	Í											ŀ		
10-					& layers	ļ	4C		98	46	91	υυ	0	341	131	35	96		
4				//	Very soft gray clay w/silt lenses	СН	.						-	•		-	1		İ
4					very sort gray clay w/slit lenses	CH											- 1		
ا						1	5D		59	65	104	บบ	0	213	66	21	45		l
Ī					Soft gray clay w/clayey silt lenses & layers	СН											- 1		
1					10,0,0		l i								}				
ᅍᅱ				Π	Loose gray sandy silt w/silty sand	ML													ĺ
4				111	layers							'			ļ				ļ
-		8		-1:1	Loose gray silty sand	SM			ľ								1		
4		3			Soft gray clay w/sandy silt lenses	СН											ł		
4					w/clayey silt lenses & layers										ł		J		!
30-J							10C	j	59	63	101	UU	0	450	74	23	51		
~		•					ŀ	1			,	••		400	,,,	20	"		
7								ļ	ŀ		l								
- 1									1		i								
4									İ		ŀ								
4	ļ					1 1	12D	ŀ	52	70	106	บบ	0	278	79	23	56		!
\circ	ļ				w/silt lenses & pockets			1	ł								ł		
4	ļ]]	13D	ļ	58	66	104				77	19	58		21400
J					Medium stiff gray clay w/silt pockets	СН		ļ		50	107			Ì	′′	13	30		CONS
					<u>-</u> , , ,]	14B		55	67	104	UU	0	656	88	21	67		
1					w/silt lenses & pockets			ļ	1		İ						ł	i	•
., 1					Transitione as promoto	1 1	l	ļ			- 1						ı		

Comments: Coordinates: North 486362.907, East 3687549.870 5-in. diameter samples

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

rouna	Elev.:	-2.65	Datum:	NGVD Gr. Water Depth: See Tex	t Job	No.: 14	638 D	ate Drille	ed: 4	4/20/	96		Bori	ng: A	LGE-	2U	Refer to	"Legends & Note
Scale In Feet	PP	SPT	P L Symbo	Visual Classification	usc	Sample Number	Depth in Feet	Water Content Percent	ļ	nsity	ļ	ear Te		ļ	berg l			Other Tests
50				Medium stiff gray clay w/silt lenses & pockets w/fine sand lenses & pockets	СН	160	53.8	61	,	102	Type	0	636	89 89	PL 27	P1 62		
60				w/shells & clayey sand lenses & layers		188	60.5	59	63	101	UU	0	739	91	26	65		
70				Stiff reddish-gray sandy clay w/shells & clayey sand layers	CL	19D	65.8	28	93	118	υυ	0	983	23	16	7		
-		29 26 24		Medium dense gray clayey sand w/shells & sandy clay layers Medium dense greenish-gray clayey sand w/sandy clay layers	sc													
80	į	36 31		Dense greenish-gray & tan fine sand	SP													
90-																		
																		. :

Comments: Coordinates: North 486362.907, East 3687549.870 5-in. diameter samples

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

Scale			S					Water	n-	nsity	C.	ar To		A 44	hac- !		 "Legends & No
in Feet	PP	SPT	P Symbo	Visual Classification	USC	Sample Number	Depth In Feet	Content	<u> </u>	,	Type	φ.	C	LL	rberg L	PI	Other Tests
0 -	••			Stiff gray & tan clay w/roots & clayey silt lenses	СН				5.,	1	1900	<u> </u>	L		7.		
10-				Medium stiff gray silty clay w/silt lenses & clay pockets	CL	3D	6.1	31	89	117	บบ	0	739	45	15	30	
1				Medium compact gray sandy silt w/clay layers Soft gray clay w/silty clay layers & lenses, large organic matter pockets, &	ML CH	5B	13.4	67	58	98	UU	0	384	101	31	70	
20				\shell fragments Medium stiff dark gray & black organic clay w/peat layers & lenses, & clay	ОН	68	17.1	131	35	79				177	52	125	CONS
~ -				\text{pockets} Soft gray silty clay w/clay layers & \text{pockets} Soft gray clay w/organic matter pockets & shell fragments	CH	78 7C	20.9 22.5	39 79	54	97	UC		475	41	19	22	
-				Medium stiff gray clay w/silt layers & lenses, organic matter pockets, & shell fragments	СН	8D	26.6	57	66	104	บบ	0	578	78	27	51	
30 –				Soft gray silty clay w/clay layers & lenses Soft gray clay w/sandy silt layers	CH	9B	29.6	34						34	18	16	
		5		Loose gray sandy silt w/clay layers	ML												
ı۰-]	•	7		Soft gray clay w/sandy silt lenses	СН												
-		7 6 4		Loose gray silty sand	SM												
4				Soft gray clay w/clayey silt lenses &	СН	178	48.7	49								1	:

Comments: Coordinates: North 489889.329, East 3692280.732 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

SPT	I F I Common of	Visual Classification	usc	Sample	Depth	Water	Den	sity	She	ar Tes	ts	Atter	berg L	imits		Other
į	R Symbo	Visual Classification	030	Number	In Feet	Percent	Dry	Wet	Туре	φ	С	LL	PL	PI		Tests
		Medium stiff gray clay w/clayey silt layers & lenses	СН	17C		56	68	106	UC		529					
				18C		51	72	109	υc		503					
		w/clayey silt layers & lenses														
-				190		57 54	68	104	UC	0	549 544	83	24	59		
		Soft gray clay w/silt pockets	СН	1												
		Very soft gray clay w/silt pockets	СН	20C 20D		54 51	70	107 106	UC	0	315 179	83	23	60		
		Medium stiff gray clay w/silt lenses &	СН	21C		61	65	105	UC		656				•	
ļ		w/silt pockets		200												
		w/silt lenses & silty sand lenses & pockets		22C 22D		56 54	66 67	104	UC	0	613 584	88	27	61		
		w/fine sand layers		23C		54	Ì		UC	_	650					
		1	-	248		56	66	103	UU	0	737	88	26	62		
4		VI	SC													ľ
															·	
							!				Ì					
	4 4		w/clayey silt layers & lenses Soft gray clay w/silt pockets Very soft gray clay w/silt pockets Medium stiff gray clay w/silt lenses & pockets w/silt pockets w/silt lenses & silty sand lenses & pockets w/fine sand layers 4	Soft gray clay w/silt pockets CH Very soft gray clay w/silt pockets CH Medium stiff gray clay w/silt lenses & CH pockets w/silt pockets w/silt lenses & silty sand lenses & pockets w/fine sand layers 4 Loose gray fine clayey sand SC	w/clayey silt layers & lenses 19C 19D Soft gray clay w/silt pockets CH Very soft gray clay w/silt pockets CH 20C 20D Medium stiff gray clay w/silt lenses & CH pockets w/silt pockets w/silt lenses & silty sand lenses & pockets 22C 22D w/fine sand layers 24B	w/clayey silt layers & lenses 19C 19D Soft gray clay w/silt pockets CH Very soft gray clay w/silt pockets CH 20C 20D Medium stiff gray clay w/silt lenses & CH pockets w/silt pockets w/silt lenses & silty sand lenses & pockets 22C 22D w/fine sand layers 24B	w/clayey silt layers & lenses 19C 19C 19D 57 54 Soft gray clay w/silt pockets CH Very soft gray clay w/silt pockets CH 20C 20D 54 51 Medium stiff gray clay w/silt lenses & CH pockets w/silt pockets 22C 22D 56 w/silt lenses & silty sand lenses & pockets 22C 23C 54 w/fine sand layers 24B 56	18C 51 72	18C 51 72 109	18C 51 72 109 UC	18C 51 72 109 UC	18C 51 72 109 UC 503	18C 51 72 109 UC 503	18C 51 72 109 UC 503	18C 51 72 109 UC 503	18C 51 72 109 UC 503

Comments: Coordinates: North 489889.329, East 3692280.732 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Ground I	Elev.: -	1.90	Datum	: NGVD	Gr. Water	Depth: Se	e Text	Job No.:	14638	Date I	Orille	d: 4/	17/96		1	Boring	: AL	GE-4	J Refer to	'Legends & Notes"
Scale			S P Symbol		formal Classificati		usc	Sample	Depth	Water Content	Der	nsity	She	ar Te	sts	Atter	berg L	imits		Other
In Feet	PP	SPT	Symbol		/isual Classificat	on	USC	Number	în Feet	Percent	Dry	Wet	Type	φ	С	LL	PL	Pl		Tests
0				Medium stif	f gray & tan silt	clay	CL CH										-			
				Medium stif	f gray clay w/sh	ells												ľ		
				Soft black p	eat w/roots		PT	3C		271	20	72	บบ	0	330	307	109	198		
				Medium stif	f gray clay w/sh	ells	СН]					İ				•			
10-				Very soft gr lenses, & sh	ray clay w/silt la nell fragments	vers &	СН	4D		74	56	97	UC		144	,				
20-				\ shell	t layers & lenses nic matter pocke fragments ay w/silt layers a		СН	6C 6D		77 87	55 50	97 94	UC	0	156 340	110	34	76		
					t layers & lenses			8B 8C		68 72	60 56	100 96	UC UU	0	292 268	82	24	58		
30 —								9C		60	66	105	UC		259					
								10C 10D		63 68	64 59	103 100	UC UU	0	242 332	90	26	64		
40								11C		63	64	103	UC		276					
								12C 12D		67 69	61 59	102 100	UC	0	304 383	95	26	69		
	i							13C		70	59	101	uc		357					:

Comments: Coordinates: North 492367.653, East 3695724.177 5-in. diameter samples

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

ale	PP	SPT	Symbol	Visual Classification	usc	Sample	Depth	Water	Der	nsity	She	ar Tes	sts	Atte	rberg L	imits	Other
n et	PP	351	R	Visual Classification	USC	Number	in Feet	Content Percent	Dry	Wet	Туре	ø	С	LL	PL,	PI	Tests
-				Soft gray clay w/silt layers & lenses	СН	14C 14D	50.5 50.8	67 57	61 66	102 104	UC	0	294 440	79	25	54	
-				Very soft gray clay w/silt layers & lenses	СН	15C	54.5	63	64	104	UC		223				
٦				Soft gray clay w/silt layers & lenses	СН	16C 16D	58.5 58.8	64 63	61 62	101 100	UC	0	346 416	94	27	67	
1				Medium stiff gray clay w/silt layers & lenses	_ CH ✓ CH	17B 17C	61.5 62.5	66 53	61 71	102 108	UC		224	89	33	56	CONS
4				Very soft gray clay w/silt layers & lenses													
·-		29		Medium stiff light gray & tan clay w/shell fragments	CH SC	198	69.2	22	96	119	บบ	0	864	23	14	9	
7		34 40		Medium dense gray & tan clayey sand Dense gray & tan clayey sand w/sandy clay pockets	sc												!
1		41														ļ	
»-		24	XXXXX	Medium dense gray clayey silt w/silty clay layers	ML								İ			1	
7	i																
1								1					ŀ				
·-													ł				ı
1																	
4										ŀ			j			1	

Comments: Coordinates: North 492367.653, East 3695724.177 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

Ground 1	Elev.:	7.61	Datum: 1	NGVD Gr. Water Depth: See Tex	t Job	No.: 14	638 D	ate Drille	ed: :	3/18/	96		Bori	ng: A	LGE-	5U	Refer to	"Legends & Notes"
Scale in	PP	SPT	S P Symbol	Visual Classification	USC	Sample	Depth	Water Content	De	nsity	She	ear Te	sts	Atte	rberg l	imits		Other
Feet	••		R			Number	In Feet	Percent	Dry	Wet	Туре	φ	С	LL	PL.	PI		Tests
0				↑ Medium stiff gray & tan clay w/roots & √clayey silt lenses	CH CH	-												
				Stiff gray & tan clay w/clayey silt layers & lenses, large organic matter pockets, & roots		2C	3.0	32	:	,				56	22	34		
10-				Soft dark gray & brown organic clay w/clay layers & pockets, & decayed wood pockets w/clay pockets, decayed	он	- 4C	10.1	86	48	90	υu	0	402	130	43	87		
				wood, & roots		5B	13.6	55	66	102	uc		476					
20-				Soft gray clay w/silt layers & lenses, & organic pockets	СН	6C	18.5	61	64	103	UC		250					
				Medium stiff dark gray organic clay w/clay layers & pockets, roots, decayed wood, & peat layers	ОН	7C 7D	22.5 22.9	60 91	59 43	94 82	nn nc	0	756 833	137	51	86		·
1 1		3		Loose gray sandy silt w/clay layers	ML	1												
30				Soft gray clay w/clayey silt layers & lenses	СН	[]												
				Soft gray sandy clay w/clay layers	CL	10C	31.9	36	83	113	VU	0	430	35	22	13	: .	
				Soft gray clay w/clay layers & lenses	СН	11C	36.5	35		i	i			32	18	14		
40-	,					12B 12C	39.6 39.9	45 47	75 73	109 108	UC		348	50	19	31		CONS
						13C 13D	43.9 44.4	40 61	80 64	112 103	UÚ	0	483 327	50	23	27		
50						14C	48.5	57	66	103	UC		281					

Comments: Coordinates: North 496725.774, East 3698623.889 5-in. diameter samples

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

Ground	Elev.:	7.61	Datum	1: N	IGVD Gr. Water Depth: See Te	xt Job	No.: 14	638 E	ate Drille	ed:	3/18/	96		Bori	ng: A	LGE-	5U	Refer to	"Legends & Note:
Scale In Feet	PP	SPT	S P L Sym	nbol	Visual Classification	usc	Sample Number	Depth In Feet	Water Content Percent		nsity		ear To		├──	rberg L			Other Tests
50			R		Soft gray clay w/clayey silt layers & lenses Medium stiff gray clay w/clayey silt layers & lenses	CH CH	15B 15C	51.5 52.5	67 57	61 65	101 103	Type UU UC	0	617 404	99	PL 27	72 72		
60 -					Soft gray clay w/silt layers & lenses		16C	56.5	53	68	104	uc		278					
					Medium stiff gray clay w/silt layers & lenses	СН	17C 17D	60.5 60.8	58 59	64 65	102 104	ນບ	0	365 652	93	27	66		
-					Soft gray clay w/silt layers & lenses	СН	18C	64.5	53	68	104	UC		369					
70 -					Medium stiff gray clay w/silt layers & lenses	СН	19C 19D 20C	68.5 68.8 72.5	58 60 54	65 64 69	102 103	UC UC	0	372 535 608	100	28	72	ŀ	
					Soft gray clay	СН	218	74.7	65	62	102	υυ	0	422	89	30	59		
80-					Soft gray sandy clay w/shell fragments	CL	22C	80.2	29						40	16	24	•	
90-																			
100																			:

Comments: Coordinates: North 496725.774, East 3698623.889 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Ground Elev.: -2.08 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/15/96 Boring: ALGE-6U Refer to "Legends & Notes" Water Density **Shear Tests** Atterberg Limits Scale Depth Sample Other USC Content Visual Classification PP SPT Symbol Number In Feet Tests Percent Dry | Wet C LL PL PI Feet Type Φ CL Medium stiff brown silty clay w/grass Soft dark gray & brown organic clay w/shell fragments, roots, & decayed ОН 3C 9.1 119 39 85 UU 274 155 41. 114 wood 10 13.4 70 4C 56 96 25 60 194 85 СН Very soft gray clay w/silt layers & 16.7 35 CONS 5B 85 115 36 23 13 Soft gray silty clay w/silt layers & CL lenses, & clay 20 12 SP Medium dense gray fine sand 11 w/clayey sand layers ML Loose gray sandy silt w/clayey silt Loose gray clayey silt w/clay layers & sandy silt layers ML 30 Soft gray clay w/silty sand layers СН 37.0 37.3 39 37 13C 13D 83 83 115 114 427 540 Medium stiff green silty clay w/silt CL 48 17 31 lavers & lenses 40 -14C 41.2 45 109 CL 75 UC 317 Soft gray sandy clay w/silt layers & lenses 15B 44.5 UU 412 76 23 45.5 55 101 15C 467

Comments: Coordinates: North 500124.973, East 3700396.794

5-in, diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

#

Ground Elev.: -2.08 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/15/96 Boring: ALGE-6U Refer to "Legends & Notes" Scale Water Density Shear Tests Atterberg Limits Symbol Sample Depth PP SPT Visual Classification USC Other Content In Number In Feet Feet Percent Tests Dry | Wet Type Φ C LL PL PI 50 Soft gray sandy clay w/silt layers & CL 17C 17D 53.5 53.8 58 54 Medium stiff gray sandy clay w/silt 105 UC ÇL 0 26 67 104 557 layers & lenses СН Medium stiff gray clay w/silt layers & 18C 57.5 66 61 102 UC 579 60 ~ 19C 61.4 54 67 104 UU 756 0 90 29 61 Loose gray clayey sand w/shell SC 14 \fragments ŞC 40 70-Medium dense gray clayey sand w/sandy SP clay, sand layers, & shell fragments 48 Dense gray fine sand 47 Medium stiff gray clay w/sand pockets CH 26B 78.2 Stiff gray clay w/sandy clay lavers. CH 53 70 105 1156 70 50 20 silt pockets, & decayed wood 80 -90 -

Comments: Coordinates: North 500124.973, East 3700396.794

5-in, diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

+

		1	<u>ज्</u> या		NGVD Gr. Water Depth: See	1		 _	1						ng: A		$\overline{}$	110.01 (0	"Legends & No
ale in eet	PP	SPT	P	Symbo	Visual Classification	usc	Sample Number	Depth In Feet	Water Content Percent		nsity	ļ	ear Te			rberg !			Other Tests
		<u> </u>	R	1212					1 GICCIII	Ury	Wet	Туре	ø	С	LL	PL	PI		
0-					Very stiff brown silty clay w/roots	CL													
]					Medium stiff tan & gray silty clay w/silt lenses	CL	2B	4.9	60	64	102	υυ	0	374	82	29	53		
4					Soft gray clay w/silt layers & lenses														•
10-	•																		
]					Madium stiff gray & tan silty clay	CL	4C	14.1	29	91	118	บบ	0	590	42	17	25		
}					Medium stiff gray & tan silty clay w/silt layers & lenses, large organic matter layers & pockets		4C 4D	14.1 14.7	29 30	91 92	118 120	UC		590 519		••			
20-												·							
1					Soft gray silty clay w/silt layers & lenses	CL	6D	22.8	40	79	111	UU	0	414	45	21	24		
+		8	Š		Loose gray sandy silt	ML													
]		4	Ø		Soft gray clay w/sandy silt layers	СН			i								ŀ		
4		6	X		Medium stiff gray clay w/wood	СН													
-		20 29	A		Medium dense gray fine sand w/clay layers	SP									•				
_		34			Dene gray fine sand	SP													
°-		29	团		Medium dense gray fine sand	SP											ļ		·
4		25 40	N.								ł								
4		47			Dense gray fine sand	SP											.		
4		53	日.		Very dense gray fine sand	SP					1			- 1			ŀ		:

Comments: Coordinates: North 504278.169, East 3702451.616

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Ground Elev.: 9.230 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/12/96 Boring: ALGE-7U Refer to "Legends & Notes" Scale Water Density **Shear Tests** Atterberg Limits Sample Depth PP SPT Symbol Visual Classification USC Other Content Number In Feet Feet Percent Tests Dry | Wet | Type d С LL I PL Pī 50 Very dense gray fine sand SP 50 = 1151 12 Medium dense gray sandy silt w/clayey silt layers 9 Loose gray clayey silt w/clay layers Medium stiff gray clay w/clavey silt 60 layers & pockets 25B 25C 61.5 45 53 74 71 109 654 705 72 24 62.5 108 ŭč 105 104 66.5 67 66 615 28 CONS 66.8 58 70-70.5 67 66 105 103 UC 1029 1169 Stiff gray clay w/silt lenses & pockets СН 30 64 71.1 Loose gray clayey sand w/shell SC fragments & clay layers 29C 78.1 33 CL 17 24 Medium stiff gray sandy clay w/fine sand layers & shell fragments 80-90 -

Comments: Coordinates: North 504278.169, East 3702451.616

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

Scale In	PP	SPT	P	Symbol	Visual Classification	usc	Sample	Depth	Water Content	De	nsity	She	ar Te	sts	Atter	berg l	imits	Other
Feet	FF	3, ,	R	39111001	Visual Glassification		Number	in Feet	Percent	Dry	Wet	Туре	φ	С	LL	PL	Pî	 Tests
0				777	Stiff gray & brown clay w/roots & wood	CH												
1					Medium stiff gray & brown clay w/organic matter & wood	СН												
					Soft gray organic clay w/decayed wood & roots	ОН	3C	5.6	150	31	77	UU	0	391	206	54	152	
10-		`																
1					Loose gray clayey silt w/roots	ML											- 1	
]					Very soft gray clay w/silt layers & lenses, & few concretions	СН	5C	14.2	61	63	101	บบ	0	175	90	23	67	
20					Loose gray clayey silt	ML												
					Soft gray clay w/silt layers, lenses & pockets	СН												
							8C	26.1	52	68	104	บบ	0	312	60	21	39	
30 —							9C	30.5	70	59	100	UC		277				
							10C	34.1	66	60	100	UU	0	388	85	27	58	
					√ Very soft gray clay w/silt layers &	СН	11C 11D	38.5 38.8	60 70	69 59	109 100	UC		209	88	32	56	CONS
40-					Medium stiff gray clay w/silt layers & lenses	СН	110	30.0	70	23	150							
4		ļ.			Soft gray clay w/silt pockets	СН	13D	46.2	61	63	101	υU	0	415	81	25	56	:

Comments: Coordinates: North 508246.628, East 3704510.434 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Ground Elev.: -2.75 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/22/96 Boring: ALGE-8U Refer to "Legends & Notes" Scale Water Density **Shear Tests** Atterberg Limits Sample Depth PΡ SPT Symbol Visual Classification In USC Content Other Number In Feet Feet Percent Dry | Wet Tests Type C Φ LL I PL Pi 50 Soft gray clay w/silt pockets СН 15C Medium stiff gray clay w/silt pockets СН 54.1 65 60 100 585 29 60 -Medium stiff gray sandy clay w/fine CL 17C 61.8 62 62 101 553 28 60 sand layers 10 Medium dense gray fine sand w/clayey sand pockets 11 Medium stiff gray clay w/shells СН 70 -Medium compact gray sandy silt w/shells & sandy silt pockets ML Stiff gray clay w/shell fragments & 22D 76.8 30 91 118 577 28 15 13 clay pockets SM Loose gray silty sand w/shells & sandy 80 silt pockets 90 -

Comments: Coordinates: North 508246.628, East 3704510.434

5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

	EIGA":	1.00	ISI	NGVD Gr. Water Depth: See Te	1	1 1		Water		nsity		ear Te		ng: A	rberg L			Legends & No
ale in eet	PP	SPT	P Symbol	Visual Classification	USC	Sample Number	Depth In Feet	Content Percent		Wet		<i>p</i>		LL	PL	PI		Other Tests
ه ا				Stiff dark gray clay w/roots & grass	СН													
1																		
]				w/roots, humus, & grass roots		28	4.6	38	74	103	ບບ	0	1690	82	33	49		
				Stiff dark gray & tan clay w/humus	CH									1				l
ارەر				Loose black humus w/wood	Pt													
										:				1				}
						ļ								i				
4				Soft gray clay w/wood	СН	5C	17.7	64	55	91	บบ	0	300	118	28	90		
20-				Loose black humus w/wood	Pt	l												
-				Edda Slack Hames Wywest	''													
4				w/clay layers & wood		İ										İ		
4			7777	Very soft gray clay w/silt layers &	СН	70	26.2	62	62	100	υu	0	212	72	23	49		
4				lenses Soft gray clay w/clayey silt layers &	СН	1												
30-				pockets										1				
-																1	*	1
4						90	34.8	58	64	102	υu	0	310	92	30	62		}
-																j		
- 1																		E.
┿┥																		
4				Very soft gray clay w/clayey silt layers, lenses, & pockets	СН	11C	42.1	59	62	98				81	26	55		CONS
4				layers, lenses, & pockets														
1																		:
50																1		

Comments: Coordinates: North 512862.124, East 3707443.123

5-in. diameter samples

LOG OF BORING AND TEST RESULTS U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

(Sheet 2 of 2)

*

Ground Elev.: 6.06 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/20/96 Boring: ALGE-9U Refer to "Legends & Notes" Scale Water Density **Shear Tests** Atterberg Limits Depth Sample PΡ SPT Symbol Visual Classification USC in Content Other Number In Feet Feet Percent Tests Dry Wet Type C PL PI LL 50 Very soft gray clay w/clayey silt СН 13D 50.8 61 102 UU 0 381 84 25 59. layers, lenses, & pockets СН Soft gray clay w/clayev silt layers & 15D 58.5 66 98 Medium stiff gray clay w/clayey silt СН UU 489 27 93 66 60 lavers & lenses Soft gray clay w/clayey silt layers & СН 17D 66.8 64 60 98 478 23 91 68 17 SM Medium dense gray silty sand w/shell 70 fragments 14 17 Medium dense gray clayey sand w/clay SC layers & shell fragments 7 СН Medium stiff gray clay w/shell fragments 22B 77.1 44 75 109 736 64 18 46 w/silty sand layers 11 SM Medium dense gray silty sand w/clay 80 layers & shells 90

Comments: Coordinates: North 512862.124, East 3707443.123

5-in. diameter samples

100

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

cale In	PP	SPT	Symbol	Visual Classification	usc	Sample	Depth	Water Content	De	nsity	She	ear Te	sts	Atte	rberg t	Limits		Other
eet		35.	R	Visual Classification	0.50	Number	In Feet	Percent	Dry	Wet	Type	φ	С	LL	PL,	PI		Tests
° -				Stiff dark gray clay w/roots, shells & grass	СН								<u> </u>		•			
1				Stiff gray & tan clay w/roots	СН													
卜。				Medium stiff gray clay w/humus & wood	СН										•			
` - -				w/organic matter layers & lenses, & decayed wood		3D	10.5 10.8	54 61	67 62	103 98	UC	0	271 506	103	32	71		
4				Soft gray clay w/humus & wood	СН													χ
익						6B	21.5 22.5	66 51	62 72	101 109	UU UU	0	542 221	76	25	51	10	
-				Very soft gray clay w/sandy silt layers & lenses, & organic matter pockets	СН	6C	22.5	51	72	109	UC		221					
$\circ \dashv$				Soft gray clay w/clayey silt lenses	СН	8C 8D	30.5	70	58	98	UC	0	332	96	27	69		
4				Soft gray day wiclayey silt idiises	3	8D	30.8	70	58 58	98 98	ŪŬ	J	332 422	30	21	03		
}				Very soft gray clay w/silt layers & lenses	СН	9C	34.4	66	61	101	UC		207					
\neg				Soft gray clay w/silt layers & lenses	СН	10C 10D	38.5 38.8	72 68	57 58	99 97	UC UU	0	259 542	86	27	59		
1						11C	42.4	63	63	102	UC		380	81	26	55		
4				Medium stiff gray clay w/silt layers &	СН	12C 12D	46.5 46.8	55 53	67 67	103 103	UC	0	263 646	72	25	47		;

Comments: Coordinates: North 515847.833, East 3710935.137 5-in. diameter samples

LOG OF BORING AND TEST RESULTS U.S. ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

(Sheet 2 of 2)

ale n	PP	SPT	PSyn	lodr	Visual Classification	usc	Sample	Depth	Water	Der	sity	She	ar Te	sts	Atte	rberg L	imits		*Legends & No
et			R			000	Number	In Feet	Content Percent	Dry	Wet	Туре	φ	С	LL	PL	PI		Other Tests
0					Medium stiff gray clay w/silt layers &	CH CH	13C	50.5	54	67	103	UC		265		l			
4		1			Soft gray clay w/silt pockets	/				i							ŀ		
4					Medium stiff gray clay w/silt pockets	СН	14C 14D	54.4 54.7	57 56	67 65	105 101	UC UC	0	399 660	80	28	52		
. 1		19	XII.		Medium dense gray silty sand	SM	15C	57.6	63	63	102				87	28	59		CONS
io —	l	12		7:1	Medium dense gray clayey sand w/shell	SC	1										- 1		i
		8 9			fragments Loose gray clayey sand w/shell fragments & clay layers	SC													
4		5			Loose gray sandy clay w/shell fragments & clayey sand layers	CL					ľ								
-	j	12 9	MILE		Medium dense gray silty sand w/clay	SM					1			l			İ		
-		5 6	X	-1-1 i	Loose gray silty sand w/clay layers & shell fragments	SM													
1		8			Medium stiff gray silty clay w/many	CL					ı								
		18	XZZ	4	shell fragments & clayey silt layers Very stiff greenish-gray clay	СН													
}																			
, -																			
7							ĺ												
1					-		j	}											

Comments: Coordinates: North 515847.833, East 3710935.137 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

Ground Elev.: 9.03 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/06/96 Boring: ALGW-1U Refer to "Legends & Notes" Scale Water Density **Shear Tests** Atterberg Limits Sample Depth În PP SPT Symbol Visual Classification USC Content Other Number In Feet Feet Tests Percent Dry | Wet Type φ С LL PL PI Stiff tan & gray silty clay w/roots & CL sandy silt pockets Soft gray clay w/oxidation, silt lenses, СН & pockets 3C 6.1 71 56 96 UU 381 98 32 66 10-Soft gray silty clay w/sandy silt CL layers & roots Wood WD Soft gray silty clay w/silt lenses, CL **6B** 18.9 42 79 113 UU roots, & wood 335 18 29 20 -88 24.1 Soft gray clay w/silt lenses СН 63 62 102 UU 309 93 27 66 Loose gray sandy silt w/silty clay ML 30 -6 14 Medium dense gray fine sand w/clay SP layers 5 CL Soft gray silty clay w/silty sand 15 SP Medium dense gray fine sand w/clayey 13 sand layers

SP

ML

CH

Comments: Coordinates: North 484210.581, East 3683302.379

sand lenses

Loose gray fine sand

layers & clay layers

Loose gray clayey silt w/sandy silt

Soft to medium stiff gray clay w/silty

5-in, diameter samples

13

40 -

50

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

ale n PP	SPT	PSymbol	Visual Classification	USC	Sample	Depth	Water Content	De	nsity	She	ar Te	sts	Atte	rberg L	imits	Other
n PP eet	351	L Symbol	Visual Classification	050	Number	In Feet	Percent	Dry	Wet	Туре	φ	С	LL	PL	PI	Tests
50	11 5	$\boxtimes H$	Medium compact gray sandy silt	ML											•	
1	5		Soft to medium stiff gray clay w/silt lenses	СН												
30			Medium stiff gray clay w/silty sand pockets	СН	22C	55.1	49	70	105	UU	0	754	73	25	48	
					24B 24C	62.4 63.5	42 50	77 71	110 106	υ¢	0	804 919	65	25	40	
					25C	67.5	51	71	107	UÇ		689				
<u> </u>					26C 26D	71.5 71.8	55 52	68 69	105 107	UC	0	964 990	88	26	62	
-			Stiff gray clay Medium stiff gray clay w/silt lenses & pockets, & silty sand pockets	CH	27C 27D	75.5 75.8	59 59	65 65	103 104	UC		1169	83	25	58	CONS
0-			Soft gray clay w/shell fragments	СН	28C	79.3	27						32	18	14	
}																
,]																
1												ļ				

Comments: Coordinates: North 484210.581, East 3683302.379 5-in. diameter samples

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

round Elev.:		Isl	NGVD Gr. Water Depth: See Te		T	I	ate Drille	· · · · · ·					Ť	LGW		 "Legends & Note
Scale In PP Feet	SPT	PSymbo	Visual Classification	usc	Sample Number	Depth In Feet	Water Content Percent	Dry	nsity Wet		ear Te	c	LL	rberg L	PI	Other Tests
0 .			Stiff gray & dark gray clay w/shells, concrete fragments, & roots Medium stiff gray, dark gray, & tan clay w/clayey silt pockets & shells	∠ CH										I		
			Stiff gray & brown silty clay w/silt layers & lenses, fine sand layers, organic matter, & oxidized pockets Soft gray clay w/oxidized pockets, silt	CL CL	28	5.3	28	90	116	UU	0	492	47	. 22	25	
10-			lenses & pockets, large organic matter pockets, & decayed wood Soft gray silty clay w/silty sand lenses & wood													
			Medium dense gray silty sand w/clay layers & wood Soft gray clay w/silt layers & lenses,	SM	5C	18.4	58	66	104	υυ	0	475	97	21	76	
20			& trace of organic matter		6C	22.0	48	73	108				71	22	49	CONS
4			Medium stiff gray clay w/silt lenses & layers, & fine sand laeyrs Soft gray clay w/silt lenses	СН												
30 —			Stiff gray clay w/silty sand & clayey silt pockets	СН	٠		•									
1			Medium stiff gray clay w/silt layers & Nenses	CH CH	9C	34.4	45	77	112	บบ	0	538	67	25	42	
40			Medium stiff gray clay w/clayey silt pockets													
-					. 11B 11C	41.5 42.5	55 52	67 69	105 106	UC	0	646 512	84	27	57	
4					12C	46.5	52	69	105	UC		470				:

Comments: Coordinates: North 484210.581, East 3683302.379 5-in. diameter samples

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

cale in	РР	SPT	SI P	Symbol	Visual Classification	USC	Sample	Depth	Water Content	Dei	nsity	She	ar Te	sts	Atte	rberg L	imits .	Other
eet		5, .	R			000	Number	In Feet	Percent	Dry	Wet	Type	φ	С	LL	PL	PI	Other Tests
50					Medium stiff gray clay	СН	13C 13C	49.9 50.5	49 57	72 66	108 103	UC	0	679 499	75	24	51	
1		<u> </u>			w/silty sand pockets		14C	54.5	52	69	104	UC		491				
60 					w/silty lenses & pockets, & trace of organic matter		15C 15D	58.5 58.8	54 53	66 69	102 107	UC	0	551 725	86	29	57	
1							16C	62.5	52	69	105	UC		756			1	i
-							17C	66.1	55	67	105	UU	0	753	89	30	59	
70 -					Soft gray silty clay w/silt layers & lenses, & shell fragments	CL	18C	70.5	27						25	17	8	
4							198	73.5	31						36	17	19	
30-					Stiff tan & gray silty clay w/shell fragments	CL	208	78.0	21						26	12	14	
					÷.,.			:										
-																		
1																		
}														İ				÷

Comments: Coordinates: North 484210.581, East 3683302.379 5-in. diameter samples

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

cale in	PP	SPT	PSymbo	Visual Classification	usc	Sample	Depth	Water Content	De	nsity	She	ar Te	sts	Atte	rberg L	imits.	Other
eet		<u> </u>	R	Viscal Glassification		Number	In Feet	Percent	Dry	Wet	Type	ø	С	LL	PL	PI	Tests
°Ţ		8		Loose gray & tan clayey silt w/roots w/silty sand pockets	ML												
4		8		Medium stiff gray clay w/clayey silt lenses & pockets, & shell fragments	СН												
10-				Soft gray clay w/silt lenses & shell fragments	СН	4B	9.1	66	59	98	VU	0	314	100	32	68	
1				Stiff gray clay w/clayey silt pockets & wood	СН												
-0º				Medium stiff gray clay w/clayey silt lenses & shell fragments	СН	7B 7C	21.5 21.8	67 73	61 57	102 98	บต	0	553 511	95	26	69	
-						8C	26.4	57	65	100	UU	0	613	92	28	64	
				Soft gray sandy clay w/clayey sand layers & pockets	CL												
٥-				Medium stiff gray clay w/silt lenses	СН	12C	42.0	53	68	106	UU	0	603	81	25	56	
4				ivieulum stirr gray clay w/siit lenses	CH				-			Ū	303	01	23	30	
+				3		13C	46.1	68	60	101				93	26	67	CONS

Comments: Coordinates: North 490347.872, East 3691858.068 5-in. diameter samples

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

els: In	PP	SPT	P	Symbol	Visual Classification	usc	Sample	Depth	Water Content	De	nsity	She	ar Te	sts	Atte	rberg L	imits	Other
eet		<u> </u>	Ř				Number	in Feet	Percent	Dry	Wet	Туре	φ	С	LL	PL.	PI	Tests
50					Medium stiff gray clay	СН	14C	50.5	56	67	105	UC		500				
1					w/silt layers & lenses		15C 15D	54.5	61 52	64 69	103 106	UC	0	548 554	73	28	45	
]					w/silt pockets	1	16B	54.8 57.6	52 57			l		1				
·					w/silt layers & lenses		105	37.0	3,	67	105	UC	•	712			ł	
1							17B 17C	61.6 62.1	56 60	67 64	104 104	UC UC	0	677 746	96	27	69	
ا ا-ه							19C	70.1	58	64	102	บบ	0	758	97	30	67	
+					Medium stiff gray sandy clay w/clayey sand & clay layers, & shells	CL				•	102	00	·	/50	37	30	"	
, -					Medium stiff gray clay w/clayey sand layers & pockets, & shells	СН												
4																		
) 	j																	
}																	İ	
							i		1		i			ł				•

Comments: Coordinates: North 490347.872, East 3691858.068 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

Ground Fley: -1.91 Datum: NGVD Gr. Water Denth: See Text Job No.: 14638 Date Drilled: 4/18/96 Poringe ALCIA/ 411

Scale	PP	SPT	S	Symbol	Visual Classification	usc	Sample	Depth	Water Content	De	ensity	Sh	ear To	ests	Atte	rberg l	imits	*Legends & Not Other
In Feet	PP	3F1	L R	Symbol	Visual Classification	030	Number	In Feet	Percent	Dry	Wet	Туре	ø	С	LL	PL.	Pt	Tests
0					Medium stiff gray silty clay w/shells & roots	CL							•	· • · · · ·		<u> </u>		
-					Very solft gray clay w/silt layers & pockets, & roots	СН	28	4.4	55	67	106	VU	0	81	58	20	38	
10-						j .	:			}		1	•				:	
1		4	X		Very loose gray clayey silt w/silty sand layers & pockets	ML												
\dashv		5 7	X		Loose gray clayey silt w/silty sand & clay layers	ML											i	
20		3	X		Soft gray silty clay w/silty sand pockets & shell fragments	CL												
					Soft gray organic clay w/trace of organic matter	ОН	8C	22.1	85	50	93	บบ	0	430	128	35	93	
4					Very soft gray clay w/shell fragments & silt lenses, & pockets	СН	90	26.7	76	57	100	UC		213				
30-				7777	Soft gray clay w/silt layers & lenses	СН	10B 10C	29.5 30.5	57 70	65 60	104 101	UÜ	0	319 211	72	24	48	
					Very soft gray clay w/silt layers & lenses	СН	.00	55.5			,01			211				
4					Soft gray clay w/silt layers & lenses	СН	11C	34.5	58	68	107	UC		323				
40					Very soft gray clay w/silt lenses & pockets	CH CH	12C 12D	38.5 38.8	69 63	59 63	100 103	UC UU	0	210 411	101	31	70	
1					Soft gray clay w/silt lenses & pockets		3С	42.5	70	59	99	UC		396				
-					Medium stiff gray clay w/silt layers &	СН	14C 14D	46.1 46.4	71 68	63 60	107 101	UC UU	0	396 497	83	26	57	
50		•			lenses		, , ,	70.7	00	80	101	00		43/				·

Comments: Coordinates: North 492391.906, East 3694557.800 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ele	PP	SPT	S P L	- Dbol	Visual Classification	USC	Sample	Depth	Water Content	De	nsity	She	ar Tes	sts	Atte	rberg Li	imits		Other
et		3, ,	R		Visual Glassification	030	Number	In Feet	Percent	Dry	Wet	Type	•	С	LL	PL.	PI		Tests
0 -					Soft gray clay w/silt pockets	СН	15C	50.3	56	72	113	UC		314					
1					Medium stiff gray clay w/silt layers & lenses	СН	16C 16D	54.1 54.4	64 61	63 63	103 103	UC	0	452 562	89	30	59		
-							17C 17C	57.5 58.0	64 60	62 65	102 105	υc		543	86	33	53		CON
F					Soft gray clay w/silt layers & lenses	СН	18C 18C	61.6 62.2	65 61	62 64	102 102	UU UC	0	548 420	92	28	64		
1		11			Medium dense gray clayey sand w/shell	SC SC						33		120	ı				
,		7			Loose gray clayey sand w/clay layers & shell fragments												ŀ		
1		27 37			Medium dense greenish-gray & tan clayey sand	SC SP					•			ĺ					
1		50=11	Ø÷	**	Dense greenish-gray & tan fine sand Very dense gray fine sand	SP					- 5						ļ	}	
1		26		期	Medium compact gray clayey silt w/silty sand pockets, shell fragments, & clay	ML													
∘ -		32	XXX		Compact gray clayey silt w/silty sand pockets, shell fragments, & clay layers	ML													
7																			
1	į																		
·-																			
1																			
+									-					ľ					

Comments: Coordinates: North 492391.906, East 3694557.800 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

cale			S	Visual Classification	usc	Sample	Depth	Water Content	De	nsity	She	ar Te	sts	Atte	rberg L	imits		Other
in eet	PP	SPT	L Symbo	Visual Classification	USC	Number	In Feet	Percent	Dry	Wet	Туре	ф	С	LL	PL.	PI		Tests
0				Stiff dark gray & tan clay w/shells & roots	СН													
				Medium stiff brown & gray clay w/clay layers & lenses	СН	10	2.4	44						66	22	44	;	
4				Loose black humus w/clay layers	Pt	1												
0-				Soft gray clay w/organic matter, peat pockets, & silt	СН	38 3C	9.4 9.7	63 75	62 56	103 99	UC	0	383 343	98	27	71		
4				Very soft gray clay w/silt, organic	СН	4D	14.4	79	55	95	υυ	0	224	89	29	60		
1				matter & shell fragments				·										
:o-		}			Pt	6C	21.3	70	58	98				88	26	62		CONS
				Soft gray clay w/silt lenses & pockets, & trace of decayed wood	СН	90	21.5	,,	30	30					20			CONS
				Soft gray organic clay w/organic matter, lenses, & pockets	ОН	70	27.2	121	38	84	บบ	0	392	188	63	125		
				Soft gray clay w/silt pockets & decayed wood	СН	8C	30.5	118	39	85	UC		411					
-	4					9C	33.6	43	76	109	υu	0	325	90	19	71		-
ر ا																		i ·
1						11C 11D	42.5 42.8	66 65	60 62	100 102	UC	0	341 415	92	31	61		
4				Very soft gray clay w/silt layers	СН	12C	46.1	68	59	99	UC		217			1		

Comments: Coordinates: North 495298.753, East 3697204.168 5-in. diameter samples

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

JEFFERSON PARISH, LOUISIANA

round	Elev.:	7.06	Datum:	NGVD Gr. Water Depth: See Te	ext Job	No.: 14	638 E	ate Drille	ed: 4	1/16/	96		Bori	ng: A	LGW	′-5U	Refer to	"Legends & No
Scale In	PP	SPT	Symbo	Visual Classification	usc	Sample Number	Depth In Feet	Water Content		nsity	ļ	ar Te			rberg l			Other Tests
Feet 50		ļ <u> </u>	R		<u> </u>	ł		Percent	Dry			φ	С	LL	PL	PI		16313
** -				Soft gray clay w/silt lenses & layers	СН	13C 13D	49.9 50.2	63 66	63 61	102 101	UC UU	0	368 447	98	31	67	i	
-						14C	54.4	61	63	102	UC		342					
- - 08						15C 15D	57.8 58.1	67 59	60 64	100 102	UC	0	310 488	90	27	63		
4				Medium stiff gray clay w/silt layers & lenses	СН	16C	62.2	55	66	103	uc		437					
70 -						18C 18C	69.9 70.5	65 67	59 60	99 100	UU	0	678 590	94	33	61		
1		9	XIIII	Loose gray clayey silt w/silty sand	ML	19C 19D	74.5 74.8	51 55	69 66	104 103	UC	0	352 576	86	31	55		
30-		7		Loose gray clayey silt w/silty sand pockets & clay layers			į											
4																		
1																		
٦																	;	
1																		
, 						İ		ĺ										·

Comments: Coordinates: North 495298.753, East 3697204.168 5-in. diameter samples

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

ale	PP	SPT	P			Samole	Depth	Water	De	nsity	She	ear Te	sts	Atte	rberg (imits	 "Legends & No
n eet	PP	SPI	L Symbo	Visual Classification	USC	Sample Number	In Feet	Content Percent		Wet			,	LL	PL		Other Tests
° -				Medium stiff gray clay w/clayey silt lenses, roots, grass, & organic matter	CH						,,,,					.	
-						2D	6.2	39	77	108	υu	0	503	69	23	46	
-				Soft gray clay w/clay layers & lenses	СН												
4						4C 4D	13.9 14.2	36 37	86 83	117 115	UC	0	327 264	40	18	22	
20-				Loose gray clayey silt w/silty sand pockets	ML												
-		14 16		w/clay layers Medium dense gray silty sand	SM												
10 –		13 8 10		Loose gray silty sand w/clay layers	SM												
1		9				;											
<u>-</u>		8		Medium stiff gray silty clay w/silty	CL												
1		8		sand layers & pockets Medium stiff gray clay	СН												
, -						17B 17C 17D	45.9 46.5 46.8	58 51 54	66 70 68	104 105 106	UC UU	0	509 695	92 82	27 26	65 56	CONS

Comments: Coordinates: North 502723.351, East 3700920.051 5-in. diameter samples

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale n	PP	SPT	Symbol	Visual Classification	USC	Sample	Depth	Water	De	nsity	She	ear Te	sts	Atte	rberg L	imits		*Legends & Note
et			R	visual Grassification	030	Number	In Feet	Content Percent	Dry	Wet	Туре	0	С	LL	PL	PI		Other Tests
50				Medium stiff gray clay	СН	18C	50.5	54		103	UC		581			 -		
1				Medium stiff dark gray clay	СН	1							J 01					
-				Medium stiff gray clay w/silt pockets	СН	19C 19D	54.5 54.8	53 60	68 64	105 103	UC	0	717 747	102	32	70		
, [20C	58.2	53	69	106	UC	٠	794		•			ļ
1		9		Loose gray silty sand w/clay layers &		21D	62.6	52	66	101	บบ	0	683	85	27	58		
4		10			SM													
4		12		Loose gray clayey sand w/shell fragments	SC									•				<u> </u>
		9		Medium dense gray clayey sand w/shell /fragments	SC											ĺ		1
4		8		Loose gray clayey sand w/shell fragments & clay layers				-	1	ļ						i		
4	ļ	11	X ///	Medium dense gray clavey sand w/shell	SC											- 1		
+		14		fragments				l						•				
+		11	$\boxtimes /\!/\!/\!/$															
· +		13	$\boxtimes 2/2/2$							Ì								
1						İ	-			1].		
1						l		į										
1	j					!												
]				İ		_	}			- 1						-		
										- [Ì					
						ŀ							ł					
1							1	j		I								
]	ŀ					1	ľ	ſ					l				İ	•
		ļ		i		- 1	İ			- 1								

Comments: Coordinates: North 502723.351, East 3700920.051 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 1 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale n	РP	SPT	PSymbo	Visual Classification	usc	Sample	Depth	Water Content	De	nsity	She	ear Te	ests	Atte	rberg I	Limits		Other
et			R	Visual Classification	030	Number	In Feet	Percent	Dry	Wet	Type	ф	С	LL	PL	PI		Tests
°				Stiff gray & tan silty clay w/silty	CL CH					_			·	1	<u>'</u>	-		
				Medium stiff gray & tan clay w/clavey	, CH		ł		ł							- 1		
				silt pockets, organic matter, & wood		1		İ	}					}				
]				4												I		
				2.4											-	- 1		
				Soft gray clay w/silt lenses & pockets, organic matter, & few concretions	СН	3C	9.7	56	67	105	υυ	0	292	70	26	44		
]				3		•								ľ		- 1		
]																- 1		
٥؎				Medium stiff gray & brown clay w/trace of organic matter lenses, &	СН	5C	18.1	67	57	95	UU	0	706	104	36	68		
`				silt pockets										İ		- 1]
4														ļ				İ
4				Soft gray clay w/clayey silt pockets	СН									•		- 1		i
4																i		
٥ۦٳ	-			Medium stiff gray clay w/silt layers &	СН	88	29.7	71	58	100	****	0	493	97	32	65		
4				Vienses Soft gray clay w/silt layers & lenses	СН	8B 8C	29.7 30.3	71 85	58 52	100 96	UC UU	•	411] "/	32	03		
4				Soft gray clay w/siit layers & lenses]													
4	ŀ	47												١.				
4		17		Medium compact gray clayey silt	ML	ļ				ı						- 1	:	
		13	\boxtimes	w/clay layers				ļ								- [
4	ł	8	Ymn	Loose gray clayey silt w/clay layers	ML													
4		~	×////	Soft gray clay	СН	ļ		j	•	l								,
4						14C	46.2	40	72							ľ		
4	Ì					14D	46.5	48 49	73 73	108 109	UC	0	289 378	67	23	44		:

Comments: Coordinates: North 507430.878, East 3703361.531 5-in diameter samples

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

ale	00	COT	S	Manual Classification		Sample	Depth	Water	Der	nsity	She	ar Te	sts	Atte	rberg L	imits		Other
n et	PP	SPT	P L Symb	ol Visual Classification	USC	Number	In Feet	Content Percent	Dry	Wet	ļ	φ	С	LL	PL.	PI		Other Tests
-				Soft gray clay	СН	15C	50.5	58	65	103	UC		321					
4						16C 16D	54.5 54.8	58 62	67 64	106 102	UC	0	421 460	92	27	65		
,						17C 17C	57.2 57.8	64 51	62 71	102 107	uc		285	91	31	60		CONS
-				Medium stiff gray clay w/silt lenses & pockets	СН	18C 18D	62.4 62.7	60 61	65 63	104 102	UC UC	0	526 515	91	27	64		
4						19C	65.8	56	67	104	υc		555					
		4		Very loose gray clayey silt w/clay layers & silty sand pockets	ML											İ		! !
\lceil		6 7		Loose gray clayey silt w/clay layers & silty sand pockets	ML													
4		3		Soft gray sandy clay w/many shell fragments	CL													
		8		Medium stiff gray silty clay w/many shells & shell fragments	CL													
7																		
, 1																		
1																		
+									-				i					
,						ĺ		1		- 1								

Comments: Coordinates: North 507430.878, East 3703361.531 5-in diameter samples

(Sheet 1 of 2)

LOG OF BORING AND TEST RESULTS

U.S. ARMY CORPS OF ENGINEERS

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

aie n PP	SPT P	Sumbo.	Visual Classification	usc	Sample	Depth	Water Content	De	nsity	She	ar Te	sts	Atte	rberg L	imits	Other
n PP	SFI L	Symbol	Visual Classification	USC	Number	In Feet	Percent	Dry	Wet	Type	φ	С	LL	PL	PI	Tests
	4		Stiff dark gray clay w/roots & organic matter Medium stiff gray & tan clay w/organic matter, roots, & humus	CH												
10-			Soft gray clay w/silt layers & lenses	СН	4C	14.4	49	73	108	υυ	0	296	56	20	36	
- 20 -			Medium stiff gray clay w/silt pockets, trace of concretions, & trace of decayed wood Loose gray silty sand Medium stiff gray clay w/clayey silt pockets	CH SM CH	5B	17.5	89	49	93				118	26	92	CONS
30			Soft gray clay w/silt layers & lenses	СН	7C 7D	26.5 26.8	55 75	68 56	106 98	UC UU	0	233 271	97	28	69	
.]					8C	30.5	68	59	100	UC		270				
					9C 9D	34.5 34.8	70 58	58 65	99 103	UC	0	323 327	76	23	53	
0-					10D 11C 11D	38.7 42.0 42.7	65 66 58	62 60 66	102 100 104	UC UC	0	258 492	96	32	64	
1			Very soft gray clay w/silt pockets	СН	11D 12C	42.7 46.5	58 64	66 61	104	UC		335 158				

Comments: Coordinates: North 511549.059, East 3705397.981 5-in. diameter samples

(Sheet 2 of 2)

LOG OF BORING AND TEST RESULTS
U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

ale n	PP	SPT	PSymi	bol	Visual Classification	usc	Sample	Depth	Water Content	Der	nsity	She	ear Te	sts	Atte	rberg L	imits	:	Other
et			Ř	_1			Number	In Feet	Percent	Dry	Wet	Туре	•	С	LL	PL	PI	•	Tests
50					osoft gray clay w/silt pockets dark gray clay	CH	13C 13D	50.5 50.8	58 57	65 66	103 104	UC	0	252 550	85	27	58		
-							14C	54.5	56	66	103	uc	-	441					
50-				Med layer	ium stiff gray clay w/silty sand 's & lenses	СН	15B	57.4	58	65	103	υυ	0	655	84	27	57	•	
+		13 8		Med	ium dense gray clayey sand	SC											.		
1				\shell	e gray clayey sand w/clay layers & fragments	/ CU													
+				pock	um stiff gray clay w/silt layers & ets, & shell fragments		18C	66.1	59	64	103	UU	0	798	94	29	65		
'				1 1000	e gray sandy silt w/shell fragments						1								
1		9		Medi layer	um stiff gray sandy clay w/clay s & lenses, & shell fragments	ML CL	20C	73.8	37	82	112	υυ	0	604	38	17	21		;
-		7 3		Loos & cla	e gray sandy silt w/shell fragments y layers gray clay w/clayey sand layers &	ML CH					1								
7		·	N/2/2	shell	fragments	_/			j										
+																			
1									ĺ									·	
\dashv							ļ				İ						}		
1																			
1										-									
, 1						1		j	ł		į							İ	

Comments: Coordinates: North 511549.059, East 3705397.981 5-in. diameter samples

LOG OF BORING AND TEST RESULTS U.S. ARMY CORPS OF ENGINEERS

(Sheet 1 of 2)

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

nd Elev.:		Datum:			Sample	Depth	Water	Der	nsity	She	ar Te	sts	Atte	rberg L	imits	Other
PP	SPT	P L Symbol	Visual Classification	USC	Number	In Feet	Content Percent	Dry	Wet	Туре	φ	С	LL	PL.	Pf	 Tests
-			Very stiff gray clay w/roots & grass Stiff gray & tan clay w/roots & organic matter	CH CH					·				,			
1			Medium sitff gray & tan clay w/roots & organic matter Soft brown organic clay w/silt layers &	СH ОН	2C	5.8	91	45	87	υυ	0	465	104	34	70	
-			lenses, & roots Compact gray clayey silt w/clay layers & silty sand pockets	ML												
1			Medium stiff gray & dark gray clay w/silty sand pockets	СН												
1			Medium stiff gray clay w/organic matter & humus	СН	5B	17.2	55	65	101	υυ	0	590	110	36	74	
1			Soft gray clay w/silt layers & lenses, & trace of organic matter	СН	7B 7C	25.5 26.5	63 65	62 61	103 101	UC	0	318 337	86	24	62	
-																
1					90	34.1	62	62	101	ບບ	0	419	88	25	63	
1			-		10C 10C	37.9 38.5	65 72	61 58	101 99	UC		273	83	25	58	CONS
					11C 11D	42.5 42.8	59 66	65 60	103 101	UC	0.	298 416	94	27	67	
1					12C	46.5	76	55	97	UC		295				

Comments: Coordinates: North 515626.413, East 3709614.241 5-in. diameter samples

LOG OF BORING AND TEST RESULTS

(Sheet 2 of 2)

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

Ground Flow 1 6 26 Detum NGVD On Wester Davids Co. Total Lt. 14 200 Davids Davids

	. 0.30	Isl	NGVD Gr. Water Depth: See	Text Job	No.: 14	638 D	ate Drille	ed:	3/25/	96		Bori	ng: A	LGW	-9U	Refer to	"Legends & No
Scale In PP Feet	SPT	P L Symb	ool: Visual Classification	usc	Sample Number	Depth In Feet	Water Content	<u> </u>	nsity	<u> </u>	ear Te	sts	Atte	rberg L	imits		Other
50		R					Percent	Dry	Wet	Type	ø	С	LL	PL	PI		Tests
			Soft gray clay w/silt layers & lenses, & trace of organic matter	СН	13C 13D	50.5 50.8	63 62	63 62	102 102	UC	0	341 379	89	23	66		
-					14C	54.5	65	61	101	UC		435					
60-			Medium stiff gray clay	СН	15C 15D	58.5 58.8	66 62	61 62	100 103	UC	0	576 562	82	23	59		
-	18	\boxtimes	Medium dense gray silty sand w/clay layers & shell fragments	SM													
4	7		Loose gray silty sand w/clay layers	SM													
70 -	8		Medium stiff gray sandy clay w/clay layers & shell fragments	CL													
-			Soft gray clay w/shell fragments	СН	21C	74.5	31						29	23	6		
30 —			Medium stiff gray clay w/shell fragments Soft gray clay w/shell fragments Stiff gray clay w/clayey sand & clayey sand pockets, & shell fragments	CH CH	22C 22C	77.9 78.5	29 30	94	121	UU	0	856	32 56	20 22	12 34		
, <u>-</u>																	
- -																	:

Comments: Coordinates: North 515626.413, East 3709614.241 5-in. diameter samples

TYPE OF TEST:
Unconsolidated Undrained
SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CL4
w/ Ins & ars ML

LL= 33 PL= 19

PL= 19 PI= 14

SPECIFIC GRAVITY= 2.67

REMARKS:

[ar					
SP	PECIMEN NO.:	1		3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	83.5	90.7 94.1 0.838 1.40	85.5 94.2 0.950 1.40	
AT TES	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	37.7 83.0	31.4 90.7 100.0 0.838	35.5 85.5 100.0 0.948	
St	rain rate, in/min	0.09540	J.09961	0.0988	
BAG	CK PRESSURE, psf	0	0	0	
	LL PRESSURE, psf				
	ILURE STRESS, psf				
•	TIMATE STRESS, psf	749	914	1385	
σ_1	FAILURE, psf	1944	3079	4409	
σ_3	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-1U,

Sample 3-C, Depth 6.0'

PROJ. NO.: 13622

DATE: 6-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

FIG. NO.:

Project: Algiers Levee Contract No. DACW29-95-D-0012

Location: Boring ALGE-1U, Sample 3-C, Depth 6.0'

File: UU-6797

Project No.: 13622

FIG. NO.: ___

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH3

w/ lyr & Ins ML, ars org

LL= 70 PL= 19 PI= 51

SPECIFIC GRAVITY= 2.74

REMARKS:

					
SPEC	CIMEN NO.:	1	2	3	
INITIAL D < 0 D	ATER CONTENT, % RY DENSITY, pcf ATURATION, % OID RATIO IAMETER, in EIGHT, in	74 5	72.5 96.5 1.359 1.41	71.5 99.5 1.393 1.40	(
TEST	ATER CONTENT, % RY DENSITY, pcf ATURATION, % OID RATIO IAMETER, in EIGHT, in	47.3 74.5 100.0	49.4 72.7 100.0	50.6 71.7 100.0	
Stro	in rate, in/min	0.10140.10060.0990			
ВАСК	PRESSURE, psf	0	0	0	
CELL	. PRESSURE, psf	1008	2016	3024	
FAIL	URE STRESS, psf	888	947	904	
ULTI	MATE STRESS, psf	858	702	695	
01 F	AILURE, psf	1896	2963	3928	
03 FA	AILURE, psf	1008	2016	3024	
11					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-1U,

Sample 5-C, Depth 14.1'

PROJ. NO.: 13622

DATE: 6-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-1U, Sample 5-C, Depth 14.1'

File: UU-6798

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CL4

.w/ lyr & ars CH

LL= 39 PL= 19 PI= 20

SPECIFIC GRAVITY= 2.7

REMARKS:

_	·				
SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	34.3 85.2 94.9 0.978 1.41 2.80	87.8 99.0 0.920 1.40	81.1 97.3 1.079 1.41	
TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	36.1 85.3 100.0	33.7 88.3 100.0	41.0 80.0 100.0	
St	rain rate, in/min	0.10280.10130.1025			
BA	CK PRESSURE, psf	0	0	О	
CE	LL PRESSURE, psf	1008	2016	3024	
FA:	ILURE STRESS, psf	605	1186	764	
UL.	TIMATE STRESS, psf	717	1186	742	
σ_1	FAILURE, psf	1613	3202	3788	
σ ₃	FAILURE, psf	1008	2016	3024	
CL	IENT: U.S. Army Corn	2 26 5	•	 -	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-1U,

Sample 9-C, Depth 27.2'

PROJ. NO.: 13622

DATE: 6-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-1U, Sample 9-C, Depth 27.2'

File: UU-6799

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ Ins ML, ars org

LL= 92 PL= 30

PI= 62

SPECIFIC GRAVITY= 2.74

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	60.4 100.7 1.833 1.41	60.4	61.3 99.7 1.791 1.41	:
F	1	68.9 59.2 100.0 1.888	66.9 60.4 100.0 1.832 1.40	65.2 61.4 100.0 1.785 1.41	
St	rain rate, in/min				
	CK PRESSURE, psf	0	o		
CE	LL PRESSURE, psf	1008	2016	3024	
	ILURE STRESS. psf				
	TIMATE STRESS, psf				
		1445			
σ3	FAILURE, psf		2016		
	TENT. U.S. A				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-1U,

Sample 10-D, Depth 31.7'

PROJ. NO.: 13622

DATE: 6-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-1U, Sample 10-D, Depth 31.7'

File: UU-6800 Project No.: 13622

FIG. NO.: _____

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH3

w/ Ins ML

LL= 51 PL= 19

PI = 32

SPECIFIC GRAVITY= 2.74

REMARKS:

	$\overline{}$	·		•		
	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	83.6 97.2 1.045 1.40	84.0 98.1 1.036	83.6 99.3 1.047 1.40	
	AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	38.2 83.6 100.0	37.7 84.1 100.0	37.6 84.3 100.0	
	St	rain rate, in/min	0.09700	0.10020	0.1020	·
ı	BA	CK PRESSURE, psf	O	0	0	
I	CEI	L PRESSURE, psf	1008	2016	3024	
	FA]	ELURE STRESS, psf	991	1294	1067	
	ULT	TIMATE STRESS, psf	913	1267	1013	
			1999			
-	σ ₃ !	FAILURE, psf		2016		
T.						

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-1U,

Sample 13-D, Depth 43.8'

PROJ. NO.: 13622

DATE: 6-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-1U, Sample 13-D, Depth 43.8'

File: UU-6801 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH3

w/ Ins & ars ML

LL= 66 PL= 23

PI= 43

SPECIFIC GRAVITY= 2.72

REMARKS:

SE	PECIMEN NO.:				
-	 	1		3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	76 1	77.5 97.2 1.192 1.41	78.5 99.3 1.163 1.41	
TES	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	46.3 75.1 100.0	43.8 77.5 100.0 1.191 1.41	42.5 78.7 100.0 1.157 1.41	
St	rain rate, in/min	0.10070	2.80	2.80	
BA	CK PRESSURE, paf	0	0	0	
CEI	L PRESSURE, psf	1008	2016	3024	
FA]	LURE STRESS, psf	1048	1089	1209	
ULT	IMATE STRESS, psf	966	1001	1090	
01	FAILURE, psf	2056			
	FAILURE, psf		2016		
01 σ ₃	IMATE STRESS, psf FAILURE, psf	966 2056	1001 3105	1090 4233	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-1U,

Sample 15-D, Depth 51.7'

PROJ. NO.: 13622

DATE: 6-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

FIG. NO.:

21.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-1U, Sample 15-D, Depth 51.7'

File: UU-6802 Project No.: 13622 FIG. NO.:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH4

w/ ars ML

LL= 81 PL= 25

PI= 56

SPECIFIC GRAVITY= 2.72

REMARKS:

SPECIMEN NO.:	1 2 3
は DRY DENSITY, pcf	52.8 50.4 50.9 68.3 70.9 70.5 96.5 98.2 98.1 1.486 1.396 1.410 1.42 1.41 1.41 2.80 2.80 2.80
IN DRY DENSITY, pcf	54.7 51.2 51.3 68.3 71.0 70.9 100.0 100.0 100.0
Strain rate, in/min	
BACK PRESSURE, psf	
CELL PRESSURE, psf	1008 2016 3024
FAILURE STRESS, psf	
ULTIMATE STRESS, psf	
l =	2302 3358 4390
O ₃ FAILURE, psf	1008 2016 3024
OL TENT	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-1U.

Sample 17-D. Depth 59.8

PROJ. NO.: 13622

DATE: 6-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-1U, Sample 17-D, Depth 59.8'

File: UU-6803 Project No.: 13622

Unconsolidated Undrained

PI= 67

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ Ins & ars ML

LL= 94 PL= 27

SPECIFIC GRAVITY= 2.72

REMARKS:

SP	ECIMEN NO.:	1	2	3	
\vdash					
با	WATER CONTENT, %	56.6	56.5	57.4	
IS.	DRY DENSITY, pcf	64.3	64.5	64.8	
INITIAL	SATURATION, % VOID RATIO	93.7	94.1	96.4	
2	DIAMETER, in	1.642	1.634	1.620	{
H	HEIGHT, in	1.41	1.41	1.40	į
<u> </u>		2.79	2.79	2.79	
—	WATER CONTENT, %	59.2	59.1	58.0	
EST	DRY DENSITY, pcf	65.1	65.1	65.9	
_	SATURATION, %	100.0	100.0	100.0	
F.	VOID RATIO DIAMETER, in	1.610	1.608	1.577	
⋖	HETCHT :-	1.41	1.41	1.40	
	HEIGHT, in	2.80	2.80	2.80	
St	rain rate, in/min	0.1005	0.10140	0.1005	
BA	CK PRESSURE, paf	0	О	o	
CEI	L PRESSURE, psf	,1008	2016	3024	
	CLURE STRESS, psf		970		
ULT	IMATE STRESS, psf	506	728	685	
	FAILURE, psf	1802			
σ ₃ (FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-1U,

Sample 20-B. Depth 70.5

PROJ. NO.: 13622

DATE: 6-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-1U, Sample 20-B, Depth 70.5'

File: UU-6804

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH2

w/ lyr & Ins SM, sif LL= 50 PL= 19

) PL= 19 PI= 31

SPECIFIC GRAVITY= 2.74

REMARKS:

SPECIMEN NO.:	1	2	3	
WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	84 0	83.7 98.8 1.045 1.40	85.8 97.1 0.993 1.40	(
WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	37.3 84.6 100.0 1.022 1.40 2.80	37.5 84.4 100.0 1.027 1.40 2.80	35.9 86.2 100.0 0.983 1.40 2.80	
Strain rate, in/min	0.09850	0.0997	0.1011	
BACK PRESSURE, psf	0	0	O	
CELL PRESSURE. psf	1008	2016	3024	
FAILURE STRESS, psf	1611	1816	1647	
ULTIMATE STRESS, psf				
O ₁ FAILURE, psf		3832		
O ₃ FAILURE, psf		2016		
CLIENT: U.S. Army Cor		•		

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-1U,

Sample 22-B, Depth 78.5'

PROJ. NO.: 13622

DATE: 6-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-1U, Sample 22-B, Depth 78.5'

File: UU-6805 Project No.: 13622

FIG. NO.: ____

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH3

w/ sif

LL= 131 PL= 35

PI= 96

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	PECIMEN NO.:	1		3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	46 R	46.3 98.3 2.697 1.40	45.0 98.8 2.801 1.40	(
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	97.1 46.7 100.0	98.6 46.2 100.0	103.8 44.5 100.0	
St	rain rate, in/min	0.09740	0.09760	0.0985	
,	CK PRESSURE, paf		0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
1	ILURE STRESS, psf				
	TIMATE STRESS, psf				
	FAILURE, psf	1735			
σ_3	FAILURE, psf	1008	2016	3024	
	TENT: U.S. A				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-2U,

Sample 4-C, Depth 9.9'

PROJ. NO.: 13622

DATE: 6-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012

Location: Boring ALGE-2U, Sample 4-C, Depth 9.9'

File: UU-6806

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: VSo Gr CH3

w/ Ins ML

LL= 66 PL= 21 PI= 45

SPECIFIC GRAVITY= 2.74

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	63.5	65.6 100.2 1.606 1.40	65.9 100.9 1.597 1.40	<i>;</i>
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	61.9 63.5	58.8 65.5 100.0	58.0 66.1 100.0	
St	rain rate, in/min	0.09530	0.09760	0.1009	
ВА	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	419	467	391	
UL.	TIMATE STRESS, psf	392	422	403	
σ_1	FAILURE, psf	1427	2483	3415	
O ₃	FAILURE, psf	1008	2016	3024	
lla	TENT. U.S				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-2U,

Sample 5-D, Depth 14.8'

PROJ. NO.: 13622

DATE: 6-26-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-2U, Sample 5-D, Depth 14.8'

File: UU-6807 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH4
w/ lyr & lns ML

LL= 74 PL= 23

PI= 51

SPECIFIC GRAVITY= 2.74

REMARKS:

(

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-2U,

Sample 10-C, Depth 29.4

PROJ. NO.: 13622

DATE: 6-26-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-2U, Sample 10-C, Depth 29.4'

File: UU-6808

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ Ins & ars ML

LL= 79 PL= 23

PI= 56

SPECIFIC GRAVITY= 2.72

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	71.2	69.5 98.9 1.444 1.40	69.6 98.1 1.439 1.40	(
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	50.8 71.3 100.0	53.0 69.5 100.0	52.3 70.1 100.0	
St	rain rate, in/min	0.09470	0.1015	0.0998	
ВА	CK PRESSURE, psf	0	0	o	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS. psf	556	556	722	
UL.	TIMATE STRESS, psf	669	563	687	
	FAILURE, psf	1564			
03	FAILURE, psf		2016		
	TENT. U.S. A				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-2U,

Sample 12-D, Depth 37.8'

PROJ. NO.: 13622

DATE: 6-26-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-2U, Sample 12-D, Depth 37.8'

File: UU-6809 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ ars ML

LL= 88 PL= 21

PI= 67

SPECIFIC GRAVITY= 2.72

REMARKS:

CDCOTHEN						
124	ECIMEN NO.:	1	2	3		
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66 6	67.9 99.2 1.502 1.40	66.0 96.8 1.572 1.41		
F	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	56.9 66.7 100.0	55.0 68.0 100.0	57.7 66.1 100.0		
Strain rate, in/min		0.09530.09890.0987				
BA	CK PRESSURE, psf	0	0	0		
CELL PRESSURE, psf		1008	2016	3024		
FAILURE STRESS, psf						
ULTIMATE STRESS, psf		1016	959	955		
01	FAILURE, psf	2412				
O3	FAILURE, psf	1008	2016	3024		

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-2U,

Sample 14-B, Depth 44.5'

PROJ. NO.: 13622

DATE: 6-26-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-2U, Sample 14-B, Depth 44.5'

File: UU-6810

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH4

w/ Ins & ars ML

LL= 89

PL= 27

PI= 62

SPECIFIC GRAVITY= 2.72

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	63.2	64.1 100.7 1.648 1.40	64.3 98.6 1.642 1.40	(
1	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.2 63.1 100.0 1.693 1.40	60.5 64.2 100.0 1.644	60.3 64.3 100.0 1.641 1.40	•
St	rain rate, in/min				· _ ·
	CK PRESSURE, psf		0		
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1043	1294	1313	
ΩĽ.	TIMATE STRESS, psf	627	921	991	
01	FAILURE, psf	2051	3310	4337	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-2U.

Sample 16-D, Depth 53.8'

PROJ. NO.: 13622

DATE: 6-26-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-2U, Sample 16-D, Depth 53.8'

File: UU-6811 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH3

w/ Ins & ars SP

LL= 91 PL= 26

PI= 65

SPECIFIC GRAVITY= 2.72

REMARKS:

	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	63.1	63.8 97.6 1.661 1.41	64.4 98.5 1.635 1.40	:
	AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.1 63.2 100.0 1.688 1.41 2.80	60.8 64.0 100.0 1.655 1.41 2.80	59.9 64.6 100.0 1.630 1.40 2.80	
	Strain rate, in/min		0.09450	0.09470	0.0965	
	BA	CK PRESSURE, psf	0	O	0	
	CE	LL PRESSURE, psf	1008	2016	3024	
		ILURE STRESS, psf				
		TIMATE STRESS, psf				
-			2470			
	σ ₃	FAILURE, psf		2016		
1	CLIENT: ILS Army Corner of 5					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-2U,

Sample 18-B, Depth 60.5'

PROJ. NO.: 13622

DATE: 6-26-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-2U, Sample 18-B, Depth 60.5'

File: UU-6812 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CL3

w/ slf

LL= 23

PL= 16

PI=7

SPECIFIC GRAVITY= 2.7

REMARKS:

50	PECIMEN NO.:			 -	· · · · · · · · · · · · · · · · · · ·
3			2		
٦	WATER CONTENT, % DRY DENSITY, pcf	93 4	92 3	02.4	
INITIAL	SATURATION, % VOID RATIO	95.2	91.1	90.1	
INI	DIAMETER, in HEIGHT, in	1.40	1.40	1.40	
ST	WATER CONTENT, % DRY DENSITY, pcf	29.9	30.7	30.7	
쁜	IVOTO RATTO	100.0	100.0	100.0	
4	DIAMETER, in HEIGHT, in	1.40 2.99	1.40 2.99	1.40	
St	rain rate, in/min	0.10170	0.10220	0.1013	
	CK PRESSURE, psf		0	0	
1	LL PRESSURE, psf				
	ILURE STRESS, psf				
UL	TIMATE STRESS, psf	1112	2234	2024	
	FAILURE, psf	2058	4250	5048	
σ_3	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-2U,

Sample 19-D, Depth 65.8

PROJ. NO.: 13622

DATE: 6-26-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-2U, Sample 19-D, Depth 65.8'

File: UU-6813

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CL6

w/ Ins ML, ars CH

LL= 45 PL= 15

PI= 30

SPECIFIC GRAVITY= 2.7

REMARKS:

SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	87 3	92.9 87.8 0.815 1.42	89.2 94.5 0.890 1.41	
TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	34.4 87.4 100.0	29.9 93.2 100.0	32.5 89.8 100.0	
St	rain rate, in/min	0.09760	0.1025	0.0969	
BA	CK PRESSURE, psf	o	0	0	
CEI	LL PRESSURE, psf	1008	2016	3024	
FA]	ELURE STRESS, psf	1485	2191	1009	
ULI	TIMATE STRESS, psf	1015	2424	1205	
σ_1	FAILURE, psf	2493	4207	4033	
=	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-3U,

Sample 3-D, Depth 6.1'

PROJ. NO.: 13622

DATE: 6-26-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012

Location: Boring ALGE-3U, Sample 3-D, Depth 6.1'

File: UU-6814

Project No.: 13622

TV	~	~~		
1 1 1	' E	OF.	TEST	•

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH2 w/ lyr &

ins CL, ig ars org, & sif

LL= 101 PL= 31 PI= 70

SPECIFIC GRAVITY= 2.74

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT. % DRY DENSITY, pcf SATURATION. % VOID RATIO DIAMETER, in HEIGHT, in	58.3 95.8 1.935 1.41	97.5 2.187	66.5 98.3 1.572 1.40	É
15	DIAMETER, IN	70.5 58.3	79.6 53.8 100.0 2.180 1.40	57.6 66.3 100.0 1.578 1.40	
St	rain rate, in/min	0.10050	0.10120	0.1027	
		0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA:	ILURE STRESS, psf	761	915	806	
UL.	TIMATE STRESS, psf	679	873	775	
$- \sigma_1 $	FAILURE, psf	1769	2931	3830	
σ_3	FAILURE, psf		2016		

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-3U,

Sample 5-B, Depth 13.4'

PROJ. NO.: 13622

DATE: 6-26-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-3U, Sample 5-B, Depth 13.4'

File: UU-6815 Project No.: 13622

FIG. NO.: ____

SPECIMEN NO .:

_	T				
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66.1	66.6 98.6 1.568 1.40	66.7 98.9 1.564 1.40	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	58.2 65.9 100.0 1.595 1.40 2.80	57.3 66.5 100.0 1.571 1.40 2.80	56.9 66.9 100.0 1.559 1.40 2.80	
St	rain rate, in/min	0.09250	10050	0.0991	
BA	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1198	1156	1114	
UL	TIMATE STRESS, psf	874	855	827	
σ_1	FAILURE, psf	2206	3172	4138	
σ ₃	FAILURE, psf	1008	2016	3024	

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH3 w/ lyr &

ins ML, ars org & sif

LL= 78 PL= 27 PI= 51

SPECIFIC GRAVITY= 2.74

REMARKS:

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-3U,

Sample 8-D, Depth 26.6'

PROJ. NO.: 13622

DATE: 6-27-96

2

3

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-3U, Sample 8-D, Depth 26.6'

File: UU-6816

Project No.: 13622

20

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH3

w/ lyr & ins ML

PL= 26

PI= 46

SPECIFIC GRAVITY= 2.74

REMARKS:

SPECIMEN NO.:	1 2 3
다 IDRY DENSITY, pcf	49.1 50.0 48.3 72.6 72.2 73.6 99.1 100.2 99.9 1.357 1.368 1.325 1.40 1.40 1.41 2.81 2.80 2.80
URY DENSITY, pcf	49.9 49.9 48.1 72.3 72.2 73.8 100.0 100.0 100.0 1.367 1.368 1.318 1.40 1.40 1.41 2.80 2.80 2.80
Strain rate, in/min	0.10260.09520.0994
BACK PRESSURE, psf	0 0 0
CELL PRESSURE, psf	1008 2016 3024
FAILURE STRESS, psf	1297 1240 1371
ULTIMATE STRESS, psf	1023 940 1021
O1 FAILURE, psf	2305 3256 4395
O ₃ FAILURE, psf	1008 2016 3024

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-3U,

Sample 17-B, Depth 48.7'

PROJ. NO.: 13622

DATE: 6-27-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-3U, Sample 17-B, Depth 48.7'

File: UU-6817

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

. w/ lyr & ins ML

LL= 83 PL= 24

PI= 59

SPECIFIC GRAVITY= 2.74

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	98.5 1.507 1.40	68.6 97.5 1.493	67.5 97.8 1.533 1.40	ĺ
AT TEST	DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in	55.0 68.2	54.1 68.9 100.0 1.484 1.40	55.8 67.7 100.0 1.528 1.40	
St	rain rate, in/min				
BA	CK PRESSURE, paf	O	0	o	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1109	1089	805	
	TIMATE STRESS, psf				
4	FAILURE, psf		3105		
Ø3	FAILURE, psf	1008	2016	3024	
	TENT: U.S. Asset Cons				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-3U,

Sample 19-D, Depth 57.1'

PROJ. NO.: 13622

DATE: 6-27-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

FIG. NO.:

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-3U, Sample 19-D, Depth 57.1'

File: UU-6818 Project No.: 13622

20

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: VSo Gr CH4

w/ ors ML

LL= 83 PL= 23

PI= 60

SPECIFIC GRAVITY= 2.72

REMARKS:

[cr	DEOTHER 112				
31	PECIMEN NO.:	1		3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	70.0	69.9 97.7 1.430 1.40	70.7 98.1 1.401 1.40	
AT TEST	1	52.4 70.0	52.3 70.1 100.0 1.422 1.40	51.5 70.7 100.0 1.401 1.40	
St	rain rate, in/min	0.09610	.09940	0.0988	
	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE. psf	1008	2016	3024	
FA	ILURE STRESS, psf	844	298	370	
UL	TIMATE STRESS, psf	739	306	378	
	CATLUDE	1852			
σ ₃	FAILURE, psf		2016		:
110.	TENT. U.O.				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-3U,

Sample 20-D, Depth 61.7'

PROJ. NO.: 13622

DATE: 6-27-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-3U, Sample 20-D, Depth 61.7'

File: UU-6819

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH4

w/ Ins ML

LL= 88 PL

PL= 27 PI= 61

SPECIFIC GRAVITY= 2.74

REMARKS:

Sp	COTHEN AND				
35	ECIMEN NO.:	1		3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66 B	67.1 95.7 1.550 1.40	67.0 95.2 1.552 1.41	
AT TES	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	57.0 66.7 100.0 1.563 1.40	56.8 66.9 100.0 1.556	57.5 66.4 100.0 1.574 1.41	
St	rain rate, in/min	0.10150	0.09980	0.0997	
BAG	CK PRESSURE, psf	0	O	0	
	_L PRESSURE, psf				
[FA]	CLURE STRESS, psf	1127	1177	1322	
ULT	TIMATE STRESS, psf	789	904	1024	
	C.T	2135			
O3	FAILURE, psf		2016		
Ilou -	TENT. U.S. A				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-3U.

Sample 22-D, Depth 69.8'

PROJ. NO.: 13622

DATE: 6-27-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-3U, Sample 22-D, Depth 69.8'

File: UU-6820 Project No.: 13622

SPECIMEN NO.:

WATER CONTENT, %

DRY DENSITY, pcf

WATER CONTENT. %

DRY DENSITY, pcf

SATURATION, %

Strain rate, in/min

BACK PRESSURE, psf

CELL PRESSURE, psf

FAILURE STRESS, psf

ULTIMATE STRESS, psf

O1 FAILURE, psf

O3 FAILURE, psf

SATURATION, %

VOID RATIO

HEIGHT, in

VOID RATIO

HEIGHT, in

DIAMETER, in

DIAMETER, in

TYPE OF TEST:

Unconsolidated Undrained

LL= 88

PROJECT: Algiers Levee PI= 62

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-3U.

CLIENT: U.S. Army Corps of Engineers

Sample 24-B, Depth 75.8'

PROJ. NO.: 13622

DATE: 6-27-96

TRIAXIAL SHEAR TEST REPORT

1

55.7

66.3

96.5

1.41

2.80

57.3

66.6

1.41

2.80

1008

1498

1124

2506

1008

2

57.1

65.3

96.6

1.581 1.619 1.591

1.40

2.79

58.3

65.9

100.0 100.0 100.0

1.570 1.596 1.574

0.09710.10010.0937

1.40

2.80

2016

1309

871

3325

2016

0

3

55.9

66.0

96.2

1.41

2.79

57.4

66.5

1.41

2.80

3024

1663

1342

4687

3024

0

Eustis Engineering Company, Inc.

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH4

w/ lyr SP

PL= 26

SPECIFIC GRAVITY= 2.74

REMARKS:

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-3U, Sample 24-B, Depth 75.8

File: UU-6821 Project No.: 13622

Unconsolidated Undrained SAMPLE TYPE: Undisturbed

DESCRIPTION: SO BK PEAT

w/ rts

LL= 307 PL= 109

PI= 198

SPECIFIC GRAVITY= 2.6

REMARKS:

SI	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	19.2	19.3 95.4 7.405 1.41	21.1 96.5 6.691 1.41	(
AT TEST	SATURATION, % VOID RATIO	288.3	283.9 19.4 100.0 7.381 1.41	256.7 21.2 100.0 6.673 1.41	
St	rain rate, in/min	0.10620	0.1056	0.1093	
BA	ACK PRESSURE, psf	0	0	o	
CE	ILL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	661	675	644	
UL	TIMATE STRESS, psf	600	620	615	
1	FAILURE, psf	1669			
03	FAILURE, psf	1008	2016	3024	
11 ~ .					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-4U,

Sample 3-C, Depth 5.8'

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-4U, Sample 3-C, Depth 5.8'

File: UU-6822

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4 w/ lyr & Ins ML, sif

LL= 110 PL= 34 PI= 76

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	ECIMEN NO.:	1	2	3	
TLINI	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	49.5	50.6 100.2 2.380 1.40	50.5 99.6 2.389 1.40	(
AT TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION. % VOID RATIO DIAMETER, in HEIGHT, in	89.6 49.5 100.0 2.455	86.7 50.7 100.0 2.374	88.3 50.0 100.0 2.418	
1	rain rate, in/min				
BA	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA:	ILURE STRESS, psf	675	779	584	
UL.	TIMATE STRESS, psf	460	529	453	
σ,	FAILURE, psf	1683	2795	3608	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-4U.

Sample 6-D, Depth 18.8'

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-4U, Sample 6-D, Depth 18.8'

File: UU-6823

Project No.: 13622

TYPE OF TES	ST	:
-------------	----	---

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ lyr & Ins ML

LL= 82 PL= 2

PL= 24 PI

PI= 58

SPECIFIC GRAVITY= 2.74

REMARKS:

SPECIMEN NO.:	1	2	3	
WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	59.8 100.8 1.859 1.40	68.3 60.0 101.1 1.852	67.0 60.4 100.1 1.834 1.40	
WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	67.9 59.8	70.4 58.4 100.0 1.929 1.40	67.4 60.1 100.0 1.846 1.40	
Strain rate, in/min				
BACK PRESSURE, psf	0	0	o	
CELL PRESSURE, psf	1008	2016	3024	
FAILURE STRESS, psf	670	584	292	
ULTIMATE STRESS, psf	535	400	221	
O ₁ FAILURE, psf		2600		
♂₃FAILURE, psf		2016		

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-4U,

Sample 8-B. Depth 25.5'

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-4U, Sample 8-B, Depth 25.5'

File: UU-6824

Project No.: 13622

FIG. NO.: ___

TYPE OF TEST:
Unconsolidated Undrained
SAMPLE TYPE: Undisturbed
DESCRIPTION: So Gr CH4

w/ lyr & ins ML

LL= 90 PL= 26 PI= 64

SPECIFIC GRAVITY= 2.74

REMARKS:

65	507.17.1				
121	PECIMEN NO.:		2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	59 7	59.6 100.0 1.871 1.40	59.6 99.7 1.870 1.40	
TES'	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	68.4 59.5 100.0 1.873 1.40	67.9 59.8 100.0	68.1 59.7 100.0 1.867 1.40	•
St	rain rate, in/min	0.10660	0.10740	0.1098	···
BA	CK PRESSURE, psf	0	0	0	
	LL PRESSURE, psf				
	ILURE STRESS, psf				
ULT	TIMATE STRESS, psf	276	610	592	
	FAILURE, psf	1370			
σ ₃	FAILURE, psf		2016		
1101.	TENT. U.S. A. O.				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-4U,

Sample 10-D, Depth 34.8'

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-4U, Sample 10-D, Depth 34.8'

File: UU-6825

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH4

w/ ins & ars ML

PL= 26

PI= 69

SPECIFIC GRAVITY= 2.72

REMARKS:

LL= 95

	_					
	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	59 1	58.6 99.9 1.896 1.41	59.2 100.4 1.867 1.40	(
	AT TEST		68.9 59.1 100.0 1.875 1.40 2.80	70.4 58.3 100.0 1.915 1.41 2.80	69.5 58.7 100.0 1.890 1.40 2.80	
		rain rate, in/min				
	BA	CK PRESSURE. psf	0	O	o	
	CE	LL PRESSURE, psf	1008	2016	3024	
		ILURE STRESS, psf				
	UL	TIMATE STRESS, psf	602	682	599	
-		E4 E4 445 E	1747			
	σ3	FAILURE, psf	1008	2016	3024	
Ì	CL	IENT: U.S. Army Corp	0 of F==	•	=======================================	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-4U,

Sample 12-D, Depth 42.8

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-4U, Sample 12-D, Depth 42.8'

File: UU-6826

Project No.: 13622

FIG. NO.: __

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH3

w/ lyr & Ins ML

LL= 79 PL= 25

PI= 54

SPECIFIC GRAVITY= 2.74

REMARKS:

				
SPECIMEN NO.:	1	2	3	
WATER CONTENT, % DRY DENSITY, pcf H SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	65.5	66.4 98.7 1.575 1.40	66.0 99.1 1.591 1.41	(
WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	59.9 64.8	57.1	59.2	
Strain rate, in/min				
BACK PRESSURE, psf	0	0	О	
CELL PRESSURE, psf	1008	2016	3024	
FAILURE STRESS, psf	735	967	922	
ULTIMATE STRESS, psf	556	791	677	
O1 FAILURE, psf	1743	2983	3946	
O₃FAILURE, psf	1008	2016	3024	
OL TENT ALL D				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-4U,

Sample 14-D, Depth 50.8

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-4U, Sample 14-D, Depth 50.8'

File: UU-6827 Project No.: 13622

TYPE OF TEST:

Unconsolidated Undrained

PI= 67

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH3

w/ lyr & ins ML

LL= 94 PL= 27

SPECIFIC GRAVITY= 2.74

REMARKS:

62.8 61.8 97.3 1.768 1.41	63.4	61 1	
61 B	62 4	61 1	
97.3 1.768 1.41	62.4 99.7	61.1 96.9	
1.768	99.7	yh y	
1.41	/43	1 708	,
	1.40	1.750	(
2.82	2.81	2.81	`
66.7	64.9	66.4	
60.5	61.6	60.7	
100.0	100 0	400 0	
1.827	1.778	1.819	
1.41	1.40	1.41	
0.10020	0.0997).1011	
0	O	0	
1008	2016	3024	
949	751	798	
	2.82 66.7 60.5 100.0 1.827 1.41 2.80 0.10020 0 1008 949 778 1957	2.82 2.81 66.7 64.9 60.5 61.6 100.0 100.0 1.827 1.778 1.41 1.40 2.80 2.80 0.10020.09970 0 0 1008 2016 949 751 778 646 1957 2767	2.82 2.81 2.81 66.7 64.9 66.4 60.5 61.6 60.7 100.0 100.0 100.0 1.827 1.778 1.819 1.41 1.40 1.41 2.80 2.80 2.80 0.10020.09970.1011

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-4U,

Sample 16-D, Depth 58.8

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-4U, Sample 16-D, Depth 58.8'

File: UU-6828

Project No.: 13622

Unconsolidated Undrained SAMPLE TYPE: Undisturbed DESCRIPTION: M LGr & T CL3

w/ slf

LL= 23 PL= 14 PI= 9

SPECIFIC GRAVITY= 2.7

REMARKS:

SP	ECIMEN NO.:	1	2	-
INITIAL	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	94.3 81.9	99.9 84.2 0.687 1.40	(
AT TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	29.1 94.4 100.0 0.785 1.40	25.3 100.2 100.0 0.682	
	rain rate, in/min CK PRESSURE, psf	0.10230	0.1031	
	LL PRESSURE, psf ILURE STRESS, psf		3024 2860	
σ_1	TIMATE STRESS, psf FAILURE, psf		2860 5884	
O3	FAILURE, psf	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-4U, Sample 19-B, Depth 69.2'

, , = -- , --- ,

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-4U, Sample 19-B, Depth 69.2'

File: UU-6829 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So DGr & Br CHOC

w/ lyr & ars CH, ars dec wd LL= 130 PL= 43 PI= 87

SPECIFIC GRAVITY= 2.7

REMARKS:

_					
SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	49.4	48.6 95.9 2.468 1.40	44.6 93.5 2.778 1.41	
AT TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in	90.4 49.0 100.0 2.440	90.1 49.1 100.0 2.433 1.40	102.3 44.8 100.0 2.762 1.41	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	О	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
	ILURE STRESS, psf				
1	TIMATE STRESS, psf				
4	FAILURE, psf		2864		
σ_3	FAILURE, psf		2016		
	TENT: U.S. AO				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-5U,

Sample 4-C, Depth 10.1

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-5U, Sample 4-C, Depth 10.1'

File: UU-6830 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M DGr & BK CHOC w/
ors, lyr CH, rts, dec wd & PT
LL= 137 PL= 51 PI= 86

SPECIFIC GRAVITY= 2.6

REMARKS:

			•		
SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	46 3	43.6 86.1 2.722 1.40	41.1 86.1 2.946 1.41	(
AT TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION. % VOID RATIO DIAMETER, in HEIGHT, in	96.1 46.4 100.0 2.498 1.41 2.80	103.2 44.1 100.0 2.682 1.40 2.80	111.4 41.7 100.0 2.896 1.41 2.80	
	rain rate, in/min				
BA	CK PRESSURE, paf	0	Ο	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA:	ILURE STRESS, psf	1576	1682	2234	
	TIMATE STRESS, psf				
	FAILURE, psf		3698		
σ ₃	FAILURE, psf		2016		
CI	TENT : U.S. Armi Con-				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-5U, .

Sample 7-D, Depth 22.9'

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-5U, Sample 7-D, Depth 22.9'

File: UU-6831

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CL5

w/ Ins CH

LL= 35 PL= 22

PI= 13

SPECIFIC GRAVITY= 2.7

REMARKS:

SPECIMEN NO.:	1	2	3	
WATER CONTENT, % DRY DENSITY, pcf H SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	82.5 94.9 1.044 1.40	84.0 95.1 1.007 1.40	83.5 96.0 1.019	(
WATER CONTENT. % DRY DENSITY, pcf SATURATION. % VOID RATIO DIAMETER, in HEIGHT, in	38.4 82.7 100.0 1.037 1.40 2.80	37.0 84.4 100.0 0.998 1.40 2.80	37.9 83.3 100.0 1.024 1.40 2.80	
Strain rate, in/min	0.10860	0.10760	0.1075	
BACK PRESSURE, psf	0	0	0	
CELL PRESSURE, psf	1008	2016	3024	
FAILURE STRESS, psf	851	1017	709	
ULTIMATE STRESS, psf	857	921	523	
O1 FAILURE, psf	1859			
O ₃ FAILURE, psf	1008			
CLIENT: U.S. Army Con				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-5U, Sample 10-C, Depth 31.9'

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-5U, Sample 10-C, Depth 31.9'

File: UU-6832

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH2

w/ lyr & Ins ML

LL= 50 PL= 23

PI= 27

SPECIFIC GRAVITY= 2.74

REMARKS:

[65	SOTUCE				
31	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	38.1 81.4 94.7 1.101 1.40 2.80	79.4 95.7 1.154 1.40	79.5 97.1 1.152 1.40	
AT TES	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	40.2 81.4 100.0 1.101 1.40	42.4 79.2 100.0 1.161	42.0 79.5 100.0 1.151 1.40	
St	rain rate, in/min	0.10500	0.10990	0.1084	
BA	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA:	ILURE STRESS, psf	964	869	1048	
UL:	TIMATE STRESS, psf	898	729	958	
		1972			
03	FAILURE, psf		2016		

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-5U,

Sample 13-C. Depth 43.9'

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-5U, Sample 13-C, Depth 43.9'

File: UU-6833

Project No.: 13622

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	59.5	61.0 101.8 1.805 1.40	61.2 101.4 1.793 1.40	
IĽ	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	70.0 58.6	65.7 61.1 100.0 1.800 1.40	65.4 61.2 100.0 1.793 1.40	
St	rain rate, in/min	0.10760	0.09960	0.1052	
1	CK PRESSURE, psf		0	_	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1305	1245	1154	
UL.	TIMATE STRESS, psf	838	903	940	
σ_1	FAILURE, psf	2313	3261	4178	
O 3	FAILURE, psf	1008	2016	3024	

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr & Ins ML

LL= 99 PL= 27

PI= 72

SPECIFIC GRAVITY= 2.74

REMARKS:

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-5U,

Sample 15-B, Depth 51.5'

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-5U, Sample 15-B, Depth 51.5'

File: UU-6834

Project No.: 13622

SPECIMEN NO.:

WATER CONTENT, %

DRY DENSITY, pcf

WATER CONTENT. %

DRY DENSITY, pcf

SATURATION. %

Strain rate, in/min

BACK PRESSURE, psf

CELL PRESSURE, psf

FAILURE STRESS, psf

ULTIMATE STRESS, psf

O1 FAILURE, psf

OJ FAILURE, psf

SATURATION. %

VOID RATIO

HEIGHT, in

VOID RATIO

HEIGHT, in

DIAMETER, in

DIAMETER, in

TYPE OF TEST:

SAMPLE TYPE: Undisturbed

w/ lyr & Ins ML

PI= 66

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-5U,

PROJECT: Algiers Levee

Sample 17-D, Depth 60.8

CLIENT: U.S. Army Corps of Engineers

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

1

59.2

65.4

1.40

2.80

59.2

65.2

1.40

2.80

1008

1301

951

2309

1008

0

59.5

65.5

100.4 101.2 101.3

1.617 1.610 1.584

1.40

2.80

58.2

65.9

1.40

2.80

0

2016

919

582

2935

2016

0.08970.09920.0984

100.0 100.0 100.0

1.622 1.596

3

58.6

66.2

1.40

2.80

57.5

66.4

1.576

1.40

2.80

3024

1463

1106

4487

3024

0

Eustis Engineering Company, Inc.

Unconsolidated Undrained

DESCRIPTION: M Gr CH4

LL= 93 PL= 27

SPECIFIC GRAVITY= 2.74

REMARKS:

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-5U, Sample 17-D, Depth 60.8'

File: UU-6835

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr & Ins ML

LL= 100 PL= 28

PI= 72

SPECIFIC GRAVITY= 2.74

REMARKS:

SI	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	64.1	64.4 99.5 1.656 1.40	64.2 99.1 1.666 1.40	See See
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	61.2 63.9 100.0 1.678 1.41 2.80	60.7 64.3 100.0 1.662 1.40 2.80	59.8 64.8 100.0 1.638 1.40 2.80	
St	rain rate, in/min				
BA	ACK PRESSURE, psf	0	О	0	
CE	ILL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1009	739	1106	
UL	TIMATE STRESS, psf	716	701	932	
	FAILURE, psf		2755		
03	FAILURE, psf	1008	2016	3024	
lci	TENT: U.S. Army Con-				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-5U,

Sample 19-D. Depth 68.8'

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-5U, Sample 19-D, Depth 68.8'

File: UU-6836 Project No.: 13622

Str BAC CEL FAI 20 ULT:

TYPE OF TEST:

Unconsolidated Undrained
SAMPLE TYPE: Undisturbed
DESCRIPTION: So Gr CH4

LL= 89 PL= 30 PI= 59
SPECIFIC GRAVITY= 2.74
REMARKS:

CDEOTHELL				
SPECIMEN NO.:		2		
WATER CONTENT, % DRY DENSITY, pcf H SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.3	62.7 100.9 1.730 1.40	61.0 100.9 1.806 1.41	(
WATER CONTENT. % DRY DENSITY, pcf SATURATION. % VOID RATIO DIAMETER, in HEIGHT, in	65.1 61.4 100.0	62.8 62.9 100.0	65.2 61.4 100.0	
Strain rate, in/min	0.09930	0.10120	0.0995	
BACK PRESSURE, psf	O	0	0	
CELL PRESSURE, psf	1008	2016	3024	
FAILURE STRESS, psf	805	960	808	
ULTIMATE STRESS, psf				
G 5471.115-	1813			
⊙₃FAILURE, psf		2016		
CL TENT. H. C.				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-5U.

Sample 21-B, Depth 74.7'

PROJ. NO.: 13622

DATE: 6-28-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-5U, Sample 21-B, Depth 74.7'

File: UU-6837

Project No.: 13622

FIG. NO.: ___

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So DGr & Br CHOB

w/ slf, rts, dec wd

LL= 155 PL= 41

PI= 114 | Contract |

r- 122 Lr= 41 PT= 1

SPECIFIC GRAVITY= 2.65

REMARKS:

	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	40 -			
	TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	118.8 39.9 100.0	115.9 40.6 100.0	131.4 36.9 100.0	
	St	rain rate, in/min	0.08930	0.08950	0.0927	
		CK PRESSURE, psf		0	0	
j	CE	LL PRESSURE, psf	1008	2016	3024	
		ILURE STRESS, psf				
	UL	TIMATE STRESS, psf	519	553	414	
-	ľ	FAILURE, psf				
		FAILURE, psf		2016		
1	CL	TENT: U.S. Army Core	/ -			

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-6U,

Sample 3-C, Depth 9.1'

PROJ. NO.: 13622

DATE: 7-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012

Location: Boring ALGE-6U, Sample 3-C, Depth 9.1'

File: UU-6851

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: VSo Gr CH4

w/ lyr & Ins ML

LL= 85 PL= 25

PI= 60

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	ECIMEN NO.:	1	2	3	
	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	54.1	56.2 94.8 2.043 1.41	58.9 97.7 1.903 1.41	
TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	78.4 54.4 100.0 2.147 1.41	74.8 56.1 100.0 2.049	69.3 59.0 100.0 1.899 1.41	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	389	318	542	
UL.	TIMATE STRESS, psf	324	276	488	
σ_1	FAILURE, psf	1397	2334	3566	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-6U,

Sample 4-C, Depth 13.4'

PROJ. NO.: 13622

DATE: 7-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-6U, Sample 4-C, Depth 13.4'

File: UU-6852

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CL6

w/ Ins & ars ML LL= 48 PL= 17

PI= 31

SPECIFIC GRAVITY= 2.72

REMARKS:

	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	83 G	83.7 98.3 1.028 1.41	83.4 96.6 1.035 1.41	
	TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	38.0 83.5 100.0 1.034 1.41	37.6 83.9 100.0	38.0 83.5 100.0 1.033 1.41	
	St	rain rate, in/min	0.10690	10820	0.1058	
	BA	CK PRESSURE, psf	0	0	0	
i	CE	LL PRESSURE, psf	1008	2016	3024	
	FA:	ILURE STRESS, psf	1135	1053	1050	
i		TIMATE STRESS, psf				
-		FAILURE, psf		3069		
	σ_3	FAILURE, psf		2016		
	CL	IENT: U.S. Army Cose	6 F	•		

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-6U,

Sample 13-D, Depth 37.3'

PROJ. NO.: 13622

DATE: 7-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-6U, Sample 13-D, Depth 37.3'

File: UU-6853

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH3

w/ lyr & lns ML

LL= 76 PL=

PL= 23

PI≈ 53

SPECIFIC GRAVITY= 2.74

REMARKS:

SPECIMEN NO.:		1	2	3	
WATER CONTI DRY DENSITY H SATURATION H VOID RATIO DIAMETER, I HEIGHT, In	(, pcf , % in	70.5 96.0 1.425 1.40	95.1 1.431	70.1 93.5 1.440 1.41	
WATER CONTE DRY DENSITY SATURATION, VOID RATIO DIAMETER, I HEIGHT, In	í, pcf , % n	51.5 70.9 100.0	51.7 70.8 100.0 1.417 1.41	52.0 70.5 100.0 1.425 1.41	
Strain rate,	in/min				
BACK PRESSURE	. psf	0	0	0	
CELL PRESSURE	, psf	1008	2016	3024	
FAILURE STRESS	o, psf	740	867	861	
ULTIMATE STRES	SS, psf	738	790	850	
O1 FAILURE, ps	f	1748	2883	3885	
Ø₃FAILURE, ps	f	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-6U.

Sample 15-B. Depth 44.5'

PROJ. NO.: 13622

DATE: 7-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-6U, Sample 15-B, Depth 44.5'

File: UU-6854

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr & Ins ML

LL= 86 PL= 26

PI= 60

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	67 4	67.3 97.1 1.540 1.41	67.3 95.5 1.542 1.42	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	56.2 67.4 100.0 1.540	55.9 67.6 100.0 1.531	56.0 67.5 100.0 1.533	
St	rain rate, in/min	0.09850	0.09740	0.0985	
	CK PRESSURE, psf		0	•	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1172	1133	1035	
UL.	TIMATE STRESS, psf	872	846	945	
σ_1	FAILURE, psf	2180	3149	4059	
<u>σ</u> 3	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-6U,

Sample 17-D, Depth 53.8'

PROJ. NO.: 13622

DATE: 7-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-6U, Sample 17-D, Depth 53.8'

File: UU-6855 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH4

w/ lyr & ins ML

LL= 90 PL= 29

PI= 61

SPECIFIC GRAVITY= 2.74

REMARKS:

CDE OTHER WAR			
SPECIMEN NO.:		3	
WATER CONTENT, % DRY DENSITY, pcf H SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	68 3 66	.6 68.2 .6 98.4 68 1.506 41 1.40	(
WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	55.1 57	.1 54.6 .7 68.5 .0 100.0 54 1.495 11 1.40	
Strain rate, in/min	0.10030.099	950.0972	
BACK PRESSURE, psf	O	0 0	
CELL PRESSURE, psf	1008 201	16 3024	
FAILURE STRESS, psf			
ULTIMATE STRESS, psf			
O1 FAILURE, psf	2355 376		
O3 FAILURE, psf	1008 201		
CLIENT: U.S. A			

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-6U,

Sample 19-C, Depth 61.4'

PROJ. NO.: 13622

DATE: 7-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-6U, Sample 19-C, Depth 61.4'

File: UU-6856 Project No.: 13622

FIG. NO.: ___

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: St Gr CH3 w/

lyr CL5, ars ML & dec wd

LL= 70 PL= 20 PI= 50

SPECIFIC GRAVITY= 2.74

REMARKS:

_			•		
SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	73.1	65.1 95.2 1.629 1.41	66.2 96.6 1.582 1.41	(
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	48.9 73.1 100.0 1.339 1.40	58.9 65.4 100.0 1.614	57.4 66.5 100.0 1.573 1.41	
Strain rate, in/min 0.0924		0.09240	0.0996	0.1020	
BA	CK PRESSURE, psf	0	O	O	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	2338	2245	2577	
UL	TIMATE STRESS, psf	1818	1916	1779	
	EATILIAN .	3346			
σ_3	FAILURE, psf	1008	2016	3024	
110.	TENT II C				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-6U,

Sample 26-B, Depth 78.2'

PROJ. NO.: 13622

DATE: 7-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-6U, Sample 26-B, Depth 78.2'

File: UU-6857

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ lyr & lns ML

LL= 82 PL= 29

PI= 53

SPECIFIC GRAVITY= 2.74

REMARKS:

[66					
127	ECIMEN NO.:	1		3	
INITIAL	WATER CONTENT, % DRY DENSITY, pef SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	64 9	63.2 98.7 1.705 1.40	64.7 97.6 1.646 1.41	:
TES	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	59.9 64.7 100.0 1.642 1.41	62.1 63.3 100.0 1.702	60.2 64.6 100.0 1.649 1.41	
Strain rate, in/min		0.09690	0.0985	0.0973	
BA	CK PRESSURE, psf	0	0	0	
CELL PRESSURE, psf					
FAILURE STRESS, psf		857	789	720	
ULTIMATE STRESS, psf		614	704	642	,
O1 FAILURE, psf		1865	2805	3744	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-7U,

Sample 2-B, Depth 2.0'

PROJ. NO.: 13622

DATE: 7-11-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012

Location: Boring ALGE-7U, Sample 2-B, Depth 2.0'

File: UU-6942 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr & T CL6 w/lyr

& ins ML. lyr & ig ars org

LL= 42 PL= 17 PI= 25

SPECIFIC GRAVITY= 2.74

REMARKS:

			•		
SF	PECIMEN NO.:	1		3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	92 0	91.3 92.9 0.873 1.40	88.8 91.6 0.926 1.41	
	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	31.5 91.8 100.0	31.6 91.6 100.0 0.867 1.40	33.2 89.6 100.0 0.908 1.41	
1	rain rate, in/min	0.09840	0.10180	0.1023	
	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
	ILURE STRESS, psf				
UL	TIMATE STRESS, psf	1354	1074	1161	
σ ι	FAILURE, psf	2503	3221	4211	
σ ₃	FAILURE, psf	1008	2016	3024	
llci	TENT: II S Army Con-				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-7U,

Sample 4-C, Depth 14.1

PROJ. NO.: 13622

DATE: 7-11-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-7U, Sample 4-C, Depth 14.1'

File: UU-6943 Project No.: 13622

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	78.8	80.8 98.2 1.118 1.40	79.4 96.9 1.155 1.40	\daga_a
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	43.3 78.2	41.3 80.2 100.0 1.132 1.40	42.5 79.0 100.0 1.164 1.40	
St	Strain rate, in/min 0.11010.11140.1060				
ВА	CK PRESSURE, psf	O	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	881	829	774	
UL	TIMATE STRESS, psf	812	788	718	
01	FAILURE, psf	1889	2845	3798	
σ ₃	FAILURE, psf	1008	2016	3024	

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CL6

w/ lyr & Ins ML

LL= 45 PL= 21

PI= 24

SPECIFIC GRAVITY= 2.74

REMARKS:

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

CLIENT: U.S. Army Corps of Engineers

SAMPLE LOCATION: Boring ALGE-7U,

Sample 6-D, Depth 22.8'

PROJ. NO.: 13622

DATE: 7-11-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-7U, Sample 6-D, Depth 22.8'

File: UU-6944

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: St Gr CH4

w/ Ins & ars ML

LL= 72 PL= 24

PI= 48

SPECIFIC GRAVITY= 2.72

REMARKS:

[65					
2	PECIMEN NO.:	1	2	3	
4	WATER CONTENT, % DRY DENSITY, pcf	74.6	74 7	75 O	
INITIAL	SATURATION, %	97.3 1.275	99.3	98.4	,÷
H	DIAMETER, in HEIGHT, in	1.40	1.40	1.40	:
ST	WATER CONTENT. % DRY DENSITY, pcf	46.9	46.6	46.2	
띰	VOID RATIO	100.0 1.275	100.0	100.0	
A.	DIAMETER, in HEIGHT, in	1.40	1.40	1.40	
St	rain rate, in/min	0.09590	0.09760	0.0954	 .
BA	CK PRESSURE, psf	0	0	0	
CELL PRESSURE, psf		1008	2016	3024	
FAILURE STRESS, psf					
ULTIMATE STRESS, psf		1643	1693	1822	
01	FAILURE, psf	3216	4635	5677	
Ø3	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-7U,

Sample 25-B, Depth 61.5'

PROJ. NO.: 13622

DATE: 7-11-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-7U, Sample 25-B, Depth 61.5'

File: UU-6945

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: St Gr CH4

w/ Ins & ars ML

LL= 94 PL= 30

PI= 64

SPECIFIC GRAVITY= 2.72

REMARKS:

Sp	PECTUEN NO				
3	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	64 0	67.0 99.8 1.533 1.40	64.9 97.8 1.617 1.41	Control
AT TES	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	59.3 65.0 100.0	56.2 67.1 100.0 1.529 1.40	58.6 65.4 100.0 1.595 1.41	
St	rain rate, in/min	0.08290	0.09010	0.0965	
BA	CK PRESSURE, psf	0	0	O	
CEI	_L PRESSURE, psf	1008	2016	3024	
FA]	CLURE STRESS, psf	2339	2652	1718	
ULI	TIMATE STRESS, psf	1139	1843	264	
σ_1	FAILURE, psf	3347			
=	FAILURE, psf	1008	2016	3024	
licu	TENT: II S Army Core				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-7U,

Sample 27-C, Depth 71.1'

PROJ. NO.: 13622

DATE: 7-11-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-7U, Sample 27-C, Depth 71.1'

File: UU-6946

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CHOB

w/ dec wd & rts

LL= 206

PL= 54

PI= 152

SPECIFIC GRAVITY= 2.65

REMARKS:

60	PECTUEN NO				
35	PECIMEN NO.:		2		
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	70 E	32.1 91.5 4.156 1.40	29.7 87.9 4.579 1.42	
AT TES	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	167.5 30.4 100.0 4.439 1.41 2.80	154.6 32.5 100.0 4.098 1.40 2.80	168.7 30.2 100.0 4.470 1.42 2.80	
St	rain rate, in/min	0.11170	0.10560	0.1034	
	CK PRESSURE, psf		О		
CEI	LL PRESSURE, psf	1008	2016	3024	
FA]	CLURE STRESS, psf	716	1246	788	
ULT	TIMATE STRESS, psf	714	847	660	
	CAT: 110-	1724			
O ₃	FAILURE, psf		2016		
	TENT: U.S. A				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-8U,

Sample 3-C, Depth 5.6'

PROJ. NO.: 13622

DATE: 7-11-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012

Location: Boring ALGE-8U, Sample 3-C, Depth 5.6'

File: UU-6947 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: VSo Gr CH4 w/ lyr

& Ins ML & few conc

LL= 90 PL= 23

PI≖ 67

SPECIFIC GRAVITY= 2.74

REMARKS:

SPECIME	N NO.:	1	2	
H SATU	R CONTENT, % DENSITY, pcf RATION, % RATIO ETER, in HT, in	62.2 97.9 1.750 1.40	64.4 97.7 1.657	(
WATEI DRY U SATUR VOID DIAME		64.7 61.7 100.0 1.772 1.40	60.5 64.4 100.0 1.657	
Strain	rate, in/min			
BACK PR	ESSURE, psf	О	0	
CELL PR	ESSURE, psf	1008	3024	
FAILURE	STRESS, psf	311	363	
ULTIMATI	E STRESS, psf			
	IRE, psf		3387	
σ ₃ FAILU	IRE, psf	1008	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-8U,

Sample 5-C, Depth 14.2'

PROJ. NO.: 13622

DATE: 7-11-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-8U, Sample 5-C, Depth 14.2'

File: UU-6948

Project No.: 13622

	1	-		ŀ
-	-			ı
٠,		2	0	ļ
% —			-	<
				<

COFOTHER				
SPECIMEN NO.:	1		3	
WATER CONTENT, % DRY DENSITY, pcf H SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	68.4	69.6 96.0 1.439 1.40	68.1 97.2 1.494 1.40	
WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO	54.0	53.2 69.4 100.0 1.448 1.40	54.7 68.2 100.0 1.489 1.40	
Strain rate, in/min	0.10770	0.10630	0.1057	
BACK PRESSURE, psf	0	0	0	
CELL PRESSURE, psf	1008	2016	3024	
FAILURE STRESS, psf				
ULTIMATE STRESS, psf				
O1 FAILURE, psf	1551			
O ₃ FAILURE, psf		2016		
CLIENT. U.S.				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-8U, Sample 8-C, Depth 26.1'

PROJ. NO.: 13622

DATE: 7-12-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH3

w/ Ins. lyr & ars ML LL= 60 PL= 21

PI= 39

SPECIFIC GRAVITY= 2.72

REMARKS:

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-8U, Sample 8-C, Depth 26.1'

File: UU-6950

Project No.: 13622

FIG. NO.: ____

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH4

w/ Ins & ars ML LL= 85 PL= 27

PL= 27 PI= 58

SPECIFIC GRAVITY= 2.72

REMARKS:

					•
SP	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	60.2 99.2 1.819 1.41	66.8 59.2 97.1 1.870 1.42 2.80	60.3 98.9 1.816 1.41	(
TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	67.4 59.9	68.8 59.2 100.0 1.870 1.42	66.7 60.3 100.0 1.815 1.41	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	567	793	803	
UL.	TIMATE STRESS, psf	459	584	585	
01	FAILURE, psf	1575	2809	3827	
σ_3	FAILURE, psf	1008	2016	3024	
16.	TCNT				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-8U,

Sample 10-C, Depth 34.1'

PROJ. NO.: 13622

DATE: 7-12-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-8U, Sample 10-C, Depth 34.1'

File: UU-6951 Project No.: 13622 FIG. NO.:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH3

· w/ ars ML

LL= 81 PL= 25

PI≈ 56

SPECIFIC GRAVITY= 2.72

REMARKS:

			•		
SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	63.3	62.8 97.3 1.704 1.41	63.0 98.3 1.694 1.40	(.
TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.2 63.1	62.4 63.0 100.0 1.697 1.41	62.5 62.9 100.0 1.701 1.40	
St	rain rate, in/min				
BA	CK PRESSURE, psf	0	0	O	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	821	843	921	
UL.	TIMATE STRESS, psf	628	670	702	
0,	FAILURE, psf	1829	2859	3945	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-8U,

Sample 13-D, Depth 46.21

PROJ. NO.: 13622

DATE: 7-12-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-8U, Sample 13-D, Depth 46.2'

File: UU-6952 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ ars ML

L= 93 PL= 29

PI= 64

SPECIFIC GRAVITY= 2.72

REMARKS:

SPECIMEN NO.:	1	2	3	
WATER CONTENT, % JORY DENSITY, pcf H SATURATION, % VOID RATIO NOID HEIGHT, in HEIGHT, in	60.4	98.7 1.808 1.40	60.8 99.0 1.791 1.41	(
WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66.3 60.6 100.0	66.6 60.4 100.0	65.8 60.9 100.0	.,.
Strain rate, in/min	0.09540	0.0986	0.0980	
BACK PRESSURE, psf	0	0	0	
CELL PRESSURE, psf	1008	2016	3024	
FAILURE STRESS, psf	1171	1059	1231	
ULTIMATE STRESS, psf				
= = - · · · · · ·	2179			
O ₃ FAILURE, psf	1008	2016	3024	
CLIENT: II S Army Con				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-8U,

Sample 15-C, Depth 54.1'

PROJ. NO.: 13622

DATE: 7-12-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-8U, Sample 15-C, Depth 54.1'

File: UU-6953

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH3

w/ lyr SP

LL= 88

PL= 28

PI= 60

SPECIFIC GRAVITY= 2.74

REMARKS:

		·			
SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.1 97.8 1.754 1.40	62.5 99.2 1.738 1.40	62 2	(
AT TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	64.0 62.1 100.0 1.754 1.40	63.3 62.6 100.0 1.734	63.6 62.4 100.0 1.741 1.40	
St	rain rate, in/min				
1	CK PRESSURE, psf		0	•	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1137	1097	1085	
UL	TIMATE STRESS, psf	846	799	798	
σ_1	FAILURE, psf	2145	3113	4109	
Ø3	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-8U,

Sample 17-C, Depth 61.8'

PROJ. NO.: 13622

DATE: 7-12-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-9U, Sample 15-D, Depth 58.8'

File: UU-7111 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

·w/ lyr & Ins ML

LL= 91

PL= 23

PI= 68

SPECIFIC GRAVITY= 2.74

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	60.0	60.2 95.7 1.843 1.40	60.4 94.6 1.831 1.40	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	67.5 60.0 100.0	67.1 60.3 100.0 1.838	66.2 60.8 100.0 1.814	
St	rain rate, in/min	0.11210	0.11220	0.1009	
ВА	CK PRESSURE, psf	o	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	919	942	983	
UL	TIMATE STRESS, psf	819	830	829	
01	FAILURE, psf	1927	2958	4007	
σ ₃	FAILURE, psf	1008	2016	3024	
11 -					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-9U,

Sample 17-D, Depth 66.8

PROJ. NO.: 13622

DATE: 7-24-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-9U, Sample 13-D, Depth 50.8

File: UU-7110

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ lyr & ins ML

LL= 93

PL= 27

PI≖ 66

SPECIFIC GRAVITY= 2.74

REMARKS:

	SDECTHEN NO					
	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	58 9	59.8 94.4 1.862 1.40	58.4 95.7 1.930 1.40	(
	1	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	69.8 58.7 100.0 1.913	67.8 59.8 100.0 1.859 1.40	70.2 58.5 100.0 1.924 1.40	
	St	rain rate, in/min	0.11470	0.11440	0.1065	
	BA	CK PRESSURE, psf	0	0	О	
	CE	LL PRESSURE, psf	1008	2016	3024	
	FA	ILURE STRESS, psf	1040	937	960	
)	UL	TIMATE STRESS, psf	833	724	798	
_	σ_1	FAILURE, psf	2048	2953	3984	
	σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-9U,

Sample 15-D, Depth 58.8'

PROJ. NO.: 13622

DATE: 7-24-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-9U, Sample 9-D, Depth 34.8'

File: UU-7109

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ lyr & Ins ML LL= 84 PL= 25

PI= 59

SPECIFIC GRAVITY= 2.74

REMARKS:

			·		
ISP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	61.9	104.6 1.597 1.40	63.5 95.8 1.694 1.40	(
AT TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	64.7 61.7 100.0 1.773 1.40	58.2 65.9 100.0	61.8 63.5 100.0 1.692 1.40	
St	rain rate, in/min				
BA	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS. psf	749	717	805	
UL	TIMATE STRESS, psf	548	589	595	
		1757			
σ3	FAILURE, psf	1008	2016	3024	
110.	TENT				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-9U,

Sample 13-D, Depth 50.8

PROJ. NO.: 13622

DATE: 7-24-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-9U, Sample 7-D, Depth 26.2'

File: UU-7108

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ lyr & Ins ML

LL= 92

PL= 30

PI= 62

SPECIFIC GRAVITY= 2.74

REMARKS:

6	CDEOTUE						
21	PECIMEN NO.:	1	2				
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	64 2	64.6 93.6 1.647 1.39	63.6 98.5 1.688 1.39			
٣	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	61.5 63.7 100.0 1.686 1.40	60.3 64.5 100.0 1.653	61.8 63.5 100.0 1.693 1.39			
St	rain rate, in/min	0.11510	D.1149	0.1126	-		
	CK PRESSURE, psf		0				
CE	LL PRESSURE, psf	1008	2016	3024			
FA	ILURE STRESS, psf	579	632	658			
ΠĽ.	TIMATE STRESS, psf	465	518	521			
01	FAILURE, psf	1587	2648	3682			
σ_3	FAILURE, psf	1008	2016	3024			

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-9U,

Sample 9-D, Depth 34.8'

PROJ. NO.: 13622

DATE: 7-24-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-9U, Sample 5-C, Depth 17.7'

File: UU-7107

Project No.: 13622

20

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: VSo Gr CH3

w/ lyr & Ins ML

LL= 72 PL= 23

PI = 49

SPECIFIC GRAVITY= 2.74

REMARKS:

					
\$	SPECIMEN NO.:	1	2	3	
TNTTTAL	WATER CONTENT, % CONTENT, pef C	62.5 98.5 1.738 1.40	62.4 95.6 1.740	61.4 96.7 1.785 1.40	(
լև	DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in	64.0 62.1 100.0	64.0 62.1 100.0 1.755 1.40	65.6 61.1 100.0 1.799 1.40	
s	strain rate, in/min				
В	ACK PRESSURE, psf	0	0	0	
c	ELL PRESSURE, psf	1008	2016	3024	
- 1	AILURE STRESS, psf				
	LTIMATE STRESS, psf				
1	FAILURE, psf	1396			,
0	FAILURE, psf		2016		
	N TENT. II C. A. C.				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-9U,

Sample 7-D, Depth 26.2'

PROJ. NO.: 13622

DATE: 7-24-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-9U, Sample 2-B, Depth 4.6'

File: UU-7106

Project No.: 13622

FIG. NO.: ___

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH4

w/wd

LL= 118 PL= 28

28

PI= 90

SPECIFIC GRAVITY= 2.74

REMARKS:

	50	ECTUEN NO			·····	
	135	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	56.1 86.9 2.047 1.40	52.1 77.8 2.283	57.1 87.7 1.993 1.40	(
	AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	75.0 56.0	83.4 52.1 100.0 2.284 1.39	72.5 57.3 100.0 1.986 1.40	
		rain rate, in/min				
	ВА	CK PRESSURE, psf	0	. 0	0	
	CE	LL PRESSURE, psf	1008	2016	3024	
	FA:	ILURE STRESS, psf	391	627	1045	
	UL.	TIMATE STRESS, psf	424	633	801	
-	σ_{i}	FAILURE, psf	1399	2643	4069	
	σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-9U.

Sample 5-C, Depth 17.7'

PROJ. NO.: 13622

DATE: 7-24-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-8U, Sample 22-D, Depth 76.8'

File: UU-6955

Project No.: 13622

Unconsolidated Undrained SAMPLE TYPE: Undisturbed

DESCRIPTION: St LGr & T CH2 w/

Ins & ars ML, ox, rts

LL= 82 PL= 33

PI= 49

SPECIFIC GRAVITY= 2.72

REMARKS:

	SP	ECIMEN NO.:	1	2	3	· · · · · ·
	HUH	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	73.6	74.6 84.4 1.276 1.41	76.0 73.3 1.234 1.40	(
	12	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	47.8 73.8 100.0 1.301 1.42	46.7	44.1 77.2 100.0 1.199 1.40	
		rain rate, in/min				
	BA	CK PRESSURE, psf	0	0	0	
	CE	LL PRESSURE, psf	1008	2016	3024	
	•	ILURE STRESS, psf				
'		TIMATE STRESS, psf				
_			4430			
	σ_3	FAILURE, psf	1008	2016	3024	
ļ		TENT. U.S. A.				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-9U,

Sample 2-B, Depth 4.6'

PROJ. NO.: 13622

DATE: 7-24-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-8U, Sample 17-C, Depth 61.8'

File: UU-6954 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: ST Gr CL3

w/ sif & ars CH

LL= 28 PL= 15

PI= 13

SPECIFIC GRAVITY= 2.7

REMARKS:

SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO	91.0	90.4 97.1	92.2 94.3	ſ
H	DIAMETER, in HEIGHT, in	1.40 2.80	1.40	1.42	(
TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	31.8 90.7	32.4 89.9 100.0 0.874 1.40	30.8 92.1 100.0 0.831 1.42	
St	rain rate, in/min				
BA	CK PRESSURE, psf	0	0	o	
CE	LL PRESSURE, psf	1008	2016	3024	
FA:	ILURE STRESS, psf	2263	1218	1103	
UL.	TIMATE STRESS, psf	2263	1218	567	
σı	FAILURE, psf	3271	3234	4127	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-8U,

Sample 22-D, Depth 76.8'

PROJ. NO.: 13622

DATE: 7-12-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-9U, Sample 17-D, Depth 66.8'

File: UU-7112 Proje

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH3

w/ slf

LL= 64 PL= 18 PI= 46

SPECIFIC GRAVITY= 2.7

REMARKS:

CDCOTUGU VIO						
SPECIMEN NO.:		1	2	3		
THUE	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	76 7	74.8 97.7 1.252 1.40	76.7 96.2 1.199 1.40	:	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	44.1 76.9 100.0 1.192	46.1 75.1 100.0 1.244 1.40	43.6 77.4 100.0 1.177 1.40		
St	rain rate, in/min	0.11260.11630.1101				
ı.	CK PRESSURE, paf		0	0		
CE	LL PRESSURE, psf	1008	2016	3024		
FA:	ILURE STRESS, psf	1517	962	1455		
ULTIMATE STRESS, psf		1318	965	1278		
		2525				
⊘ 3	FAILURE, psf	1008	2016	3024		

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-9U,

Sample 22-B. Depth 77.1'

PROJ. NO.: 13622

DATE: 7-24-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-9U, Somple 22-B, Depth 77.1'

File: UU-7113 Project No.: 13622

	U	5	10	, 15
		Axial	Strai	n,
TYPE OF T	EST	•		
Unconso	olida	ated Und	draine	ed
SAMPLE TY	PE:	Undist	ırbed	
DESCRIPTI	ON:	So Gr (НЗ	

w/ lyr & ins org & dec wd
LL= 103 PL= 32 PI= 71
SPECIFIC GRAVITY= 2.74
BELARICO

REMARKS:

Γ					
SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	59.9	64.4 93.6 1.654 1.41	59.9 92.8 1.857 1.40	
AT TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	68.4 59.5	60.5 64.4 100.0 1.657 1.41	67.5 60.0 100.0 1.851 1.40	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	0	0	О	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	498	413	820	
UL.	TIMATE STRESS, psf	348	391	649	
σı	FAILURE, psf	1506	2429	3844	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-10U,

Sample 3-D, Depth 10.8

PROJ. NO.: 13622

DATE: 7-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-10U, Sample 3-D, Depth 10.8'

File: UU-7114

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: VSo Gr CH3

.w/ lyr & lns ML & ars org LL= 76 PL= 25 PI= 51

SPECIFIC GRAVITY= 2.74

REMARKS:

COTUMN				
JURY DENSITY, pcf	63.7 99.2 1.685 1.40	60.3 101.2 1.838 1.40	59.0 100.4 1.899 1.40	(
SATURATION, % VOID RATIO	61.9 63.4 100.0	68.2 59.6 100.0	71.6 57.8 100.0	
rain rate, in/min	0.11550	0.11521	0.1158	
		0	О	
LL PRESSURE, psf	1008	2016	3024	
mail a mana a sa a mana				
FAILURE, psf	1008	2016	3024	
	DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in rain rate, in/min CK PRESSURE, psf LL PRESSURE, psf LLURE STRESS, psf FAILURE, psf	WATER CONTENT, % 61.0 DRY DENSITY, pcf 63.7 SATURATION, % 99.2 VOID RATIO 1.685 DIAMETER, in 1.40 HEIGHT, in 2.81 WATER CONTENT, % 61.9 DRY DENSITY, pcf 63.4 SATURATION, % 100.0 VOID RATIO 1.696 DIAMETER, in 1.40 HEIGHT, in 2.80 CK PRESSURE, psf 0 LL PRESSURE, psf 1008 ELURE STRESS, psf 172 FAILURE, psf 1275	WATER CONTENT, % 61.0 67.9 DRY DENSITY, pcf 63.7 60.3 SATURATION, % 99.2 101.2 VOID RATIO 1.685 1.838 DIAMETER, in 1.40 1.40 HEIGHT, in 2.81 2.81 WATER CONTENT, % 61.9 68.2 DRY DENSITY, pcf 63.4 59.6 SATURATION, % 100.0 100.0 VOID RATIO 1.696 1.868 DIAMETER, in 1.40 1.40 HEIGHT, in 2.80 2.80 CK PRESSURE, psf 0 0 LL PRESSURE, psf 1008 2016 ELURE STRESS, psf 172 331 FAILURE, psf 1275 2617	WATER CONTENT, % 61.0 67.9 69.6 DRY DENSITY, pcf 63.7 60.3 59.0 SATURATION, % 99.2 101.2 100.4 VOID RATIO 1.685 1.838 1.899 DIAMETER, in 1.40 1.40 1.40 HEIGHT, in 2.81 2.81 2.82 WATER CONTENT. % 61.9 68.2 71.6 DRY DENSITY, pcf 63.4 59.6 57.8 SATURATION, % 100.0 100.0 100.0 VOID RATIO 1.696 1.868 1.962 DIAMETER, in 1.40 1.40 1.40 HEIGHT, in 2.80 2.80 2.80 rain rate, in/min 0.11550.11520.1158 CK PRESSURE, psf 0 0 0 CLL PRESSURE, psf 1008 2016 3024 TIMATE STRESS, psf 172 331 431 FAILURE, psf 1275 2617 3566

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-10U,

Sample 6-B. Depth 21.5'

PROJ. NO.: 13622

DATE: 7-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-10U, Sample 6-B, Depth 21.5'

File: UU-7115 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: XSo Gr CH4

w/ Ins ML

LL= 96 PL= 27

PI= 69

SPECIFIC GRAVITY= 2.74

REMARKS:

CDECTUE	
SPECIMEN NO.:	1 2 3
ID IURY DENSITY, nof	70.1 70.3 69.1 58.1 57.5 58.3 98.7 97.6 97.9 1.946 1.975 1.933 1.40 1.40 1.40 3.00 2.99 2.98
WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	73.2 73.4 70.9
Strain rate, in/min	0.11370.11770.1161
BACK PRESSURE, psf	0 0 0
CELL PRESSURE, psf	1008 2016 3024
FAILURE STRESS, psf	224 501 438
ULTIMATE STRESS, psf	
O1 FAILURE, psf	1232 2517 3462
O ₃ FAILURE, psf	1008 2016 3024
CLIENT. U.S. A	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-10U,

Sample 8-D, Depth 30.8'

PROJ. NO.: 13622

DATE: 7-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-10U, Sample 8-D, Depth 30.8'

File: UU-7116 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH4

w/ lyr & ins ML

L= 86 PL= 27

PI= 59

SPECIFIC GRAVITY= 2.74

REMARKS:

- {	-					
	SP	ECIMEN NO.:	1		3	
	HH	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	58.8	58.2 96.3 1.939 1.40	58.0 96.0 1.949 1.40	
	AT TEST	DIAMETER, in HEIGHT, in	69.3 59.0 100.0 1.898 1.40 2.98	70.7 58.3 100.0 1.936 1.40 2.98	73.2 56.9 100.0 2.006 1.40 2.98	
	St	rain rate, in/min	0.11490	0.11430	0.1135	
1	BA	CK PRESSURE, psf	0	0	О	
	CE	LL PRESSURE, psf	1008	2016	3024	
1	FA:	ILURE STRESS, psf	561	403	560	j
ľ	UL	TIMATE STRESS, psf	420	260	436	
-	σ_1	FAILURE, psf	1569	2419	3584	
	σ 3	FAILURE, psf		2016		
- 11						

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGE-10U,

Sample 10-D, Depth 38.8'

PROJ. NO.: 13622

DATE: 7-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-10U, Sample 10-D, Depth 38.8'

File: UU-7117 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: VSo Gr CH3

w/ lyr & Ins ML

LL= 72 PL= 25

PI= 47

SPECIFIC GRAVITY= 2.74

REMARKS:

00000					
	IEN NO.:		2		
H SAT	ER CONTENT, % DENSITY, pcf URATION, % D RATIO METER, in GHT, in	67.2	68.2 95.5 1.507 1.40	67.6 95.4 1.530 1.40	(
SATE VOT	ER CONTENT. % DENSITY, pcf JRATION, % D RATIO METER, in GHT, in	59.4 65.1 100.0	55.9 67.6 100.0	57.9 66.1 100.0	
Strain	rate, in/min	0.1155	0.11550	0.1134	
BACK P	RESSURE, psf	0	0	0	
CELL P	RESSURE, psf	1008	2016	3024	
	E STRESS, psf				
	TE STRESS, psf				
	URE, psf	1355			
O ₃ FAIL	URE, psf		2016		
CL TENT					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-10U,

Sample 12-D, Depth 46.8

PROJ. NO.: 13622

DATE: 7-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-10U, Sample 12-D, Depth 46.8'

File: UU-7118

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH3

w/ ars ML

LL= 80

PL= 28

PI= 52

SPECIFIC GRAVITY= 2.72

REMARKS:

	SP	ECIMEN NO.:	1	2	3	
		WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66.1 96.5 1.568 1.40	64.6 95.2 1.630	65.2 95.0 1.604 1.40	· Constitution of the cons
	TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	58.0 65.9 100.0 1.578 1.40	62.0 63.2 100.0 1.686	61.4 63.6 100.0 1.670 1.40	
	St	rain rate, in/min				
	BA	CK PRESSURE, psf	0	0	0	
	CE	LL PRESSURE, psf	1008	2016	3024	
	FA:	ILURE STRESS, psf	662	694	846	
	UL.	TIMATE STRESS, psf	591	601	738	
_	σ_1	FAILURE, psf	1670	2710	3870	
	σ ₃	FAILURE, psf	1008	2016	3024	_

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGE-10U.

Sample 14-D, Depth 54.7'

PROJ. NO.: 13622

DATE: 7-25-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGE-10U, Sample 14-D, Depth 54.7'

File: UU-7119 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH4 w/ ox,

ins & ars ML. Ig ars org, dw

LL= 98 PL= 32 PI= 66

SPECIFIC GRAVITY= 2.72

REMARKS:

SPECI	MEN NO.:	1	2	3	
WA DR	TER CONTENT, % Y DENSITY, pcf	57 B	71.6 56.1	E 4 7	
	ID RATIO	97.9 1.940	96.1	94.0 2.106	(
	AMETER, in IGHT, in	1.37	1.37	1.38	1
IN IUK	TER CONTENT, % Y DENSITY, pcf	71.6 57.6	73.7	76.1	
	IURATION, % ID RATIO	100.0	100.0	100.0	
'√ DI/	AMETER, in EGHT, in	1.37	1.37	1.38	
Strai	n rate, in/min	0.11140	0.11090	0.1115	
		О	0	0	
OELL I	PRESSURE, psf	1008	2016	3024	
	RE STRESS, psf				
	ATE STRESS, psf	715	793	971	
	LURE, psf	1709	2766	4011	
J ₃ FAI	LURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-1U,

Sample 3-C, Depth 6.1'

PROJ. NO.: 13622

DATE: 7-30-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-1U, Sample 3-C, Depth 6.1'

File: UU-7182 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CL6

w/ Ins ML

LL= 47 PL= 18

PI= 29 Contract No. DACW

SPECIFIC GRAVITY= 2.74

REMARKS:

50	FOTHER				
125	ECIMEN NO.:	1		3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	78.8	79.7 100.9 1.145 1.37	79.7 102.2 1.145 1.37	
1	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	43.0 78.5	42.2 79.4 100.0 1.155	41.7 79.8 100.0 1.142	
	rain rate, in/min	0.10890	0.11140	0.1124	
•	CK PRESSURE, psf		0	0	
CEI	_L PRESSURE, psf	1008	2016	3024	
FAJ	CLURE STRESS, psf	676	654	692	
ULT	TIMATE STRESS, psf	678	682	703	
	C. T	1684			
σ_3	FAILURE, psf	1008	2016	3024	
CI.	IENT: U.S. Army Corp				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-1U,

Sample 6-B, Depth 18.9'

PROJ. NO.: 13622

DATE: 7-30-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-1U, Sample 6-B, Depth 18.9'

File: UU-7183

Project No.: 13622

FIG. NO.: ____

SPECIMEN NO.:

WATER CONTENT. %

DRY DENSITY, pcf

WATER CONTENT, %

DRY DENSITY, pcf

SATURATION, %

Strain rate, in/min

BACK PRESSURE, psf

CELL PRESSURE, psf

FAILURE STRESS, psf

ULTIMATE STRESS, psf

O1 FAILURE, psf

O3 FAILURE, psf

SATURATION. %

VOID RATIO

HEIGHT, in

VOID RATIO

HEIGHT, in

DIAMETER, in

DIAMETER, in

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ Ins ML

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-1U,

CLIENT: U.S. Army Corps of Engineers

Sample 8-B, Depth 24.1'

PROJ. NO.: 13622

DATE: 7-30-96

1

66.8

60.3

1.38

2.98

67.3

60.1

1.38

2.97

1008

531

445

1539

1008

2

62.9

63.5

1.836 1.694 1.690

1.38

2.98

62.0

63.4

100.0 100.0 100.0

1.38

2.97

2016

694

521

2710

2016

0.11210.10650.1116

1.844 1.699

0

99.7 101.7

3

61.9

63.6

100.4

1.37

61.5

63.7

1.685

1.37

2.98

3024

630

591

3654

3024

0

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

LL= 93

PL= 27

PI= 66

SPECIFIC GRAVITY= 2.74

REMARKS:

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-1U, Sample 8-B, Depth 24.1'

File: UU-7184

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ ars SM

LL= 73

PL= 25

PI= 48

SPECIFIC GRAVITY= 2.72

REMARKS:

2 3 8 6 0
9 9 0 5 0
5
0
4
9
3
3
4

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-1U,

Sample 22-C. Depth 55.1'

PROJ. NO.: 13622

DATE: 7-30-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-1U, Sample 22-C, Depth 55.1'

File: UU-7185

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH3

w/ Ins & ars ML, few ars org LL= 65

PI= 40

PL= 25 SPECIFIC GRAVITY= 2.72

REMARKS:

SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	43.6 78.3 101.3 1.170 1.38 2.97	79.3 99.2 1.140 1.38	75.7 90.6 1.243 1.39	<i>:</i>
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	42.7	41.2	44.7	
St	rain rate, in/min	0.10120	0.1015	0.1016	
1	CK PRESSURE, psf		0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
	ILURE STRESS, psf				
NF.	TIMATE STRESS, psf	1304	1507	1365	
1	F. F	2578			
σ ₃	FAILURE, psf	1008	2016	3024	
16-	TENT II O				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-1U,

Sample 24-B, Depth 62.4'

PROJ. NO.: 13622

DATE: 7-30-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-1U, Sample 24-B, Depth 62.4'

File: UU-7186

Project No.: 13622

Unconsolidated Undrained SAMPLE TYPE: Undisturbed

PI= 62

DESCRIPTION: M Gr CH4

LL= 88 PL= 26 SPECIFIC GRAVITY= 2.74

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	68.9 100.7 1.483	70.9 100.1 1 413	70.3 99.4	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	54 7	c	50.0	
St	rain rate, in/min	0.09520	0.08066	0.0796	
i i	CK PRESSURE, psf			0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1960	2146	1833	
UL	TIMATE STRESS, psf	1327	1362	1624	
σ_1	FAILURE, psf	2968	4162	4857	
O ₃	FAILURE, psf	1008	2016	3024	
11					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-1U,

Sample 26-D, Depth 71.8'

PROJ. NO.: 13622

DATE: 7-30-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-1U, Sample 26-D, Depth 71.8'

File: UU-7187 Project No.: 13622

TYPE OF TEST:
Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: ST Gr & Br CL6 w/
lyr.Ins ML.lyr SP.ars org.ox

LL= 47 PL= 22 PI= 25

SPECIFIC GRAVITY= 2.7

REMARKS:

SPE	CIMEN NO.:	1	2	3	
INITIAL	DIAMETER, IN	28.9 89.4 88.0 0.886 1.38 2.97	91.3 86.3 0.847 1.38	90.9 88.5 0.854 1.38	: ``.
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in	32.7 89.6	30.9 91.9 100.0 0.834 1.38	30.8 92.1 100.0 0.830	
Str	ain rate, in/min	0.1020	0.10170	0.1013	
BAC	K PRESSURE, psf	o	0	0	
CEL	L PRESSURE, psf	1008	2016	3024	
FAI	LURE STRESS, psf	1463	2177	2093	
ULT	IMATE STRESS, psf	1548	1987	1941	
O ₁ F	FAILURE, psf	2471	4193	5117	
Ø3 F	FAILURE, psf	1008	2016	3024	
11					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-2U,

Sample 2-B, Depth 5.3'

PROJ. NO.: 13622 DATE: 7-30-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-2U, Sample 2-B, Depth 5.3'

File: UU-7188

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ lyr & Ins ML. ars org

LL= 97 PL= 21 PI= 76 SPECIFIC GRAVITY= 2.74

REMARKS:

_	· · · · · · · · · · · · · · · · · · ·				
SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.8	96.8 1.200 1.38	59.4 100.7 1.879 1.38	(
122	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.3 63.2 100.0 1.706	44.0 77.6 100.0 1.205	68.2 59.6 100.0 1.870	
St	rain rate, in/min				·
ВА	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS. psf	961	1230	920	
UL.	TIMATE STRESS, psf	816	1141	810	
01	FAILURE, psf	1969	3246	3944	
σ ₃	FAILURE, psf	1008	2016	3024	
11					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-2U,

Sample 5-C, Depth 18.4'

PROJ. NO.: 13622

DATE: 7-30-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-2U, Sample 5-C, Depth 18.4'

File: UU-7189

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH3

w/ lyr & ins ML LL= 67

PL= 25

PI= 42

SPECIFIC GRAVITY= 2.74

REMARKS:

					
SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	77. R	77.3 100.6 1.212 1.38	76.5 102.9 1.236 1.38	, de la companya de l
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	43.8 77.8 100.0	44.2 77.4 100.0	44.3 77.3 100.0	
St	rain rate, in/min	0.1065	0.1068	0.1093	
BA	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA:	ILURE STRESS, psf	1173	1110	944	
UL.	TIMATE STRESS, psf	991	819	884	
σ_{i}	FAILURE, psf	2181	3126	3968	
σ3	FAILURE, psf	1008	2016	3024	
	TENT: U.S. Army Cons				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-2U,

Sample 9-C, Depth 34.4'

PROJ. NO.: 13622

DATE: 7-30-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-2U, Sample 9-C, Depth 34.4'

File: UU-7190

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ Ins & ars ML

LL= 84 PL= 27 PI= 57

SPECIFIC GRAVITY= 2.72

REMARKS:

SPECIMEN NO.:	1	2	3	
WATER CONTENT, % DRY DENSITY, pcf H SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	69.1	65.8 96.5 1.582 1.38	69.2 101.2 1.454 1.38	
WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	53.4 69.2 100.0 1.452	58.1 65.8 100.0 1.581 1.38	53.2 69.4 100.0 1.447 1.38	
Strain rate, in/min				
BACK PRESSURE, psf	0	0	0	
CELL PRESSURE, psf	1008	2016	3024	
FAILURE STRESS. psf	1071	2693	1287	
ULTIMATE STRESS, psf	922	928	1035	
σ ₁ FAILURE, psf	2079	4709	4311	
O₃ FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-2U,

Sample 11-B, Depth 41.5'

PROJ. NO.: 13622

DATE: 7-31-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-2U, Sample 11-B, Depth 41.5'

File: UU-7191

Project No.: 13622

FIG. NO.: _

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH4

w/ Ins. lyr & ars ML

LL= 75 PL= 24

PI= 51

SPECIFIC GRAVITY= 2.72

REMARKS:

SPECIMEN NO.:		1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	73.5 102.2 1.311 1.38	72.9 101.2 1.330	71.9 100.4 1.361 1.38	الم يرده ا
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	48.1 73.5 100.0 1.309 1.38	48.6 73.1 100.0 1.322	49.7 72.2 100.0 1.352 1.38	
St	rain rate, in/min				
BA	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1405	1354	1314	
UL.	TIMATE STRESS, psf	1133	976	1014	
σ_1	FAILURE, psf	2413	3370	4338	
σ3	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-2U,

Sample 13-C, Depth 49.9'

PROJ. NO.: 13622

DATE: 7-31-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-2U, Sample 13-C, Depth 49.9'

File: UU-7192

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4 w/ sm ars ML

LL= 86

PL= 29

PI= 57

SPECIFIC GRAVITY= 2.72

REMARKS:

				_		
	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	70.6	69.2 99.9 1.454 1.38	69.7 101.8 1.435 1.38	(
	AT TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	51.4 70.8	53.7 69.0 100.0 1.461 1.38	52.6 69.9 100.0 1.430 1.38	
Strain ra		rain rate, in/min				
	BA	CK PRESSURE, psf	0	0	O	
	CE	LL PRESSURE, psf	1008	2016	3024	
	FA:	ILURE STRESS, psf	1442	1415	1480	
	UL.	TIMATE STRESS, psf	1328	1123	1148	
\dashv	σ1	FAILURE, psf	2450	3431	4504	
	<u>σ</u> 3	FAILURE, psf	1008	2016	3024	
- 11						

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-2U,

Sample 15-D, Depth 58.8'

PROJ. NO.: 13622

DATE: 7-31-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-2U, Sample 15-D, Depth 58.8'

File: UU-7193 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr & Ins ML

LL= 89 PL= 30

PI= 59 Con

SPECIFIC GRAVITY= 2.74

REMARKS:

					
SP	ECIMEN NO.:	1	2	3	
TLINI	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	65.4	67.9 100.5 1.519 1.38	69.4 101.5 1.463 1.38	
177	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	58.9	55.6	52.8	
Strain rate, in/min		0.09500	0.0955	0.0941	
BA	CK PRESSURE, psf	0	0	o	
CE	LL PRESSURE, psf	1008	2016	3024	
	ILURE STRESS, psf				
	TIMATE STRESS, psf				
		2493			
σ ₃	FAILURE, psf		2016		
	TENT. U.S. A				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-2U,

Sample 17-C, Depth 66.1'

PROJ. NO.: 13622

DATE: 7-31-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-2U, Sample 17-C, Depth 66.1'

File: UU-7194

Project No.: 13622

SF	PECIMEN NO.:	1	2	- 3	
 	 				
1.	WATER CONTENT, %	67.2	68.4	64.9	
INITIAL	DRY DENSITY, pcf	58.1	60.5	59.2	
IH	SATURATION, % VOID RATIO DIAMETER, in	94.7	102.5	94.1	
lΉ	VOID RATIO	1.944	1.829	1.889	<i>(</i>
I _N	DIAMETER, in	1.38	1.38	1.38	(
		2.98	2.98	2.97	-
	WATER CONTENT, %				
ST	DRY DENSITY, pcf				
TES	SATURATION, %	100.0	100.0	100.0	
	SATURATION, % VOID RATIO	1.951	1.820	1.851	
1	DIAMETER, in	1.38	1.38	1.38	
L	HEIGHT, in	2.98	2.98	2.98	
St	rain rate, in/min				· · · · · · · · · · · · · · · · · · ·
ВА	CK PRESSURE, psf	0	0	0	
CE	ILL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	636	536	654	
UL	TIMATE STRESS, psf	569	490	556	
-01	FAILURE, psf	1644	2552	3678	
03	FAILURE, psf	1008	2016	3024	

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

. w/ Ins ML, sif

LL= 100 PL= 32 PI = 68

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-3U.

CLIENT: U.S. Army Corps of Engineers

Sample 4-B, Depth 9.1'

PROJECT: Algiers Levee

SPECIFIC GRAVITY= 2.74

PROJ. NO.: 13622

DATE: 7-31-96

TRIAXIAL SHEAR TEST REPORT

FIG. NO.:

REMARKS:

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-3U, Sample 4-B, Depth 9.1'

File: UU-7195

Project No.: 13622

Unconsolidated Undrained SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH4

w/ Ins ML, sif

LL= 95

PL= 26

PI= 69

SPECIFIC GRAVITY= 2.74

REMARKS:

Γ.		FOTUEN NO				
Ŀ	<u>۲</u>	ECIMEN NO.:	1	2	3	
		WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	61.1	60.3 99.7 1.838 1.38	62.1 107.3 1.754 1.38	(
		WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66.1 60.9	67.0 60.3	62.6 63.0	
F	St	rain rate, in/min	0.1069	0.1097	0.1039	
ŀ	ВА	CK PRESSURE, psf	O	0	0	
ŀ	CE	LL PRESSURE, psf	1008	2016	3024	
ŀ	FA	ILURE STRESS, psf	1242	1094	984	
ŀ	JL	TIMATE STRESS, psf	828	889	841	
┦,	σ 1	FAILURE, psf	2250	3110	4008	
ŀ	σ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-3U,

Sample 7-B, Depth 21.5'

PROJ. NO.: 13622

DATE: 7-31-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-3U, Sample 7-B, Depth 21.5'

File: UU-7196

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4 w/ lyr &

ins ML, sif & ars org

LL= 92 PL= 28 PI= 64

SPECIFIC GRAVITY= 2.74

REMARKS:

1	2		
		3	
67.1 98.4 1.550 1.38	65.6 97.1 1.609 1.38	59.4 86.1 1.880 1.38	* **
67.1 100.0 1.549 1.38	65.7 100.0 1.602 1.38	60.4 100.0 1.834 1.38	-
0	О	0	
1008	2016	3024	
1270	1249	1115	
962	967	919	
2278	3265	4139	
1008	2016	3024	
	67.1 98.4 1.550 1.38 2.98 56.5 67.1 100.0 1.549 1.38 2.98 0.09870 0 1008 1270 962 2278	67.1 65.6 98.4 97.1 1.550 1.609 1.38 1.38 2.98 2.98 56.5 58.5 67.1 65.7 100.0 100.0 1.549 1.602 1.38 1.38 2.98 2.98 0.09870.09950 0 0 1008 2016 1270 1249 962 967 2278 3265	100820163024127012491115962967919227832654139

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-3U,

Sample 8-C, Depth 26.4'

PROJ. NO.: 13622

DATE: 7-31-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-3U, Sample 8-C, Depth 26.4'

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ ins ML

LL= 81 PL= 25

PI= 56 | Contract

SPECIFIC GRAVITY= 2.74

REMARKS:

	· · · · · · · · · · · · · · · · · · ·				
SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	69.6	69.9 100.5 1.447 1.38	67.9 99.6 1.519 1.38	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf	53.1 69.7 100.0	52.7 70.0 100.0	55.1 68.1 100.0	-
	rain rate, in/min				
BA	ACK PRESSURE, psf	0	0	0	
CE	ELL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1264	1278	1035	
UL	TIMATE STRESS, psf	976	996	899	
	FAILURE, psf	2272	3294	4059	
σ	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-3U,

Sample 12-C, Depth 42.0'

PROJ. NO.: 13622

DATE: 8-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-3U, Sample 12-C, Depth 42.0'

File: UU-7198

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr & ins ML

LL= 73 PL= 28

T- 45 Contract

PI= 45

SPECIFIC GRAVITY= 2.74

REMARKS:

	_					
	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	69.6 100.1	69.9 99.0	70.0 99.8	
	AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	53.3 69.6 100.0 1.459	52.3 70.3 100.0	52.4 70.2 100.0	
		rain rate, in/min				
	ВА	CK PRESSURE, psf	0	0	0	
	CE	LL PRESSURE. psf	1008	2016	3024	
	FA	ILURE STRESS, psf	1092	1120	1148	
	UL	TIMATE STRESS, psf	773	804	839	
_	σ_1	FAILURE, psf	2100	3136	4172	
	σ ₃	FAILURE, psf	1008	2016	3024	
ı		TENT. U.S. A		•		

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-3U,

Sample 15-D, Depth 54.8'

PROJ. NO.: 13622

DATE: 8-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-3U, Sample 15-D, Depth 54.8'

File: UU-7199

Project No.: 13622

TYPE	OF	TEST:	
Hor	-00	an idated	Hoo

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4
w/ lyr & lns ML

LL= 96

PL= 27

PI= 69

SPECIFIC GRAVITY= 2.74

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66.6 102.2 1.568 1.38	62.4 101.9 1.740	66.3 101.5 1.581 1.38	(
AT TEST	SATURATION, %	57.1 66.7	63.6 62.4 100.0 1.743 1.38	57.8 66.2 100.0 1.583 1.38	
1	rain rate, in/min				
CE	CK PRESSURE, psf LL PRESSURE, psf		0 2016	0 3024	
	ILURE STRESS, psf TIMATE STRESS, psf	1617 986	1139 550		
	FAILURE, psf		3155		
	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-3U,

Sample 17-C, Depth 62.1'

PROJ. NO.: 13622

DATE: 8-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-3U, Sample 17-C, Depth 62.1'

File: UU-7200 Project No.: 13622 FIG. NO.:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr & ins ML

LL= 97 PL= 30

PI= 67

SPECIFIC GRAVITY= 2.74

REMARKS:

	SP	PECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	64.8	64.9 97.7 1.637 1.38	64.6 98.7 1.649 1.38	:
	EST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	58.8 65.5	57.9 66.1	57.1 66.7	
	St	rain rate, in/min	0.09730	0.0941	0.0956	
	BA	CK PRESSURE, psf	0	O	O	
	CE	LL PRESSURE, psf	1008	2016	3024	
		ILURE STRESS, psf				
		TIMATE STRESS, psf				
-			2468			
	σ ₃	FAILURE, psf	1008	2016	3024	
I		TENT III				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-3U,

Sample 19-C, Depth 70.1'

PROJ. NO.: 13622

DATE: 8-1-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-3U, Sample 19-C, Depth 70.1'

File: UU-7201

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: VSo Gr CH2

w/ lyr & ars ML, rts

LL= 58 PL= 20

PI= 38

SPECIFIC GRAVITY= 2.72

REMARKS:

SP	ECIMEN NO.:	1	2	3	
ITTAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	65.4	69.6 99.7 1.440 1.38	69.1 102.1 1.459 1.38	(
ΤE	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	59.2 65.0	53.1 69.5 100.0 1.445 1.38	53.6 69.1 100.0 1.457 1.38	
St	rain rate, in/min				
BA	CK PRESSURE, psf	0	О	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	145	189	153	
UL.	TIMATE STRESS, psf	151	193	158	
		1153			
σ3	FAILURE, psf		2016		

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-4U.

Sample 2-B, Depth 4.4'

PROJ. NO.: 13622

DATE: 8-2-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-4U, Sample 2-B, Depth 4.4'

File: UU-7231 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CHOA

w/ Tr org

LL= 128 PL= 35 PI= 93

Contract No. DACW29-95-D-0012

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	49.3 96.5 2.468 1.38	50.9 98.4 2.358	50.4 97.5 2.391	<u>(</u>
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	90.2 49.3	85.6 51.1	86.6	
	rain rate, in/min				
ВА	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	876	834	872	
UL	TIMATE STRESS, psf	540	696	627	
σ,	FAILURE, psf	1884	2850	3896	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

SAMPLE LOCATION: Boring ALGW-4U,

Sample 8-C, Depth 22.1'

PROJ. NO.: 13622

DATE: 8-2-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-4U, Sample 8-C, Depth 22.1'

File: UU-7232 Project No.: 13622 FIG. NO.: ___

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH3

w/ lyr & lns ML

LL= 72 PL= 24

PI= 48

SPECIFIC GRAVITY= 2.74

REMARKS:

	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66.8	65.8 101.8 1.602 1.38	64.2 100.4 1.663 1.38	
	TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	57.0 66.7	58.4 65.8 100.0 1.599 1.38	60.5 64.4 100.0 1.656 1.38	
	St	rain rate, in/min				
	ВА	CK PRESSURE, psf	0	О	О	
	CE	LL PRESSURE, psf	1008	2016	3024	
	FA:	ILURE STRESS, psf	547	670	665	
1	UĽ.	TIMATE STRESS, psf	410	519	541	
	σ_{i}	FAILURE, psf	1555	2686	3689	
	σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGW-4U,

Sample 10-B. Depth 29.5'

PROJ. NO.: 13622

DATE: 8-5-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-4U, Sample 10-B, Depth 29.5'

File: UU-7246 Project No.: 13622

FIG. NO.: ____

SPECIMEN NO.: 1 2 3 WATER CONTENT. % 63.1 63.0 63.8 DRY DENSITY, pcf 64.1 63.2 62.4 SATURATION, % 104.0 101.6 100.8 VOID RATIO 1.649 1.686 1.723 DIAMETER, in 1.38 1.38 1.38 HEIGHT, in 2.98 2.98 2.98 WATER CONTENT. % 60.9 62.0 63.1 DRY DENSITY, pcf 63.9 63.2 62.5 SATURATION, % 100.0 100.0 100.0 VOID RATIO 1.656 1.687 1.716 DIAMETER, in 1.38 1.38 1.38 HEIGHT, in 2.98 2.98 2.98 Strain rate, in/min 0.09490.09430.1004 BACK PRESSURE, psf 0 CELL PRESSURE, psf 1008 2016 3024 FAILURE STRESS, psf 843 843 780 ULTIMATE STRESS, psf 675 706 669 O, FAILURE, psf 1851 2859 3804 O3 FAILURE, psf 1008 2016 3024

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH4

w/ Ins & ars ML

LL= 101 PL= 31 PI= 70

SPECIFIC GRAVITY= 2.72

REMARKS:

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-4U.

Sample 12-D, Depth 38.8'

PROJ. NO.: 13622

DATE: 8-5-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-4U, Sample 12-D, Depth 38.8'

File: UU-7247 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr & ins ML

LL= 83 PL= 26

PI= 57

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	ECIMEN NO.:	1	2	3	
H	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	60.8 102.5	60.2	59.9 100.4	
ļ.	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66.4 60.7	67.2 60.2	67.4 60.1	
	rain rate, in/min				
ВА	CK PRESSURE, psf	0	О	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1102	1038	841	
UL	TIMATE STRESS, psf	821	821	652	
01	FAILURE, psf	2110	3054	3865	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-4U,

Sample 14-D. Depth 46.4'

PROJ. NO.: 13622

DATE: 8-6-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-4U, Sample 14-D, Depth 46.4'

File: UU-7262

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4
w/ lyr & lns ML

LL= 89

PL= 30

PI= 59

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	ECIMEN NO.:	1	2	3			
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.9	64.7 100.8 1.644 1.38	65.2 100.3 1.622 1.38			
AT TEST		62.8	64.9 100.0 1.637 1.38	65.5 100.0 1.610 1.38			
St	rain rate, in/min						
ВА	CK PRESSURE, psf	0	0	O			
CE	LL PRESSURE, psf	1008	2016	3024			
FA	ILURE STRESS, psf	1106	1143	1258			
UL	TIMATE STRESS, psf	813	776	943			
01	FAILURE, psf	2114	3159	4282			
σ ₃	FAILURE, psf	1008	2016	3024			

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-4U,

Sample 16-D, Depth 54.4'

PROJ. NO.: 13622

DATE: 8-6-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-4U, Sample 16-D, Depth 54.4'

File: UU-7263 Project No.: 13622

FIG. NO.: ____

SPECIMEN NO.:	1 2 3
DRY DENSITY, pcf H SATURATION, % H VOID RATIO DIAMETER, in	66.4 64.7 65.0 61.7 62.7 62.2 102.7 102.7 101.9 1.770 1.728 1.749 1.38 1.38 1.38 2.98 2.97 2.98
DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in	64.4 62.5 63.5 61.9 63.1 62.4 100.0 100.0 100.0 1.763 1.712 1.741 1.38 1.38 1.38 2.98 2.98 2.98
Strain rate, in/min	
BACK PRESSURE, psf	0 0 0
CELL PRESSURE, psf	1008 2016 3024
FAILURE STRESS, psf	1130 1123 1076
ULTIMATE STRESS, psf	773 759 912
O ₁ FAILURE, psf	2138 3139 4100
O ₃ FAILURE, psf	1008 2016 3024

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr & Ins SM

LL= 92

PL= 28

PI= 64

SPECIFIC GRAVITY= 2.74

REMARKS:

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-4U,

CLIENT: U.S. Army Corps of Engineers

Sample 18-C, Depth 61.6'

PROJ. NO.: 13622

DATE: 8-6-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-4U, Sample 18-C, Depth 61.6'

File: UU-7264

Project No.: 13622

FIG. NO.: ____

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH4

w/ lyr org, ars PT & ML

LL= 98

PL= 27

PI= 71

SPECIFIC GRAVITY= 2.72

REMARKS:

SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.4 101.2 1.723 1.38	63.8 102.6 1.661	63.6 102.3 1.669 1.38	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.1 100.0 1.734 1.38	63.6 100.0 1.668	63.7 100.0 1.667 1.38	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	0	О	О	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	748	955	792	
UL	TIMATE STRESS, psf	597	619	638	
σ_1	FAILURE, psf	1756	2971	3816	
03	FAILURE, psf	1008	2016	3024	-

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-5U,

Sample 3-B, Depth 9.4'

PROJ. NO.: 13622

DATE: 8-6-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012

Location: Boring ALGW-5U, Sample 3-B, Depth 9.4'

File: UU-7265 Project No.: 13622

TYP	F 0	E 1	FS	т.

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: VSo Gr CH4

· w/ ars org & ML, slf LL= 89

PL= 29 PI = 60

SPECIFIC GRAVITY= 2.72

REMARKS:

SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	50.5	60.0 96.9 1.831 1.38	49.4 99.6 2.440 1.38	. (
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	50.4	59.9 100.0 1.833 1.38	49.7 100.0 2.414 1.38	
St	rain rate, in/min	0.1126	0.1057	0.1095	
ВА	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	445	476	420	
UL	TIMATE STRESS, psf	438	474	417	
01	FAILURE, psf	1453	2492	3444	
σ,	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-5U,

Sample 4-D, Depth 14.4'

PROJ. NO.: 13622

DATE: 8-6-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-5U, Sample 4-D, Depth 14.4'

File: UU-7266 Project No.: 13622 FIG. NO.: ____

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CHOC

w/ Ins & ars org

LL= 188 PL= 63

PI= 125

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	38.8	37.8 95.5 3.520 1.38	38.7 95.5 3.424 1.38	1
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	70 6	37.8 100.0 3.524 1.38	39.0 100.0 3.382 1.38	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	0	0	О	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	726	829	872	
UL	TIMATE STRESS, psf	557	580	725	
01	FAILURE, psf	1734	2845	3896	
σ,	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-5U.

Sample 7-D, Depth 27.2'

PROJ. NO.: 13622

DATE: 8-6-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-5U, Sample 7-D, Depth 27.2'

File: UU-7267

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ lyr, lns & ars ML

LL= 90 PL= 26 PI= 64

SPECIFIC GRAVITY= 2.72

REMARKS:

SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	78.6	71.6 97.2 1.370 1.38	79.0 96.8 1.151 1.38	į (
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	42.9	50.5	42.2	
Strain rate, in/min		0.1124	0.1120	0.1127	
ВА	CK PRESSURE, psf	0	О	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	630	467	665	
UL	TIMATE STRESS, psf	566	508	610	
01	FAILURE, psf	1638	2483	3689	
σ_3	FAILURE, psf	1008	2016	3024	
	TEUT II O				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-5U,

Sample 9-C. Depth 33.61

PROJ. NO.: 13622

DATE: 8-6-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-5U, Sample 9-C, Depth 33.6'

File: UU-7268 Project No.: 13622 FIG. NO.:

TYPE	OF	TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ lyr & Ins ML

LL= 92 PL= 31

PI= 61

SPECIFIC GRAVITY= 2.74

REMARKS:

_					
SP	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.2 102.3	61.7 101.1 1.771 1.38	61.6 100.7 1.777 1.38	Û
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.1 100.0 1.754	61.8 100.0	61.9 100.0	
St	rain rate, in/min	0.1087	0.1008	0.1091	
BA	CK PRESSURE, psf	0	0	0	
CE	ILL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	869	851	770	
UL	TIMATE STRESS, psf	641	689	647	
-01	FAILURE, psf	1877	2867	3794	
σ:	FAILURE, psf	1008	2016	3024	
	TEUT II O				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-5U,

Sample 11-D, Depth 42.8'

PROJ. NO.: 13622

DATE: 8-6-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-5U, Sample 11-D, Depth 42.8'

File: UU-7269

Project No.: 13622

TYPE	OF	TEST:

Unconsolidated Undrained SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

-w/ lyr & Ins ML

LL= 98 PL= 31

PI= 67

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	61.4	61.5 101.8 1.782 1.38	60.7 100.1 1.818 1.38	
AT TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	61.4 100.0 1.784	61.5 100.0 1.779 1.38	61.0 100.0 1.802 1.38	
St	rain rate, in/min	0.1079	0.1083	0.1093	
ВА	ACK PRESSURE, psf	0	0	0	
CE	ELL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	890	932	858	
UL	TIMATE STRESS, psf	703	651	661	
_ o ₁	FAILURE, psf	1898	2948	3882	
σ,	FAILURE, psf	1008	2016	3024	
BA CE FA UL	ACK PRESSURE, psf ELL PRESSURE, psf AILURE STRESS, psf TIMATE STRESS, psf FAILURE, psf	0 1008 890 703 1898	0 2016 932 651 2948	0 3024 858 661 3882	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-5U,

Sample 13-D, Depth 50.2'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-5U, Sample 13-D, Depth 50.2'

File: UU-7270

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ lyr & Ins ML

LL= 90 PL= 27

PI= 63

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	ECIMEN NO.:	1	2	3	
1''	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	64.1	64.6 97.9 1.647 1.38	64.1 97.0 1.670 1.38	(
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	100.0	64.8	64.3 100.0	
	rain rate, in/min				
ВА	CK PRESSURE, psf	0	О	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	986	1022	919	
UL	TIMATE STRESS, psf	712	763	807	
σ_1	FAILURE, psf	1994	3038	3943	
σ:	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-5U.

Sample 15-D, Depth 58.1'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-5U, Sample 15-D, Depth 58.1'

File: UU-7271

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

LL= 94

PL= 33

PI= 61

SPECIFIC GRAVITY= 2.74

REMARKS:

SF	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	60.5 100.1	58.6 95.4 1.920 1.38	61.7 100.4 1.773 1.38	<u> </u>
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66.8 60.4 100.0	69.9 58.7 100.0	64.3 61.9 100.0	
St	rain rate, in/min	0.09580	0.1069	0.1083	
ВА	CK PRĖSSURE, paf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS. psf	1381	1188	1382	
UL	TIMATE STRESS, psf	958	907	955	
σ_1	FAILURE, psf	2389	3204	4406	
σ_3	FAILURE, psf		2016		
11					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-5U,

Sample 18-C, Depth 69.9'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-5U, Sample 18-C, Depth 69.9'

File: UU-7272 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr & Ins SM, Ins ML

LL= 86 PL= 31 PI= 55

SPECIFIC GRAVITY= 2.74

REMARKS:

_			•		
SF	PECIMEN NO.:	1	2	3	·
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	67.7 97.4 1.525 1.38	66.0 94.4 1.593	65.4 96.7 1.615 1.38	í
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	55.4 67.9 100.0 1.519 1.38	57.4 66.5 100.0 1.572	58.1 66.0 100.0 1.593 1.38	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	0	О	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1154	1170	1130	
UL	TIMATE STRESS, psf	965	858	902	
σ_1	FAILURE, psf	2162	3186	4154	
03	FAILURE, psf	1008	2016	3024	
1					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-5U,

Sample 19-D, Depth 74.8'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-5U, Sample 19-D, Depth 74.8'

File: UU-7273 Project No.: 13622

FIG. NO.: ___

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH3

w/ Ins ML & ars org

PL= 23

PI= 46

SPECIFIC GRAVITY= 2.74

REMARKS:

SF	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	81.7	78.4 92.7 1.181 1.38	72.9 86.9 1.345 1.38	
TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	81.7	78.6 100.0 1.177 1.38	72.7 100.0 1.352 1.38	,
St	rain rate, in/min	0.11180	0.1109	0.1043	
BA	CK PRESSURE, psf	0	О	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1210	1050	756	
UL	TIMATE STRESS, psf	1208	1021	665	
01	FAILURE, psf	2218	3066	3780	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-6U,

Sample 2-D. Depth 6.2'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-6U, Sample 2-D, Depth 6.2'

File: UU-7274

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CL6

w/ lyr & ins CH

LL= 40 PL= 18

PI= 22

SPECIFIC GRAVITY= 2.74

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	84.7	83.5 98.6 1.049 1.38	82.7 97.9 1.068 1.38	ŧ,
AT TEST	SATURATION, %	37.4 84.4 100.0 1.026 1.38	38.2 83.6 100.0	39.0 82.7 100.0 1.069 1.38	
St	rain rate, in/min				
ВА	ACK PRESSURE, psf	0	0	0	
CE	CLL PRESSURE, psf	1008	2016	3024	
4	ILURE STRESS, psf				
	TIMATE STRESS, psf				
1	FAILURE, psf		2474		
σ_3	FAILURE, psf		2016		
	TENT. U.S. A. C.		====	=	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-6U,

Sample 4-D. Depth 14.2'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-6U, Sample 4-D, Depth 14.2'

File: UU-7275

Project No.: 13622

FIG. NO.: _

SPECIMEN NO.:

	_	, , , , , , , , , , , , , , , , , , , 				
	ij	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	69.5 102.1 1.442 1.38	69.1 100.3 1.456 1.38	68.8 101.0 1.468 1.38	·
	EST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	69.5 100.0	69.3 100.0	69.1 100.0	
		rain rate, in/min				
	BA	CK PRESSURE, psf	0	0	0	
	CE	LL PRESSURE, psf.	1008	2016	3024	
	FA	ILURE STRESS, psf	1397	1442	1331	
'	UL.	TIMATE STRESS, psf	1103	1070	1047	
_	σ 1	FAILURE, psf	2405	3458	4355	
	σ ₃	FAILURE, psf	1008	2016	3024	
1						

1

2

3

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ Ins & ars ML

LL= 82

PL= 26

PI= 56

SPECIFIC GRAVITY= 2.72

REMARKS:

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

CLIENT: U.S. Army Corps of Engineers

SAMPLE LOCATION: Boring ALGW-6U,

Sample 17-D, Depth 46.8'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-6U, Sample 17-D, Depth 46.8'

File: UU-7276

Project No.: 13622

SPECIMEN NO.:

WATER CONTENT, % 61.5 59.6 59.8 DRY DENSITY, pcf 64.0 65.0 64.7 SATURATION. % 101.2 100.6 100.1 **VOID RATIO** 1.654 1.612 1.625 DIAMETER, in 1.38 1.38 1.38 HEIGHT, in 2.98 2.98 2.98 WATER CONTENT, % 61.0 59.2 59.7 DRY DENSITY, pcf 63.9 65.1 64.7 SATURATION, % 100.0 100.0 100.0 **VOID RATIO** 1.658 1.609 1.623 DIAMETER, in 1.38 1.38 1.38 HEIGHT, in 2.98 2.98 2.98 Strain rate, in/min 0.09160,08540.0721 BACK PRESSURE, psf 0 CELL PRESSURE, psf 1008 2016 3024 FAILURE STRESS, psf 1436 1533 1524 ULTIMATE STRESS, psf 1048 1212 1213 O1 FAILURE, psf 2444 3549 4548 O3 FAILURE, psf 1008 2016 3024

2

3

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ Ins & ars ML

LL= 102 PL= 32

PI= 70

SPECIFIC GRAVITY= 2.72

REMARKS:

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

CLIENT: U.S. Army Corps of Engineers

SAMPLE LOCATION: Boring ALGW-6U.

Sample 19-D. Depth 54.8'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-6U, Sample 19-D, Depth 54.8'

File: UU-7277 Project No.: 13622 FIG. NO.:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	70.3	63.0 88.6 1.714	67.7 94.8 1.527	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf	52.5 70.2	62.2 63.2	55.0 68.2	
St	train rate, in/min	0.09190	0.09320	0.1001	
B/	ACK PRESSURE, psf	0	O	O	
CE	ELL PRESSURE, psf	1008	2016	3024	
FÆ	AILURE STRESS, psf	1683	952	1379	
UL	TIMATE STRESS, psf	1414	861	1208	
-0	FAILURE, psf	2691	2968	4403	
σ	FAILURE, psf	1008	2016	3024	

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr & Ins ML

LL= 85 PL= 27 PI= 58

SPECIFIC GRAVITY= 2.74

REMARKS:

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-6U.

Sample 21-D. Depth 62.6'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-6U, Sample 21-D, Depth 62.6'

File: UU-7278 Project No.: 13622

FIG. NO.: ____

TYPE	OF	TI	ES	Т:	

Unconsolidated Undrained SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH3 w/ Ins &

ars ML, ars org, few conc LL= 70 PL= 26 PI= 44

SPECIFIC GRAVITY= 2.72

REMARKS:

	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	68.5	68.8 101.9 1.467 1.38	65.3 101.8 1.601 1.38	(
	AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	68.3	68.7 100.0 1.470 1.38	65.3 100.0 1.600 1.38	
	St	rain rate, in/min				
	BA	CK PRESSURE, psf	0	О	0	
	CE	LL PRESSURE, psf	1008	2016	3024	
	FA	ILURE STRESS. psf	598	614	538	
)	UL	TIMATE STRESS, psf	477	590	496	
_	σ_1	FAILURE, psf	1606	2630	3562	
	σ ₃	FAILURE, psf	1008	2016	3024	
1						

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-7U,

Sample 3-C, Depth 9.7'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012

Location: Boring ALGW-7U, Sample 3-C, Depth 9.7'

File: UU-7279

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr & Br CH4 w/

lyr & Ins org, ars ML

LL= 104 PL= 36 PI= 68

SPECIFIC GRAVITY= 2.72

REMARKS:

SP	PECIMEN NO.:	1	2	3	
Y Y	WATER CONTENT, % DRY DENSITY, pcf SATURATION, %	60.3	54.3	57.0	
INITIAL	SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	1.38	2.129 1.38 2.97	1.38	
15	WATER CONTENT. % DRY DENSITY, pcf SATURATION, % VOID RATIO	66.8	77.5	71.6	
St	rain rate, in/min	0.09650	0.0966	0.0949	
ВА	CK PRESSURE, psf	0	0	o	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1462	1422	1352	
UL	TIMATE STRESS, psf	1250	1217	1119	
σ_1	FAILURE, psf	2470	3438	4376	
σ_3	FAILURE, psf	1008	2016	3024	
	TENT: U.S. Army Con-				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-7U,

Sample 5-C, Depth 18.1'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-7U, Sample 5-C, Depth 18.1

File: UU-7280

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ lyr.&.lns ML

LL= 97 PL= 32

PI= 65

SPECIFIC GRAVITY= 2.74

REMARKS:

_					
SP	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	59.5	57.7 101.7 1.964 1.38	57.4 101.8 1.980 1.38	:
160	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	68.4 59.5	71.7 57.7 100.0 1.965 1.38	72.2 57.4 100.0 1.979 1.38	
St	rain rate, in/min	0.09280	0.09830	0.0975	
BA	CK PRESSURE, psf	О	0	О	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	958	983	1032	
	TIMATE STRESS, psf				
1	F4	1966			
σ ₃	FAILURE, psf	1008	2016	3024	
110.	TENT. U.S. A.				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012

SAMPLE LOCATION: Boring ALGW-7U,

Sample 8-C, Depth 29.7'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-7U, Sample 8-C, Depth 29.7'

File: UU-7281

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH3

w/ lyr & ins ML

LL= 67 PL=

PL= 23

PI= 44

SPECIFIC GRAVITY= 2.74

REMARKS:

	SP	ECIMEN NO.:	1	2	3	
	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	73.0	72.7 100.3 1.354 1.38	73.8 99.9 1.318 1.38	\
	12	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	73.2	72.8 100.0 1.351 1.38	74.1 100.0 1.309 1.38	
	St	rain rate, in/min				
	ВА	CK PRESSURE, psf	0	0	О	
	CE	LL PRESSURE, psf	1008	2016	3024	
	FA	ILURE STRESS. psf	753	647	821	
١.	UL.	TIMATE STRESS, psf	650	587	732	
	σ_1	FAILURE, psf	1761	2663	3845	
	σ3	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-7U,

Sample 14-D, Depth 46.5'

PROJ. NO.: 13622

DATE: 8-7-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-7U, Sample 14-D, Depth 46.5'

File: UU-7282 Project No.: 13622 FIG

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ Ins & ars ML

LL= 92

PL= 27

PI= 65

SPECIFIC GRAVITY= 2.72

REMARKS:

					
SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.0 64.0 102.1 1.651 1.38 2.98	63.2 100.0 1.688 1.38	63.6 100.0 1.671 1.38	(
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	60.6	61.4	60.7	
St	rain rate, in/min	0.1077	0.0971	0.1078	
ВА	CK PRESSURE, psf	0	0	О	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS. psf	934	955	872	
UL	TIMATE STRESS, psf	755	708	697	
01	FAILURE, psf	1942	2971	3896	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-7U,

Sample 16-D, Depth 54.8'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-7U, Sample 16-D, Depth 54.8'

File: UU-7283 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ Ins & ars ML LL= 91

PL= 27

PI= 64

SPECIFIC GRAVITY= 2.72

REMARKS:

	F07				
SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	62.7	99.9 1.675 1.38	64.2 99.4 1.645 1.38	
AT TE	WATER CONTENT. % DRY DENSITY, pcf SATURATION. % VOID RATIO DIAMETER, in HEIGHT, in	62.2 63.1	61.1 63.8 100.0 1.661 1.38	60.4 64.3 100.0 1.642 1.38	
St	rain rate, in/min				
BA	CK PRESSURE, psf	О	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA:	ILURE STRESS, psf	1062	945	1094	
1	TIMATE STRESS, psf				
1	54 Tt 145 T	2070			
σ ₃	FAILURE, psf	1008	2016	3024	
II					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-7U.

Sample 18-D, Depth 62.7'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-7U, Sample 18-D, Depth 62.7'

File: UU-7284

Project No.: 13622

FIG. NO.: ____

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH3

w/ lyr & Ins ML

LL= 56

PL= 20

PI= 36

SPECIFIC GRAVITY= 2.74

REMARKS:

SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	72.8	72.7 100.4 1.351 1.38	74.0 101.2 1.311 1.38	(
ш		72.6 100.0	72.7 100.0 1.353 1.38	74.1 100.0 1.309 1.38	
St	rain rate, in/min				
BA	CK PRESSURE, psf	О	0	O	
CE	LL PRESSURE, psf	1008	2016	3024	
FA:	ILURE STRESS, psf	609	577	589	
UL.	TIMATE STRESS, psf	494	494	508	
σ_1	FAILURE, psf	1617	2593	3613	
σ ₃	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-8U,

Sample 4-C. Depth 14.4'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-8U, Sample 4-C, Depth 14.4'

File: UU-7285 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH4

w/ lyr & Ins ML

LL= 97 PL= 28

PI= 69

SPECIFIC GRAVITY= 2.74

REMARKS:

_		·			·
SP	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	56.3	56.5 100.8 2.029 1.38	56.1 100.6 2.050 1.38	(
13	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	74.8 56.1	74.1 56.4 100.0 2.032 1.38	74.7 56.1 100.0 2.047 1.38	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	0	О	0	
CE	LL PRESSURE, psf	1008	2016	3024	
1	ILURE STRESS, psf				
υL.	TIMATE STRESS, psf	489	427	435	
4		1635			
O3	FAILURE, psf	1008	2016	3024	
	TENT. U.S. A. G.				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-8U,

Sample 7-D, Depth 26.8'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-8U, Sample 7-D, Depth 26.8'

File: UU-7286

Project No.: 13622

Axial Strain,	%	
TYPE OF TEST:		
Unconsolidated Undrained		
SAMPLE TYPE: Undisturbed		

DESCRIPTION: So Gr CH4

w/ Ins & ars ML LL= 76 PL= 23

PL= 23

PI= 53

SPECIFIC GRAVITY= 2.72

REMARKS:

SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	65.9	65.1 100.1 1.609 1.38	65.5 97.5 1.594 1.38	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	58.1	59.3	58.4	
St	rain rate, in/min	0.11000	0.1011	0.1017	
BA	CK PRESSURE, paf	o	О	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	677	652	632	
UL.	TIMATE STRESS, psf	519	550	504	
1	F	1685			
σ_3	FAILURE, psf	1008		3024	
	TENT. II O				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-8U,

Sample 9-D, Depth 34.8'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-8U, Sample 9-D, Depth 34.8'

File: UU-7287 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ Ins ML

LL= 96

PL= 32

PI= 64

SPECIFIC GRAVITY= 2.74

REMARKS:

	· · · · · · · · · · · · · · · · · · ·				
SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	60.3	61.0 101.0 1.806 1.38	60.7 98.6 1.820 1.38	í
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	67.2 60.2	65.7 61.1 100.0 1.801 1.38	66.0 60.9 100.0 1.808 1.38	
St	rain rate, in/min				
BA	CK PRESSURE, psf	0	o	0	
CE	CLL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	950	1037	990	
UL	TIMATE STRESS, psf	664	780	723	
-01	FAILURE, psf	1958	3053	4014	
03	FAILURE, psf	1008	2016	3024	
11-					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-8U,

Sample 11-C, Depth 42.0'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-8U, Sample 11-C, Depth 42.0'

File: UU-7288 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

w/ ars ML

LL= 85

PL= 27

PI= 58

SPECIFIC GRAVITY= 2.72

REMARKS:

SPECIMEN	NO.:	1	2	3	
H SATURA H VOID H DIAME	CONTENT, % ENSITY, pcf ATION, % RATIO FER, in I, in	66.0	66.2 100.4 1.564 1.38	66.1 99.7 1.569 1.38	ć
It lory bi	CONTENT, % ENSITY, pcf ATION, % RATIO TER, in I, in	65.7	66 1	66 3	
	ate, in/min				
BACK PRE	SSURE, psf	0	O	0	
CELL PRE	SSURE, psf	1008	2016	3024	
FAILURE	STRESS, psf	1086	1130	1102	
ULTIMATE	STRESS, psf	771	858	851	
O1 FAILUF	RE, psf	2094	3146	4126	
O ₃ FAILUF	RE, psf	1008	2016	3024	
OL TENT	11.0				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-8U,

Sample 13-D. Depth 50.8'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-8U, Sample 13-D, Depth 50.8'

File: UU-7289

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH4

- w/ lyr.& Ins SM

LL= 84 PL= 27

PI= 57

SPECIFIC GRAVITY= 2.74

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	65.6 101.6 1.607 1.38	66.2 100.3 1.584	64.8 97.9 1.642 1.38	• (
AT TEST	WATER CONTENT. % DRY DENSITY, pcf SATURATION. % VOID RATIO DIAMETER, in HEIGHT, in	58.4 65.8	57.8 66.2 100.0 1.583 1.38	59.6 65.0 100.0 1.634 1.38	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1360	1299	1268	
\sim 1	TIMATE STRESS, psf				
1		2368			
Ø3	FAILURE, psf		2016		
1					

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-8U,

Sample 15-B, Depth 57.4'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-8U, Sample 15-B, Depth 57.4'

File: UU-7290 Project No.: 13622 FIG. NO.: ___

T	Y	Р	Ε	0	F '	r	Ε	S.	Т	:

Unconsolidated Undrained SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH4
_w/ lyr & ars SM, slf

PI= 65

SPECIFIC GRAVITY= 2.72

REMARKS:

SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	65.4 102.6 1.596 1.38	65.1 99.3 1.610	63.7 98.3 1.665 1.38	(
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	58.5 65.5 100.0 1.592	58.7 65.4 100.0 1.597 1.38	60.6 64.1 100.0 1.648 1.38	
St	rain rate, in/min	0.0950	0.0834	0.0917	
BA	CK PRESSURE, psf	O	О	0	
CE	CLL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	2039	1554	1624	
UL	TIMATE STRESS, psf	1243	1063	1056	
_\O ₁	FAILURE, psf	3047	3570	4648	
σ:	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-8U,

Sample 18-C, Depth 66.1'

PROJ. NO.: 13622 DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-8U, Sample 18-C, Depth 66.1'

File: UU-7291 Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CL5

w/ lyr & Ins CH, slf

LL= 38

PL= 17

PI= 21

SPECIFIC GRAVITY= 2.7

REMARKS:

					
SP	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	86 0	047	76 7	
1	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	35.9	36 4	43 9	
St	rain rate, in/min	0.11140	0.1118	0.1106	
ВА	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1192	1366	635	
UL	TIMATE STRESS, psf	1014	1345	567	
σ_1	FAILURE, psf	2200	3382	3659	
O3	FAILURE, psf	1008	2016	3024	
	TENT. U.S. A				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-8U,

Sample 20-C, Depth 73.8'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-8U, Sample 20-C, Depth 73.8'

File: UU-7292 Project No.: 13622 FIG. NO.:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Br CHOA

w/ lyr & lns ML, rts

LL= 104 PL= 34 PI= 70

SPECIFIC GRAVITY= 2.7

REMARKS:

SP	ECIMEN NO.:	1	2	3	
Ĭ	WATER CONTENT, % DRY DENSITY, pcf SATURATION, %	41.3	46.7	48.9	
INITIAL	SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	3.085 1.38 2.98	1.38	1.38	(1
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	114.9	95.5 47 1	88.8	
	rain rate, in/min				
ВА	CK PRESSURE, psf	0	О	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	935	1025	831	
UL	TIMATE STRESS, psf	882	942	786	
σ_1	FAILURE, psf	1943	3041	3855	
<u>σ</u> 3	FAILURE, psf	1008	2016	3024	
lcı	TENT : II S Army Core	of Fa	. :		

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-9U,

Sample 2-C, Depth 5.8'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-9U, Sample 2-C, Depth 5.8'

File: UU-7293 Project No.: 13622

Axial Strain, % TYPE OF TEST: Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH3 w/ ars ML & org

LL= 110 PL= 36 PI= 74

SPECIFIC GRAVITY= 2.72

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	64.3	67.2 97.8 1.527 1.38	63.6 91.0 1.668 1.38	(,(
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	60.1 64.4	56.1 67.3	60.5 64.2	
St BA CE FA UL	crain rate, in/min ACK PRESSURE, psf ELL PRESSURE, psf AILURE STRESS, psf ATIMATE STRESS, psf FAILURE, psf	0.0798 0 1008 928	0.0996 0 2016 1225 1100	0.1019 0 3024 1214 1029	
0	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. CACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-9U

Sample 5-B, Depth 17.2'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Client: U.S. Army Corps of Engineers

Project: Algiers Levee Contract No. CACW29-95-D-0012 Location: Boring ALGW-9U Sample 5-B, Depth 17.2'

File: UU-7294

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ lyr, & ins ML, ars org

LL= 86 PL= 24 PI= 62

SPECIFIC GRAVITY= 2.74

REMARKS:

[66	SOTUE:				
SF	ECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	63.8	62.7 101.8 1.729 1.38	62.9 99.7 1.721 1.38	(,
152	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	61.6	63.3	62.6	
St	rain rate, in/min	0.1070	0.10530	0.1092	
BA	CK PRESSURE, psf	o	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA:	ILURE STRESS, psf	632	652	635	
UL.	TIMATE STRESS, psf	498	541	448	
4	FAILURE, psf	1640			
σ3	FAILURE, psf	1008	2016	3024	
	TENT. H.S. A O.				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-9U

Sample 7-B. Depth 25.5'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-9U Sample 7-B, Depth 25.5'

File: UU-7295

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: So Gr CH4

w/ lyr & Ins ML

LL= 88

PL= 25

PI= 63

SPECIFIC GRAVITY= 2.74

REMARKS:

_					
SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	63.7	100.2 1.713 1.38	61.0 95.6 1.805 1.38	;
AT TEST	SATURATION. % VOID RATIO	63.7 100.0	63.2	61.2	
St	rain rate, in/min	0.0993	0.0919	0.1025	
BA	ACK PRESSURE, psf	0	0	0	
CE	ILL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	867	875	770	
UL	TIMATE STRESS, psf	665	701	648	
-0	FAILURE, psf	1875	2891	3794	
0	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-9U,

Sample 9-C, Depth 34.1'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-9U, Sample 9-C, Depth 34.1'

File: UU-7296

Project No.: 13622

FIG. NO.: ___

Axial Strain, %

TYPE OF TEST:

Unconsolidated Undrained

DESCRIPTION: So Gr CH4

w/ ins ML LL= 94

PL= 27

PI= 67

SPECIFIC GRAVITY= 2.74

SAMPLE TYPE: Undisturbed

REMARKS:

SP	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	60.9	59.4 99.6 1.879 1.38	61.6 100.5 1.775 1.38	:
TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	66.0 60.9 100.0 1.809 1.38	68.6 59.4 100.0 1.880	64.4 61.8 100.0 1.766 1.38	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	0	0	0	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	871	780	876	
UL	TIMATE STRESS, psf	646	655	713	
01	FAILURE, psf	1879	2796	3900	
σ_3	FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-9U.

Sample 11-D, Depth 42.8

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-9U, Sample 11-D, Depth 42.8

File: UU-7297 Project No.: 13622 FI

FIG. NO.: ____

TYPE	OF	TEST:

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4

w/ ars ML

LL= 89

PL= 23

PI= 66

SPECIFIC GRAVITY= 2.727

REMARKS:

SPECIMEN NO.:	1	2	3	
WATER CONTENT, % DRY DENSITY, pcf H SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	64 2	63.9 99.2 1.657 1.38	61.6 99.8 1.755 1.38	f
WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	60.6 64.1 100.0 1.654 1.38	60.7 64.1 100.0 1.650	64.2 61.8 100.0 1.746	
Strain rate, in/min				
BACK PRESSURE, psf		0	o	
CELL PRESSURE, psf	1008	2016	3024	
FAILURE STRESS, psf				
ULTIMATE STRESS, psf				
O1 FAILURE, psf	1781	2829	3713	
O ₃ FAILURE, psf	1008	2016	3024	

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No.DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-9U,

Sample 13-D, Depth 50.8

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No.DACW29-95-D-0012 Location: Boring ALGW-9U, Sample 13-D, Depth 50.8'

File: UU-7298

Project No.: 13622

SPECIMEN NO.:

WATER CONTENT, %

DRY DENSITY, pcf 63.2 63.5 62.5 SATURATION, % 101.8 101.2 101.2 VOID RATIO 1.706 1.696 1.739 DIAMETER, in 1.38 1.38 1.38 HEIGHT, in 2.98 2.98 2.98 WATER CONTENT, % 62.4 61.7 63.3 DRY DENSITY, pcf 63.1 63.6 62.6 SATURATION, % 100.0 100.0 100.0 VOID RATIO 1.710 1.689 1.735 DIAMETER. in 1.38 1.38 1.38 HEIGHT, in 2.98 2.98 2.98 Strain rate, in/min 0.10610.10140.1015 BACK PRESSURE, psf 0 0 CELL PRESSURE, psf 1008 2016 3024 FAILURE STRESS, psf 1146 1143 1083 ULTIMATE STRESS, psf 866 824 749 O1 FAILURE, psf 2154 3159 4107 O3 FAILURE, psf 1008 2016 3024

1

63.4

2

62.6

3

64.2

TYPE OF TEST:

Unconsolidated Undrained SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CH4

-- w/ Ins ML

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-9U.

CLIENT: U.S. Army Corps of Engineers

Sample 15-D, Depth 48.8'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

LL= 82

PL= 23

PI = 59

SPECIFIC GRAVITY= 2.74

REMARKS:

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-9U, Sample 15-D, Depth 48.8'

File: UU-7299

Project No.: 13622

Unconsolidated Undrained

SAMPLE TYPE: Undisturbed

DESCRIPTION: M Gr CL4

w/ slf

LL= 32 PL= 20 PI= 12

SPECIFIC GRAVITY= 2.7

REMARKS:

SF	PECIMEN NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	94.3	95.0 98.7 0.774 1.38	93.3 97.9 0.807 1.38	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	29.3 94.1	28.7 95.0 100.0 0.775 1.38	29.6 93.7 100.0 0.800 1.38	
St	rain rate, in/min				
ВА	CK PRESSURE, psf	0	0	o	
CE	LL PRESSURE, psf	1008	2016	3024	
FA	ILURE STRESS, psf	1388	1750	1719	
UL	TIMATE STRESS, psf	1276	1619	1600	
	E4 = 1 + 1 = =	2396			
<u> </u>	FAILURE, psf	1008	2016	3024	
110.	TENT. U.S. A.				

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Contract No. DACW29-95-D-0012 SAMPLE LOCATION: Boring ALGW-9U,

Sample 22-C, Depth 77.9'

PROJ. NO.: 13622

DATE: 8-8-96

TRIAXIAL SHEAR TEST REPORT

Eustis Engineering Company, Inc.

Project: Algiers Levee Contract No. DACW29-95-D-0012 Location: Boring ALGW-9U, Sample 22-C, Depth 77.9'

File: UU-7300 Project No.: 13622

APPENDIX F-II COMPUTER OUTPUT

WEST BANK OF THE MISSISSIPPI RIVER IN THE VICINITY OF NEW ORLEANS, LA EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT DESIGN MEMORANDUM NO. 2 EAST AND WEST OF ALGIERS CANAL

APPENDIX F-II

GEOTECHNICAL COMPUTER OUTPUT

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

Page 1

DATE: 20-MAR-1998

TIME: 8.30.28

èëëëëëëëëëë D INPUT DATA D àëëëëëëëëëëëë

I.--HEADING:

'ALGIERS CANAL, EE14638

'REACH 4, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II. -- CONTROL CANTILEVER WALL DESIGN

LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.00 LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.00

III. -- WALL DATA ELEVATION AT TOP OF WALL = 11.50 (FT)

IV. -- SURFACE POINT DATA

IV.ARIGHTSIDE	
DIST. FROM	ELEVATION
WALL (FT)	(FT)
.00	3.00
30.00	.00
100.00	.00
IV.B LEFTSIDE	
DIST. FROM	ELEVATION
WALL (FT)	(FT)
.00	3.00
30.00	.00
100.00	.00

V.--SOIL LAYER DATA

V.A. -- RIGHTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

SAT. WGHT. (PCF)	MOIST WGHT. (PCF)	ANGLE OF INTERNAL FRICTION (DEG)	COH- ESION (PSF)	ANGLE OF WALL FRICTION (DEG)	ADH- ESION (PSF)	<pre><-SAFETY-> <bottom> <-FACTOR-> ELEV. SLOPE ACT. PASS. (FT) (FT/FT)</bottom></pre>
100.00	100.00	.00	380.0	.00	.0	.00 .00 DEF DEF

IL4FGOT.1 March 20, 1998 Page 1-2

92.00 92.00 .00 350.0 .00

.0

DEF DEF

V.B.-- LEFTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

SAT. WGHT. (PCF) 102.00	MOIST WGHT. (PCF) 102.00	ANGLE OF INTERNAL FRICTION (DEG)	COH- ESION (PSF)	ANGLE OF WALL FRICTION (DEG)	ADH- ESION (PSF)	<pre><-SAFETY-> <bottom> <-FACTOR-> ELEV. SLOPE ACT. PASS. (FT) (FT/FT)</bottom></pre>
92.00	92.00	.00	380.0 350.0	.00 .00	. 0 . 0	.00 .00 DEF DEF

VI. -- WATER DATA

UNIT WEIGHT = 62.40 (PCF)
RIGHTSIDE ELEVATION = 11.50 (FT)
LEFTSIDE ELEVATION = -3.50 (FT)
NO SEEPAGE

VII.--SURFACE LOADS NONE

VIII.--HORIZONTAL LOADS NONE

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

TIME: 8.30.36

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 4, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

	. I EDMOTOD	DDB GGIDDG	<net pres<="" th=""><th></th><th></th><th></th></net>			
ELEV.	PASSIVE	PRESSURES->	(SOIL PLUS	•	<rightside< td=""><td>PRESSURES-></td></rightside<>	PRESSURES->
(FT)	(PSF)	ACTIVE	ACTIVE	PASSIVE	ACTIVE	PASSIVE
11.50		(PSF)	(PSF)	(PSF)	(PSF)	(PSF)
10.50	.00	.00	.000	.000	.00	.00
9.50	.00	.00	62.400	62.400	.00	.00
8.50	.00	.00	124.800	124.800	.00	.00
7.50	.00	.00	187.200	187.200	.00	.00
6.50	.00	.00	249.600	249.600	.00	.00
5.50	.00	.00	312.000	312.000	.00	.00
4.50	.00	.00	374.400	374.400	.00	.00
3.50	.00	.00	436.800	436.800	.00	.00
3.00+	.00	.00	499.200	499.200	.00	.00
3.00+	.00	.00	530.400	530.400	.00	.00
2.75	760.00	.00	-229.600	1290.400	.00	760.00
2.75	748.64	.00	-202.636	1280.000	.00	734.00
2.00	737.27	.00	-175.673	1269.600	.00	708.00
1.50	783.64	.00	-190.836	1317.891	.00	725.09
.50	830.51	.00	-206.510	1366.690	.00	742.69
.00	913.20	.00	-226.796	1453.239	.00	766.84
50	937.78 959.92	.00	-220.178	1480.005	.00	762.40
-1.50	1032.69	.00	-211.123	1504.820	.00	756.02
-2.50	1115.91	.00	-221.491	1583.190	.00	771.99
-~ 50	1113.51	.00	-242.309	1672.509	.00	798.91
- 50	1218.96	.00	-246.549	1761.091	.00	825.09
-5.5 0	1239.53	.00	-282.964	1787.273	.00	851.27
-6.50	1259.62	.00	-303.535	1813.455	.00	877.45
-7.50	1279.95	.00	-323.618	1839.636	.00	903.64
-8.50	1300.27	.00	-343.945	1865.818	.00	929.82
-9.50	1320.60	.00	-364.273	1892.000	.00	956.00
-10.50	1340.93	.00 .00	-384.600	1918.182	.00	982.18
-11.50	1361.25	.00	-404.927	1944.364	.00	1008.36
-12.50	1381.58	.00	-425.255	1970.545	.00	1034.55
-13.50	1401.91	.00	-445.582	1996.727	.00	1060.73
-14.50	1422.24	.00	-465.909	2022.909	.00	1086.91
-15.50	1442.56	.00	-486.236 -506.564	2049.091	.00	1113.09
-16.50	1462.89	.00	-506.564	2075.273	.00	1139.27
-17.50	1483.22	.00	-526.891 -547.218	2101.455	.00	1165.45
-18.50	1503.55	.00	-567.545	2127.636	.00	1191.64
-19.50	1523.87	44.43	-587.873	2153.818	.00	1217.82
-20.50	1544.20	162.67	-608.200	2135.572	.00	1244.00
-21.50	1564.53	244.28	-628.527	2043.513 1988.079	.00	1270.18
-22.50	1584.85	261.34	-648.855	1988.079	.00	1296.36
-23.50	1605.18	280.30	-669.182	2004.427	.00	1322.55
-24.50	1625.51	299.70	-689.509	2011.209	.00	1348.73
-25.50	1645.84	319.10	-709.836	2017.209	.00	1374.91
-26.50	1666.16	338.50	-730.164	2017.991	.00	1401.09
-27.50	1686.49	357.90	-750.104	2024.773	.00	1427.27
		337.30	100.431	2031.333	.00	1453.45

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 20-MAR-1998

TIME: 8.31.51

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 4, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

WALL BOTTOM ELEV. (FT) : -17.26 PENETRATION (FT) : 20.26

MAX. BEND. MOMENT (LB-FT) : 17856. AT ELEVATION (FT) : -6.38

MAX. SCALED DEFL. (LB-IN3): 7.6853E+09 AT ELEVATION (FT): 11.50

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 20-MAR-1998

TIME: 8.31.51

m CANTILEVER WALL DESIGN m àëëëëëëëëëëëëëëëëëëëë

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 4, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--RESULTS

ELEVATION (FT) MOMENT (LB-FT) SHEAR (LB) DEFLECTION (PSS) 11.50 0. 0. 7.6853E+09 .00 10.50 10. 31. 7.2329E+09 62.40 9.50 83. 125. 6.7805E+09 124.80 8.50 281. 281. 6.3282E+09 187.20 7.50 666. 499. 5.8765E+09 249.60 6.50 1300. 780. 5.4260E+09 312.00 5.50 2246. 1123. 4.9777E+09 374.40 4.50 3567. 1529. 4.5334E+09 436.80 3.50 5325. 1997. 4.0953E+09 49.20 3.00 6387. 2254. 3.8795E+09 50.40 3.00 6387. 2254. 3.8795E+09 -229.60 2.75 6944. 2200. 3.7726E+09 -229.60 2.75 6944. 2200. 3.7726E+09 -20.61 1.50 9548. 2153. 3.6665E+09		BENDING		SCALED	NET
(FT) (LB-FT) (LB) (LB-IN3) (PSF) 11.50 0. 0. 7.6853E+09 .00 10.50 10. 31. 7.2329E+09 62.40 9.50 83. 125. 6.7805E+09 124.80 8.50 281. 281. 6.3282E+09 187.20 7.50 666. 499. 5.8765E+09 249.60 6.50 1300. 780. 5.4260E+09 312.00 5.50 2246. 1123. 4.9777E+09 374.40 4.50 3567. 1529. 4.5334E+09 436.80 3.50 5325. 1997. 4.0953B+09 499.20 3.00 6387. 2254. 3.8795E+09 530.40 3.00 6387. 2254. 3.8795E+09 -229.60 2.75 6944. 2200. 3.7726E+09 -202.64 2.50 7488. 2153. 3.6665E+09 -175.67 2.00 8541. 2061. 3.4567E+09 -190.84 1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -211.12 -1.50 13037. 1526. 2.4714E+09 -211.12 -1.50 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -246.55 -5.50 17733. 275. 9.5303E+08 -303.53 -6.50 1785339. 7.3684E+08 -323.62 -7.50 17650372. 5.5146E+08 -343.95 -8.50 17102726. 3.9653E+08 -364.27 -9.50 161901101. 2.7110E+08 -384.60 -10.50 148931496. 1.7359E+08 -344.93 -11.50 131921911. 1.0176E+08 -425.25 -13.50 84932802. 2.2617E+07 -445.58 -13.50 5611403. 4.8574E+04 1561.45	ELEVATION		SHEAR		
11.50	(FT)	(LB-FT)			
10.50	11.50				·
9.50 83. 125. 6.7805E+09 124.80 8.50 281. 281. 6.3282E+09 187.20 7.50 666. 499. 5.8765E+09 249.60 6.50 1300. 780. 5.4260E+09 312.00 5.50 2246. 1123. 4.9777E+09 374.40 4.50 3567. 1529. 4.5334E+09 436.80 3.50 5325. 1997. 4.0953E+09 530.40 3.00 6387. 2254. 3.8795E+09 -229.60 2.75 6944. 2200. 3.7726E+09 -202.64 2.50 7488. 2153. 3.6665E+09 -175.67 2.00 8541. 2061. 3.4567E+09 -190.84 1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -220.1850 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -246.55 -4.50 1733. 275. 9.5303E+08 -303.53 -6.50 17650372. 5.5146E+08 -323.62 -7.50 17650372. 5.5146E+08 -323.62 -7.50 161901101. 2.7110E+08 -384.60 -10.50 148931496. 1.7359E+08 -404.93 -11.50 5611403. 4.8574E+04 1561.45					
8.50	9.50				
7.50 666. 499. 5.8765E+09 249.60 6.50 1300. 780. 5.4260E+09 312.00 5.50 2246. 1123. 4.9777E+09 374.40 4.50 3567. 1529. 4.5334E+09 436.80 3.50 5325. 1997. 4.0953E+09 499.20 3.00 6387. 2254. 3.8795E+09 530.40 3.00 6387. 2254. 3.8795E+09 -229.60 2.75 6944. 2200. 3.7726E+09 -202.64 2.50 7488. 2153. 3.6665E+09 -175.67 2.00 8541. 2061. 3.4567E+09 -190.84 1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -220.1850 13037. 1526. 2.4714E+09 -221.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17733. 275. 9.5303E+08 -303.53 -6.50 1785339. 7.3684E+08 -303.53 -6.50 1785339. 7.3684E+08 -303.53 -6.50 17650372. 5.5146E+08 -343.95 -8.50 17102726. 3.9653E+08 -364.27 -9.50 161901101. 2.7110E+08 -384.60 -10.50 148931496. 1.7359E+08 -404.93 -11.50 5611403. 4.8574E+04 1561.45	8.50				
6.50	7.50				
5.50 2246. 1123. 4.9777E+09 374.40 4.50 3567. 1529. 4.5334E+09 436.80 3.50 5325. 1997. 4.0953E+09 499.20 3.00 6387. 2254. 3.8795E+09 530.40 3.00 6387. 2254. 3.8795E+09 -229.60 2.75 6944. 2200. 3.7726E+09 -202.64 2.50 7488. 2153. 3.6665E+09 -175.67 2.00 8541. 2061. 3.4567E+09 -190.84 1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -220.18 50 13037. 1526. 2.4714E+09 -221.19 -1.50 14455. 1309. 2.1141E+09 -224.80 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568.					
4.50 3567. 1529. 4.5334E+09 436.80 3.50 5325. 1997. 4.0953E+09 499.20 3.00 6387. 2254. 3.8795E+09 530.40 3.00 6387. 2254. 3.8795E+09 -229.60 2.75 6944. 2200. 3.7726E+09 -202.64 2.50 7488. 2153. 3.6665E+09 -175.67 2.00 8541. 2061. 3.4567E+09 -190.84 1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -220.18 -50 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -242.31 -3.50 17310. 568. 1.1998E+09 -282.96 -5.50 17733. 275. <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
3.50 5325. 1997. 4.0953E+09 499.20 3.00 6387. 2254. 3.8795E+09 530.40 3.00 6387. 2254. 3.8795E+09 -229.60 2.75 6944. 2200. 3.7726E+09 -202.64 2.50 7488. 2153. 3.6665E+09 -175.67 2.00 8541. 2061. 3.4567E+09 -190.84 1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -201.12 -1.50 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -282.96 -5.50 17733. 275. 9.5303E+08 -303.53 -6.50 1785339. 7.3684E+08 -323.62 -7.50 17650372. 5.5146E+08 -343.95 -8.50 17102726. 3.9653E+08 -364.27 -9.50 161901101. 2.7110E+08 -384.60 -10.50 148931496. 1.7359E+08 -404.93 -11.50 131921911. 1.0176E+08 -425.25 -12.50 110652346. 5.2659E+07 -445.58 -13.50 84932802. 2.2617E+07 -465.91 -14.50 55113057. 7.1860E+06 91.88 -15.50 26232597. 1.2916E+06 826.67 -16.50 5611403. 4.8574E+04 1561.45	4.50				
3.00 6387. 2254. 3.8795E+09 530.40 3.00 6387. 2254. 3.8795E+09 -229.60 2.75 6944. 2200. 3.7726E+09 -202.64 2.50 7488. 2153. 3.6665E+09 -175.67 2.00 8541. 2061. 3.4567E+09 -206.51 .50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -211.12 -1.50 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -282.96 -5.50 17733. 275. 9.5303E+08 -303.53 -6.50 1785339. 7.3684E+08 -323.62 -7.50 17650372. 5.5146E+08 -343.95 -8.50 17102726. 3.9653E+08 -364.27 -9.50 161901101. 2.7110E+08 -384.60 -10.50 148931496. 1.7359E+08 -404.93 -11.50 131921911. 1.0176E+08 -345.58 -13.50 84932802. 2.2617E+07 -465.91 -14.50 55113057. 7.1860E+06 91.88 -15.50 26232597. 1.2916E+06 826.67 -16.50 5611403. 4.8574E+04 1561.45	3.50				
3.00 6387. 2254. 3.8795E+09 -229.60 2.75 6944. 2200. 3.7726E+09 -202.64 2.50 7488. 2153. 3.6665E+09 -175.67 2.00 8541. 2061. 3.4567E+09 -190.84 1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -211.12 -1.50 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -282.36 -5.50 17733. 275. 9.5303E+08 -303.53 -6.50 1785339. 7.3684E+08 -323.62 -7.50 17650372. 5.5146E+08 -343.95 -8.50 17102726. 3.9653E+08 -364.27 -9.50 161901101. 2.7110E+08 -384.60 -10.50 148931496. 1.7359E+08 -404.93 -11.50 131921911. 1.0176E+08 -425.25 -12.50 110652346. 5.2659E+07 -445.58 -13.50 84932802. 2.2617E+07 -465.91 -14.50 55113057. 7.1860E+06 91.88 -15.50 26232597. 1.2916E+06 826.67 -16.50 5611403. 4.8574E+04 1561.45					
2.75 6944. 2200. 3.7726E+09 -202.64 2.50 7488. 2153. 3.6665E+09 -175.67 2.00 8541. 2061. 3.4567E+09 -190.84 1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -220.18 50 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -282.96 -5.50 17333. 275. 9.5303E+08 -303.53 -6.50 17853. -39. 7.3684E+08 -323.62 -7.50 17650. -372. 5.5146E+08 -343.95 -8.50 17102. -726. 3.9653E+08 -364.27 -9.50 16190. -1101. <td></td> <td></td> <td></td> <td></td> <td></td>					
2.50 7488. 2153. 3.6665E+09 -175.67 2.00 8541. 2061. 3.4567E+09 -190.84 1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -220.18 -50 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -282.96 -5.50 17733. 275. 9.5303E+08 -303.53 -6.50 17853. -39. 7.3684E+08 -323.62 -7.50 17650. -372. 5.5146E+08 -343.95 -8.50 17102. -726. 3.9653E+08 -364.27 -9.50 16190. -1101. 2.7110E+08 -384.60 -10.50 14893. -1496.	2.75				
2.00 8541. 2061. 3.4567E+09 -190.84 1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -220.1850 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -282.96 -5.50 17733. 275. 9.5303E+08 -303.53 -6.50 1785339. 7.3684E+08 -323.62 -7.50 17650372. 5.5146E+08 -343.95 -8.50 17102726. 3.9653E+08 -364.27 -9.50 161901101. 2.7110E+08 -384.60 -10.50 148931496. 1.7359E+08 -404.93 -11.50 131921911. 1.0176E+08 -425.25 -12.50 10652346. 5.2659E+07 -445.58 -13.50 84932802. 2.2617E+07 -465.91 -13.73 78232912. 1.7869E+07 -470.67 -14.50 55113057. 7.1860E+06 91.88 -15.50 26232597. 1.2916E+06 826.67 -16.50 5611403. 4.8574E+04	2.50				
1.50 9548. 1962. 3.2506E+09 -206.51 .50 11403. 1745. 2.8511E+09 -226.80 .00 12247. 1634. 2.6586E+09 -220.18 50 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -282.96 -5.50 1733. 275. 9.5303E+08 -303.53 -6.50 17853. -39. 7.3684E+08 -323.62 -7.50 17650. -372. 5.5146E+08 -343.95 -8.50 17102. -726. 3.9653E+08 -364.27 -9.50 16190. -1101. 2.7110E+08 -384.60 -10.50 14893. -1496. 1.7359E+08 -404.93 -11.50 13192. -1911. 1.0176E+08 -425.25 -12.50 11065. <t< td=""><td>2.00</td><td></td><td></td><td></td><td></td></t<>	2.00				
.50	1.50				
.00 12247. 1634. 2.6586E+09 -220.1850 13037. 1526. 2.4714E+09 -211.12 -1.50 14455. 1309. 2.1141E+09 -221.49 -2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -282.96 -5.50 17733. 275. 9.5303E+08 -303.53 -6.50 1785339. 7.3684E+08 -323.62 -7.50 17650372. 5.5146E+08 -343.95 -8.50 17102726. 3.9653E+08 -364.27 -9.50 161901101. 2.7110E+08 -384.60 -10.50 148931496. 1.7359E+08 -404.93 -11.50 131921911. 1.0176E+08 -425.25 -12.50 110652346. 5.2659E+07 -445.58 -13.50 84932802. 2.2617E+07 -465.91 -13.73 78232912. 1.7869E+07 -470.67 -14.50 55113057. 7.1860E+06 91.88 -15.50 26232597. 1.2916E+06 826.67 -16.50 5611403. 4.8574E+04 1561.45	.50				
50	.00	12247.			
-1.50	50	13037.			
-2.50 15651. 1077. 1.7818E+09 -242.31 -3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -282.96 -5.50 17733. 275. 9.5303E+08 -303.53 -6.50 17853. -39. 7.3684E+08 -323.62 -7.50 17650. -372. 5.5146E+08 -343.95 -8.50 17102. -726. 3.9653E+08 -364.27 -9.50 16190. -1101. 2.7110E+08 -384.60 -10.50 14893. -1496. 1.7359E+08 -404.93 -11.50 13192. -1911. 1.0176E+08 -425.25 -12.50 11065. -2346. 5.2659E+07 -445.58 -13.50 8493. -2802. 2.2617E+07 -465.91 -13.73 7823. -2912. 1.7869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561.	-1.50	14455.			
-3.50 16606. 833. 1.4765E+09 -246.55 -4.50 17310. 568. 1.1998E+09 -282.96 -5.50 17733. 275. 9.5303E+08 -303.53 -6.50 17853. -39. 7.3684E+08 -323.62 -7.50 17650. -372. 5.5146E+08 -343.95 -8.50 17102. -726. 3.9653E+08 -364.27 -9.50 16190. -1101. 2.7110E+08 -384.60 -10.50 14893. -1496. 1.7359E+08 -404.93 -11.50 13192. -1911. 1.0176E+08 -425.25 -12.50 11065. -2346. 5.2659E+07 -445.58 -13.50 8493. -2802. 2.2617E+07 -465.91 -13.73 7823. -2912. 1.7869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-2.50	15651.	1077.	_	
-4.50 17310. 568. 1.1998E+09 -282.96 -5.50 17733. 275. 9.5303E+08 -303.53 -6.50 17853. -39. 7.3684E+08 -323.62 -7.50 17650. -372. 5.5146E+08 -343.95 -8.50 17102. -726. 3.9653E+08 -364.27 -9.50 16190. -1101. 2.7110E+08 -384.60 -10.50 14893. -1496. 1.7359E+08 -404.93 -11.50 13192. -1911. 1.0176E+08 -425.25 -12.50 11065. -2346. 5.2659E+07 -445.58 -13.50 8493. -2802. 2.2617E+07 -465.91 -14.50 5511. -3057. 7.1869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-3.50	16606.	833.		
-5.50 17733. 275. 9.5303E+08 -303.53 -6.50 1785339. 7.3684E+08 -323.62 -7.50 17650372. 5.5146E+08 -343.95 -8.50 17102726. 3.9653E+08 -364.27 -9.50 161901101. 2.7110E+08 -384.60 -10.50 148931496. 1.7359E+08 -404.93 -11.50 131921911. 1.0176E+08 -425.25 -12.50 110652346. 5.2659E+07 -445.58 -13.50 84932802. 2.2617E+07 -465.91 -13.73 78232912. 1.7869E+07 -470.67 -14.50 55113057. 7.1860E+06 91.88 -15.50 26232597. 1.2916E+06 826.67 -16.50 5611403. 4.8574E+04 1561.45	-4.50	17310.	568.		
-6.50 17853. -39. 7.3684E+08 -323.62 -7.50 17650. -372. 5.5146E+08 -343.95 -8.50 17102. -726. 3.9653E+08 -364.27 -9.50 16190. -1101. 2.7110E+08 -384.60 -10.50 14893. -1496. 1.7359E+08 -404.93 -11.50 13192. -1911. 1.0176E+08 -425.25 -12.50 11065. -2346. 5.2659E+07 -445.58 -13.50 8493. -2802. 2.2617E+07 -465.91 -13.73 7823. -2912. 1.7869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-5.50	17733.			
-7.50 17650. -372. 5.5146E+08 -343.95 -8.50 17102. -726. 3.9653E+08 -364.27 -9.50 16190. -1101. 2.7110E+08 -384.60 -10.50 14893. -1496. 1.7359E+08 -404.93 -11.50 13192. -1911. 1.0176E+08 -425.25 -12.50 11065. -2346. 5.2659E+07 -445.58 -13.50 8493. -2802. 2.2617E+07 -465.91 -13.73 7823. -2912. 1.7869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-6.50	17853.	-39.		
-8.50 17102726. 3.9653E+08 -364.27 -9.50 161901101. 2.7110E+08 -384.60 -10.50 148931496. 1.7359E+08 -404.93 -11.50 131921911. 1.0176E+08 -425.25 -12.50 110652346. 5.2659E+07 -445.58 -13.50 84932802. 2.2617E+07 -465.91 -13.73 78232912. 1.7869E+07 -470.67 -14.50 55113057. 7.1860E+06 91.88 -15.50 26232597. 1.2916E+06 826.67 -16.50 5611403. 4.8574E+04 1561.45	-7.50	17650.			
-9.50 16190. -1101. 2.7110E+08 -384.60 -10.50 14893. -1496. 1.7359E+08 -404.93 -11.50 13192. -1911. 1.0176E+08 -425.25 -12.50 11065. -2346. 5.2659E+07 -445.58 -13.50 8493. -2802. 2.2617E+07 -465.91 -13.73 7823. -2912. 1.7869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-8.50	17102.			
-10.50 14893. -1496. 1.7359E+08 -404.93 -11.50 13192. -1911. 1.0176E+08 -425.25 -12.50 11065. -2346. 5.2659E+07 -445.58 -13.50 8493. -2802. 2.2617E+07 -465.91 -13.73 7823. -2912. 1.7869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-9.50	16190.	-1101.		
-11.50 13192. -1911. 1.0176E+08 -425.25 -12.50 11065. -2346. 5.2659E+07 -445.58 -13.50 8493. -2802. 2.2617E+07 -465.91 -13.73 7823. -2912. 1.7869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-10.50	14893.	-1496.	1.7359E+08	
-12.50 11065. -2346. 5.2659E+07 -445.58 -13.50 8493. -2802. 2.2617E+07 -465.91 -13.73 7823. -2912. 1.7869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-11.50	13192.			
-13.50 8493. -2802. 2.2617E+07 -465.91 -13.73 7823. -2912. 1.7869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-12.50	11065.			
-13.73 7823. -2912. 1.7869E+07 -470.67 -14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-13.50	8493.	-2802.		
-14.50 5511. -3057. 7.1860E+06 91.88 -15.50 2623. -2597. 1.2916E+06 826.67 -16.50 561. -1403. 4.8574E+04 1561.45	-13.73	7823.	-2912.		
-15.50 26232597. 1.2916E+06 826.67 -16.50 5611403. 4.8574E+04 1561.45	-14.50	5511.	-3057.		
-16.50 5611403. 4.8574E+04 1561.45	-15.50	2623.	-2597.		
	-16.50	561.	-1403.		
	-17.26	0.	0.	0.0000E+00	

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

III.--SOIL PRESSURES

ELEVATION		PRESSURE (PSF) >	<rightside< td=""><td>PRESSURE (PSF) ></td></rightside<>	PRESSURE (PSF) >
(FT)	PASSIVE	ACTIVE	ACTIVE	PASSIVE
11.50	0.	0.	0.	0.
10.50	0.	0.	0.	0.
9.50	0.	0.	0.	0.

·.1	March 20, 1998		Page 1-	6	
8.50	0.	0.		•	
7.50	0.	0.		0.	0.
6.50	0.	0.		0.	0.
5.50	0.	0.		0.	0.
4.50	0.	0.		0.	0.
3.50	0.	0.		0.	0.
3.00+	0.	0.		0.	0.
3.00-	760.	0.		0.	0.
	749.	0.		0.	760.
2.50	737.	0.		0.	734.
	784.	0.		0.	708.
	31.	0.		0.	725.
	13.	0.		0.	743.
	38.	0.		0.	767.
	60.	0.		0.	762.
	33.	0.		0.	756.
	16.	0.		0.	772.
	83.	0.		0.	799.
	19.	0.		0.	825.
	40.	0.		0.	851.
	60.	0.		0.	877.
	80.	0.		0.	904.
	00.	0.		0.	930.
	21.	0.		0.	956.
	41.	0.		0.	982.
		0.		0.	1008.
		0.		0.	1035.
		0.		0.	1061.
	^-	0.		0.	1087.
		0.		0.	1093.
		0.		0.	1113.
		0.		0.	1139.
		0. 0.		0.	1165.
-18.50 150		0.		0.	1192.
	= = •	· .		0.	1218.

IL4FGOT.1

Refer to Phite F-34

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 20-MAR-1998

TIME: 8.28.39

èëëëëëëëëëëëë n INPUT DATA n àëëëëëëëëëëëëëë

I.--HEADING:

'ALGIERS CANAL, EE14638

'REACH 3, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--CONTROL CANTILEVER WALL DESIGN

LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.00 LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.00

III.--WALL DATA
ELEVATION AT TOP OF WALL = 11.50 (FT)

IV. -- SURFACE POINT DATA

IV.ARIGHTSIDE	
DIST. FROM	ELEVATION
WALL (FT)	(FT)
.00	3.00
30.00	.00
100.00	.00
IV.B LEFTSIDE	
DIST. FROM	ELEVATION
WALL (FT)	(FT)
.00	3.00
30.00	.00
100.00	.00

V.--SOIL LAYER DATA

V.A.--RIGHTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

SAT. WGHT. (PCF)	MOIST WGHT. (PCF)	ANGLE OF INTERNAL FRICTION (DEG)	COH- ESION (PSF)	ANGLE OF WALL FRICTION (DEG)	ADH- ESION (PSF)	<pre><-SAFETY-> <bottom> <-FACTOR-> ELEV. SLOPE ACT. PASS. (FT) (FT/FT)</bottom></pre>
102.00	102.00	.00	380.0	.00	. 0	.00 .00 DEF DEF

IL3FGOT.1 March 20, 1998 Page 1-2

102.00 102.00 .00 350.0 .00 .0 DEF DEF

V.B. -- LEFTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

SAT. WGHT. (PCF) 102.00	MOIST WGHT. (PCF)	ANGLE OF INTERNAL FRICTION (DEG)	COH- ESION (PSF)	ANGLE OF WALL FRICTION (DEG)	ADH- ESION (PSF)			<-FAC	TETY-> CTOR-> PASS.
102.00	102.00 102.00	.00	380.0 380.0	.00 .00	.0	.00	.00	DEF DEF	DEF DEF

VI. -- WATER DATA

UNIT WEIGHT = 62.40 (PCF)
RIGHTSIDE ELEVATION = 11.50 (FT)
LEFTSIDE ELEVATION = -3.50 (FT)
NO SEEPAGE

VII.--SURFACE LOADS NONE

VIII.--HORIZONTAL LOADS NONE

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 20-MAR-1998

TIME: 8.28.49

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 3, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

			<net pres<="" th=""><th>SURES></th><th></th><th></th></net>	SURES>		
	<-LEFTSIDE	PRESSURES->	(SOIL PLUS		<rightside< td=""><td>PRESSURES-></td></rightside<>	PRESSURES->
ELEV.	PASSIVE	ACTIVE	ACTIVE	PASSIVE	ACTIVE	PASSIVE
(FT)	(PSF)	(PSF)	(PSF)	(PSF)	(PSF)	(PSF)
11.50	.00	.00	.000	.000	.00	•
10.50	.00	.00	62.400	62.400	.00	.00
9.50	.00	.00	124.800	124.800	.00	.00
8.50	.00	.00	187.200	187.200	.00	.00
7.50	.00	.00	249.600	249.600	.00	.00
6.50	.00	.00	312.000	312.000	.00	.00 .00
5.50	.00	.00	374.400	374.400	.00	.00
4.50	.00	.00	436.800	436.800	.00	.00
3.50	.00	.00	499.200	499.200	.00	.00
3.00+	.00	.00	530.400	530.400	.00	.00
3.00-	760.00	.00	-229.600	1290.400	.00	760.00
2.75	748.64	.00	-202.636	1280.455	.00	734.45
2.50	737.27	.00	-175.673	1270.509	.00	708.91
2.00	783.64	.00	-190.836	1319.709	.00	726.91
1.50	830.00	.00	-206.000	1369.409	.00	745.41
.50	922.73	.00	-236.327	1457.809	.00	771.41
.00	969.09	.00	-251.491	1486.509	.00	768.91
50	1015.45	.00	-266.655	1515.209	.00	766.41
-1.50	1108.43	.00	-297.226	1603.359	.00	
-2.50	1200.91	.00	-327.309	1702.509	.00	792.16
- 2 50	1277.55	.00	-341.549	1800.909	.00	828.91
- 50	1323.96	.00	-387.964	1836.909	.00	864.91
-5.50	1354.53	.00	-418.535	1872.909	.00	900.91
-6.50	1384.62	.00	-448.618	1908.909	.00	936.91 972.91
-7. 50	1414.95	.00	-478.945	1944.909	.00	1008.91
-8.50	1445.27	.00	-509.273	1980.909	.00	1044.91
-9.50	1475.60	.00	-539.600	2016.909	.00	1080.91
·10.50	1505.93	.00	-569.927	2052.909	.00	1116.91
·11.50	1536.25	.00	-600.255	2088.909	.00	1152.91
-12.50	1566.58	.00	-630.582	2124.909	.00	1188.91
·13.50	1596.91	.00	-660.909	2160.909	.00	1224.91
-14.50	1627.24	.00	-691.236	2196.909	.00	1260.91
-15.50	1657.56	.00	-721.564	2232.909	.00	1296.91
-16.50	1687.89	25.32	-751.891	2243.593	.00	1332.91
-17.50	1718.22	140.79	-782.218	2164.118	.00	1368.91
-18.50	1748.55	281.32	-812.545	2059.587	.00	1404.91
-19.50	1778.87	342.05	-842.873	2034.862	.00	1440.91
-20.50	1809.20	367.10	-873.200	2045.809	.00	1476.91
-21.50	1839.53	396.50	-903.527	2052.409	.00	1512.91
-22.50	1869.85	425.90	-933.855	2059.009	.00	1512.91
-23.50	1900.18	455.30	-964.182	2065.609	.00	1548.91
-24.50	1930.51	484.70	-994.509	2072.209	.00	1620.91
-25.50	1960.84	514.10	-1024.836	2078.809	.00	1656.91
-26.50	1991.16	543.50	-1055.164	2085.409	.00	1692.91
-27.50	2021.49	572.90	-1085.491	2092.009	.00	1728.91
	 	3.2.30		2072.009	.00	1/20.71

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 20-MAR-1998

TIME: 8.28.57

I. -- HEADING

'ALGIERS CANAL, EE14638' REACH 3,I WALL, NEAR FLOOD GATE, WATER EL 11.5

II. -- SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

WALL BOTTOM ELEV. (FT) : -14.58 PENETRATION (FT) : 17.58

MAX. BEND. MOMENT (LB-FT): 16584.
AT ELEVATION (FT): -5.00

MAX. SCALED DEFL. (LB-IN3): 5.7319E+09 AT ELEVATION (FT): 11.50

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 20-MAR-1998 TIME: 8.28.57

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 3, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--RESULTS

	BENDING		201177	
ELEVATION	MOMENT	SHEAR	SCALED	NET
(FT)	(LB-FT)		DEFLECTION	PRESSURE
11.50	0.	(LB)	(LB-IN3)	(PSF)
10.50	10.	0.	5.7319E+09	.00
9.50		31.	5.3650E+09	62.40
8.50	83.	125.	4.9983E+09	124.80
7.50	281.	281.	4.6316E+09	187.20
6.50	666.	499.	4.2655E+09	249.60
5.50	1300.	780.	3.9006E+09	312.00
	2246.	1123.	3.5379E+09	374.40
4.50	3567.	1529.	3.1792E+09	436.80
3.50	5325.	1997.	2.8267E+09	499.20
3.00	6387.	2254.	2.6537E+09	530.40
3.00	6387.	2254.	2.6537E+09	-229.60
2.75	6944.	2200.	2.5683E+09	-202.64
2.50	7488.	2153.	2.4835E+09	-175.67
2.00	8541.	2061.	2.3165E+09	-190.84
1.50	9548.	1962.	2.1532E+09	-206.00
.50	11402.	1741.	1.8394E+09	-236.33
.00	12242.	1619.	1.6897E+09	-251.49
50	13019.	1489.	1.5452E+09	-266.65
-1.50	14370.	1207.	1.2735E+09	-297.23
-2.50	15424.	895.	1.0266E+09	-327.31
-3.50	16153.	561.	8.0630E+08	-341.55
-4.50	16535.	196.	6.1386E+08	-387.96
-5.50	16532.	-207.	4.4993E+08	-418.53
-6.50	16111.	-641.	3.1451E+08	-448.62
-7.50	15241.	-1105.	2.0686E+08	-478.95
-8.50	13891.	-1599.	1.2549E+08	-509.27
-9.50	12033.	-2123.	6.8040E+07	-539.60
-10.50	9635.	-2678.	3.1308E+07	-569.93
-10.95	8386.	-2935.	2.0571E+07	-583.42
-11.50	6690.	-3140.	1.1144E+07	-158.08
-12.50	3598.	-2915.	2.5178E+06	
-13.50	1115.	-1924.	1.9662E+05	608.33
-14.50	6.	-166.	5.3487E+00	1374.74
-14.58	0.	0.	0.0000E+00	2141.14
	.	٠.	0.00005+00	2199.66

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

III.--SOIL PRESSURES

ELEVATION	< LEFTSIDE	PRESSURE (PSF) >	<rightside< td=""><td>PRESSURE (PSF) ></td></rightside<>	PRESSURE (PSF) >
(FT)	PASSIVE	ACTIVE	ACTIVE	PASSIVE
11.50	0.	0.	0.	0.
10.50	0.	0.	0.	0
9.50	0.	0.	0.	0.
8.50	0.	0.	0.	0.
7.50	0.	0.	0.	0.
		•	0.	

Γ.1	March 20,	1998	Page 1-6	• •
6.50 5.50 4.50 3.50 3.00+ 3.00- 2.75 2.50 2.00 1.50	March 20, 0. 0. 0. 0. 760. 749. 737. 784. 830. 923.	1998 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 760. 734. 709. 727. 745.
.00 50 -1.50 -2.50 -3.50 -4.50 -5.50 -6.50 -7.50 -8.50 -9.50 -10.50 -10.95 -11.50 -12.50 -13.50 -14.50 -14.58 -16.50	969. 1015. 1108. 1201. 1278. 1324. 1355. 1385. 1415. 1445. 1476. 1506. 1519. 1536. 1567. 1597. 1627. 1658. 1688.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0.	771. 769. 766. 792. 829. 865. 901. 937. 973. 1009. 1045. 1117. 1133. 1153. 1189. 1225. 1261. 1297.

IL3FGOT.1

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 19-MAR-1998

TIME: 16.03.41

èëëëëëëëëëëëë DINPUT DATA D àëëëëëëëëëëëëëë

I.--HEADING:

'ALGIERS CANAL, EE14638

'REACH 2, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--CONTROL

CANTILEVER WALL DESIGN

LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.00 LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.00

III. -- WALL DATA

ELEVATION AT TOP OF WALL = 11.50 (FT)

IV. -- SURFACE POINT DATA

IV.ARIGHTSIDE DIST. FROM WALL (FT) .00 30.00 100.00	ELEVATION (FT) 3.00 .00
IV.B LEFTSIDE DIST. FROM WALL (FT) .00 30.00 100.00	ELEVATION (FT) 3.00 .00

V.--SOIL LAYER DATA

V.A. -- RIGHTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

SAT. WGHT. (PCF) 105.00	MOIST WGHT. (PCF)	ANGLE OF INTERNAL FRICTION (DEG)	COH- ESION (PSF)	ANGLE OF WALL FRICTION (DEG)	ADH- ESION (PSF)	<pre><-SAFETY-> <bottom> <-FACTOR-> ELEV. SLOPE ACT. PASS. (FT) (FT/FT)</bottom></pre>
102.00	105.00	.00	380.0	.00	. 0	.00 .00 DEF DEF

IL2FGOT.1		Maı	March 19, 1998 Page 1-2		• •				
97.50 91.00	97.50 91.00	.00	310.0 310.0	.00	.0	-12.00	.00	DEF DEF	DEF

V.B.-- LEFTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

SAT. WGHT. (PCF) 105.00	MOIST WGHT. (PCF) 105.00	ANGLE OF INTERNAL FRICTION (DEG) .00	COH- ESION (PSF) 380.0	ANGLE OF WALL FRICTION (DEG)	ADH- ESION (PSF)		OM>	<-FAC	FETY-> CTOR-> PASS.
97.50 91.00	97.50 91.00	.00	310.0	.00 .00	.0 .0	.00 -12.00	.00	DEF DEF	DEF DEF
72.00	21.00	.00	310.0	.00	.0			DEF	DEF

VI. -- WATER DATA

UNIT WEIGHT = 62.40 (PCF)
RIGHTSIDE ELEVATION = 11.50 (FT)
LEFTSIDE ELEVATION = -3.50 (FT)
NO SEEPAGE

VII.--SURFACE LOADS NONE

VIII.--HORIZONTAL LOADS

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 19-MAR-1998

DATE: 19-MAR-1998

TIME: 16.03.53

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 2, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD. LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

	Inches		<net pres<="" td=""><td></td><td></td><td></td></net>			
TOT TOTA		PRESSURES->	(SOIL PLUS		<rightside< td=""><td>PRESSURES-></td></rightside<>	PRESSURES->
ELEV.	PASSIVE	ACTIVE	ACTIVE	PASSIVE	ACTIVE	PASSIVE
(FT) 11.50	(PSF)	(PSF)	(PSF)	(PSF)	(PSF)	(PSF)
10.50	.00	:00	.000	.000	.00	.00
9.50	.00	.00	62.400	62.400	.00	.00
	.00	.00	124.800	124.800	.00	.00
8.50 7.50	.00	.00	187.200	187.200	.00	.00
6.50	.00	.00	249.600	249.600	.00	.00
5.50	.00	.00	312.000	312.000	.00	.00
4.50	.00	.00	374.400	374.400	.00	.00
3.50	.00	.00	436.800	436.800	.00	.00
3.00+	.00	.00	499.200	499.200	.00	.00
3.00-	.00 760.00	.00	530.400	530.400	.00	.00
2.75	749.32	.00	-229.600	1290.400	.00	760.00
2.50		.00	-203.318	1281.136	.00	735.14
2.00	738.64	.00	-177.036	1271.873	.00	710.27
1.50	786.36	.00	-193.564	1322.436	.00	729.64
.50	835.27	.00	-211.265	1374.174	.00	750.17
.00	907.36 906.29	.00	-220.955	1451.937	.00	765.54
50	903.39	.00	-188.688	1453.707	.00	736.11
50	967.71	.00	-154.593	1453.648	.00	704.85
-∠ . 50	1057.16	.00	-156.510	1523.394	.00	712.19
-3.50	1129.03	.00	-183.559	1618.759	.00	745.16
-4.50	1170.67	.00	-193.026	1712.386	.00	776.39
-5.50	1196.47	.00	-234.668	1743.614	.00	807.61
-6.50	1221.78	.00 .00	-260.466	1774.841	.00	838.84
-7.50	1247.33	.00	-285.777	1806.068	.00	870.07
-8.50	1272.89	.00	-311.332 -336.886	1837.295	.00	901.30
-9.50	1298.44	32.16	-362.441	1868.523	.00	932.52
-10.50	1324.01	123.97	-388.006	1867.591	.00	963.75
-11.50	1349.53	197.02	-413.530	1807.015	.00	994.99
-12.00	1361.47	208.40	-425.474	1765.169	.00	1026.18
-12.50	1371.83	- 217.04	-435.834	1768.568	.00	1040.97
-13.50	1390.92	238.87	-454.919	1773.119	.00	1054.16
-14.50	1409.96	297.28	-473.964	1776.047	.00	1078.92
-15.50	1429.02	377.44	-493.018	1742.361	.00	1103.64
-16.50	1448.07	419.11	-511.768	1686.926	.00	1128.36
-17.50	1467.13	434.15	-506.372	1669.985	.30	1153.09
-18.50	1486.18	452.25	-474.455	1679.668	24.76	1177.82
-19.50	1505.24	470.35	-456.100	1686.295	75.73	1202.55
-20.50	1524.29	488.45	-452.401	1692.923	113.14	1227.27
-21.50	1543.35	506.55	-447.115	1699.550	135.89	1252.00
-22.50	1562.40	524.65	-441.830	1706.177	160.23	1276.73
-23.50	1581.45	542.75	-436.545	1712.805	184.57	1301.45
-24.50	1600.51	560.85	-430.545 -431.259	1719.432	208.91	1326.18
-′ 50	1619.56	578.95	-431.259 -425.974	1726.059	233.25	1350.91
50	1638.62	597.05	-425.974 -420.688	1732.686	257.59	1375.64
-27.50	1657.67	615.15	-415.403	1739.314	281.93	1400.36
•		01J.1J	417.402	1745.941	306.27	1425.09

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 19-MAR-1998

TIME: 16.04.02

TIME: 16.04.02

èëëëëëëëëëëëëëëëëë m SUMMARY OF RESULTS FOR m m CANTILEVER WALL DESIGN m àëëëëëëëëëëëëëëëëëë

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 2, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

WALL BOTTOM ELEV. (FT) -19.09 PENETRATION (FT) : 22.09

MAX. BEND. MOMENT (LB-FT) : 19214. AT ELEVATION (FT) :

MAX. SCALED DEFL. (LB-IN3): 9.2776E+09 AT ELEVATION (FT) :

> (NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS DATE: 19-MAR-1998

> èëëëëëëëëëëëëëëëëë COMPLETE RESULTS FOR D

m CANTILEVER WALL DESIGN m àëëëëëëëëëëëëëëëëëëë

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 2, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--RESULTS

	DENDING			
ELEVATION	BENDING MOMENT		SCALED	NET
(FT)		SHEAR	DEFLECTION	PRESSURE
11.50	(LB-FT)	(LB)	(LB-IN3)	(PSF)
10.50	0.	0.	9.2776E+09	.00
9.50	10.	31.	8.7586E+09	62.40
8.50	83.	125.	8.2397E+09	124.80
7.50	281.	281.	7.7210E+09	187.20
	666.	499.	7.2027E+09	249.60
6.50 5.50	1300.	780.	6.6857E+09	312.00
	2246.	1123.	6.1709E+09	374.40
4.50 .	3567.	1529.	5.6601E+09	436.80
3.50	5325.	1997.	5.1555E+09	499.20
3.00	6387.	2254.	4.9065E+09	530.40
3.00	6387.	2254.	4.9065E+09	-229.60
2.75	6944.	2200.	4.7829E+09	-203.32
2.50	7487.	2153.	4.6602E+09	-177.04
2.00	8541.	2060.	4.4171E+09	-193.56
1.50	9546.	1959.	4.1778E+09	-211.27
.50	11397.	1743.	3.7118E+09	-220.96
.00	12242.	1640.	3.4860E+09	-188.69
50	13040.	1554.	3.2655E+09	-154.59
-1.50	14517.	1399.	2.8418E+09	-156.51
-2.50	15833.	1229.	2.4431E+09	-183.56
-3.50	16968.	1040.	2.0717E+09	-193.03
-4.50	17905.	827.	1.7296E+09	-234.67
-5.50	18610.	579.	1.4184E+09	-260.47
-6.50	19055.	306.	1.1394E+09	-285.78
-7.50	19214.	7.	8.9321E+08	-311.33
-8.50	19061.	-317.	6.8020E+08	-336.89
-9.50	18572.	-666.	5.0008E+08	-362.44
-10.50	17720.	-1042.	3.5200E+08	-388.01
-11.50	16480.	-1442.	2.3448E+08	-413.53
-12.00	15707.	-1652.	1.8654E+08	-425.47
-12.50	14827.	-1867.	1.4538E+08	-435.83
-13.50	12738.	-2313.	8.1838E+07	-454.92
-14.50	10195. .	-2777.	4.0244E+07	-473.96
-14.51	10156.	-2784.	3.9791E+07	-474.23
-15.50	7256.	-3022.	1.6205E+07	-8.25
-16.50	4309.	-2794.	4.7027E+06	464.44
-17.50	1826.	-2093.	7.1331E+05	937.14
-18.50	281.	-919.	1.4446E+04	1409.83
-19.09	0.	0.	0.0000E+00	1690.23
				1000.20

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

IIISOIL	PRESSURES
---------	-----------

-	77 700 700 700 700 700 700 700 700 700		DUKES						
	ELEVATION	<	LEFTSIDE	PRESSURE ((PSF) >	<right< th=""><th>CSIDE</th><th>PRESSURE</th><th>(DCE).</th></right<>	CSIDE	PRESSURE	(DCE).
	(FT)	•	PASSIVE	ACTI		ACT	[VE	DN	SSIVE
	11.50		0.		0.		0.	LA	0.
	10.50		0.		0.		0.		0.
	9.50		0.		0.		Ö.		
	8.50		0.		0.		Ŏ.		0.
	7.50		0.		0.		o.		0.
	6.50		0.		Ο.		0.		0.
	5.50		0.		0.		0.		0.
	4.50		0.		0.		ŏ.		0.
	3.50		0.		0.		Ö.		0.
	3.00+		0.		0.		0.		0.
	3.00-		760.		0.		0.		0.
	2.75		749.		0.		0.		760.
	2.50		739.		0.		0.		735.
	2.00		786.		0.		0.		710.
	1.50		835.		0.		0.		730.
	.50		907.		0.		0.		750.
	.00		906.		0.				766.
	50		903.		0.		0.		736.
	-1.50		968.		0.		0.		705.
	-2.50		1057.		0.		0.		712.
	-3.50		1129.		0.		0.		745.
	-4.50		1171.		0.		0.		776.
	-5.50		1196.		0.		0. 0.		808.
	-6.50		1222.		0.				839.
	-7.50		1247.		0.		0. 0.		870.
	-8.50		1273.		0.		0.		901.
	-9.50		1298.	3	32.		0.		933.
	-10.50		1324.		24.				964.
	-11.50		1350.		97.		0. 0.		995.
	-12.00		1361.		08.				.026.
	-12.50		1372.		17.		0.		041.
	-13.50		1391.		39.	•	0.		054.
	-14.50		1410.		97.		0.		079.
	-14.51		1410.		98.		0.		104.
	-15.50		1429.		77.		0.		104.
	-16.50		1448.		19.		0.	1	128.
	-17.50		1467.		34.		0.		153.
	-18.50		1486.		52.		25.		178.
	-19.09		1505.		70.		76.		203.
	-20.50		1524.		88.		L3.		227.
			- •	40		13	36.	1:	252.

Refer to Plate F-33

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 19-MAR-1998

TIME: 13.45.33

èëëëëëëëëëë m INPUT DATA m àëëëëëëëëëëë

I.--HEADING:

- 'ALGIERS CANAL, EE14638
- 'REACH 1, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II. -- CONTROL

CANTILEVER WALL DESIGN

LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.00 LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.00

III.--WALL DATA

ELEVATION AT TOP OF WALL = 11.50 (FT)

IV. -- SURFACE POINT DATA

IV.ARIGHTSIDE	
DIST. FROM	ELEVATION
WALL (FT)	(FT)
.00	3.00
30.00	.00
100.00	.00

IV.B-- LEFTSIDE

DIST. FROM	ELEVATION
WALL (FT)	(FT)
.00	3.00
30.00	.00
100.00	.00

V.--SOIL LAYER DATA

V.A. -- RIGHTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

SAT. WGHT. (PCF) 105.00	MOIST WGHT. (PCF) 105.00	ANGLE OF INTERNAL FRICTION (DEG) .00	COH- ESION (PSF) 380.0	ANGLE OF WALL FRICTION (DEG) .00	ADH- ESION (PSF)	<pre><-SAFETY-> <bottom> <-FACTOR-> ELEV. SLOPE ACT. PASS. (FT) (FT/FT)</bottom></pre>
-		.00	300.0	.00	.0	.00 .00 DEF DEF

IL1FGOT.1 March 19, 1998 Page 1-2

102.50 102.50

.00 380.0 .00

0.0

DEF DEF

TIME: 13.45.42

V.B. -- LEFTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

SAT. WGHT. (PCF) 105.00	MOIST WGHT. (PCF)	ANGLE OF INTERNAL FRICTION (DEG)	COH- ESION (PSF)	ANGLE OF WALL FRICTION (DEG)	ADH- ESION (PSF)	<bottom> ELEV. SLOPE (FT) (FT/FT)</bottom>	<-SAFET <-FACTO ACT. PA	OR->
102.50	102.50	.00	380.0 380.0	.00 .00	. 0 . 0	.00 .00		DEF

VI. -- WATER DATA

UNIT WEIGHT = 62.40 (PCF)
RIGHTSIDE ELEVATION = 11.50 (FT)
LEFTSIDE ELEVATION = -3.50 (FT)
NO SEEPAGE

VII.--SURFACE LOADS NONE

VIII.--HORIZONTAL LOADS NONE

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 19-MAR-1998

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 1, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<-I.EFTCIDE	DDFCCIIDFC .	<net pres<="" th=""><th></th><th>DIGUMATA</th><th></th></net>		DIGUMATA	
(PT) (PSF) (ELEV				•		
11.50							
10.50		·	•	•		•	•
9.50							
8.50							
7.50							
6.50							
5.50 .00 .00 .374.400 .374.400 .00 .00 4.50 .00 .00 .436.800 .436.800 .00 .00 3.50 .00 .00 .499.200 .499.200 .00 .00 3.00+ .00 .00 .530.400 .50.400 .00 .00 3.00- .760.00 .00 .229.600 .1290.400 .00 .760.00 2.75 .749.32 .00 .229.600 .1290.400 .00 .760.00 2.50 .738.64 .00 .177.036 1271.873 .00 .710.27 2.00 .786.36 .00 .193.564 1322.436 .00 .729.64 1.50 .834.09 .00 .210.094 1373.003 .00 .749.00 .50 .929.54 .00 .2243.138 1474.119 .00 .787.72 .00 .976.94 .00 .2274.942 1573.997 .00 825.20 -1.50							
4.50							
3.50							
3.00+ 0.00							
3.00- 760.00							
2.75							
2.50							
2.00							
1.50 834.09 .00 -210.094 1373.003 .00 749.00 .50 929.54 .00 -243.138 1474.119 .00 787.72 .50 1023.74 .00 -259.345 1524.363 .00 806.76 50 1023.74 .00 -274.942 1573.997 .00 825.20 -1.50 1116.95 .00 -305.752 1672.636 .00 861.44 -2.50 1209.66 .00 -350.526 1869.886 .00 897.66 -30 1286.53 .00 -350.526 1869.886 .00 933.89 -4.50 1333.17 .00 -397.168 1906.114 .00 970.11 -5.50 1363.97 .00 -427.966 1942.341 .00 1006.34 -6.50 1394.28 .00 -458.277 1978.568 .00 1042.57 -7.50 1424.83 .00 -458.277 1978.568 .00 1078.80 -8.50 1455.39 .00 -549.941 2087.250 .00 1151.02 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
.50 929.54 .00 -243.138 1474.119 .00 787.72 .00 976.94 .00 -259.345 1524.363 .00 806.76 .50 1023.74 .00 -274.942 1573.997 .00 825.20 .1.50 1116.95 .00 -305.752 1672.636 .00 861.44 .2.50 1209.66 .00 -336.059 1771.259 .00 897.660 1286.53 .00 -350.526 1869.886 .00 933.89 .4.50 1333.17 .00 -397.168 1906.114 .00 970.11 .5.50 1363.97 .00 -427.966 1942.341 .00 1006.34 .6.50 1394.28 .00 -458.277 1978.568 .00 1042.57 .7.50 1424.83 .00 -488.832 2014.795 .00 1078.80 .8.50 1455.39 .00 -519.386 2051.023 .00 1115.02 .9.50 1485.94 .00 -549.941 2087.250 .00 1151.25 .10.50 1516.50 .00 -580.495 2123.477 .00 1187.48 .11.50 1547.05 .00 -611.050 2159.705 .00 1223.70 .12.50 1577.60 .00 -641.605 2195.932 .00 1223.70 .12.50 1569.86 .00 -672.159 2232.159 .00 1296.16 .14.50 1699.82 .85.56 .763.823 2255.285 .00 1404.84 .17.50 1730.88 .243.91 .794.377 2133.162 .00 1441.07 .18.50 1750.93 .278 .286.041 .279.2714 .2268.386 .00 1332.39 .15.50 1699.82 .85.56 .763.823 2255.285 .00 1404.84 .17.50 1730.88 .243.91 .794.377 .2133.162 .00 1404.84 .17.50 1730.38 .243.91 .794.377 .2133.162 .00 1441.07 .18.50 .1760.93 .327.84 .824.932 .285.452 .00 1441.07 .18.50 .1760.93 .327.84 .824.932 .285.452 .00 1441.07 .18.50 .1760.93 .327.84 .824.932 .285.452 .00 1441.07 .18.50 .1760.93 .327.84 .824.932 .285.452 .00 1441.07 .18.50 .1760.93 .327.84 .824.932 .285.452 .00 1404.84 .17.50 .1730.38 .243.91 .794.377 .2133.162 .00 1441.07 .18.50 .1760.93 .327.84 .824.932 .285.452 .00 1404.84 .17.50 .1730.38 .243.91 .794.377 .2133.162 .00 1441.07 .18.50 .1760.93 .327.84 .824.932 .285.452 .00 1477.30 .19.50 .19.50 .191.49 .350.60 .855.486 .298.923 .00 1551.52 .2250 .1883.15 .439.40 .947.150 .218.805 .00 .1622.20 .23.50 .191.370 .469.00 .977.705 .2125.432 .00 1658.43 .2255.00 .183.15 .439.40 .947.150 .218.805 .00 .1622.20 .23.50 .1913.70 .469.00 .977.705 .2125.432 .00 1658.43 .245.50 .1944.26 .498.60 .1008.259 .2125.432 .00 1658.43 .245.50 .1944.86 .498.60 .1008.259 .2125.432 .00 1658.43 .245.50 .1944.86 .498.60 .1008.259 .2125.432 .00 1658.43 .245.50 .1944.86 .498.60 .							
.00 976.94 .00 -259.345 1524.363 .00 806.7650 1023.74 .00 -274.942 1573.997 .00 825.20 -1.50 1116.95 .00 -305.752 1672.636 .00 861.44 -2.50 1209.66 .00 -336.059 1771.259 .00 897.660 1286.53 .00 -350.526 1869.886 .00 933.89 -4.50 1333.17 .00 -397.168 1906.114 .00 970.11 -5.50 1363.97 .00 -427.966 1942.341 .00 1006.34 -6.50 1394.28 .00 -458.277 1978.568 .00 1042.57 -7.50 1424.83 .00 -488.832 2014.795 .00 1078.80 -8.50 1455.39 .00 -519.386 2051.023 .00 1115.02 -9.50 1485.94 .00 -549.941 2087.250 .00 1151.25 -10.50 1516.50 .00 -580.495 2123.477 .00 1187.48 -11.50 1547.05 .00 -611.050 2159.705 .00 1223.70 -12.50 1577.60 .00 -641.605 2195.932 .00 1259.93 -13.50 1608.16 .00 -672.159 223.159 .00 1296.16 -14.50 1638.71 .00 -702.714 2268.386 .00 1332.39 -15.50 1669.27 1.59 -733.268 2303.020 .00 1368.61 -16.50 1699.82 85.56 -763.823 2255.285 .00 1404.88 -17.50 1730.38 243.91 -794.377 2133.162 .00 1441.07 -18.50 1791.49 350.60 -855.486 2098.923 .00 1513.52 -20.50 1883.15 439.40 -947.150 2118.805 .00 1694.66 -25.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11							
50							
-1.50							
-2 50							
- 10							
-4.50 1333.17 .00 -397.168 1906.114 .00 970.11 -5.50 1363.97 .00 -427.966 1942.341 .00 1006.34 -6.50 1394.28 .00 -458.277 1978.568 .00 1042.57 -7.50 1424.83 .00 -488.832 2014.795 .00 1078.80 -8.50 1455.39 .00 -519.386 2051.023 .00 1115.02 -9.50 1485.94 .00 -549.941 2087.250 .00 1151.25 -10.50 1516.50 .00 -580.495 2123.477 .00 1187.48 -11.50 1547.05 .00 -611.050 2159.705 .00 1223.70 -12.50 1577.60 .00 -641.605 2195.932 .00 1229.93 -13.50 1608.16 .00 -672.159 2232.159 .00 1296.96 -14.50 1638.71 .00 -702.714 2268.386 .00 1332.39 -15.50 1669.27 1.59 -733.268 2303.020 .00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
-5.50							
-6.50							
-7.50							
-8.50							
-9.50 1485.94 .00 -549.941 2087.250 .00 1151.05 -10.50 1516.50 .00 -580.495 2123.477 .00 1187.48 -11.50 1547.05 .00 -611.050 2159.705 .00 1223.70 -12.50 1577.60 .00 -641.605 2195.932 .00 1259.93 -13.50 1608.16 .00 -672.159 2232.159 .00 1296.16 -14.50 1638.71 .00 -702.714 2268.386 .00 1332.39 -15.50 1669.27 1.59 -733.268 2303.020 .00 1368.61 -16.50 1699.82 85.56 -763.823 2255.285 .00 1404.84 -17.50 1730.38 243.91 -794.377 2133.162 .00 1441.07 -18.50 1760.93 327.84 -824.932 2085.452 .00 1477.30 -19.50 1791.49 350.60 -855.486 2098.923 .00 1513.52 -20.50 1822.04 380.20 -860.41 2105.550 <td>-8.50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-8.50						
-10.50	-9.50						
-11.50	-10.50	1516.50					
-12.50	-11.50	1547.05					
-13.50	-12.50	1577.60					
-14.50 1638.71 .00 -702.714 2268.386 .00 1332.39 -15.50 1669.27 1.59 -733.268 2303.020 .00 1368.61 -16.50 1699.82 85.56 -763.823 2255.285 .00 1404.84 -17.50 1730.38 243.91 -794.377 2133.162 .00 1441.07 -18.50 1760.93 327.84 -824.932 2085.452 .00 1477.30 -19.50 1791.49 350.60 -855.486 2098.923 .00 1513.52 -20.50 1822.04 380.20 -886.041 2105.550 .00 1549.75 -21.50 1852.60 409.80 -916.595 2112.177 .00 1585.98 -22.50 1883.15 439.40 -947.150 2118.805 .00 1622.20 -23.50 1913.70 469.00 -977.705 2125.432 .00 1658.43 -24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814	-13.50	1608.16	.00				
-15.50 1669.27 1.59 -733.268 2303.020 .00 1368.61 -16.50 1699.82 85.56 -763.823 2255.285 .00 1404.84 -17.50 1730.38 243.91 -794.377 2133.162 .00 1441.07 -18.50 1760.93 327.84 -824.932 2085.452 .00 1477.30 -19.50 1791.49 350.60 -855.486 2098.923 .00 1513.52 -20.50 1822.04 380.20 -886.041 2105.550 .00 1549.75 -21.50 1852.60 409.80 -916.595 2112.177 .00 1585.98 -22.50 1883.15 439.40 -947.150 2118.805 .00 1622.20 -23.50 1913.70 469.00 -977.705 2125.432 .00 1658.43 -24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 <td>-14.50</td> <td></td> <td>.00</td> <td></td> <td></td> <td></td> <td></td>	-14.50		.00				
-16.50 1699.82 85.56 -763.823 2255.285 .00 1404.84 -17.50 1730.38 243.91 -794.377 2133.162 .00 1441.07 -18.50 1760.93 327.84 -824.932 2085.452 .00 1477.30 -19.50 1791.49 350.60 -855.486 2098.923 .00 1513.52 -20.50 1822.04 380.20 -886.041 2105.550 .00 1549.75 -21.50 1852.60 409.80 -916.595 2112.177 .00 1585.98 -22.50 1883.15 439.40 -947.150 2118.805 .00 1622.20 -23.50 1913.70 469.00 -977.705 2125.432 .00 1658.43 -24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11		1669.27	1.59	-733.268	2303.020		
-17.50 1730.38 243.91 -794.377 2133.162 .00 1441.07 -18.50 1760.93 327.84 -824.932 2085.452 .00 1477.30 -19.50 1791.49 350.60 -855.486 2098.923 .00 1513.52 -20.50 1822.04 380.20 -886.041 2105.550 .00 1549.75 -21.50 1852.60 409.80 -916.595 2112.177 .00 1585.98 -22.50 1883.15 439.40 -947.150 2118.805 .00 1622.20 -23.50 1913.70 469.00 -977.705 2125.432 .00 1658.43 -24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11		1699.82	85.56	-763.823			
-18.50 1760.93 327.84 -824.932 2085.452 .00 1477.30 -19.50 1791.49 350.60 -855.486 2098.923 .00 1513.52 -20.50 1822.04 380.20 -886.041 2105.550 .00 1549.75 -21.50 1852.60 409.80 -916.595 2112.177 .00 1585.98 -22.50 1883.15 439.40 -947.150 2118.805 .00 1622.20 -23.50 1913.70 469.00 -977.705 2125.432 .00 1658.43 -24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11	-17.50		243.91	-794.377	2133.162		
-19.50 1791.49 350.60 -855.486 2098.923 .00 1513.52 -20.50 1822.04 380.20 -886.041 2105.550 .00 1549.75 -21.50 1852.60 409.80 -916.595 2112.177 .00 1585.98 -22.50 1883.15 439.40 -947.150 2118.805 .00 1622.20 -23.50 1913.70 469.00 -977.705 2125.432 .00 1658.43 -24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11		1760.93	327.84	-824.932	2085.452		
-20.50 1822.04 380.20 -886.041 2105.550 .00 1549.75 -21.50 1852.60 409.80 -916.595 2112.177 .00 1585.98 -22.50 1883.15 439.40 -947.150 2118.805 .00 1622.20 -23.50 1913.70 469.00 -977.705 2125.432 .00 1658.43 -24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11	-19.50	1791.49	350.60	-855.486	2098.923		
-21.50 1852.60 409.80 -916.595 2112.177 .00 1585.98 -22.50 1883.15 439.40 -947.150 2118.805 .00 1622.20 -23.50 1913.70 469.00 -977.705 2125.432 .00 1658.43 -24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11			380.20	-886.041	2105.550		
-22.50 1883.15 439.40 -947.150 2118.805 .00 1622.20 -23.50 1913.70 469.00 -977.705 2125.432 .00 1658.43 -24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11		1852.60	409.80	-916.595	2112.177		
-23.50 1913.70 469.00 -977.705 2125.432 .00 1658.43 -24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11	-22.50			-947.150			
-24.50 1944.26 498.60 -1008.259 2132.059 .00 1694.66 -25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11	-23.50		469.00				
-25.50 1974.81 528.20 -1038.814 2138.686 .00 1730.89 -26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11	-24.50		498.60	-1008.259	2132.059		
-26.50 2005.37 557.80 -1069.368 2145.314 .00 1767.11	-25.50						
	-26.50				2145.314		
	-27.50	2035.92	587.40	-1099.923	2151.941		

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 19-MAR-1998

TIME: 13.45.53

èëëëëëëëëëëëëëëëëë

m SUMMARY OF RESULTS FOR m

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 1, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II. -- SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

WALL BOTTOM ELEV. (FT) : -14.32 PENETRATION (FT) : 17.32

MAX. BEND. MOMENT (LB-FT): 16409. AT ELEVATION (FT): -4.86

MAX. SCALED DEFL. (LB-IN3): 5.5605E+09 AT ELEVATION (FT): 11.50

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 19-MAR-1998 TIME: 13.45.53

èëëëëëëëëëëëëëëëëëëëë

D COMPLETE RESULTS FOR

CANTILEVER WALL DESIGN D àëëëëëëëëëëëëëëëëëëëëëë

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 1, I WALL, NEAR FLOOD GATE, WATER EL 11.5

II.--RESULTS

	BENDING			
ELEVATION (FT) 11.50 10.50 9.50 8.50 7.50 6.50 3.00 3.00 2.75 2.50 2.00 1.50 .50 -5.50 -4.50 -5.50 -4.50 -5.50 -6.50 -7.50 -8.50 -9.50	MOMENT (LB-FT) 0. 10. 83. 281. 666. 1300. 2246. 3567. 5325. 6387. 6387. 6944. 7487. 8541. 9546. 11394. 12230. 13000. 14330. 15355. 16047. 16382. 16323. 15837. 14891. 13457.	SHEAR (LB) 0. 31. 125. 281. 499. 780. 1123. 1529. 1997. 2254. 2254. 2200. 2153. 2060. 1959. 1732. 1607. 1473. 1183. 862. 519. 14526871111841689.	SCALED DEFLECTION (LB-IN3) 5.5605E+09 5.2018E+09 4.8431E+09 4.4845E+09 4.1265E+09 3.7697E+09 3.4151E+09 3.0645E+09 2.7201E+09 2.5512E+09 2.5512E+09 2.4677E+09 2.3850E+09 2.2221E+09 2.0628E+09 1.7571E+09 1.6114E+09 1.6114E+09 1.6114E+09 1.67597E+08 7.5597E+08 5.7120E+08 4.1468E+08 2.8631E+08 1.0982E+08	NET PRESSURE (PSF) .00 62.40 124.80 187.20 249.60 312.00 374.40 436.80 499.20 530.40 -229.60 -203.32 -177.04 -193.56 -210.09 -243.14 -259.34 -274.94 -305.75 -336.06 -350.53 -397.17 -427.97 -458.28 -488.83 -519.39
-5.50 -6.50 -7.50	16323. 15837.	145. -268. -711.	5.7120E+08 4.1468E+08 2.8631E+08	-397.17 -427.97 -458.28
	13457. 11504. 9001. 8185. 5968. 2927.	-1689. -2223. -2788. -2955. -3170.	1.0982E+08 5.7589E+07 2.5156E+07 1.8975E+07 8.1947E+06	
-13.50 -14.32	682.	-2778. -1579. 0.	1.5451E+06 6.8294E+04 0.0000E+00	795.38 1602.32 2261.76

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

III. -- SOIL PRESSURES

ELEVATION (FT) 11.50 10.50 9.50 8.50 7.50 6.50	PRESSURES < LEFTSIDE PR PASSIVE 0. 0. 0. 0. 0. 0. 0.	RESSURE (PSF) > ACTIVE 0. 0. 0. 0.	<rightside ACTIVE 0. 0. 0. 0.</rightside 	PRESSURE (PSF) > PASSIVE 0. 0. 0. 0. 0. 0. 0.
	. •	0.	0.	0

IL1FGOT.1	March 19,	1998	Page 1-6	••
5.50 4.50 3.50 3.00+ 3.00- 2.75 2.50 2.00 1.50 .50 .00 50 -1.50 -2.50 -3.50 -4.50 -5.50 -6.50 -7.50 -8.50 -9.50 -10.78 -11.50 -12.50	0. 0. 0. 760. 749. 739. 786. 834. 930. 977. 1024. 1117. 1210. 1287. 1333. 1364. 1394. 1425. 1455. 1486. 1516. 1525. 1547. 1578.		Page 1-6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 760. 735. 710. 730. 749. 788. 807. 825. 861. 898. 970. 1006. 1043. 1079. 1115. 1187. 1198. 1224. 1260.
-13.50 -14.32 -15.50	1608. 1639. 1669.	0. 0. 2.	0. 0. 0.	1260. 1296. 1332. 1369.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 20-MAR-1998

TIME: 9.18.04

èëëëëëëëëëë D INPUT DATA D àëëëëëëëëëëë

I. -- HEADING:

'ALGIERS CANAL, EE14638

'REACH 2, I WALL, WEST SIDE, WATER EL 11.5

II. -- CONTROL

CANTILEVER WALL DESIGN

LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.00 LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.00

III. -- WALL DATA

ELEVATION AT TOP OF WALL = 11.50 (FT)

IV. -- SURFACE POINT DATA

IV.A--RIGHTSIDE

DIST. FROM	ELEVATION
WALL (FT)	(FT)
.00	5.50
3.00	5.50
7.50	4.00
50.00	4.00

IV.B-- LEFTSIDE

DIST. FROM	ELEVATION
WALL (FT)	(FT)
.00	5.50
7.00	5.50
35.50	-4.00
70.00	-4.00

V.--SOIL LAYER DATA

V.A. -- RIGHTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

		ANGLE OF		ANGLE OF	•	<-SAFETY->
SAT.	MOIST	INTERNAL	COH-	WALL	ADH-	<bottom> <-FACTOR-></bottom>
WGHT.	WGHT.	FRICTION	ESION	FRICTION	ESION	ELEV. SLOPE ACT. PASS.

IL2WAOT		March 20,	1998	Page	1-2				
(PCF) 105.00 97.50 91.00	(PCF) 105.00 97.50 91.00	(DEG) .00 .00 .00	(PSF) 380.0 310.0 310.0	(DEG) .00 .00	(PSF) .0 .0	(FT) (F' .00	T/FT) .00 .00	DEF DEF DEF	DEF DEF DEF

V.B.-- LEFTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

SAT. WGHT. (PCF)	MOIST WGHT. (PCF)	ANGLE OF INTERNAL FRICTION (DEG)	COH- ESION (PSF)	ANGLE OF WALL FRICTION (DEG)	ADH- ESION (PSF)	<bottom: ELEV. SLOPI (FT) (FT/FT)</bottom: 	> <-FA(E ACT.	
105.00	105.00	.00	380.0	.00	.0	.00 .00	DEF	DEF
97.50	97.50	.00	310.0	.00	. 0	-12.00 .00		DEF
91.00	91.00	.00	310.0	.00	.0	22.00	DEF	DEF

VI.--WATER DATA

IL2WAOT

UNIT WEIGHT 62.40 (PCF) RIGHTSIDE ELEVATION = 11.50 (FT) LEFTSIDE ELEVATION = -4.00 (FT) NO SEEPAGE

VII.--SURFACE LOADS NONE

VIII.--HORIZONTAL LOADS NONE

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 20-MAR-1998

TIME: 9.18.15

èëëëëëëëëëëëëëëëë SOIL PRESSURES FOR CANTILEVER WALL DESIGN D àëëëëëëëëëëëëëëëëë

I.--HEADING

^{&#}x27;ALGIERS CANAL, EE14638

^{&#}x27;REACH 2, I WALL, WEST SIDE, WATER EL 11.5

II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD. LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

			<net pres<="" th=""><th>SURES></th><th></th><th></th></net>	SURES>		
	<-LEFTSIDE	PRESSURES->	(SOIL PLUS	WATER)	<rightside< td=""><td>PRESSURES-></td></rightside<>	PRESSURES->
ELEV.	PASSIVE	ACTIVE	ACTIVE	PASSIVE	ACTIVE	PASSIVE
(FT)	(PSF)	(PSF)	(PSF)	(PSF)	(PSF)	(PSF)
11. 50	.00	.00	.000	.000	.00	.00
10. 50	.00	.00	62.400	62.400	.00	.00
9.50	.00	.00	124.800	124.800	.00	.00
8.50	.00	.00	187.200	187.200	.00	.00
7.50	.00	.00	249.600	249.600	.00	.00
6.50	.00	.00	312.000	312.000	.00	.00
5.50+	.00	.00	374.400	374.400	.00	.00
5.50-	760.00	.00	-385.600	1134.400	.00	760.00
5.00	812.50	.00	-406.900	1188.405	.00	782.81
4.50	865.00	.00	-428.200	1242.410	.00	805.61
3.50	970.00	.00	-470.800	1326.588	.00	827.39
2.50	1075.00	.00	-513.400	1351.654	.00	790.05
1.50	1181.76	.00	-557.762	1373.324	.00	749.32
.50	1262.81	.00	-576.410	1423.958	.00	737.56
.00	1270.03	.00	-552.426	1424.291	.00	706.69
- 50	1260.32	15.07	-511.521	1405.771	.00	672.04
- ,0	1241.56	99.22	-430.360	1382.315	.00	670.33
-2.50	1242.47	201.71	-368.871	1382.208	.00	710.32
-3.50	1294.14	298.55	-358.144	1463.459	.00	826.01
-4.00	1323.68	339.31	-356.485	1535.657	.00	907.77
-4.50	1336.10	364.86	-368.905	1554.858	.00	952.51
-5.50	1345.25	400.79	-378.047	1549.856	.00	983.45
-6.50	1354.00	432.52	-386.800	1553.234	.00	1018.55
-7.50	1362.85	450.12	-395.650	1570.734	.00	1053.65
-8.50	1371.70	453.50	-404.500	1602.453	.00	1088.75
-9.50	1380.55	453.05	-413.350	1638.000	.00	1123.85
-10.50	1389.41	453.16	-422.210	1673.000	.00	1158.96
-11.50	1398.23	453.23	-426.296	1708.000	4.73	1194.03
-12.00	1401.82	452.45	-414.095	1725.500	20.53	1210.75
-12.50	1403.83	450.08	-392.361	1743.000	44.27	1225.88
-13.50	1406.21	443.71	-359.989	1778.000	79.02	1254.51
-14.50	1408.55	437.30	-335.459	1813.000	105.89	1283.10
-15.50	1410.90	430.90	-316.309	1848.000	127.39	1311.70
-16.50	1413.25	424.50	-302.928	1883.000	143.12	1340.30
-17.50	1415.60	418.10	-291.155	1918.000	157.24	1368.90
-18.50	1434.20	411.70	-295.300	1953.000	171.70	1397.50
-19.50	1462.80	405.30 398.90	-305.839	1988.000 2023.000	189.76	1426.10
-20.50	1491.40		-309.500 -309.555		214.70	1454.70
-21.50 -22.50	1520.00 1548.60	389.16 399.68	-309.555 -309.500	2061.337 2079.425	243.24	1483.30
-22.50 -23.50	1577.20	531.65	-309.500	1976.050	271.90	1511.90
-23.50 -2 50	1605.80	728.13	-309.500	1808.175	300.50	1540.50 1569.10
/			-309.500		329.10	
-25.50	1634.40	796.69	-303.500	1768.212	357.70	1597.70

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 20-MAR-1998

TIME: 9.18.29

èëëëëëëëëëëëëëëëë D SUMMARY OF RESULTS FOR D CANTILEVER WALL DESIGN P àëëëëëëëëëëëëëëëëëë

I.--HEADING

'ALGIERS CANAL, EE14638

'REACH 2, I WALL, WEST SIDE, WATER EL 11.5

II.--SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

WALL BOTTOM ELEV. (FT) -1.78:

PENETRATION (FT) 7.28

MAX. BEND. MOMENT (LB-FT) : 3739.

> AT ELEVATION (FT) : 2.95

MAX. SCALED DEFL. (LB-IN3): 3.0345E+08

AT ELEVATION (FT) :

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA

IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

9.18.29 TIME: DATE: 20-MAR-1998

èëëëëëëëëëëëëëëëë

COMPLETE RESULTS FOR

CANTILEVER WALL DESIGN

àëëëëëëëëëëëëëëëëëëë

I.--HEADING

- 'ALGIERS CANAL, EE14638
- 'REACH 2, I WALL, WEST SIDE, WATER EL 11.5

II.--RESULTS

	BENDING		SCALED	NET
ELEVATION	MOMENT	SHEAR	DEFLECTION	PRESSURE
(FT)	(LB-FT)	(LB)	(LB-IN3)	(PSF)
11.50	0.	0.	3.0345E+08	.00
10.50	10.	31.	2.6643E+08	62.40
9.50	83.	125.	2.2945E+08	124.80
8.50	281.	281.	1.9262E+08	187.20
7.50	666.	499.	1.5630E+08	249.60
6.50	1300.	780.	1.2118E+08	312.00
5.50	2246.	1123.	8.8338E+07	374.40
5.50	2246.	1123.	8.8338E+07	-385.60
5.00	2759.	925.	7.3265E+07	-406.90
4.50	3170.	716.	5.9380E+07	-428.20
3.50	3665.	267.	3.5838E+07	-470.80
2.50	3689.	-225.	1.8561E+07	-513.40
1.50	3200.	-761.	7.5849E+06	-557.76
.91	2650.	-1095.	3.7458E+06	-568.81
.50	2165.	-1266.	2.0578E+06	-273.37
.00	1513.	-1312.	8.1849E+05	89.13
50	883.	-1177.	2.3364E+05	451.62
-1.50	53.	-363.	6.1430E+02	1176.61
-1.78	0.	0.	0.0000E+00	1382.28

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

III.--SOIL PRESSURES

ELEVATION	< LEFTSIDE	PRESSURE (PSF) >	<rightside< th=""><th>PRESSURE (PSF) ></th></rightside<>	PRESSURE (PSF) >
(FT)	PASSIVE	ACTIVE	ACTIVE	PASSIVE
11.50	0.	0.	0.	0.
10.50	0.	0.	0.	0.
9.50	0.	0.	0.	0.
8.50	0.	0.	0.	0.
7.50	0.	0.	0.	0.
6.50	0.	0.	0.	0.
5.50+	0.	0.	0.	0.
5.50-	760.	0.	0.	760.
5.00	813.	0.	0.	783.
4.50	865.	0.	0.	806.
3.50	970.	0.	0.	827.
2.50	1075.	0.	0.	790.
1.50	1182.	0.	0.	749.
.91	1230.	0.	0.	742.
.50	1263.	0.	0.	738.
.00	1270.	0.	0.	707.
50	1260.	15.	0.	672.
-1.50	1242.	99.	0.	670.

EL2WAOT March 20, 1998

Page 1-6

-1.78 -3.50

1242. 1294.

202. 299.

0. 0. 710. 826.

WEST BANK OF THE MISSISSIPPI RIVER IN THE VICINITY OF NEW ORLEANS, LA EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT DESIGN MEMORANDUM NO. 2 EAST AND WEST OF ALGIERS CANAL

APPENDIX B

DESIGN CALCULATIONS

PUMPING STATION FLOODWALL CALCULATIONS

BELLE CHASSE NO. 2.

FOR FAILURE SURFACE BE

REQ'D PRESSURE : 2635 psf under intake basin area.

-THIS IS IMPOSSIBLE TO ACHEIUG WITH DL OF STRUCTURE + PILES IN TENSION -

- USE NEW T-WALL INFRONT OF EXISTING DISCHARGE BASIN

BELLE CHASSE NO. 2 PUMPING STATION.

- ADD T-WALL TO FRONT OF STATION
- PASS DISCHARGE PIPES THROUGH T-WALL
- EXISTING LISCHARGE BASIN IS LINED WYRIPPAP
- TOP OF BASE SLAB @ EL -5.5
- DEPTH OF BASE SCAB = 2'-6"
- HEIGHT OF STEM = 15'
- TOE OF BASE SCAB IS 50 FROM EVICTING STATION
- -LENGTH OF WALL = 86'

2.99 SO SHETES, FILES SCOLANE 2.99 SO SHETES, FILES, S SOULANE 2.90 TO SHETES FELE, SEE, S SOULANE 2.90 TOO SHETES SPEE, S SOULANE 2.90 TOO RECYCLED WHITE S SOULANE 3.90 ROW RECYCLED WHITE S SOULANE 3.90 ROW RECYCLED WHI

Mational Brand

(

EUSTIS ENGINEERING COMPANY, INC.

Geotechnical Engineers Metairie, Louisiana

Date_	11/26/57	
Job	14638	

Page_

			Job/ 4638	3
roject			_ By	
Subject			_ Checked By	
	Allowable Pile	Corps of Engineers Carbey Cantal Protection Project exish, La Project Lond Capacities		
	T-Wall For	medation Pump Station No.	.7.	
Pile Type	Pile Tip Elevation	Estimated Pile Lond Factor of Compression	A11 10. 0	Single n Ton=
14-in, source	-70 -82	· 18		3.1°on 2
6-in synme, nearthestressed	-70 -82	21 34(76)	/	14 25 56 K

PRELIMINARY

Note: 1) Top of pile at el -7.5.

2) (apacity contribution to el-50 has been ignored.

1. Tun 49

U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

MODULUS OF HORIZONTAL SUBGRADE REACTION REACH 3

ELEVATION IN FEET NGVD	$\frac{K_k \times B}{DC}$
10 to 0	169
0 to -19	155
-19 to -40	167
-40 to -45	178
-45 to -50	222
-56 to -67	311

Where:

K_k = Modulus of horizontal subgrade reaction (lbs/in.³)

B = Diameter of pile (inches)

C = Reduction factor for cyclic loading

C = 0.5 for cyclic loading C = 1.0 for initial loading

D = Reduction factor for effect of group action

D	PILE SPACING IN DIRECTION OF LOADING					
1.0	8B					
0.85	7B					
0.7	6B					
0.55	5B					
0.40	4B					
0.25	3B					

T- WALL LOADING CASES:

CASE I: STATIC WATER PRESSURE TO SWE, NO WIND, IMPERVIOUS SHEET PILE CUTOFF (100% FORCES)

CASE II: STATIC WATER PRESSURE TO SWL, NO WIND, PERVIOUS SHEET PILE CUTOFF (100% FORCES)

CASE III: STATIC WATER PRESSURE TO SWLID', NO WIND, IMPERVIOUS SHEET PILE CUTOFF (75% FORCES)

CASE IV: STATIC WATER PRESSURE TO SWL+2, NO WIND, PERVIOUS SHEET PILE CUTOFF (75% FORCES)

CASE Y: WATER @ LOW WATER LEVEL, NO WIND (100% FORCES)

CASE II: WATER @ LOW WATER LEVEL, WIND FROM P/S (75% FORCES)

292825 200400

DEAD LOADS:

STEM (15/12) (.150 %):

BASE: (101)(2.51)(.150).

WATER:

(3) (6) (0) (15 7.5 .064) =

@SOIL12': (15)(6)(.0624)=

@ LOW WATER: (5.5)(6)(.054):

7.2 487 4/51 8.16 562 2.64 2.06 K/FT

WATER LOADS:

@ Sως: ρ= (15.5)(.064) = (.12 0.97 */eτ2

ESINCHE P: (175)(.064) 1.25 (109 /FT2

& low with p: (2)(0)4/ 0.50 1/2

WIND LOADS:

FROM PROTECTED SIDE: A PROTECTED SIDE: U.S 0.575 WIND ABOVE EL. O: (50 psf)(\$5')= 0.475 KIF

T-WALL FORCE TABULATION

									₹	•	
No.	DESCRIPTION	FORCES (KIPS)			LEVE	LEVER ARMY			MOMENTS (FT.K)		
		Fx	Fy	Fz	X	<u> </u>	2	Mxx	Myy	M23	
I	DEAD LOADS (a) STEM (b) BASE (c) SWL (d) SWAZ' (e) LOWNATER			5.1 4.31 7.2 8.16 2.64	+2.75				- 14.02 - 0 + 14.4 + 16.32 + 5.28		
I	WATER LOADS (a) SWL (1)(1.12)(17.5) buoyancy: Imp: (1.12)(4) per: (1)(1.12)(11.5) (b) SWC12'	9.€		4.48 -6.44			-5.83		- 57, 13 - 16,8 - 12,36		
	(b) SW(+2' (2)(1.23)(19.5) busyancy: Imp: (1.25'(4) per: (2)(1.25)(11.5) (c) Low Water (1)(0.51)(8) busyancy Imp: (0.5)(4) per: 2(0.5)(115)	12,19 2.0		-5.0 -7.19 -2.04 -2.93	-3.75 -1.92 -3.75 7.92		-6,5 -2:7		- 79.24 - 18.75 - 13.80 - 5.34 - 7.65 - 5.62		
皿	WIND (a) from P/S	- 6, 57 <i>5</i>					-13.75		+7.91		
立	LATERAL Soil PRESSINGS SEXCE 3) FIX (ANKHOR FORCE, FROM EUSTIS)	-4. 6					0.0	:			
	Studling Presents (from Eustis)	9.32 -3.24 -0.33 5.15				ļ	²¹ .5 + 39.5 -142.5	J.	+ 246.98 -151.68 -14.07 +81.25	; [

13 782 SOO SHEELS FILLER 5 SOUNHE 42 381 SOONETS EFFECTAGE 5 SOUNHE 42 382 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOO SHEELS EFFECTAGE 5 SOUNHE 42 389 TOO SHEELS EFFECTAGE 5 SOUNHE 42 389 TOO SHEELS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOUNHE 42 389 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFECTAGE 5 SOONETS 5 SOONETS EFFE 5 SOONETS EFFE 5 SOONETS EFFE 5 SOONETS EFFE 5 SOONETS EFFE 5 SOONETS EFFE 5 SOONETS EFFE 5 SOONETS EFFE 5 SOONETS EFFE 5 SOONETS 5 SOO

National Brand

SOIL CONSTANT:

-use soil constant below 2. -50 116 1.D:

Kn B = 311

Kn . 3 = E5

C = 1.0

D= Reduction for group action.

File Spacing : 9'

14 : 7.7

D: .85 + 0.7(0.15) = 0.96

ES = 311 (1.0) (.96) = 298.56 psi = 0.298 ksi

AAH

LOAD COMBINATIONS

	LOAD COMBI	CHOITAU	
LOADING	DESCRIPTION	FORCES Fx Fz	MOMENTS
CASE		Fx Fz	Муу
I	DL, SWL, IMP DL 100% SWL	19.8	+0.38 -57,13 -16.80
	TOTA L foR 86;	+9.8 +12.13 +842.8 +1043.18	-73,55 -6325.3
I	0,5wc,7ER 0L 100% SWC PFR. TOTAL	+9.8 +10.17	- 57, 13;
	FOR 86:		- 5943.46
亚.	DL, SWL+2', IMP DL 750/3 SWL+2' IMP	+ 12.19 -5.0	ري - 79. 24 - 18.75
	TOTAL 75% TOTAL FOR 86':	112.19 12.57 19.14 19.43 1786.04 1810.98	-71.77
TV	DL,5WL+2', PER. DC 75% SWL+2' PER.	-7.19	
	7573 TOTAL 7573 TOTAL FOR 86':	+12.19 +10.38 +9.14 +7.79 +786.04 +669.94	-68 01
工	DL, LOW WATER, DL IMP. LW 100% IMP	+2.0	-8.74 - 5.34 -7.65
	TOTAL FORBU'	+172 +864.3	-21.73 -1 8 68.78
亚	DC, LW, 10-7, WIND LW 75-9/0 IMP WIND	+12.05	-8.74 -5.34 -7.65 +7.91
	TOTAL 75% TOTAL FOR 86':	+1.42 +1.07 +7.54 +92.02 +648.44	-13.82 -10.37 -891.82

178 SOUNHELS HILLY SOUNHERS THE

National "Bra


```
1010 BELLE CHASSE NO. 2 FRONTAL PROTECTION T-WALL 1020 PROP 4030 3201 3201 196 2 0 ALL 1030 SOIL ES 0.298 LEN 83 0 ALL 1040 PIN ALL
1020 BEODE SCRIED STORY SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.03 SET 1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Ō
```

- have Tom Strendam do capacites for 87 N.Sv.D. Pile tip

1330 LOAD 1340 LOAD 1350 LOAD 1360 FOUT 1370 PFO ALL 1380 FPL N	4 5 6 1	1083 588 389 2	0 0 0 3	670 864 648 4	0 0 0 5	-5853 -1869 -892 6	0 0 7 BC2OUT
--	------------------	-------------------------	------------------	------------------------	------------------	-----------------------------	--------------------

```
* CORPS PROGRAM # * VERSION NUMBER #
                  X0080
                               CPGA - CASE PILE GROUP ANALYSIS PROGRAM
                 86/09/02-A *
                               RUN DATE 12-11-97
                                                   RUN TIME 14:12:21
BELLE CHASSE NO. 2 FRONTAL PROTECTION T-WALL
THERE ARE
          47 PILES AND
            6 LOAD CASES IN THIS RUN.
ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX Y
                                -4.25 ,
WITH DIAGONAL COORDINATES =
                                                       .00
                                          -41.25
                                 4.25
                                          41.25
                                                       .00
*********************************
        PILE PROPERTIES AS INPUT
      E
                                                     C33
                                                                 B66
     KĪI
                IN**4
                            TN**4
                                        IN**2
  .40300E+04
              .32010E+04
                          .32010E+04
                                       .19600E+03
                                                   .20000E+01
                                                               .00000E+00
THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -
    ALL
************************
        SOIL DESCRIPTIONS AS INPUT
   ES
         ESOIL
                   LENGTH
        K/IN**2
                                FТ
                                            FΨ
        .29800E+00
                             .83000E+02
                                          .00000E+00
THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -
   ALL
**********************
        PILE GEOMETRY AS INPUT AND/OR GENERATED
NUM
                   Y
FT
         FT
                              Z
                                    BATTER
                                            ANGLE
                                                    LENGTH
                                                           FIXITY
                             FΨ
                 -41.25
-35.75
         4.25
 123456
                              .00
                                      2.00
                                               .00
                                                     83.00
                                                             PPPPPP
                                      2.00
                              .00
                                               .00
                                                     83.00
         4.25
                 -30.25
                                      2.00
                              .00
                                               .00
                                                     83.00
                              .00
                                               .00
                                                     83.00
         4.25
                                      2.00
                              .00
                                               .00
                                                     83.00
```

.00

.OÕ

83.00

78901234567890123456789012345678901234567	55555555555555555555555555555555555555	55555555555000000000000000005555555555	•••••••••••••••••••••••••••••••••••••••	000000000000000000000000000000000000000		00000000000000000000000000000000000000		
			************ PLIED LOADS				******	^ ^ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
LOAD CASE	PX K	ъх К	PZ K	MX FT-K	MY FT-K	:	MZ FT-K	
1 2 3 4 5 6	1239.0 1239.0 1083.0 1083.0 588.0 389.0	•••••	1040.0 875.0 811.0 670.0 864.0 648.0	.00	-6325. -5944. -6172. -5853. -1869.	0 0 0	.00	

************************ ORIGINAL PILE GROUP STIFFNESS MATRIX .15552E+05 .43894E-03 -.10525E+07 -.44771E-01 .94141E+04 -.37659E+04 -.19854E+04 .43894E-03 .80333E+03 -.87787E-03 -.32919E-03 .76915E+03 .59798E+05 .76337E+04 .94141E+04 -.87787E-03 .76337E+04 -.57253E+05 .37659E+04 -.37659E+04 -.32920E-03 .53220E+10 .38932E+06 -.76471E+09 -.44771E-01 -.10525E+07 -.57253E+05 .38931E+06 .10607E+09 .19205E+06 -.19855E+04 .76915E+03 .37659E+04 -.76471E+09 .19205E+06 .13856E+10 LOAD CASE 1. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 16. LOAD CASE NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = LOAD CASE NUMBER OF FAILURES = NUMBER OF PILES IN TENSION = 0. 16. LOAD CASE 4. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 16. LOAD CASE NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 16. LOAD CASE 6. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = **************************** PILE CAP DISPLACEMENTS LOAD DX CASE DY DZ RX RZ ĪÑ ĨÑ RAD RAD RAD .8897E-01 -.1596E-06 .3548E-02 .6414E-07 .1691E-03 .1298E-06 23 .1072E+00 -.1764E-06 -.1877E-02 .7063E-07 .3906E-03 .1436E-06 .6158E-01 -.1531E-06 .3786E-02 .6221E-07 -.8515E-04 .1241E-06 .7699E-01 -.1674E-06 -.8199E-03 .6777E-07 .1014E-03 .1359E-06 .6301E-01 -.2982E-07 .4928E-02 .1065E-07 .4164E-03 .2505E-07 .4942E-01 -.9800E-08 .3432E-02 .2676E-08 .3913E-03 .8728E-08 **************** PILE FORCES IN LOCAL GEOMETRY

LOAD C	ASE -	1							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
¹ (1.4	:0	55.9 55.9	.0	-51.7 -51.7	0	.83 .83	.34 1.25 .34 1.25	.99 # .99 #

345678901234567890123456789012345678901234567	444444444444444444444444444444444444444	000000000000000000000000000000000000000	999999999999999944444444444444444444444	•••••••••••••••••••••••••••••••••••••••	777777766667744444444444433777777777777	000000000000000000000000000000000000000	36666666666666666666666666666666666666	555555555555551111111111111111144444444	9999999999999999955555555555555555666666
LOAD	CASE -	2							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 A1 IN-K	LF CBF	ASC KSI	AST KSI
1 2 3 4 5 6 7 8	1.881.881.881.88	.00000000000000000000000000000000000000	45.1 45.1 45.1 45.1 45.1 45.1	• 0 • 0 • 0 • 0 • 0 • 0	-66.8 -66.7 -66.7 -66.7 -66.7 -66.7	.0 .6	57 .33 57 .33 57 .33 57 .33 57 .33 57 .33 57 .33	1.23 1.23 1.23 1.23 1.23 1.23 1.23	.90 .90 .90 .90 .90 .90

--

90123456789012345678901234567 A 1111111111222222222223333333333344444444	88888888777777777777777777777777777777	000000000000000000000000000000000000000	11111111177777777777777777777777777777	000000000000000000000000000000000000000	77777777775554444444444447777777777766666666	.0 .67 .33 1.23 .90 .0 .67 .33 1.23 .90 .0 .67 .33 1.23 .90 .0 .67 .33 1.23 .90 .0 .67 .33 1.223 .90 .0 .67 .33 1.223 .90 .0 .67 .33 1.223 .90 .0 .67 .33 1.223 .90 .0 .67 .33 1.23 .90 .0 .67 .33 1.23 .90 .0 .67 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.07 .37 1.36 1.005 .0 1.03 .76 .74 .41 .0 1.03 .76 .74 .41 .0 1.03 .76 .74 .41 .0 1.03 .76 .74 .41 .0 1.03 .76 .74 .42
PILE			FЗ	М1	МЭ	M3 ALF CBF ASC AST
	F1 K	F2 K	F3 K	ĭn-k	M2 IN-K	M3 ALF CBF ASC AST IN-K KSI KSI
12345678901234	9999999999999	000000000000000000000000000000000000000	22222222222222 55555555555555555555555	.00000000000000000000000000000000000000	-32.55 -32.55 -322.55 -322.55 -322.55 -322.55 -322.55 -322.32	.0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 # .0 .82 .34 1.21 1.03 #

567890123456789012345678901234567	0,0000	000000000000000000000000000000000000000	22444444444444444444444444444444444444	•••••••••••••••••••••••••••••••••••••••	55777777666666666666666666666666666666	•••••••••••••••••••••••••••••••••••••••	22244444444444444111111111111111111	440000000000000000000000000000000000000	11111111111111111111111111111111111111	######################################
LOAD		4								
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF	ASC KSI	AST KSI
12345678901234567890	222222222222222222222222222222222222222	000000000000000000000000000000000000000	1111111111111110000 666666666666633333 4444444444455555	000000000000000000000000000000000000000	22222222211111228888 55555555555555553333 		999999999999999999999999999999999999999	222222222222222222222222222222222222222	111111111111111111111111111111111111111	######################################

~.

123456789012345678901234567	222222222222222222222222222222222222222	000000000000000000000000000000000000000	00000000000555555544444444 3333333333333	000000000000000000000000000000000000000	88888888877777777777777777777777777777	•••••••••••••••••••••••••••••••••••••••	999999999999999999999999999999999999999	444444444499999999999999999999999999999	222222222222111111111111111111111111111	######################################
LOAD C	CASE -	5								
PILE	F1 K	F2 K	F3 K	N-K	M2 IN-K	M3 IN-K	ALF	CBF	ASC KSI	AST KSI
12345678901234567890123456	11111111111111111	000000000000000000000000000000000000000	66666666666666999999999999999999999999	000000000000000000000000000000000000000	22222222222222222222222222222222222222	000000000000000000000000000000000000000	222222222222222222222222222222222222222	99999999999999	1.19	######################################

1234567890123456789012	PILE	LOAD CAS	27890123456789012344567 44567
999999999999999997777777777777777	F1 K	E -	999992222222222222222222222222222222222
000000000000000000000000000000000000000	F2 K	6	000000000000000000000000000000000000000
66666666666666666633333333333333333333	F3 K		99999966666666666666666666666666666666
	M1 IN-K		000000000000000000000000000000000000000
	M2 IN-K		55555000000000000000000000000000000000
	M3 IN-K		000000000000000000000000000000000000000
77777777777777777777777777777777777777	ALF		••••••••••••••••••••••••••••••••••••••
8888888888888888881111111111111111110	CBF		333333399999999999999999999999999999999
999999999999999999999999999999999999999	ASC KSI		199999111111111111111111111111111111111
000000000000000005555555555555555555555	AST KSI		1.0000000000000000000000000000000000000
*************************************			#####

•

334 335 336 337 339 441 443 445 447	999999999999999999999999999999999999999	999999999999999999999999999999999999999	000000000000000000000000000000000000000	55555555555555555555555555555555555555		.04 .04 .04 .04 .04 .04 .04 .04 .04	.10 .10 .10 .10 .10 .10 .10 .10 .10 .10	999999999999999999999999999999999999999	.73 .73 .73 .73 .73 .73 .73 .73 .73 .73
---	---	---	---	--	--	---	--	---	--

PILE FORCES IN GLOBAL GEOMETRY

LOAD CAS	SE - 1					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
12345678901234567890123456789012	333333333333333333333333333333333333333	000000000000000000000000000000000000000	444444444444 9999999999999999999999999	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

3, ,

334567899012344567	21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8		-40.4 -40.4 -40.4 -40.4 -40.4 -40.3 -40.3 -40.3 -40.3 -40.3 -40.3			
LOAD	CASE - 2					
PILE	PX K	PY K	PZ K	MX IN-K	IN-K	MZ IN-K
12345678901234567890123456789012345678	88888888888888888888886666666666666666	000000000000000000000000000000000000000	66666666666666666666666666666666666666	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

•

•

	.00	MZ IN-K	000000000000000000000000000000000000000
	.00	MY IN-K	000000000000000000000000000000000000000
	.00	MX IN-K	000000000000000000000000000000000000000
	-44.3 -44.3 -44.3 -44.3 -44.3 -44.3 -44.3	PZ K	00000000000000008888888888888888888888
	.00	PY K	000000000000000000000000000000000000000
, -	24.2 24.1 24.1 24.1 24.1 24.1 24.1	SE - 3 PX K	55555555555555555559999999999999999888877777777
	39 41 42 43 44 45 46 47	LOAD CAS	12345678901234567890123456789012345678901234

..

45 46 47	20.7 20.7 20.7	.0	-39.3 -39.3 -39.3	.0 .0	.0	.0
LOAD	CASE - 4					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1234567890123456789012345678901234567890123444444444444444444444444444444444444	77777777777777777777777777777777777777	000000000000000000000000000000000000000	77777777777777777777777777777777777777	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

PILE	PX K	PY K	PZ K	N-K	MY IN-K	MZ IN-K
123456789012345678901234567890123456789012345678901234444444444	66666666666666222222222222222222222 11111111	000000000000000000000000000000000000000	88888888888888888888888888888888888888	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
LOAD CASI		עמ	Dø	202		
	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
2	6.0 6.0	:0	10.0	.0	.0	:0

_

345678901234567890123456789012345678901234567
0000000000000008888888888888888888777777
000000000000000000000000000000000000000
00000000000000099999999999999999999999
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

PLAQUEMINES FUMP STATION ADDITION:

Stability Analysis WSWC = 9.5:

FAILURE SURFACE (DO) Regumes a Vertral Francis of 1435 psf.

AAH

base slab Hackness = 1:6"

ut = (1.5')(150-91) = 90 psf

floors lab thickness = 1:0"

wt = (1.0) (150) = 150 psf

Wallo:

INTAKE BASIN FRONT WALL:

2'x 15.75' over 32.33'

wt = ((2)(15.75/30.33)(150) = 144.25f

SIDE WALLS:

20 2'x 23.25' mer 60'

wt = ((2)(2)(03.25/6)(150) = 232.5pst

total wt = 90+150+146+2325: 618.5 psf

Pressure to be taken by terin siles: 1435-618.5

- CAN NOT VERIFY TENSION CONNECTORS IN PILES, " REQUIRE NEW TWALL.

. New T-WALL ~ 54' From FRONT EDGE OF BLDG.

PLAQUEMINES PUMP STATION - ORIGINAL

FOR FAILURE SURFACE @ 01-23

BASE SCAB THICKNESS = 2'

wt = (150-91)(2)= 118 psf

FLOOR SCAB THICKNESS : 8"

wt = (8/2)(150) = 100psf

WALLS: 20 14" x 23' over 62'-8"

ωt = 2(1/2)(23')(150 pcf) = 128.4 psf

Columns: 12 @ 14"x18" x 23' 12 @ 14"x 22" x 23' 4 @ 16"x 30" x 23' 4 @ 16", 39" x 23" 4 @ 14"x14"x23"

over 62'-8' x 78' 2"

wt = [12(岩)(岩)(33)(150)+12(岩)(岩)(23)(150)+4(岩)(岩)(23)(150) + 4(治)(治)(23)(150) + 4(治)(治)(23)(150)]/62.67*78.167 = 58.30sf

Total wt = 118 + 100 + 128 + 58 = 404 psf

Pressure to be taken by piles in tension = 1337-404 = 933psf

Possive wedge area = (6267')(7') = 438.69.5 Total load to be taken by piles in krsim = 933(438.69) = 409K # PICES = 28

Regid lension per pile = 409/28 = 14.6 K/PILE (2)

2

PLAQUEMINES PUMP STATION (CONT.)

FAILURE SURFACE BD- Rogid PIJOSUre = 650 psf el -30

to be we = 404 ps f

Presoure to be taken by piles in tension: 650-404: 246psf

HAA

Possine wedge area = (62.67)(14'): 877.38 s f Total load to be taken by piles in tension: (246)(877.38) = 216 K

#piles = 49

Regid ten=im per pile = 216/49 = 4.4 k/pile

882 500 SMEETS FIFE 4 SOUMER 892 100 SMEETS FIFE 6 SOUME 893 100 SMEETS FIFE 6 SOUME 893 100 SMEETS FIFE 6 SOUME 893 200 MCVOLED WHILE 5 SOUME 894 800 MCVOLED WHILE 5 SOUME

National Bra

PLAQUEMINES PUMP STATION: (ORIGINAL STATION) T-WALL IN FRONT OF EXISTING DISCHALGE BASIN SCAB:

- REANALYSIS DUE TO SWL = 9.5 NGVD:

FOR FAILURE SURFACE DO, REQIDPRESSURE : 1797 psf

DEAD LOAD PRESSURE = 404,05 f

PRESSURE TO BE TAKEN BY TENSION PILES: 1797-434 = 1393 psf

PASSIVE WEDGE ARCA : 438 S.F.

Total lood to be taken by tensin pies = (1393X438) = 610 K

#PILES = 28

TENSION/PILE = 610/28 = 21.7 K= 10,9 T N.G.

- PUT NEW T-WALL IN FRONT OF DECHARGE BASIN SLAB.

SOIL OVER BASE .

(2')(7')(.120):

1.68 KeT

3

WATER LOADS:

WIND LOADS.

P/S: WIND done il 0.0: (50psf)(11.5) = 0.575plf

Soil Pressure on P/S: (add-DL)

-Use at rest soil pressures:

P= 2(.57)(9.5) = 2.71 @ 93 = 3.17'

AA 17

T-WALL LOADING CASES:

- STATIC WATER PRESSURE TO SWL, NO WIND, IMPERVIOUS SHEET PILE CUTOFF (100% FORCES)
- IL: STATIC WATER PRESSURE TO SWL, NO WIND, PERVIOUS SHEET PILE CUTOFF (100 % FORCES)
- STATIC WATER PRESSURE TO SWC+Z, NOWIND, IMPERVIOUS SHEET 虹; PILE CUTOFF (75% FORCES)
- TV STATIC WATER PRESSURE TO SWL+Z', NO WIND, PERVIOUS SHEET PILE CUTOFF (75% FORCES)
- WATER @ LOW WATER LEVEL, NO WIND (100% FORCES) \mathcal{I}
- WATER @ LOW WATER LEVEL, WIND FROM P/S (75% FORCES) abla L

6

FORCE

TABULATION

DESCRIPTION	PTION FORCES (LEVER	ARM (FT)	marrents(19		
	Fx	FZ	×	Z	My-y		
DEADLOADS							
STEM (1)		3.23	+4.0		- 12.92		
stem(2)		1.61	+4.83		- 7.78		
BASE	1	5.63	0				
SWL		13.73	-2.0		+ 27.46		
SWL+Z'		15.14	-2.0		+ 30.28		
LOW WAT ED		7.04	-2.0	1	+ 14.08		
Soil on Pls		i.68	6.5	Ì	- 10.92		
WATER LOADS	-2.71	ļ		+3.17	+ 8.59		
(م) ډسړ							
(i)(1.41)(2) =	15.51	:		- 7.33	- 113.69		
buoyancy:							
imp (1.41)(5.5):			-4.75		- 36.81		
per =(1,41)(15) =		-10.575	-2.5		- 26.44		
(b) SWL+2'							
½(1,54)(24)=	18.48			-8.0	- 147.84		
buoyancy:							
imp (1,54)(5.5)		- 8.47			- 40.23		
per 2(1.54)(15)		- 11.55	-2.5		28.88		
(c) LOW WATER							
2(0.80)(125)	5.0			- 4.17	- 20,85		
busgares;				İ			
140			-4.75		- 20.90		
per: 26.80)(15)=		- 4.0	-2.5		- 15.0		
_							
MIND					_		
P ≤	-0.575			-19.25	+ 11.07		
1 n=11.							
LATERAL Soil Pressur:							
(FROM EUSTIS)	İ			ļ			
A = 5-5-5	+3.7	·					
ANCHOR FORCE	T 3.			0			
(INCLUDE W/DL)				1			
			<u> </u> :				
			· •	:			
			į	i .			
	1			i			
	1	1	}	ì	l		

13.782 5.00 SWELS; FILL H. S. SOLANG 13.381 50 SWELS; FILE 4.5.50 SOLANG 13.385 50 SWELS; FILE 4.5.50 SOLANG 13.385 50 SWELS; FILE 4.5.50 SOLANG 13.395 50 SWELS; FILE 4.5.50 SOLANG MAD ON 18.40 SWELS; FILE 4.50 SOLANG MAD ON 18.40 SWELS; FILE 4.50 SOLANG MAD ON 18.40 SWELS; FILE 4.50 SWE

Mattonal Brank

 $-\frac{i}{\zeta}$

LOAD COMBINATIONS:

LOADING	DESCRIPTION		FORCE	5	MOMENTS
CASE			F _y	F.7	Му
					
I	DLISWL, IMP S/P	DL	0.99	25.88	1 '' 1 -
	100%	SW C	15.51		-113.69
		IMP	 	-7.75	-36.81
		TOTAL			1
	<u> </u>	OR 50'	 	 _:	- :
AT.			0.00		
I	DLISWL, PER S/		0.99	25.88	4.43
	100%	SWL	15.51		-1/3.69
	_	PER	 . 	-10.58	- 26,44
		TOTAL	1	<u> </u>	l t
		FOR 50	<u> </u>	·	·
皿	N & U . 7 1 100 P	cla N	1 00		
111	DL, SWL+Z', IMP	•	0.99	27.29	
	1575	SW. = 2	18.48		-147.84
•	-	IMP	<u> </u>	-8.47	-40.23
		TOTAL	1.	· :	
		750/5	, -	و .	:
		FOR 50'	٠		
亚	a course per sta	. N.	n 60		~ . (
14-	DL, SWL+2', PER S/P		0,99	77.29	
	75%	SWL+2'	18.48	-11.55	-147.84 -28.88
		PER TOTAL			20160
		75%	1	د ر	
			٧.	j	
		FOR 50'			- '
I	DL, LOW WATER	٥٢	0.99	19,19	-8.95
×	100%	LW	5.0	(7,11	_
	100 70		5.0	-4.4	-20.85 -20.90
		TOTAL			- 60.10
		FOR SO'		! ,	
		1-01/30	· · · · · · · · · · · · · · · · · · ·	 	
VI	Dylow WATER,	DL	0.99	19,19	- 8.95
<u>'</u>	wind	ίω	5.0	1 441 1	-20.85
	75010	IMP	J. U	-4.4	-20.85 -20.90
			58	1.4	+ 11.07
	İ	TOTAL			111.01
		75%			
	1			1	
		FOR 50'	•		- , ,
	•	!		ļ į	•

13-782 500 94/ETS FILER 3 50UARE 12-381 500 8/ETS FILE 56/ETS 50UARE 12-382 700 94/ETS FILE 56/ETS 50UARE 12-393 100 RECOLLU WATER 5 50UARE 12-393 200 RECYCLED WATER 5 50UARE 14-393 200 RECYCLED WATER 5 50UARE

Netional Brand

U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

MODULUS OF HORIZONTAL SUBGRADE REACTION REACH 2

ELEVATION IN FEET NGVD	$\frac{K_k \times B}{DC}$
10 to 0	169
0 to -30	138
-30 to -40	152
-40 to -50	182
-50 to -60	211
-60 to -68	237

Where: $K_h = Modulus of horizontal subgrade reaction (lbs/in.3)$

B = Diameter of pile (inches)

C = Reduction factor for cyclic loading

C = 0.5 for cyclic loading C = 1.0 for initial loading

D = Reduction factor for effect of group action

D	PILE SPACING IN DIRECTION OF LOADING
1.0	8B
0.85	7B
0.7	6B
0.55	5B
0.40	4B
0.25	3B

ESTIMATED FROM ALLOWABLE VERTICAL LOAD CAPACITY

- L . VERTICAL COMPONENT OF BATTER PILE EMBEDMENT LENGTH
- ESTIMATED ALLOWABLE SINGLE PILE LOAD CAPACITY OF A PILE DRIVEN VERTICALLY WITH EMBEDMENT (TENSION) LENGTH, L. VECTOR DIAGRAM FOR TENSION PILE BATTER OF PILE EXPRESSED AS A RATIO OF VERTICAL DISTANCE TO ONE FOOT HORIZONTAL В DISTANCE. BATTER PILE 7 H - HORIZONTAL RESISTANCE OF BATTER PILE ESTIMATED AS FOLLOWS: (COMPRESSIC VERTICAL PILE VECTOR DIAGRAM FOR COMPRESSION
- ALLOWABLE AXIAL PILE LOAD CAPACITY OF A SINGLE BATTER PILE ESTIMATED AS FOLLOWS:

$$A = \sqrt{V^2 \left(1 + \frac{1}{B^2}\right)}$$

NOTE: THE AXIAL LOAD RESISTANCE OF A VERTICAL PILE, V, IS DEPENDENT ON THE TYPE OF LOADING--TENSION OR COMPRESSION. CAUTION SHOULD BE EXERCISED TO INSURE THAT THE CORRECT VERTICAL CAPACITY IS USED.

н

SOIL CONSTANT:

-use weighted everage of soil constant below el. -44:

$$\frac{K_h * B}{DC} = \frac{(6)(182) + 10(211) + 8(237)}{24}$$

= 212

C= 1.0

D = Reduction factor for group act on

Assume 14" \$ Piles Spaud@12' in direction of Loading

D=1.0

ES = 212

Allowable Pile Loads:

$$A_{T} = \sqrt{(3c)^{2}(1.25)}$$
 $A_{T} = 40^{k}$

LUAU COM	BINATIONS	<u> </u>	<u> </u>		
LOADING	DESCRIPTION		FOR	I RCES	MOMENTS
CASE			Fx	Fz	My
	1 DL,SWL,IMP. S/P	DL	0.99	25.88	4.4
	100%	SWL	15.51		-113.6
		IMP		-7.75	-36.8
		TOTAL	16.5	18.13	-146.0
		FOR 50'	825	906.5	-7303.
					
	2 DL,SWL,PER. S/P	DL	0.99	25.88	4.4
	100%	SWL	15.51		-113.69
		IMP		-10.58	
		TOTAL	16.5	15.3	-135.7
		FOR 50'	825	765	-6785
	3 DL,SWL+2',IMP S/P	DL	0.99	27.29	7.25
	75%	SWL	18.48		-147.84
		IMP		-8.47	-40.23
		TOTAL	19.47	18.82	-180.82
	7	5% TOTAL	14.6025	14.115	-135.615
		FOR 50'	730.125	705.75	-6780.75
	4 DL,SWL+2',PER S/P	DL	0.99	27.20	7.00
	75%	SWL	18.48	27.29	7.25
	1070	IMP	10.40	-11.55	-147.84 -28.88
		TOTAL	19.47	15.74	-20.00 -169.47
	7:	5% TOTAL	14.6025	11.805	-127.1025
		FOR 50'	730.125	590.25	-6355.125
	5 DL,LOW WATER	DL	0.99	19.19	-8.95
	100%	SWL	5		-28.85
		IMP		-4.4	-20.9
		TOTAL	5.99	14.79	-58.7
		FOR 50'	299.5	739.5	-2935
	DL,LOW WATER,WIND	DL	0.99	19.19	-8.95
	75%	SWL	5		-20.85
		IMP		-4.4	-20.9
		WIND	-0.58		11.07
		TOTAL	5.41	14.79	-39.63
	75	% TOTAL	4.0575	11.0925	-29.7225
		FOR 50'	202.875	554.625	-1486.125

```
1010 PLAQUEMINES FRONTAL PROTECTION T-WALL 1020 PROP 4030 3201 3201 196 2 0 ALL 1030 SOIL ES 0.212 LEN 75.5 0 ALL
  1040 PIN ALL
 1040 PIN ALL

1050 DLS S 49 40 600.2 223.1 132.6 1510 1166.8 H 14 ALL

1060 ASC S 196 457 0.816 0.856 2 0 ALL

1070 BATTER 2 ALL

1080 ANGLE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 12 13 14 15

1085 ANGLE 0 16 17 18 19 20 21 22 23

1090 ANGLE 180 24 25 26 27 28 29 30 31 32 33 34 35
 1100 PILE
1100 PILE
1110 PILE
1115 PILE
1120 PILE
1125 PILE
                                                               6
                                                                                          Õ
                                                               6
                                                                                          Ó
                                           456789
                                                               6
                                                                              -10
                                                                                          000
                                                               6
                                                                              -6
                                                               6
  1130 PILE
                                                                              2
                                                                                          Ō
  1135 PILE
1140 PILE
                                                               6
                                                                                          Ó
                                                               6
                                                                              10
                                                                                          Ō
  1145 PILE
                                          1111111111122224567890
                                                               ě
                                                                              14
                                                                                          ŏ
 1146 PILE
1147 PILE
1150 PILE
1155 PILE
                                                              6622222222222
                                                                             18
22
                                                                                          ŏ
                                                                                          Ŏ
                                                                             -20
-16
                                                                                          0000
  1160 PILE
                                                                             -12
 1161 PILE
1162 PILE
1163 PILE
                                                                             -8
                                                                             -4
                                                                                          Õ
                                                                             ດີ
                                                                                          ŏ
 1164 PILE
1165 PILE
1166 PILE
1167 PILE
                                                                             4
                                                                                          0
                                                                             8
                                                                                          Ō
                                                                             12
16
20
                                                                                          ŏ
 1168 PILE
                                                                                          0
1168 PILE
1169 PILE
1180 PILE
1190 PILE
1200 PILE
1210 PILE
1220 PILE
1230 PILE
1240 PILE
                                                                             -22
                                                                                          Ŏ
                                                                             -18
                                                                                          Ō
                                                                             -14
                                                                                         000
                                                              -6
-6
                                                                             -10
-6
                                                                                         ŏ
                                                              -6
                                                                             -ž
                                                                             2
                                                              -6
                                          31
32
                                                              -6
-6
                                                                                         0
                                                                             10
                                                                                         Ō
 1250 PILE
                                          33
34
                                                                             14
18
22
0
                                                              -6
                                                                                         Ŏ
 1260 PILE
                                                              -6
                                         31
23
45
1270 PILE
1300 LOAD
                                                              -6
                                                              825
                                                                                                   906.5
                                                                                                                                            -7303.5
-6785 0
                                                                                                                         0
1310 LOAD
1320 LOAD
                                                             825
730.1
                                                                                                   765.0
                                                                                                                         Ō
                                                                                                   705.75
                                                                                                                           0
                                                                                                                                             -6780.8
                                                                                                                                                                   0
1330 LOAD
                                                             730.1
                                                                                    0
                                                                                                                                            -6355.1
-2935 0
                                                                                                   590.25
                                                                                                                           Ō
1340 LOAD
1350 LOAD
1360 FOUT
1370 PFO
                                                                                    0
                                                                                                   739.5
                                                                                                                         0
                                                              202.9
                                                                                    0
                                                                                                   554.6
                                                                                                                         95
                                                                                                                                            -\bar{1}486.1
                                                                                 3
                                                                                                                                                                7 PLAQOUT
1370 PFO ALL
1380 FPL PLAQPLOT
```

```
CORPS PROGRAM # X0080 * VERSION NUMBER # 86/09/02-A *
                             CPGA - CASE PILE GROUP ANALYSIS PROGRAM
                              RUN DATE 02-11-98
                                                 RUN TIME 15:21:36
PLAQUEMINES FRONTAL PROTECTION T-WALL
          44 PILES AND
THERE ARE
           6 LOAD CASES IN THIS RUN.
ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX
                               -6.00 ,
WITH DIAGONAL COORDINATES =
                                        -24.50 ,
                                                     .00
                                6.00 ;
                                         24.50 ,
                                                     .00 )
PILE PROPERTIES AS INPUT
                                                    C33
                                                                B66
     KĪ
                TN**4
                                       IN**2
  .40300E+04
              .32010E+04
                          .32010E+04
                                      .19600E+03
                                                  .20000E+01
                                                              .00000E+00
THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -
   ALL
***********************************
        SOIL DESCRIPTIONS AS INPUT
  ES
         ESOIL
                   LENGTH
        K/IN**2
                                           FT
        .21200E+00
                            .75500E+02
                                         .00000E+00
THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -
   ALL
*************************
        PILE GEOMETRY AS INPUT AND/OR GENERATED
NUM
                                   BATTER
                                            ANGLE
                                                   LENGTH FIXITY
         FT
                             FT
         6.00
                              .00
                 -24.50
                                     2.00
                                               .00
                                                    75.50
                                                            P
P
                 -21.00
-17.50
         6.00
                              .00
                                     2.00
                                              .00
                                                    75.50
         6.00
                              .00
                                     2.00
                                                            P
P
                                               .00
                                                    75.50
         6.00
                 -14.00
                                     2.00
                              .00
                                               .00
         6.00
                                     2.00
                 -10.50
                              .00
                                                            P
                                              .00
         6.00
                  -7.00
                              .00
                                                    75.50
                                              .00
```

789012345678901234567890123456789012344444 ***	00000000000000000000000000000000000000	3.0.50000000000000000000000000000000000	.00 .000 .000 .000 .000 .000 .000 .000	00000000000000000000000000000000000000		00000000000000000000000000000000000000	**************************************	****
			PLIED LOADS					
LOAD CASE	PX K	PY K	PZ K	MX FT-K	MY FT-K		MZ FT-K	
123456	825.0 825.0 730.1 730.1 299.5 202.9	.0	906.5 765.0 705.8 590.3 739.5 554.6	.0	-7303. -6785. -6780. -6355. -2935. -1486.	0 8 1 0	.0	
****	****	*****	******	****	*****	****	*****	****

```
.15810E+05
               .45384E-03
                            .96904E+04
                                         -.62500E-01
                                                      -.17277E+07
                                                                    -.31250E-01
  .45384E-03
               .58256E+03
                            -.90767E-03
                                          .74506E-08
                                                      -.65352E-01
                                                                     .44486E+04
                                                                    .62500E-01
-.27777E+09
  .96904E+04
              -.90767E-03
                             .61493E+05
                                          .28125E+00
                                                      -.46959E+06
  -00000E+00
              .37253E-08
-.65352E-01
                             .12500E+00
                                          .19414E+10
                                                        .00000E+00
 -.17277E+07
                            -.46959E+06
                                          .20000E+01
                                                        .22862E+09
                                                                     .10000E+01
                                         -.27777E+09
 -.15625E-01
               .44486E+04
                             .00000E+00
                                                        .30000E+01
                                                                     .50132E+09
LOAD CASE
                 NUMBER OF FAILURES =
                                         0.
                                             NUMBER OF PILES IN TENSION = 15.
LOAD CASE
                 NUMBER OF FAILURES =
                                             NUMBER OF PILES IN TENSION = 15.
LOAD CASE
                 NUMBER OF FAILURES =
                                             NUMBER OF PILES IN TENSION =
                                         0.
                                                                            15.
LOAD CASE
                 NUMBER OF FAILURES =
                                         0.
                                             NUMBER OF PILES IN TENSION =
                                                                            15.
LOAD CASE
                 NUMBER OF FAILURES =
             5.
                                             NUMBER OF PILES IN TENSION =
                                                                             0.
             6.
LOAD CASE
                 NUMBER OF FAILURES =
                                             NUMBER OF PILES IN TENSION =
                                         0.
                                                                             0.
********************************
         PILE CAP DISPLACEMENTS
LOAD
CASE
           DX
                       DY
                                    DZ
                                                RX
                                                            RY
                                                                         RZ
                       IN
           IN
                                    IN
                                               RAD
                                                           RAD
                                                                        RAD
                   -.2626E-07
-.3019E-07
                                 .7766E-02
.2779E-02
        .4175E-01
                                                        -.5190E-04
.1781E-03
                                            -.2564E-12
                                                                      .1703E-11
        .6994E-01
                                             .2040E-13
                                                                      .1393E-11
        .2841E-01
                   -.2723E-07
                                            -.1257E-12
                                 .6016E-02
                                                        -.1289E-03
                                                                      .1829E-11
                   -.3043E-07
                                                         .5972E-04
   4
        .5152E-01
                                 .1936E-02
                                            .1005E-12
                                                                      .1574E-11
   5
                    .4244E-08
       -.1611E-01
                                 .1266E-01
                                            -.7367E-12
                                                        -.2498E-03
                                                                      .5469E-12
                    .5731E-08
        .7309E-02
                                 .7816E-02
                                            -.5128E-12
                                                        -.6715E-05
                                                                     -.6699E-13
*******************************
```

PILE FORCES IN LOCAL GEOMETRY

LOAD C	ASE -	1								
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 ALF	CBF	ASC KSI	AST KSI	
1 2 3 4 5	. 4 . 4 . 4 . 4	.0	50.5 50.5 50.5 50.5 50.5	.00	-17.1 -17.1 -17.1 -17.1 -17.1	.0 1.03 .0 1.03 .0 1.03 .0 1.03	.13 .13 .13 .13	1.15 1.15 1.15	1.04 1.04 1.04 1.04	######

6789012345678901234567890123456789012333333333333333333333333333333333333	444444444444444444444444444444444444444	000000000000000000000000000000000000000	55555555556666666666666666666666666666	•••••••••••••••••••••••••••••••••••••••	11111111111177777777777777777777777777	.0 1.03 .13 1.15 1.04 ####################################
40 41 42 43 44	5 5 5	.00	-26.3 -26.3 -26.3 -26.3	.0 .0 .0	20.8 20.8 20.8 20.8 20.8 20.8	.0 .66 .37 .77 .64 .0 .66 .37 .77 .64 .0 .66 .37 .77 .64 .0 .66 .37 .77 .64 .0 .66 .37 .77 .64
LOAD C	ASE -	2				10 100 137 177 104
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 ALF CBF ASC AST IN-K KSI KSI
1234567890 11234	9999999999999	000000000000000000000000000000000000000	999999999999999999999999999999999999999	••••••••••••	77777777777777777777777777777777777777	.0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 # .0 .79 .14 1.13 .94 #

111111222222222223333333333444444 4444444444	988888888888888999999999999999999999999	•••••••••••••••••••••••••••••••••••••••	922222222222222222222222222222222222222	•••••••••••••••••••••••••••••••••••••••	-3333333333333333333333333333333333333	.0
LOAD C	ASE -	3				
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 ALF CBF ASC AST IN-K KSI KSI
12345678901234567890123	220222222222222222222222222222222222222	000000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	999999999999999999999999999999999999999	.0

,

× ·

. 2222222333333333344444 . 2222223333333333344444	1111111111111 	•••••••••••••••••	36.4 36.4 36.4 36.3 36.3 36.3 36.3 36.3		-11.44 -111.44 -111.48 -111.48 -111.12.88 -1111.88 -1111.		.7744 .774488888888888888888888888888888	.15 1.07 .15 1.07 .15 1.07 .15 1.07 .15 1.74 .36 .74 .36 .74 .36 .36 .36 .74 .36	######## \$8888888555555555555555555555555555555
LOAD C		4							
PILE	F1 K	F2 K	F3 K	IN-K	M2 IN-K	N-K	ALF	CBF ASC KSI	AST KSI
12345678901234567890123456789012	111	000000000000000000000000000000000000000	55555555555555550000000000000000000000	000000000000000000000000000000000000000	111111111111111144444444444 22222222222	000000000000000000000000000000000000000	77777777777777777777777777777777777777	1.10 1.10	######################################

3455678901234 44444444444444444444444444444444444	666666666666666666666666666666666666666		-30.4 -30.4 -30.4 -30.4 -30.4 -30.4 -30.4 -30.4 -30.4 -30.4	•••••••••••	26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00		.7666666666666666666666666666666666666	.43 .76 .43 .76 .43 .76 .43 .76 .43 .76 .43 .76 .43 .76 .43 .76 .43 .76 .43 .76	.60 .60 .60 .60 .60 .60 .60 .60	
LOAD C	ASE -	5								
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI	
12345678901234567890123456789012345678901	444444444444444444444444444444444444444	000000000000000000000000000000000000000	22222222222222225555555555553333333333	000000000000000000000000000000000000000	0000000000000001111111111111111199999999	000000000000000000000000000000000000000	222222222222244444444444499999999999999	11111111111111111111111111111111111111	######################################	

.

42 43 44	.2	.0	4.3 4.3 4.3	.0 .0	-8.9 -8.9 -8.9	.0	.09	.22 .22 .22	.90 .90	.82 .82 .82
LOAD	CASE -	6								
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF	ASC KSI	AST KSI
12345678901234567890123456789012345678901234	000000000000000000000000000000000000000	000000000000000000000000000000000000000	66666666666666661111111111111111111111	000000000000000000000000000000000000000	55555555555555566666666666666666666666	000000000000000000000000000000000000000	888888888888888877777777777777777777111111	999999999999999999999999999999999999999	55555555555555555555555555555555555555	######################################

محر

LOAD CA	ASE - 1					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
12345678901234567890123456789012345678901234	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000555555555555553333333333	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
LOAD CAS						
PILE	PX K	PY K	PZ K	MX IN-K	IN-K	MZ IN-K
1 2	18.2 18.2	:0	34.4 34.4	:0	:0	:0

•

345678901234567890123456789012345678901234	22222222222211111111111111333333333333	•••••••••••••••••••••••••••••••••••••••	44444444433333333333333333333333333333	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
LOAD CAS	SE - 3					
PILE	PX K	PY K	PZ K	NX IN-K	IN-K	MZ IN-K
1 2 3 4 5 6 7 8 9 0 1 1	20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8	.00000000000000000000000000000000000000	41.0 41.0 41.0 41.0 41.0 41.0 41.0	.00	.00000000000000000000000000000000000000	.00

~~."

					- *	
234567890123456789012345678901234	16.555555555555555555555555555555555555	000000000000000000000000000000000000000	00004444444444444444444444444444444444	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
LOAD	CASE - 4					
PILE	PX K	PY K	PZ K	MX IN-K	IN-K WA	MZ IN-K
12345678901234567890 111111112	X 6666666666888888888888888888888888888	000000000000000000000000000000000000000	33333333333333333333333333333333333333			000000000000000000000000000000000000000

.

	7.					
123456789012345678901234	99999999992222222222222222222222222222	000000000000000000000000000000000000000	444444449999999999999999999999999999999			
LOAD CA	SE - 5					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1234567890123456789	4444444444444 55555555555555557777777777	000000000000000000000000000000000000000	777777777777777999999999999999999999999	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 LOAD CA	-2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1	00000000000000000000000000000000000000	3.777777777777777777777777777777777777	.0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0	MZ IN-K
12345678901234567890123456789012345678	444444444444111111111111111111144444444	000000000000000000000000000000000000000	777777777777777222222222222222222222222			

.

APRIL8

February 4, 1998

FEB 4 1998

MEMO

DATE: 2/4/98

TO:DEI

MS APRIL HURRY

L.OM: EUSTIS ENGINEERING

TOM STREMLAU SUBJECT: PREL DATA

PLAQ PUMP STATION UNITS 1 AND 2

D. E. L

I HAVE ENCLOSED REANALYSIS OF P STATION FOR THE HIGHER STORM WATER LEVEL. I HAVE INCLUDED A MARKED UP COPY OF PREVIOUS PRESENTATION BUT INCLUDING IMPACT OF RAISED WATER LEVEL. ASSUME WILL NEED NEW FRONTAL PROTECTION. HAVE INCLUDED SLPOE STABILITY AND T WALL ANALYSIS WITH NEW WALL. ALSO PRESENT PREL PILE CAPACITY FOR PILES TO SUPPORT T WALL.

Dright m

FILE _3004 DISTRIBUTION WB

EUSTIS ENGINEERING COMPANY, INC.
Geotechnical Engineers
Metairie, Louisiana

Date	4/4/98	

-	Date_	2/4/98	

Job 14638

Projec	. 00	
	$\Delta \sim V/V$	

Subjec

ask to Louble check capacities Army Corps of Engineers to of Harvey Conal Project person Parish, la, DI h P.le Load Casacities

minu Pump Station Unit 1+2

P.k Elevation Fite Lond capacity in Fonds Factor of Sofity = 2.0

Pricest prestrume

-60 -70

16-in square Precent, Prestressel Concrete

-60 -70 - 20

Note: 1) Top of pile at el-11.0

2) (agacity contribution to el-44.0 has been ignored,

í

NOTE: 1) "P" IS REQUIRED VERTICAL PRESSURE ACROSS TOP OF PASSIVE WEDGES TO ACHIEVE A CALCULATED FACTOR OF SAFETY OF 1.3 OR MORE AGAINST A STABILITY FAILURE.

2) SEEPAGE ANALYSIS BY HARR METHOD INDICATES A FACTOR OF SAFETY OF 2 AGAINST PIPING WHICH IS CONSIDERED ACCEPTABLE.

3) REACH 2 SOIL PARAMETERS WERE USED FOR THESE ANALYSES.

FAILURE SURFACE	SUMMATION OF FORCES LB/FT		FACTOR OF	VERTICAL PRESSURE +, P,
	RESISTING	DRIVING	SAFETY	IN PSF TO ACHIEVE FACTOR OF SAFETY - 1.3
(A) (1)	14286	14475 21081	2.650.58	1000 17/4
(A) (2)	24826	18420	1.101.01	1837 1747
A 3	33506	14월 12일	1.69 437	258 716
B 4		32528380	0.87 0,75	650 6111
B 5	33517	32528388	1181,03	£50 44 Y
© 6	41620	अन्तर्के भूती गर	1.070.44	178 467 27 4 495
© 7		મવાયુક 30718	1-291.13	
© ®	57036	44142	1.471.25	14 235
(D) (9)	62277	55740192	1271.12	32 229

STRATUM No.	SOIL	SOIL UNIT WEIGHT		COHESION - PSF	
	TYPE	IN PCF	ANGLE DEGREES	AVERAGE	Воттом
1	CLAY, SILTY CLAY, ORGANIC CLAY & HUMUS	91.0	0	310	310
2	CLAY	101.0	0	310	310-
3	CLAY	101.0	0	343	382 37
4	CLAY	101.0	0 .	409	442
5	CLAY	101.0	0	475	507

PRELIMINARY

50. 0 20' SCALE

Revised SWL E19.5

SLOPE STABILITY ANALYSES PLAQUEMINE PUMP STATION

U.S. ARMY CORPS OF ENGINEERS
EAST OF HARVEY CANAL
HURRICANE PROTECTION PROJECT
JEFFERSON PARISH, LOUISIANA

EUSTIS ENGINEERING COMPANY, INC.

FLOOD SIDE: WATER PR SINL 9.5 = (9.5 +15.5)62.5 = 1563

WATER LEVEL EL 11.5 = (11.5 + 15.5)62.5 = 1688

LWL EL 0.0 = (0 +15.5)62.5 = 969 P8F

PROT, SIDE !

Earth pr@ Nest = 0.95 × 91 × 16.5 = 1426 PSF.
Ko = 0.95 fix in-situ soil

ADDITION TO PLAQUEMINES Ms. PUMPING STA CLOCKWISE + ANTICL OCK BASIC MOMENT LOAD Fy DESCRIPTION FZ γ. 3 COND IK Kips KIPS F7 F٦ DEAD LOAD - WIT OF STEM & BASE STEM. 3.68 3.0 + 11.04 5 24.5 1/4.15 1/2×24.5×1/×1/5 1.84 + 7,043 3 83 BASE 6,38 17 X215 X . 15 KCF TOTAL 11.70 + 18.08 5 2 5011 + WATER ON FLOODSIDE. ___ 3WL 9.50 a) VERTICAL 1) Water -46.41) 15,47 11. 'X22,5'x,0625 3.00 2) sol 6) LATERAL 1) Water 1/2 × 1563 × 25' 8,33 19.54 + 162,77 5 8,33 TOTAL 19,5 + 15,47 +116,363

ADDITION TO PLAQUEMINES Ms. PUMPING STA CLOCKWISE + ANTICL OCK BASIC MOMENT LOAD Fy DESCRIPTION FZ γ. 3 (,, COND IK Kips KIPS F7 FT 3 BUDYANCY SWL EL 37.64 PERVIOUS -13.3 2.83 发X1563×17' + 56.5 IMPERVIOUS - 13,3 4.25 1563 × 8.5 4) GOIL + WATER ON PROTECTED SIDE a) VERTICAL 1) WATER 4' :57' 2) Soil ---+ 33.1 1091X 4.0 X 14' 5.10 615 + 1,55 0.36 BX.091X.57 X14 4.31 LATERAL 1) WATER 2) soil -64.70 R 5.5 8x1.426 X 16.5 -11.76 -30.05) -11.76 5,46

ADDITION TO PLAQUEMINES Ms. PUMPING STA clockwise + ANTICL OCK BASIC MOMENT Fy LOAD DESCRIPTION FZ 7. 3 IK KIPS F7 MPS FT 5) Soil + WATER ON _ FLOODSIDE SWL + 2-0 W.S. EL 11.50 a) VERTICAL 1) WATER -50.53 16.84 11 ×24,5 ×.0625 3.00 2) soil b) lateral. 1) Water. 205.2 22.80 12 X 1688 X 271 9.00 154.67 TOTAL 16.84 22.80 4) BUOYANCY W.S. EL 11.50 -14.35 Persons. + 40,60 2,83 1/2×1688 X17 IMPER - 14 35 4,25 + 610 1688 × 8.5

	Ms.	Ado		TO PLAQ					6
							-	- clockwise + Anticlock	
	BASIC LOAD COND	DESCRIPTION		+ ← Fy Kips	+ + Fz	- У. F1	3 F1	MOMENT	\$ 1
The state of the s	7)	Soil + WATER ON. FLOODSIDE LWL = a) Vertical i) wat il'x13x. z) soil b) Lateral i) Wat xx0.969x	0.0 0625	7,50	8,94	3.00		38.82	
		2×9494 X	1 2.2	7.50	8,94		5.17	12,00	
	8)	BuoyANLY LWL	<u>σ</u> .υ.						· ·
		Pervious. Kx1969	×17'		- 8,24	2.83		23,32	
		Imperun 0.969 x 8			- 8,24 ⁻	4.25		35.02	
				<u>.</u>					

				IMPING			•	- clockwise + Anticlock
	BASIC LOAD COND	DESCRIPTION		+ +- Fy APS	+ Fz kips	— У F1	-3 F1	MOMENT IK
The control of the Co	9)	WIND FROM	F/S			•		
Mallonal Brand		H.	<u>5x</u> :05	0.28		-	ચા.ચડ	12.21
	10)	WIND FROM	Pla					
					:			
		ίο̄	5×.05	-o·5Z			<u> \$1.75</u>	U.31)
		_				· · ·		
		<i>-</i> -				- :		
			· · · · · · · · · · · · · · · · · · ·					

LD. CASE DESCRIPTION Fy FZ MOMENT 10. MXX 1 SWL @ 9.5 PERV. SHT. PILE Soil @ PROT. SIDE UPTO EL 1.00 No WIND +18,087 D. C. 11,90 +19.54 SOIL + WATER 15.47 + 116.36) FLOUDSIDE 3) BUDY PERV -13.30 + 37,64 4) SOIL +WATER -30.05) -4.76 5.46 PROTI SIDE. +6.3 Unbalanced Force TOTAL PER LFF 14.08 142.03 19.53 TOTAL PER 40' +563.2 781.2 5,681.2 2 _SWL @ 9.5 IMPER. SHT. PILE, SOIL @ PROT. SIDE, UPTO EL 1.00 NO WIND 11.90 +18.08 1) DL. 2) SOIL+WATER 19.54 + 116.36 15.47 FLOUD SIDE 3) BUOY IME + 56.5 -13,3_ 4) SOIL HWATER -11.76 5.46 -30.05 PRISIDE UNBALANCED FORCE +613 TOTAL PER LFT 14,08 160.89 3 19.53 TOTAL PER 40-0" +563,2 6435.6 781.2

13 Mo. Satista P.S. Pettini is socialed at a million of social social properties of the satisfaction of th

New Persons

LD. CASE DESCRIPTION Fy FZ MOMENT 10 MXX 3 WIS EL 11.5 PERV. SHT. PILE, SOIL ON P/S UPTO EL 1:00 NO WIND D.L___ 18.08 11.90 I) SOIL+WATER +22.80 154.67 16.84 FLOODSIDE BUOY PERV + 40.60 + -14,354) SOIL + WATER -11.76PROT, SIDE UNBALANCED. FORCE + 6.3 TOTAL PER LFF 17.34 14,39 213.35 0.75 X TOTAL PER 40' 520,2 431.70 6,40015 4 WIS EL 11.5 , IMP SHT. PILE, SOIL ON PS UPTO EL 1.00, NO WIND 1) DL 18:08 +11 190 5) Soil+11/KTER + 22.80 + 16,84 154.67 5 ***/s** () BUOY IMP + 61.0 -14:35 4) SOIL + MATER - 11.76 F/s UNEALANCED FORCE +6.3 TOTAL PER LFT 17.34 14.39 233.75 +7012.5) 431.7 U.75 X TOTAL PER 40'0" 520,2

Han Samuratio Maria Samuratio Maria Camera 42 milional Notes Balance Samuration of Maria Camera 42 milional Notes Data Maria Samuration of Maria S

Parional Brand

				
LD. C=148 No:	DESCRIPTION	Fy	Fet	MoMENT
5	LWL @ O.D NO WIND			
	PERV. SHEET PILING			
	I) DL		11.90	+18.08
	7) SOIL+WATER FLOODSIDE		8.94	+ 12,00
	8) PERV SH. PIL		- 8.24	23:32
	4) Soil+WATER P)S	-11.76	5.46	- 30:05 }
	TOTAL PER LFF	-426	18,06	23,35 9
	TOTAL PER 40'	-170.4	722.4	
6	LWL @ 0.0 NO WIND			
	IMPERVIOUS SHEETPILING			
	DL.		11.90	+ 18,08
	7) Soil-Water Flooside	7.50	8.94	+ 12.00 7
	8) IMP SHT. PL	,	-8.24	35,02€)
	4) So <u>il+</u> WATER P/s.	-11.76	5.46	-30.05
	TOTAL PER LFT	-4.26	18.06	35.05 5
	TOTAL PER 40'0"	-170.4	722.4	1402 7

Many 2004 10 to 10 to 20

Nethonal "Bra

LD. Camb No.	DESCRIPTION	Fy	Fe	TUZMOM
7	LWL @ 0.0 WIND FRUM FLS			
	LOAD COMB (6)	-4.26	18.06	35.05
	BASIC LD 9) WIND FRM CASE F/S	0,58		12.21
-				<u></u> . <u></u>
	TOTAL PER LFF TOTAL PER 40'	-3.68 -147.2	18.06 722.4	47.26
8	_ LWL @ 0.0 WIND FROM P/S			
		i		
	LOAD COMB 3)	- 4.26	18.06	2B.35
	BASIC LD 10) WIND CASE FROM P.	-0.52		11:31
	TOTAL PER LFT	-4.78		12.04
	TOTAL PER 40'0"	-191.2	722,4	481.6 K

Section of the sectio

17

COMPUTER INPUT

14" X14" SQ . P. P. C. PILES .

Area =
$$14x14 = 196 \text{ in}^2$$
 $I = 1/2 \times 14 \times 14$
= 3201 in 4.
 $S' = 457 \text{ in}^3$.

Es: Pile Spacing 5-0° on Prol. Side Rows.

Spacing =
$$69/14 = 4.3$$

At 4B D = 0.4.

$$Es = 138 \text{ Pci } \times 0.4 = 55 \text{ Pci}$$

= .055 kci.

13.722 500.08FEE STEELES SOUME 13.38 10.08FEE STEELES SOUME 13.38 700 SEET STEELES SOUME 14.39 100 RECYCLED WHITE SSOUME 14.39 100 RECYCLED WHITE SSOUME 14.39 100 RECYCLED WHITE SSOUME 14.39 100 RECYCLED WHITE SSOUME 14.39 100 RECYCLED WHITE SSOUME

Mattonal Bran

(-

SYMMARY OF LOADS

ALL PILES 16×16

@ Z:1 BATTER

	1		,	t	
DESCRIPTION		KIPS	MAX CBF	Asc	_
	with.	TENS. 1		Kri.	
FLOODSIDE	,	-60.0 (4)	· 57	_	
MIDD 120W NEXT TO F/S	99.0	-11.7 ①		6	
MIOD ROW NEXT TO PS	74.1	-41.4	_	_	
PROT. SIDE	93,9 •	_	_		

Vertical loads =

camp = 99 x 0.89 = 88.1

= 44 Town

Tension = -60 x 0 89 = 54 K

= 27 Ton

Pile Tip - 92.0

Allow, comp = 44 Tons.

Tens = 32 Tons.

13.722 - 40.09-445 | FHLER S SQUARE 4.202 - 100.09-445 | FHLER S SQUARE 4.209 - 200.09-445 | FHLER S SQUARE 4.209 - 200.09-675 | FHLER S SQUARE 4.209 - 200.09-670 | FHLER S SQUARE 4.209 - 200.09-670 | FHLER S SQUARE MARION 8 A.

Metional Brand

ADDITION TO PLAQUEMINES PUMP STATION LEGEND Δ BATTER 2:1 PILE NUMBER 4 4 16" × 160" P.P.C. PILES DISPLAY OF PILE LAYOUT 01-AFR-1998 16.57.15

EUSTIS ENGINEERING COMPANY, INC.

Geotechnical Engineers Metairie, Louisiana

Date <u>2/4/98</u>

Page_

Job _14638

Subject _ Checked By

> Enst of Harvey Con al Engineers Hurrican Protection Project Tefferson Pains, la, Allowable Pile Load Capacities PRELIMINARY
> Planes

Plaguenine Pump Station Unit 1+2 and Addition to Pump station Pile

Elevation VGVD

First mated Allonable Single File Lond Capacity in Tons Factor of Sofety = 2,0

•			
ne cust inestrused	-60 -70	10	7
Concrete	-80	~	12
	-90	3/ /	18
	-100	36 v	26
16-15 500000		17	36
Precist, Prestressel	<u>-60</u>	12	8
The state of the s	-10	19	14
manu	-80	2.7	2.0
	-90	47	20
	-100	51	30
Note: 1) Decl.	10/1	J (4/

Note: 1) Dredge level between E1-10,0 and -15,0.

2) (agacity contribution to il -44.0 has been ignored.

3) Soil parametens below EI-80 have been assumed. Soil borings must be performed to confirm soil conditions below this level for final design from soil conditions

EUSTIS ENGINEERING COMPANY, INC

Geotechnical Engineers Metairie, Louisiana

Date	4/198	
------	-------	--

Job 14638

Project Subject

Checked By

East of Harvey Comal Project Hurricans Protection Project Tefferson Parish, la, Allowable Pile Load Capacities T- Wall Foundation

Plaguemine Pump Station Unit 1+2 and Addition to Pump Stati

Fistimated Allonable Single Pile Lond Capacity in tons Factor of Sofity = 2,0

Compress, to

Pricest Brestressel

Concrete

NGVD

Pile

17 22

12 18

16-in sprove Procest, Prostressel -60 -70 Concentr - 20

-.60 -70

-80

8 14 20

Note: 1) Dredge level between El -100 and -15.0.

2) (againty contribution to il-44,0 has been ignored,

U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

MODULUS OF HORIZONTAL SUBGRADE REACTION REACH 2

ELEVATION IN FEET	$\frac{K_k \times B}{DC}$
10 to 0	169
0 to -30	138
-30 to -40	152
-40 to -50	182
-50 to -60	211
-60 to -68	237

Where:

£ 3

K_k = Modulus of horizontal subgrade reaction (lbs/in.3)

B = Diameter of pile (inches)

C = Reduction factor for cyclic loading

C = 0.5 for cyclic loading C = 1.0 for initial loading

D = Reduction factor for effect of group action

** *
PILE SPACING IN DIRECTION OF LOADING
8B
7B
6B
5B
4B
3B

PRELIMINARY

Net Pressure PSF Proposed T- wolf PRELIMINARY -1000 Degraded to have E1 +1.0 306 E11.0 V E1 -80 Pressure zeroat ET -15.0 E1-13,0 el-18.5 E1-15.0 -621 QUE1-15,0 el-23.0 d-30,0 **©** -621@E1-30,0 Pressure 1-40,0 3 4 E1-44. el-50.0 Fwall Analysis Un factored Saleta Factor of 1,3 Summation of Forces Unit Works 50:1 Friction Cohesian - PSF _Psp. Strutu Cuhesa Stear Strenstha) Type Myres No. Failuni Average Botton Changin Not Free 16:16+ Average B.Hom Resisting 165/FH EK- EE Surface Clan Silty Clans 16.1/f-L 91.0 310 310 235 235 A(I) B(Z) 10563 6172 4391 29786 34707 -4921 -9312 101.0 310 O ั้วไบ็ 43675 O 238 47797 238 -3482 Clani 59604 59614 10166 0 343 376 264 0 289 Note: 1) To satisfy moment ignolibrium, summing moment about base of forting at E1-15,0 inquires shortpile penetration to E1-44,5. -Elm U, fot-Ö 409 442 315 101.0 2) Maximum moment occurs at E1-25,0 and is 32.1 Ft Kips/Ft of Wall, Stability of Pump Station 3) Calculated Ancher Force, FA, as 6.3 Kips per Ft of wall at E1-15.0.
4) The anchor load and indicated T wall pressure must be supported by driven batter piles.

Axial capacity of these piles above il-44.5 mms.

Slope Stability and Froncesco T. Wall

Slope Stability and Froncesco T. Wall

Afficient to Planceman Promis Stability. failure Summation of Forces Factor of Safety Surface Registing Driving **E**(2) 35340 1.33 26594 Stope Stability and Proposed T. Wall Analyses Addition to Plannemines Permis Station 5) Using the Hair Mithed of sayans analysis,
The factor of safety against piping failure 46838 35551 1.32 66596 42356 East of Harren Conal at E1 -44.5. Hurricane Frotestion Project 6) Reach 2 soil phrameting were used Ja from Panish, La. thise malysis.

Enclosuri

υ:\PILE\PPSTW05 Last Modified: 04-01-98 at 16:08:48

630 FPL PPSTWD5

100 ADDITION TO PLAQUEMINES PUMP STATION-150 T WALL ANALYSIS 200 PROF 4074 5461 5461 256 2 0 ALL 300 SOIL ES 0.035 LEN 75 0 ALL 320 PIN ALL 410 DLS S 84 50 985 294 188 2341 1760 H 16 ALL 430 ASC S 256 683 .813 .955 1.75 0 ALL 440 BAT 2 1 2 3 4 5 6 7 441 BAT 2 8 9 10 11 12 13 14 442 BAT 2 15 16 17 18 19 20 21 443 BAT 2 22 23 24 25 26 27 28 450 ANG 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 455 ANG 90 15 16 17 18 19 20 21 22 23 24 25 26 27 28 460 PILE 1 -18.0 -7.0 0 8 -18.0 -3.0 0 465 PILE 15 -18.0 3.0 0 22 -18.0 7.0 0 470 ROW X 7 1 6 AT 6.0 480 ROW X 7 8 6 AT 6.0 485 ROW X 7 15 6 AT 6.0 490 ROW X 7 22 6 AT 6.0 500 LOA 1 0 563.2 781.2 5681.2 0 0 510 LOA 2 0 563.2 781.2 6435.6 0 0 520 LOA 3 0 520.2 431.7 6400.5 0 0 540 LOA 4 0 520.2 431.7 7012.5 0 0 550 LOA 5 0 -170.4 722.4 934.0 0 0 560 LOA 6 0 -170.4 722.4 1402 0 0 570 LOA 7 0 -147.2 722.4 189 0 0 580 LOA 8 0 -191.2 722.4 481.6 0 0 610 FOU 1 2 3 4 5 6 7 PPSTW50 620 PFO ALL

04/01 3

Last Modified: 04-01-98 at 16:08:18

* VERSION NUMBER # 86/09/02-A * RUN DATE 04-01-98 RUN TIME 16:08:36

ADDITION TO PLAQUEMINES PUMP STATION F WALL ANALYSIS

THERE ARE 28 PILES AND 8 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

X Y Z ---- --- ---- ---- ----- WITH DIAGONAL COORDINATES = (-18.00 , -7.00 , .00) (18.00 , 7.00 , .00)

PILE PROPERTIES AS INPUT

THESE FILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

ES ES0IL LENGTH L LU
K/IN**2 FT FT
.35000E-01 L .75000E+02 .00000E+00

THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -

ALL

PILE GEOMETRY AS INPUT AND/OR GENERATED

NUM	×	· Y	Z	BATTER	ANGLE	LENGTH	FIXITY
	FT	FT	FT			F T	
1	-18.00	-7.00	.00	2.00	270.00	75.00	P
2	-12.00	-7.00	.00	2.00	270.00	75.00	F.
3	-6.00	-7.00	.00	2.00	270.00	75.00	F
4	.00	-7.QQ	.00	2.00	270.00	75.00	۶
5	6.00	-7 . 00	.00	2.00	270.00	75.00	P
6	12.00	-7.00	.00	2.00	270.00	75.00	P
7	18.00	-7.00	.00	2.00	270.00	75.00	P
8	-18.00	-3.00	.00	2.00	270.00	75.00	È
9	-12.00	-3.00	.00	2.00	270.00	75.00	F
10	-6.00	-3.00	.00	2.00	270.00	75.00	F
11	.00	-3.00	.00	2.00	270.00	75.00	F
12	6.00	-3.00	.00	2.00	270.00	75.00	۴
13	12.00	-3.00	.00	2.00	270.00	75.00	F
14	18.00	-3.00	.00	2.00	270.00	75.00	F
15	-18.00	3.00	.00	2.00	90.00	75.00	F
16	-12.00	3.00	.00	2.00	90.00	75.00	F
17	-6.00	3.00	.00	2.00	90.00	75.00	F
18	.00	3.00	.00	2.00	90.00	75.00	F
19	6.00	3.00	.00	2.00	90.00	75.00	F
20	12.00	3.00	.00	2.00	90.00	75.00	F
21	18.00	3.00	.00	2.00	90.00	75.00	F.
22	-18.00	7.00	.00	2.00	90.00	75.00	P
23	-12.00	7.00	.00	2.00	90.00	75.00	F
24	-6.00	7.00	.00	2.00	90.00	75.00	F
25	.00	7.00	.00	2.00	90.00	75.00	F'
26	6.00	7.00	.00	2.00	90.00	75.00	۴
27	12.00	7.00	.00	2.00	90.00	75.00	P .
28	18.00	7.00	.00	2.00	90.00	75.00	F'
						2100.00	

APPLIED LOADS

LOAD CASE	PX K	FY K	PZ K	MX FI-K	MY FT-K	MZ FT-K
1	.0	563.2	781.2	5681.2	.0	.0
2	.0	563.2	781.2	6435.6	.0	.0
3	.0	520.2	431.7	6400.5	.0	.0
4	.0	520.2	431.7	7012.5	.0	.0
5	.0	-170.4	722.4	934.0	.0	.0
. 6	.0	-170.4	722.4	1402.0	.0	.0

```
D: \FILE\FPSTW50
                                                                     04/01/1
                                                                    Page:
   7
            . O
                  -147.2
                             722.4
                                        189.0
                                                       . 0
                                                                   . 0
  8
            . ()
                  -191.2
                             722.4
                                        481.6
                                                       . 0
                                                                   . 0
 ORIGINAL PILE GROUP STIFFNESS MATRIX
   .11003E+03
               -.36044E-03
                           -.41185E-03
                                        -.43252E-01
                                                      .00000E+00
                                                                 -.45776E-03
  -.36044E-03
                .13067E+05
                             .12207E-03
                                         .15548E+07
                                                      .15625E-01
                                                                   .15625E-01
  -,41185E-03
                .12207E-03
                             .51937E+05
                                        -.62500E-01
                                                      .31250E-01
                                                                   .15625E-01
  -.43252E-01
                .15548E+07
                            -.62500E-01
                                          .21689E+09
                                                      .40000E+01
                                                                   .00000E+00
 -.93132E-09
                .15625E-01
                            .00000E+00
                                         .40000E+01
                                                      .10770E+10
                                                                  -.40000E+01
 -.21362E-03
                .15625E-01
                             .15625E-01
                                         .00000E+00
                                                     -.40000E+01
                                                                   .27141E+09
LOAD CASE
              1.
                 NUMBER OF FAILURES =
                                        ο.
                                            NUMBER OF PILES IN TENSION =
                                                                          14.
                 NUMBER OF FAILURES =
LOAD CASE
              2.
                                            NUMBER OF FILES IN TENSION =
                                        Ö.
                                                                           7.
LOAD CASE
              3.
                 NUMBER OF FAILURES =
                                        O.
                                            NUMBER OF FILES IN TENSION =
                                                                          14.
LOAD CASE
              4.
                 NUMBER OF FAILURES =
                                            NUMBER OF FILES IN TENSION =
                                        O.
                                                                           7.
LOAD CASE
              5.
                 NUMBER OF FAILURES =
                                            NUMBER OF FILES IN TENSION =
                                        Ŏ.
LOAD CASE
              6.
                 NUMBER OF FAILURES =
                                            NUMBER OF PILES IN TENSION =
                                        O.
                                                                          14.
LOAD CASE
              7.
                 NUMBER OF FAILURES =
                                        0.
                                            NUMBER OF FILES IN TENSION =
                                                                          7.
LOAD CASE
              8.
                 NUMBER OF FAILURES =
                                        O.
                                            NUMBER OF FILES IN TENSION =
                                                                         14
 PILE CAP DISPLACEMENTS
LOAD
CASE
            ĐΧ
                        \mathbf{D}\mathbf{Y}
                                   ĐΖ
                                               RΧ
                                                           RY
                                                                       RΖ
            IN
                        IN
                                   IN
                                              RAD
                                                          RAD
                                                                      RAD
    1
         .1976E-06
                     .3877E-01
                                .1504E-01
                                            .3637E-04
                                                       -.6976E-12
                                                                   -.3098E-11
   2
         .19858-06
                     .4989E-02
                                .1504E-01
                                            .3203E-03
                                                       -.1262E-11
                                                                   -.1153E-11
   3
         .1631E-06
                    -.1583E-01
                                .8312E-02
                                            .4676E-03
                                                       -.1507E-11
                                                                    .4325E-12
   4
         .1638E-06
                    -.4323E-01
                                .8312E-02
                                            .6979E-03
                                                       -.1965E-11
                                                                    .2010E-11
   5
         .1261E-07
                    -.1305E+00
                                .1391E-01
                                            .9875E-03
                                                       -.1774E-11
                                                                    .6714E-11
   6
         .1320E-07
                    -.1515E+00
                                .1391E-01
                                            .1164E-02
                                                       -.2124E-11
                                                                    .7921E-11
   7
         .1721E-07
                    -.8510E-01
                                .1391E-Q1
                                                       -.1070E-11
                                            .6205E-03
                                                                    .4098E-11
         .7092E-08
                   -.1211E+00
                                .1391E-01
                                            .8948E-03
                                                       -.1566E-11
                                                                    .6171E-11
```

Page: 4

FILE FORCES IN LOCAL GEOMETRY

- M1 & M2 NOT AT PILE HEAD FOR PINNED PILES
- * INDICATES FILE FAILURE
- # INDICATES CBF BASED ON MOMENTS DUE TO (F3*EMIN) FOR CONCRETE PILES
- B INDICATES BUCKLING CONTRULS

LOAD C	ASE -	1								
FILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF	ASC KSI	AST KS1
1	2	.0	-15.3	.0	11.4	.0	. 26	.16	.91	.74
2	2	.0	-15.3	.0	11.4	.0	. 26	.16	.91	.74
3	2	.0	-15.3	.0	11.4	.0	. 26	.16	.91	. 74
4	2	.0	-15.3	.0	11.4	. O	.26	.16	.91	.74
5	2	.0	-15.3	.0	11.4	. 0	. 26	-16	.91	.74
6	2	.0	-15.3	.0	11.4	.0	.26	.16	.91	.74
7	2	ن.	-15.3	.0	11.4	. 0	. 26	. 15	.91	.74
ម	2	.0	-11.7	.0	11.0	.0	.20	.13	. 93	.75
9	2	.0	-i1.7	.0	11.6	.0	.20	.13	.93	.75
10	2	.0	-11.7	.0	11.6	.0	.20	.13	.93	.75
11	2	.0	-11.7	.0	11.6	.0	.20	.13	.93	.75
12	2	.0	-11.7	.0	11.6	.0	.20	.13	.93	.75
1.3	2	.0	-11.7	.0	11.6	.0	.20	.13	.93	.75
14	2	. 0	-11.7	.0	11.6	.0	.20	.13	.93	.75
15	- 1	. O	74.1	.0	-7.8	.0	. 88	.15	1.26	1.09
15	. 1	.0	74.1	.0	-7.8	.0	.88	.15	1.26	1.09
17	. 1	.0	74.1	.0	-7.8	.0	.88	.15	1.26	1.09
18	- 1	.0	74.1	.0	-7.8	.0	. 88	.15	1.26	1.09
19	- 1	.0	74.1	.0	-7.8	.0	.88	.15	1.26	1.09
20	. 1	. O	74.1	.0	-7.8	.0	.88	.15	1.26	1.09
21	. 1	.0	74.1	.0	-7.8	.0	. 88	. 15	1.25	1.09
22	. 1	.0	77.7	.0	-7.6	.0	.93	.17	1.27	1.11
23	- 1	.0	77.7	.0	-7.6	.0	. 93	.17	1.27	1.11
24	. 1	.0	77.7	.0	-7.6	.0	. 93	.17	1.27	1.11
25	. i	.0	77.7	.0	-7.6	.0	. 93	.17	1.27	1.11
26	- 1	.0	77.7	.0	-7.6	. O	. 93	. 17	1.27	1.11
27	. 1	. 0	77.7	.0	-7.6	. 0	.93	.17	1.27	1.11
28	. 1	.0	77.7	, O	-7.5	.0	.93	.17	1.27	1.11

									Page	ر (ا
PILE	F1	F2	F3	M1	M2	MS	AL E	4000000	0.7775	
	Ŕ	ĸ	, ŭ	IN-K	IN-K	no IN-k	ALF	CBF	ASC	AST
			• • • • • • • • • • • • • • • • • • • •	274 1.	214 17	114-1/			KSI	r.51
1	υÖ	.0	-29.8	. 0	2	.0	.50	. 27	.84	. 70
2	.0	.0	-29.8	.0	2	.0	.50	. 27	.84	.70
3	.0	.0	-29.8	.0	2	.0	.50	.27	.84	.70
4	.0	.0	-29.8	.0	2	.0	.50	.27	.84	.70
5	.0	.0	-29.8	.0	2	.0	.50	.27	.84	.70
6	. O	. 0	-29.8	.0	2	.0	.50	.27	.84	.70
7	. O	.0	-29.8	.0	2	.0	.50	. 27	.84	.70
8	.0	.0	2.1	, O	1.7	.0	.03	.24	.97	.82
9	. O	.0	2.1	.0	1.7	.0	.03	. 24	.97	.82
10	. 0	.0	2, 1	.0	1.7	. O	.03	. 24	. 97	.82
1 1	.0	.0	2.1	. Q	1.7	.0	.03	.24	. 97	.82
12	, o	.0	2.1	. 0	1.7	.0	.03	. 24	. 97	.82
13	.0	.0	2.1	.0	1.7	. O	.03	. 24	. 97	.82
14	.0	.0	2.1	.0	1.7	.0	.03	. 24	. 97	.82
15	. Q	. O	60.3	.0	2.1	.0	.72	. 14	1.19	
16	• 0	.0	50. 3	.0	2.1	.0	.72		1.19	
17	.0	.0	60.3	.0	2.1	.0	.72	. 14	1.19	1.05
18	.0	.0	60.3	.0	2.1	.0	.72	. 14	1.19	1.05
19	.0	.0	60. 3	.0	2.1	.0	.72	. 14	1.19	1.05
20	.0	.0	50.3	.0	2.1	• O	.72	. 14	1.19	1.05
21	.0	.0	60.3	.0	2.1	.0	.72	. 14	1.19	1.05
22	1	.0	92.1	.0	4.1		1.10		1.32	
23	1	. 0	92.1	.0	4.1		1.10		1.32	
24 25	1	.0	92.1	٠.	4.1		1.10		1.32	
25 24	1	.0	92.1	.0	4.1		1.10		1.32	
26 27	1	.0	92.1	.0	4.1		1.10		1.32	
28	1 1	.0	92.1	.0	4.1		1.10		1.32	
2,43	1	.0	92.1	.0	4.1	.0	1.10	. 25	1.32	1.17
LOAD C	ASE -	3								
E-0112 0	11:20									
FILE	F1	F2	F3	Mi	M2	MB	ΔΙΕ	Cru	200	4 C) T
	Ř	ĸ	·κ	IN-K	IN-K	in-k	ALF	CBF	ASC	AST
		• •	•	211 11	714 17	T14-1/			KSI	KSI
1	. 1	.0	-47.8	.0	-8.0	.0	.80	ΔE	70	<i>i</i> •
2	. 1	.0	-47.8	.0	-8.0	.0	.80	.45 .45	.78	.61
3	. 1	.0	-47.8	.0	-8.0	.0	.80	.45	.78 .78	.61
4	. 1	.0	-47.8	.0	-8.0	.0	.80	. 45	.78	.61 .61
5	. 1	.0	-47.8	.0	-8.0	.0	.80	. 45	- 78	.61
6	. 1	.0	-47.8	.0	-8.0	.0	.80	. 45	.78	.61
7	. i	.0	-47.8	.0	-8.0	.0	.80	.45	.78	.61
8	. 1	. O	-1.3	.0	-5.1	.0	.02	.02	.96	.80
9	. 1	.0	-1.3	.0	-5.1	.0	.02	.02	.96	.80
10	. 1	.0	-1.3	.0	-5.1	.0	.02	.02	.96	.80
11	- 1	.0	-1.3	.0	-5.1	.0	.02	.02	.96	.80
12	. 1	.0	-1.3	. O	-5.1	.0	.02	.02	.96	.80

.0

19.5

.0 1.12 .26 1.35 1.15

27

-.3

93.9

. 0

								Fage:	1 1
28	3	.0	93.9	.0	19.5	.0 1.12	. 26	1.35	1.15
LOAD C	ASE	5							
FILE	F1 K	#2 k	F3 K	M1 1N-k	M2 IN-K	M3 ALF IN-K	CBF	ASC KSI	AST KSI
1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 1 4 1 5 1 6 7 1 8 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			-7.8 -7.8 -7.8 -7.8 -7.8 -7.8 -7.8 -7.8		-41.9 -41.9 -41.9 -41.9 -41.9 -41.9 -41.9 -41.9 -41.9 -35.9	.0 .13 .0 .13 .0 .13 .0 .13 .0 .13 .0 .13 .0 1.08 .0 1.08 .0 1.08 .0 1.08 .0 1.08 .0 1.08 .0 1.08 .0 55 .0 .55 .0 .55 .0 .55 .0 .55 .0 .55	. 24 . 24 . 24 . 24 . 36 . 36 . 36 . 36 . 36 . 36 . 14 . 14 . 14	.99 .99 .99 .99 .99 .99 .1.36 1.36 1.36 1.36 1.36 1.36 1.38 .88 .88 .88 .88 .88 .88 .88 .88 .88	1.11 1.11 1.11 1.11 1.11 1.11 1.43 1.43
27 28	6 6	.0 .0	65.5 65.5	.0	45.5 45.5	.0 .78 .0 .78		1.28 1.28	
LOAD C	ASE -	6							
FILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 ALF IN-K	CBF	ASC KSI	AST KST
1 2 3 4 5 6 7	.7 .7 .7 .7 .7 .7	.0	-16.8 -16.8 -16.8 -16.8 -16.8 -16.8	.0 .0 .0 .0	-49.2 -49.2 -49.2 -49.2 -49.2 -49.2	.0 .28 .0 .28 .0 .28 .0 .28 .0 .28 .0 .28	.23 .23 .23 .23 .23 .23	.96 .96 .96 .96 .96 .96	. 68 . 68 . 68 . 68 . 68 . 68

04/01/98 Page: 8

ទ	٠. 6	.0	99.0	.0	-42.1	.0 1.18	.28 1.40 1.14
7	. 6	.0	99. O	. Ú	-42.1	.0 1.18	.28 1.40 1.14
10	. 6	. 0	99 . 0	.0	-42.1	.0 1.18	.28 1.40 1.14
11	. Ó	. 0	99.0	.0	-42.1	.0 1.18	.28 1.40 1.14
12	. 6	. O	99.0	.0	-42.1	.0 1.18	.28 1.40 1.14
13	. 6	.0	99.0	. 0	-42.1	.0 1.18	.28 1.40 1.14
14	. 6	. O	99.0	.0	-42.1	.0 1.18	.28 1.40 1.14
15	- . 6	.0	-41.4	.0	45.6	.0 .69	.45 .86 .58
15	6	.0	-41.4	. O	45.6	.0 .59	.45 .86 .58
17	6	.0	41.4	. Ŏ	45.6	.0 .69	.45 .86 .58
18	6	.0	-41.4	.0	45.6	.0 .69	.45 .86 .58
19	6	.0	-41.4	.0	45.6	.0 .69	.45 .86 .58
20	6	.0	-41.4	.0	45.6	.0 .69	.45 .86 .58
21	6	.0	-41.4	.0	45.6	.0 .69	.45 .86 .58
22	7	.0	74.4	. O	52.7	.0 .89	.15 1.32 1.03
23	7	.0	74.4	. O	52.7	.0 .89	.15 1.32 1.03
24	<i>7</i>	. 0	74.4	. O	52. <i>7</i>	.0 .89	.15 1.32 1.03
25	7	. O	74.4	.0	52.7	.0 .89	.15 1.32 1.03
26	7	.0	74.4	. 0	52.7	.0 .89	.15 1.32 1.03
27	7	.0	74.4	.0	52.7	.0 .89	.15 1.32 1.03
28	7	.0	74.4	.0	52.7	.0 .89	.15 1.32 1.03
ı aa e							

LOAD CASE - 7

٠	FILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-k	M3 1N-K	ALF	CBF	ASC KSI	AST KSI
	1	. 4	.0	9.0	.0	-26.5	.0	.11	.25	1.03	.81
	2	. 4	.0	9.0	.0	-26.5	.0	. 11	. 25	1.03	.81
	3	. 4	.0	9.0	.0	-26.5	.0	. 11		1.03	.81
	4	. 4	.0	9.0	.0	-26.5	. 0	. 11		1.03	.81
	5	. 4	.0	9.0	.0	-26.5	. 0	. 11		1.03	.81
	6	. 4	.0	9.0	.0	-26.5	.0	.11		1.03	.81
	7	. 4	.0	9.0	.0	-26.5	.0	. 11		1.03	.81
	8	.3	.0	70.7	• Q	-22.7	.0	.84	.13	1.26	1.06
	9	.3	.0	70.7	.0	-22.7	.0	.84	.13	1.26	1.05
	10	.3	.0	70.7	.0	-22.7	.0	.84		1.26	
	11	.3	.0	70.7	.0	-22.7	.0	.84	.13	1.26	1.06
	12	.3	.0	70.7	.0	-22.7	.0	.84	.13	1.26	1.06
	13	.3	.0	70.7	. 0	-22.7	.0	.84	.13	1.26	1.06
	14	.3	.0	70.7	. Q	-22.7	.0	.84	.13	1.26	1.06
	15	4	.0	-13.1	.0	26.2	.0	.22	.16	. 94	.72
	16	4	.0	-13.1	.0	26.2	.0	.22	.16	.94	.72
	1.7	4	.0	-13.1	.υ	26.2	.0	.22	.16	. 94	.72
	18	4	.0	-13.1	.0	26.2	.0	.22	.16	.94	.72
	19	4	. 0	-13.1	.0	26.2	.0	. 22	.16	.94	.72
	20	4	.0	-13.1	. O	26.2	.0	.22	.16	. 94	.72
	21	4	. 0	-13.i	.0	26.2	.0	.22	.16	. 94	.72
•	22	4	. O	48.7	.0	30.0	.0	.58	.16	1.19	.96

Ď: NPILE	NPPSTW50)								01: 1 : \
23	4	.0	48.7	. ()	30.0	.0	.58	- 16	1.19	. 96
24	4	. 0	48.7	.0	30.0	.0	.58		1.19	
25	4	. 0	48.7	.0	30.0	.0	.58		1.19	
26	4	.0	48.7	.0	30.0	.0	.58		1.19	
27	4	.0	48.7	.0	30.0	.0	.58		1.19	
28	4	.0	48.7	.0	30.0	. O			1.19	
LOAD C	CASE -	8								
PILE	Fi	F2	F3	Mi	M2	МЗ	ALF	CBF	ASC	AST
	K	K	K	IN-K	IN-K	IN-K		CJI	KSI	KSI
1	.5	.0	-1.5	.0	-38.6	.0	.02	.07	1.01	. 75
2	.5	.0	-1.5	.0	-38.6	.0	.02		1.01	
3	.5	.0	-1.5	.0	-38.6	.0	.02		1.01	
4	.5	.0	-1.5	.0	-38.6	.0	.02	. 07	1.01	
5	.5	. O	-1.5	.0	~38.6	.0	.02	.07	1.01	
6	.5	. 0	-1.5	.0	-38.6	.0	.02	.07	1.01	.75
7	.5	. O	-1.5	.0	-38.6	.0	.02	.07	1.01	.75
8	.5	. 0	87.6	.0	-33.1	.0	1.04	. 22	1.35	1.11
9	.5	.0	87.6	.0	-33.1	.0	1.04	. 22	1.35	1.11
10	.5	.0	87.6	.0	-33.1	. 0	1.04	.22	1.35	1.11
11	.5	.0	87.6	.0	-33.1	.0	1.04	.22	1.35	1.11
12	.5	.0	87.6	.0	-33.1	. O	1.04	.22	1.35	1 (-1)
13	.5	.0	87.6	.0	-33.1	. 0	1.04	.22	1.35	1.11
14	.5	• 0	87.6	.0	-33.1	.0	1.04	.22	1.35	1.11
15	5	. 0	-29.9	.0	36.6	.0	.50	.33	.89	. 64
16	5	.0	-29.9	.0	პბ.ბ	.0		.33	.89	-64
17	5	. 0	-29.9	.0	36.6	.0		.33	. 89	. 64
18	5	.0	-29.9	.0	36.6	.0		.33	.89	.64
19	5	.0	-29.9	.0	36.6	.0		.33	89	.64
20	5	.0	-29.9	.0	36.5	.0		.33	.89	.64
21 22	5	• O	-29.9	.0	36.6	.0	.50	.33	. 89	.64
	5 ·	• Q	59.1	.0	42.1	. 0	.70	. 15	1.25	. 98
23	6	.0	59.1	.0	42.1	.0	.70		1.25	. 98
24	6	.0	59.1	.0	42.1	.0	.70		1.25	. 98
25 24	6	.0	59.1	.0	42.1	.0	. 70		1.25	. 98
26 27	6	.0	59.1	.0	42.1	.0	.70		1.25	. 98
28	6	.0	59.1	.0	42.1	.0	. 70		1.25	. 98
∠ O	~. 6	.0	59.1	.0	42.1	. O	.70	.15	1.25	. 98

FILE FORCES IN GLOBAL GEOMETRY

FILE	FfX K	PY K	FZ K	MX IN-k	MY IN-K	MZ IN-k
1	.6	7.0	-13.7	.0	.0	0
2	.0	7.0	-13.7	.0	.0	.0
3	.0	7.0	-13.7	.0	.0	.0
4	.0	7.0	-13.7	. 0	.0	
5	, ō	7.0	-13.7	.0	.0	.0
5	.0	7.0	-13.7	.0	.0	.0
7	.0	7.0	-13.7	.0	.0	.0
8	.0	5.4	-10.4	.0	.0	.0
9	20	5.4	-10.4	.0	.0	.0
10	.0	5.4	-10.4	.0	.0	.0
1 1	.0	5.4	-10.4	.0	.0	.0
12	. 0	5.4	-10.4	.0	.0	.0
13	.0	5.4	-10.4	.0	.0	.0
14	.0	5.4	-10.4	.0	.0	.0
15	.0	33.2	66.2	.0	.0	.0
16	.0	33.2	66.2	. 0	.0	.0
17	.0	33.2	66.2	.0	.0	.0
18	. O	33.2	66.2	.0	.0	.0
15	. O	33.2	55. 2	.0	.0	.0
20	. O	33.2	66.2	.0	.0	.0
21	.0	33.2	66.2	.0	.0	.0
22	.0	34.8	69.5	.0	.0	.0
23	.0	34.8	69 . 5	.0	.0	.0
24	.0	34.8	59.5	.0	.0	.0
25	.0	34.8	69.5	.0	.0	. O
26	.0	34.8	69.5	.0	.0	.0
27	.0	34.8	69.5	.0	.0	.0
28	.0	34.8	69.5	.0	.0	.0
LOAD CAS	SE - 2					
FILE	F'X	PΥ	₽Z	MX	MY	MZ
, , , ,	ĸ	ĸ	ĸ	IN-K	IN-Ķ	IN-K
1	.0	13.3	-26.6	.0	.0	.0
2 3	.0	13.3	-25.6	.0	.0	.0
3	.0	13.3	-26.6	.0	.0	.0
4	.0	13.3	-26.6	.0	.0	.0
5	.0	13.3	-26.6	.0	.0	.0
Ó ₹	.0	13.3	-26.6	.0	.0	.0
7	.0	13.3	-26.6	.0	.0	.0
8	.0	9	1.9	.0	.0	.0
9	.0	9	1.9	.0	.0	.0
10	.0	9	1.9	.0	.0	.0
11	.0	9	1.9	.0	.0	.0

12	.0	9	1.9	. 0	.0	.0
1.5	• Q	9	1.9	.0	.0	.0
14	.0	9	1.9	.0	.0	.0
15	. Q	26.9	53.9	.0	.0	.0
16	.0	26.9	53.9	.0	. 0	.0
17	.0	26.9	53.9	. 0	.0	.0
18	.0	26.9	53.9	. 0	.0	.0
19	.0	26.9	53.9	. 0	. 0	.0
20	.0	26.9	53.9	.0	.0	.0
21	.0	26.9	53.9	.0	.0	.0
22	• 0	41.1	82.4	.0	.0	.0
23	.0	41.1	82.4	.0	.0	.0
24	.0	41.1	82.4	.0	.0	.0
25	.0	41.1	82.4	.0	.0	.0
26	.0	41.1	82.4	.0	.0	
27	.0	41.1	82.4	.0	.0	.0
28	.0	41.1	82.4	.0	.0	.0
					• •	.0
_OAD CAS	6E - 3					
-ILE	F·X	FΥ	۴Z	ΜX	MY	MZ
						• • •
	K	K	K	IN-K	IN-K	IN-K
1	к .о	21.3	-42.8	IN-K .0	IN-K	
2	.o .o	21.3 21.3	-42.8 -42.8			.0
2 3	к .о .о	21.3 21.3 21.3	-42.8 -42.8 -42.8	.0	.0	.0
2 3 4	.o .o	21.3 21.3 21.3 21.3	-42.8 -42.8	.0	.0 .0	.0 .0 .0
2 3 4 5	к .о .о	21.3 21.3 21.3	-42.8 -42.8 -42.8	.0	.0	.0 .0 .0
2 3 4 5 6	K .0 .0 .0	21.3 21.3 21.3 21.3	-42.8 -42.8 -42.8 -42.8	.0 .0 .0	.0 .0 .0	.0 .0 .0 .0
2 3 4 5 6 7	K .0 .0 .0	21.3 21.3 21.3 21.3 21.3	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8	.0	.0 .0 .0 .0	.0 .0 .0 .0
2 3 4 5 6 7 8	K .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8	.0	.0 .0 .0 .0 .0	.0 .0 .0 .0 .0
2 3 4 5 6 7 8 9	K .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8	.0	.0 .0 .0 .0	.0 .0 .0 .0 .0
2 3 4 5 6 7 8 9	K .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2	.0	.0	.0 .0 .0 .0 .0
2 3 4 5 6 7 8 9 10 11	K .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2	.0	.0	.0
2 3 4 5 6 7 8 9 10 11 12	K .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2	.0	.0 .0 .0 .0 .0 .0	.0
2 3 4 5 6 7 8 9 10 11	K .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 .5 .5	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2	.0	.0	.0
2 3 4 5 6 7 8 9 10 11 12	K .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3 .5	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2	.0	.0	.0
2 3 4 5 6 7 8 9 10 11 12 13	K .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3 .5	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2	.0	.0	
2 3 4 5 6 7 8 9 10 11 12 13	K .0 .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3 .5	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2 -1.2 -1.2	.0	.0	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	K .0 .0 .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3 .5 .5 .5	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2		.0	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	K .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 .5 .5 .5 .5	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2		.0	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	K .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 .5 .5 .5 .5 .5	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2		.0	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	K .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3 .5 .5 .5 .5 .5 .5 .5	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2	.0.000000000000000000000000000000000000	.0	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	K .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.5 .5 .5 .5 .5 .5 .9 15.9 15.9	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2		.0	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	K .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3 15.9 15.9 15.9 15.9	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2		.0	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	K .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2		.0	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	K .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2		.0	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	K .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3	-42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -42.8 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32		.0	

D:\PILE\PPST	W50
--------------	-----

, D: NPILENPI	PSTW50					P.
27 28	.0	36.7 36.7	73.6 73.6	.0	.0	.0 .0
LOAD CAS	E - 4					
PILE	FX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2 3 4 5 6 7 8	.0 .0 .0 .0 .0	26.4 26.4 26.4 26.4 26.4 26.4 26.4	-53.3 -53.3 -53.3 -53.3 -53.3 -53.3 -53.3	.0	.0	.0
9 10 11 12 13 14	.0	-4.6 -4.6 -4.6 -4.6 -4.6	3.8 3.8 8.8 8.8 8.8	.0 .0 .0 .0 .0	.0 .0 .0 .0 .0	.0 .0 .0 .0
15 16 17 18 19 20	.0 .0 .0 .0	10.8 10.8 10.8 10.8 10.8	22.0 22.0 22.0 22.0 22.0 22.0	.0	.0 .0 .0 .0	.0 .0 .0 .0
21 22 23 24 25 26 27	.0 .0 .0 .0	10.8 41.8 41.8 41.8 41.8 41.8	22.0 84.1 84.1 84.1 84.1 84.1	.0	.0 .0 .0 .0 .0	.0 .0 .0 .0 .0
28 LOAD CAS	.0 SE - 5	41.8	84.1	.0	.0	.0
PILE	F'X K	PY : K	PZ K	MX IN-k	MY IN-K	MZ IN-K
1 2 3 4 5 6	.0	3.0 3.0 3.0 3.0 3.0	-7.2 -7.2 -7.2 -7.2 -7.2 -7.2	.0 .0 .0 .0	.0 .0 .0 .0	.0

17

18

19

20

21

.0

. 0

. 0

. 0

. 0

-19.1

-19.1

-19.1

-19.1

-19.1

D: \PILE\P	PSTW50					04/0: Page:
7	.0	3.0	-7.2	.0	. 0	.0
ខ	.0	-40.9	80.7	.0	.0	•0
ゔ	.0	-40.9	80.7	.0	20	.0
10	.0	-40.9	80.7	.0	. 0	.0
1 1	. 0	-40.9	80.7	.0	.0	.õ
12	. 0	-40.9	80.7	. 0	.0	.0
13	.0	-40.9	80.7	.0	. 0	.0
14	.0	-40.9	80.7	.0	.0	.0
15	.0	-15.1	-29.1	.0	.0	.0
16	.0	-15.1	-29.1	.0	.0	.0
17	.0	-15.1	-29.1	.0	.0	.0
18	.0	-15.1	-29.1	.0	.ŏ	.0
19	. 0	-15.1	-29.1	.0	.0	.0
20	.0	-15.1	-29.1	.0	.0	.0
21	.0	-15.1	-29.1	.0	.0	.0
22	, 0	28.7	58.8	.0	.0	.0
23	.0	28.7	58.8	.0	. o	.0
24	.0	28.7	58.8	.0	.0	.0
25	.0	28.7	58.8	.õ	.0	.0
26	.0	28.7	58.8	.ŏ	.0	
27	.0	28.7	58.8	.0	.0	.0
28	.0	28.7	58.8	.0	.0	.0
LOAD CAS	6E - 6					
FILE	PΧ	PΥ	₽Z	MX	MY	MΣ
	K	K	K	IN-K	1N-K	IN-K
i	.0	6.9	-15.3	.0	.0	.0
2	. O	5.9	-15.3	.0	.0	.0
3	.0	5.9	-15.3	.0	.0	.0
4	.0	6.9	-15.3	.0	. 0	.0
5	. 0	6.9	-15.3	.0	.0	.0
6	.0	6.9	-15.3	.0	.0	.0
7	.0	5. 9	-15.3	. 0	.0	.0
8	.0	-44.8	88.3	.0	.0	.0
9	.0	-44.8	88.3	.0	. 0	.0
10	.0	-44.8	88.3	.0	.0	.0
11	.0	-44.8	88.3	.0	.0	.0
12	.0	-44.8	88.3	.0	, õ	.0
13	.0	-44.8	88.3	.0	.0	.0
14	.0	-44.8	88.3	.0	.0	.0
15	.0	-19.1	-36.7	.0	.0	.0
16	.0	-19.1	-36.7	.0	.0	.0
17	- Ó	-19-1	-3A.7	Ó	Ö	

-36.7

-36.7

-36.7 -36.7

-36.7

. 0

.0

• 0

. O

. 0

.0

.0

. O

• O

. 0

. 0

. O

. 0

.0

D:\FILE\F	PSTW50					04/ Fage	01/78 : 14
22	.0	32.6	66.9	.0	.0	.0	
23	. O	32.6	66.7	. O	.0	.0	
24	• O ·	32.6	66.9	.0	.0	.0	
25	.0	32.6	55.9	.0	.0	.0	
26	. O	32.6	56.7	.0	. O	.0	
27	. 0	32.6	66.9	.0	.0	.0	
28	.0	32.6	66.9	.0	.0	.0	
LOAD CAS	SE 7						
FILE	PX	FΥ	PΖ	MX	MY	MZ	
	K	K	K	IN-K	IN-K	IN-K	
1	.0	-4.3	7.9	.0	.0	.0	
2	.0	-4.3	7.9	.0	.0	.0	
3	.0	-4.3	7.9	.0	.0	.0	
4 ·	.0	-4.3	7.9	.0	.0	.0	
5	.0	-4.3	7.9	.0	.0	.0	
ა	.0	-4.3	7.9	.0	. O	.0	
7	.0	-4.3	7.9	.0	.0	.0	
8	.0	-31.9	63.1	• O	.0	.0	
9	.0	-31.9	63.1	.0	.0	.0	
10	.0	-31.9	63.1	.0	.0	.0	
11	.0	-31.9	63.1	.0	.0	.0	
12	.0	-31.9	63.1	.0	.0	.0	
13	.0	-31.9	63.1	.0	. 0	.0	
14	.0	-31.9	63.1	.0	• 0	.0	
15	.0	-6.2	-11.5	.0	.0	.0	
16 17	.0	-6.2	-11.5	.0	.0	.0	
18	.0	-6.2	-11.5	.0	.0	. 0	
19	.0	-6.2	-11.5	.0	.0	• Q	
20		-6.2	-11.5	.0	.0	.0	
	.0	-6.2	-11.5	.0	.0	-0	
21 22	.0	-5.2	-11.5	.0	.0	.0	
23	.0	21.4	43.7	.0	.0	.0	
	.0		43.7	.0	.0	.0	
24 95	.0	21.4	43.7	.0	.0	.0	
25		21.4	43.7	.0	.0	.0	
26 27		21.4		.0	.0	.0	
27 28	.0			.0	.0	.0	
∠ 8	.0	21.4	43.7	.0	.0	.0	
LOAD CAS	3E - 8						
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K	
. 1	.0	.2	-1.5	.0	.0	.0	

2	.0	.2	-1.5	.0	.0	.0
3	.0	.2	-1.5	. 0	.0	.0
4	. Q	.2	-1.5	. 0	.0	.0
5	.0	.2	-1.5	.0	.0	.0
Ġ	.0	.2	-1.5	.0	.0	.0
7	.0	. 2	-1.5	.0	.0	.0
8	.0	-39.6	78.1	.0	.0	.0
9	.0	-39.6	78.1	.0	.0	.0
10	. 0	-39.6	78.1	.0	.0	.0
11	.0	-39.6	78.1	.0	.0	.0
12	. O	-39.6	78.1	.0	.0	.0
13	.0	-39.6	78.1	. 0	.0	.0
14	. O	-39.6	78.1	.0	.0	.0
15	.0	-13.8	-26.5	.0	.0	.0
16	. O	-13.8	-26.5	.0	.0	.0
1.7	. 0	-13.8	-26.5	. 0	.0	.0
18	.0	-13.8	-26.5	.0	.0	.0
19	. O	-13.8	-26.5	. O	.0	.0
20	. O	-13.8	-26.5	.0	.0	.0
21	.0	-13.8	-26.5	.0	.0	.0
22	.0	25.9	53.1	.0	.0	.0
23	.0	25.9	53.1	. 0	.0	.0
24	.0	25.9	53.1	.0	.0	.0
25	. O	25.9	53.1	.0	.0	.0
26	• 0	25.9	53.1	.0	.0	.0
27	.0	25.9	53.1	.0	.0	.0
28	. Q	25.9	53.1	.0	•0	.0
						• •

•

PLANTERS . STATION ADDITION

STABILITY ANALYSIS FOR SWL = 9.5 NGUD:

PLANTERS PUMP STATION

- FOR FAILURE SURFACE BQ, Vertical Pressure Regid = 1520 psf

state throbass = 2:-6"

wt = (2.5)(150-117) = 82.5 psf

machinery floor: 3'

wt = (3)(150) - 450 psf

to tal wt = 82.5+410 = 532.5 N.G.

-piles do not have tension connectors, : Twall is Regid

LOCATION: PS' from existing T-would - at edge & existing discharge boson slab

FLOODWALL SHEET PILE TYPE .

I-WALLS @GATES

MAX MOMENT : 19,2 12/pt wall

(from Eustis Report)

Sprg 1 - M = (19,2)(12).

= 7.09 in3/FT

-use Castel CZ 67 S: 10.69 m/c+

BC#2 MMAX = 46 K.FT/FT WALL

Snog.d: (46)(12)

= 16.98 in /FT WALL

- we Costel CZ107 S= 17.48 in3/pr mace

PLANTERS - DRIGINAL STATION - PUMPS 1-5 -PUT T-WALL OF EXISTING DISCHARGE BASIN SCAB.

13.772 b00.94E15, F1LER 3.50JAHE
2.231 100.94E15, F1LER 3.50JAHE
2.232 100.94E15, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE
2.235 200.94E13, F1LER 3.50JAHE13, F1LER 3.50JAHE13, F1LER 3.

T-WALL LOADING CASES:

Case I: Static water pressure to swe, no wink, impervious start pile cut off

(100% forus)

Cose I: State water pressure to swe, nowerd, pervious steet pile out off (100 % forces)

Case III: State waterpressure to SWL+Z, no wird, impervious sheet pile

Static water pressure to SWX+Z', nowind, pervious sheet pile Case IV:

(75% forces)

Case I: water at low waterlovel, no wind, (100% forces)

Water at low water level, wind from. flood site (75%) Case III.

3AND ON P/5 :

(2')(4')(.120)=

0.96 E/FT

3

5

WIND LOADS:

FROM FLOOD SIDE @ LOW WATER:

. (50 psf)(11.5') = 575 #/FT

AND SOURCES FOR THE 4 SOUNMENT

Mational *8

JU 3003 3004 FLOODINAL PLANTER 1-16-98 6 FLOODWALL FORCE TABULATION LEVER ARM(FT) MOMENTS (FT.K FORCES (KIPS NO. DESCRIPTION Fy F. Y Z Max M2 - 3 **b** 1 DEAD LOADS (a) STEM 6.60 14.5 29.7 (b) BASE 5.63 0 0 (1) SWL 12. 14.08 -2.0 28.16 15.49 -2.0 30.98 (e) LOW WATER 7.39 - 2.0 14,78 (f) sand on P/s 16.5 0.96 6.24 2. WATER LOADS (a) SwiL 2(1.44)(22.5) = 16.20 7,5 121.5 buoyancy: impervious: (1.44) (5.5) -7,92 -4.75 -37.62 pervious: £(1.44)(15) -2.5 -10.80 -27.00 (6) SWL+2' (1)(1,57)(24.5)= 19.23 8,17 -157,11 buoyancy; imp. (1.57)(5.5) -8.64 -4,3 -41.04 per. (2)(157(15) -11.78 -2.5 -29.45 (C) LOW WATER (2) (0.83) (13) 5.40 -4.33 -23.38 buoganis imp. (183)(5.5) per. {(183)(15) -4.56 -4.75 -21.66 -6.23 2.5 -15.58 <u>3</u>_ WIND: from Flood Side 0.58 -18,75 -10.88

COULINS PUMBISTATION

22	-9	8

LOAD COMBINATIONS							
LOADING	DESCRIPTION	FORC	<i>E</i> 5	MOMENTS			
CASE		Fx	FZ	M _{y-y}			
_	DL		27.27				
I	DL, SWL, IMP. S/P SWL	16.20		-121.5			
	100% IMP.			- 37.62			
	TOTAL	16.20	19.35	-166.91			
	FOR 52'	842.4	1006.20	-8679.32			
		 	ļ				
	DL		27.27	-7.79			
ガ	PL, SWC, PER S/P SWC	16.20		-121.5			
	100 % <u>PER</u>		-10.80				
I	TOTAL	16.20	I .	-156,40			
#	FOR 52'	842.4	856.44	-8132.80			
		 					
777	DL.		28.68	-4.96			
亚	DLSWLIZ IMP. S/P SWLIZ	19.23		-157.11			
	75% IMP	.0	- 8.64				
ļ	TOTAL	19.23		- 203.11			
	75%	14,42	•	-152.33			
	FOR 52'	749.84	781.56	- 7921.16			
I	2		19 (0)	-4.96			
亚	DL	10 - 2	28.68	-157, 11			
<u> </u>	DC, SWC+2, PER. S/P SWC+2 175% PER.			t			
	TOTAL		-11.78	-29.45 -191.52			
	75%	14.42	17.18	-147.52			
	FOR 52'	749.84	i	•			
	FOR 32	191.0.	65 1.36	- 7469.28			
V	DL, LOW WATER, DL		20.58	-21.16			
	IMP. S/P LOW WATER	5.40	33.38	- 73.38			
	100%IMP.		-4.56				
	TOTAL	5.40	16.02	-66.20			
	FOR 52'	280.8	833.04				
			- U				
M III	DL, LOW WATER, DL		20.58	-21.16			
	IMP. S/P, WIND LOW WATER	5.40		-23.38			
#	75% IMP.		-4.56	-21.66			
	_ WIND	0.58		-10.88			
		5.98		-77.08			
		प. ५४		- 57.81			
#	FOR 52'	232.96	625.04	-3006.12			
 							
1							
ļ							
1				}			
ſ	ı	. [ı į			

1.23-98

CONSTANT: Soil

-PILE CAPACITY ABOVE EL. 31.5 IS TO BE IGNORED.

- CALCULATE ES USING WEIGHTED AVEPAGE BELOW EL , -31.5:

$$\frac{K_b * B}{DC} = [(167)(8.5') + (178)(15) + (222)(5) + 311(11)]/39.5'$$

- use 14 ples @ 4'spacing:

- run CPGA FOR A ST LENGTH OF STALL

ESTIMATED FROM ALLOWABLE VERTICAL LOAD CAPACITY

- VERTICAL COMPONENT OF BATTER PILE EMBEDMENT LENGTH
- V ESTIMATED ALLOWABLE SINGLE PILE LOAD CAPACITY OF A PILE DRIVEN VERTICALLY WITH EMBEDMENT LENGTH, L.
- B * BATTER OF PILE EXPRESSED AS A RATIO OF VERTICAL DISTANCE TO ONE FOOT HORIZONTAL DISTANCE.
- H = HORIZONTAL RESISTANCE OF BATTER PILE ESTIMATED AS FOLLOWS:

A - ALLOWABLE AXIAL PLE LOAD CAPACITY OF A SINGLE BATTER PILE ESTIMATED AS FOLLOWS:

$$A = \sqrt{V^2 \left(1 + \frac{1}{B^2}\right)}$$

$$A = \sqrt{(72)^2 (1.25)} = 80^K$$

$$= \sqrt{(54)^2 (1.25)} = 60^K$$

NOTE: THE AXIAL LOAD RESISTANCE OF A VERTICAL PILE, V, IS DEPENDENT ON THE TYPE OF LOADING-TENSION OR COMPRESSION, CAUTION SHOULD BE EXERCISED TO INSURE THAT THE CORRECT VERTICAL CAPACITY IS USED.

		ALGIERS CANAL			1
	JN 3004	PLANTERS PUMPSTA	MON AAH	1-23-98	9
	PILE SPACING'				C
13.772 KOGSHEETS FILER I SQUARE 4.203 105HEETS FIE ELONE 4.203 105HEETS FIE FIE FIE FIE FIE FIE FIE FIE FIE FIE	16 -15 17 -7.5 (1.625 18 0 19 20 21 22 -6 -22.5 23 -18 24 -13.5 25 -9 26 -4.5 21 0 -28 19 20 21 - 22.5 23 - 18 24 - 13.5 25 - 9 26 - 4.5 21 0 - 28 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 - 4.5 21 0 - 3 22 0 0 - 3 23 0 - 4.5 24 0 - 3 25 0 - 4.5 27 0 - 3 28 0 - 3 29 0 - 3 20 0 - 3 20 0 - 3 20 0 - 3 21 0 0 - 3 22 0 0 - 3 23 0 0 - 3 24 0 0 - 3 25 0 0 - 3 27 0 0 - 3 28 0 0 - 3 29 0 0 - 3 20 0 0 - 3 20 0 0 - 3 20 0 0 - 3 21 0 0 0 - 3 22 0 0 0 0 - 3 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	# 123 45 67 89 10 11 12 13 14 15 10 17 18 19 20 21 22 24 25 24 25 24 27 28 30 31	× 23.375 6 19.825 6 19.625 6 10.6	

PRELIMINARY

U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

REACH 3

ALLOWABLE PILE LOAD CAPACITIES SQUARE PRECAST, PRESTRESSED CONCRETE PILES TOP OF PILE AND DREDGE DEPTH AT EL -10.5

SIZE	PILE TIP ELEVATION IN FEET	ALLOWABLE PILE LOAD CAPACITY IN TONS FACTOR OF SAFETY ≈ 2		
	NGVD		TENSION	
12-In. Square	-39 -49 -59 -69 -39 -49 -59	12 16 23 30 15 20 27	9 12 16 22	
	-69	36	20 27	
16-In. Square	-39 -49 -59 -69	17 23 31 41	12 ' 16 23 30	

These allowable pile load capacities are suitable for piles supporting new T-wall at Units 1 through 5 of Planters Pump Station.


```
1010 PLANTERS PUMP STATION FRONTAL PROTECTION TWALL 1020 PROP 4030 3201 3201 196 2 0 ALL 1030 SQIL ES 0.046 LEN 63 0 ALL
       1040 PIN ALL
       1050 DLS S 80 60 600.2 223.1 132.6 1510 1166.8 H 14 ALL
1060 ASC S 196 457 0.816 0.856 2 0 ALL
   1060 ASC S 196 457 0.816 0.856 2 0 ALL
1070 BATTER 2 ALL
1080 ANGLE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1085 ANGLE 0 16 17 18 19 20 21
1090 ANGLE 180 22 23 24 25 26 27 28 29 30 31 32
1110 PILE 1 6 -24.375 0
1111 PILE 2 6 -20.625 0
1112 PILE 3 6 -16.875 0
1113 PILE 4 6 -13.125 0
1114 PILE 5 6 -9.375 0
1120 PILE 6 6 -5.625 0
1121 PILE 7 6 -1.875 0
1122 PILE 8 6 1.875 0
1123 PILE 9 6 5.625 0
1124 PILE 10 6 9.375 0
1130 PILE 11 6 13.125 0
                                                        6 6 -5.625 0

8 6 1.875 0

9 6 5.625 0

10 6 9.375 0

11 6 13.125 0

12 6 16.875 0

13 6 20.625 0

14 6 24.375 0
    1130 PILE
1131 PILE
1132 PILE
1133 PILE
1132 PILE 13 6 20.625 0
1133 PILE 14 6 24.375 0
1134 PILE 15 2 -20.5 0
1140 PILE 16 2 -15.0 0
1141 PILE 17 2 -7.5 0
1142 PILE 18 2 0 0
1143 PILE 19 2 7.5 0
1144 PILE 20 2 15.0 0
1150 PILE 21 2 20.5 0
1151 PILE 22 -6 -22.5 0
1152 PILE 23 -6 -18 0
1153 PILE 23 -6 -18 0
1153 PILE 24 -6 -13.5 0
1154 PILE 25 -6 -9 0
1160 PILE 26 -6 -4.5 0
1161 PILE 27 -6 0 0
1162 PILE 28 -6 4.5 0
1163 PILE 29 -6 9 0
1164 PILE 30 -6 13.5 0
1170 PILE 31 -6 18 0
1180 PILE 32 -6 22.5 0
1210 LOAD 1 842.4 0 1006.2 0 -8679.32 0
1220 LOAD 2 842.4 0 856.44 0 -8132.8 0
1230 LOAD 3 749.84 0 781.56 0 -7921.16 0
1240 LOAD 4 749.84 0 781.56 0 -7921.16 0
1240 LOAD 5 280.8 0 853.04 0 -3442.4 0
  1250 LOAD 5 280.8 0 833.04 0 -3442.4 0 1260 LOAD 6 232.96 0 625.04 0 -3006.12 0 1280 FOUT 1 2 3 4 5 6 7 PPSOUT1 1290 PFO ALL
   1300 FPL PPSOUT2
```

14

```
CORPS PROGRAM # X0080 *
VERSION NUMBER # 86/09/02-A *
                              CPGA - CASE PILE GROUP ANALYSIS PROGRAM
                              RUN DATE 01-23-98
                                                 RUN TIME 16:28:30
PLANTERS PUMP STATION FRONTAL PROTECTION TWALL
          32 PILES AND
THERE ARE
           6 LOAD CASES IN THIS RUN.
ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX
                                        -24.38
                                                     .00
WITH DIAGONAL COORDINATES
                               -6.00
                                6.00 ,
                                         24.38
                                                     .00 1
***********************************
        PILE PROPERTIES AS INPUT
                                                    C33
                                                               B66
               TN**4
                                       IN**2
  .40300E+04
                                     .19600E+03
                                                 .20000E+01
                                                             .00000E+00
THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -
   ALL
SOIL DESCRIPTIONS AS INPUT
   ES
         ESOIL
                   LENGTH
        K/IN**2
        .46000E-01
                            .63000E+02
                                         .00000E+00
THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -
   ALL
****************************
        PILE GEOMETRY AS INPUT AND/OR GENERATED
         X
FT
NUM
                                   BATTER
                                           ANGLE
                                                  LENGTH
                                                         FIXITY
         6.00
                 -24.38
                              .00
                                     2.00
                                              .00
                                                   63.00
                                                           PPPPPP
         6.00
                 -20.63
                                     2.00
                             .00
                                              .00
                                                   63.00
                                     2.00
         6.00
                 -16.88
                             .00
                                              .00
                                                   63.00
         6.00
                             .00
                                              .00
                                                   63.00
         6.00
                             .00
                                     2.00
                                              .00
                                                   63.00
                                     2.00
```

.00

63.00

6.00

APPLIED LOADS

LOAD	PX	PY	PZ	MX	MY	MZ
CASE	K	K	K	FT-K	FT-K	FT-K
1 2 3 4 5 6	842.4 842.4 749.8 749.8 280.8 233.0	•0	1006.2 856.4 781.6 659.4 833.0 625.0	.0	-8679.3 -8132.8 -7921.2 -7469.3 -3442.4 -3006.1	.0

ORIGINAL PILE GROUP STIFFNESS MATRIX

.13481E+05	.40109E-03	.83417E+04	.00000E+00	16416E+07	.00000E+00
.40109E-03	.13469E+03	80218E-03	37253E-08	57757E-01	.16163E+04
.83417E+04	80218E-03	.53521E+05	.15625E+00	64226E+06	.62500E-01
.15625E-01	37253E-08	.15625E+00	.16449E+10	20000E+01	28525E+09
16416E+07	57757E-01	64226E+06	.00000E+00	.22351E+09	.00000E+00
62500E-01	.16163E+04	.46875E-01	28525E+09	50000E+01	.41490E+09

LOAD CASE 1. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 11.

LOAD 635E 2. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 11.

LOAD CASE NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 11. NUMBER OF PILES IN TENSION = NUMBER OF FAILURES = LOAD CASE 0. NUMBER OF PILES IN TENSION = NUMBER OF FAILURES = LOAD CASE 0. NUMBER OF PILES IN TENSION = LOAD CASE NUMBER OF FAILURES = 7.

PILE CAP DISPLACEMENTS

سرر بادا

LOAD	DX	DY	DZ	RX	RY	RZ
CASE	IN	IN	IN	RAD	RAD	RAD
123456	.2380E-01	1094E-06	.1201E-01	1993E-11	2567E-03	1810E-11
	.7284E-01	1315E-06	.6037E-02	.1125E-11	.1157E-03	.1297E-10
	.1369E-01	1162E-06	.8878E-02	1930E-11	2992E-03	3420E-11
	.5415E-01	1342E-06	.3978E-02	.6380E-12	.8127E-05	.8767E-11
	6218E-01	.4105E-07	.1818E-01	5783E-11	5893E-03	2266E-10
	5864E-01	.2305E-07	.1420E-01	5041E-11	5513E-03	2064E-10

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED PILES * INDICATES PILE FAILURE # INDICATES CBF BASED ON MOMENTS DUE TO (F3*EMIN) FOR CONCRETE PILES B INDICATES BUCKLING CONTROLS

LOAD	CASE -	1									
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF	ASC KSI	AST KSI	
12345678901234567	00000000000000111	000000000000000000000000000000000000000	79999999999999999999999999999999999999	000000000000000000000000000000000000000	99999999999999333		999999999999999999999999999999999999999	.37 .37 .37 .37 .37 .37 .37 .37 .37 .37	1.2666666666666666666666666666666666666	1.222 1.2222 1.2222 1.2222 1.2222 1.2222 1.100 1.100	*************

18901223456789012	.11111111111	•••••••••••	22222333333333335555553333333333333333	•••••••••••••••••••••••••••••••••••••••	33336666666666666666666666666666666666	••••••••••••	• 700 • 770 • 5577 • 55577 • 55577 • 55577 • 55577 • 55577	.188.14333333333333333333333333333333333	11111	1.10 1.10 1.10 1.63 .633 .633 .633 .633 .633	#######
LOAD		2									
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	IN-K	ALF	CBF	ASC KSI	AST KSI	
1234567890123456789012		000000000000000000000000000000000000000	88888888888888888888888888888888888888	000000000000000000000000000000000000000			000000000000000000000000000000000000000	444444444444333333333444444444444444444	222222222222277777777888888888888888888	111111111111111111111111111111111111111	#######################################
LOAD (CASE -	3									
PILE	F1 K	F2 K	F3 K	IN-K	M2 IN-K	IN-K	ALF	CBF	ASC KSI	AST KSI	

12345678901234567890	PILE	32 LOAD	12345678901234567890123456789012
222222222222222222222222222222222222222	F1 K	.0	000000000000000000000000000000000000000
000000000000000000000000000000000000000	4 F2 K	.0	
9999999999999777777	F3 K	- 36.5	777777777777788888888555555555555555555
000000000000000000000000000000000000000	M1 IN-K	.0	000000000000000000000000000000000000000
-11.6 -11.6 -11.6 -11.6 -11.6 -11.6 -11.6 -11.6 -11.6 -11.6 -11.6 -11.6 -11.6	M2 IN-K	1.6	
000000000000000000000000000000000000000	M3 IN-K	.0	
······································	ALF	.61	77777777777777777555555666666666666666
19 11 19 19 19 19 19 19 11 11 11 11 11 1	CBF A	.45 .	.45 .45 .45 .45 .45
17 1. 17 1. 17 1. 17 1.	SC A	67 .	222222222222222222222222222222222222222
00000000000000000000000000000000000000	ST	63	11111111111111000000066666666666666666

,~

	•										
123456789012 222223333	222222222222222222222222222222222222222	000000000000000000000000000000000000000	57.7 -42.1 -42.1 -42.1 -42.1 -42.1 -42.1 -42.1 -42.1	.00000000000000000000000000000000000000	112.55555555555555555555555555555555555	•••••••••••	.72 .70 .70 .70 .70 .70 .70 .70 .70	94444444444444444444444444444444444444	1.18 .67 .67 .67 .67 .67 .67	1.08 .57 .57 .57 .57 .57 .57 .57	#
LOAD C	ASE -	5									
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF	ASC KSI	AST KSI	
12345678901234567890123456789012		000000000000000000000000000000000000000	22222222222222333333333388888888888888	000000000000000000000000000000000000000	55555555555555555555555555555555555555	000000000000000000000000000000000000000	999999999999993333333666666666666666666	177777777777777555555500000000000000000	888888888888811111111166666666666666666	555555555555599999995555555555555555555	#######################################
LOAD CA	ASE -	6									
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF	ASC KSI	AST KSI	
1 (3	:0	45.9 45.9	:0	19.0	:0	.57 .57			1:01	#

32		000000000000000000000000000000000000000	4555	000000000000000000000000000000000000000	19.000000000011111111111111111111111111	000000000000000000000000000000000000000	55555555555555555555555555555555555555	133333333333333333333333333333333333333	111111111111111111111111111111111111111	1.0011111111111111111111111111111111111	****
****	****	****	*****	*****	*****	***	****	****	****	*****	*

PILE FORCES IN GLOBAL GEOMETRY

LOAD CA	SE - 1					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
12345678901234567 111111111111111111111111111111111111	5555555555555555000 555555555555555555	000000000000000000000000000000000000000	99999999999999999999999999999999999999	000000000000000000000000000000000000000	000000000000000000000000000000000000000	

18901223456789012 22223333	22222444444444444444444444444444444444		50.2 50.2 50.2 -30.7 -30.7 -30.7 -30.7 -30.7 -30.7 -30.7 -30.7			•••••••••••
LOAD CA						
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1234567890123456789012	88888888888888888888888888888888888888	000000000000000000000000000000000000000	999999999999999222222277777777777777777	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
LOAD CAS						
PILE	PX K	PY K	PZ K	IN-K	IN-K	N-K

1234567890123456789012	111111111111112222222333333333333333333	000000000000000000000000000000000000000	33333333333333333333333333333333333333	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••	000000000000000000000000000000000000000	
LOAD	CASE - 4						
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K	
12345678901234567890	66666666666666666666666666666666666666	000000000000000000000000000000000000000	888888888888885555555 5555555555555555	000000000000000000000000000000000000000	•••••••••••••••••••••••		

•

.

1223456789012 223333333333333333333333333333333333	26.0 19.0 19.0 19.0 19.0 19.0 19.0	.00000000000000000000000000000000000000	51.55 -37.55 -37.55 -37.55 -37.55 -37.55 -37.55 -37.55 -37.55	.00000000000000000000000000000000000000	.00	.00
LOAD CAS	SE - 5					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
12345678901234567890123456789012	44444444444444444444444444444444444444	000000000000000000000000000000000000000	55555555555555222222223333333333333333	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
LOAD CAS						
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
12	20.3	:0	41.2 41.2	:0	:0	:0

_

•			•			
345678901234567890123456789012	333333333333333333333333333333333333333	000000000000000000000000000000000000000	22222222222200000033333333333333333333	000000000000000000000000000000000000000	000000000000000000000000000000000000000	

MA+ LOAD: : 79.2 K

C (LOAD CASE - 1)

1-26-98

10

= 42.1" T (GAD (ACE 4)

ALLOWABLES = 80° C - 79.2 OK 60° T = 42.1 OK

2.381 50.98 FEET SEVER 5.50.4AF 2.382 50.98 FEET SEVER 5.50.4AF 2.383 50.98 FEET SEVER 5.50.4AF 2.383 50.98 FEET SEVER 5.50.4AF 2.383 50.98 FEET SEVER 5.50.4AF 2.383 50.98 FEET SEVER 5.50.4AF 2.383 50.98 FEET SEVER 5.50.4AF JN 3004

Mattonal "Brand

(-

Addition

DESIGN OF T-WALL.

CROSS- SECTION

SCALE 1 = 5:0

WATER PR ON F/S

SWL 9.5 P = 62.5 × 19.5 = 1219 PSF

HWL 11.5 P = 62.5 × 21.5 = 1344 PSF

LWL 0.0 P = 62.5 × 10 = 625 PSF.

Soil Pr. @ REST ON P/S

= 0.55 × 120 × 6' = 396 PSF

FLOOD SIDE

2

ON T. WALL. LOADS B

- clockwis€ + Anticlockwise

<u> </u>					1	
CASE NO	DESCRIPTION	+ Fy	+FZ KIPS	- Ft	Z Ft	MOMENT MX.
	DEAD LOAD	1	1	<u> </u>	 	
1	Stem: 1.0 x 19.0 x. 15		2.85	2.0		+ 5.70
	1/2×1.5×19×15		2.14	3.60		+ 6.42 5
	BASE: 12 x 2.5 x 1/5		4.50	_	_	
	TOTAL		9.49	<u> </u>		+12.12 -
2	WATER & SOIL FORCES. F/S. S.W. L.EL 9.50 al WT. OF WATER ON F/S					
	7.5' × 17 × · 0625	,	7.97	-2,25	-	-17.93
	4) WT, OF SOIL ON F/S.	_	_	_		_
	c) LATERAL WATER PR.					₹.
	た×1.219 ×19.5 @ EL3.50	11.89			16.5	+ 77,29
	z(a+b+c)	11.89	7.97			+ 59,36
3	SOIL FORCES P/S.					
	a) 2×3.5×.120 .28		0.84	5.0		+ 4.2-5
	b) Y2×128 ×3.5×12		0.06	3.91		+ 0.23 4
	c) LATERAL Soil 3.5					
	·396 × 6.	-1.2			2.0	- 3.6 KFF
	3 a+6+c	-1-2	0.90			+0.83

	M	S PLANTERS F	2MMP	STA					İ
						-clocks	wise Clockwise		1
	LO	DESCRIPTION	+ = y	+FZ		克 ft	_	IK.	+
NO SHEETS FIRE LOSS SOUNHER ON SHEETS FIRE LOSS SOUNHER ON SHEETS FIRE LOSS SOUNHER ON SHEETS FIRE LOSS SOUNHER SOUNHE	4	UPLIFT FORCES W.S.EL 9.5 a) IMPERVIOUS SHEETPILE 1.219 × 4.25 L) PERVIOUS SHEETPILE		- 5.18	3.87		+ 20,05		
13-782 42-328 42-328 42-339 42-399 42-399 42-399 42-399		1/2 × 1/219 × 12.0		-7.32	2.0		+ 14,68	†	
Mational Brand		į							
*	5	WATER + SOIL FORCES F/S. HW-LEL 11.50							
		a) Wt. of water on Fls							
(-	7.5' × 19' × · 0625		8.91	-2.25		20.05		(
		h) soil	_		-	_			
		C) LATERAL WATER PR							
		1/2 × 1.344 × 21.5	14.45			7,17	103,6		
	6	UPLIET EMPLES WISE	14.45	8.91			123,65	3	
		UPLIFT FORCES WISEL 13.5 a) IMPERVIOUS GHEET PILE							
		b) PERVIOUS SHEETPILE		-5.71	3.87		- 22.10	7	
		12 X 1/344 x 12.0		-8.06	2,0		- 16.12	3	
(_							- , 2		

SUSPIEES FILER SOUNHERS SOUNHERS SPEECE SEE SEES SOUNHERS SPEECE SEES SOUNHERS SOUNHERS SOUNHERS SOUNHERS SOUNHERS SOUNHERS SOUNHERS SAUNHERS SOUNH
13.782 42.387 42.388 42.398
×

LASE	DESCRIPTION	+Fu	+F3	- A	- ft	MOMENT 1
CASO		,,,	113 _K	7	-	mx
7	WIND FORCE FROM F/s					
	50 P8F X 11.5	.58	_		15.75	9.06 1
8	WIND FORCE FROM P/S					
	50 P8F × 15.5' DEL 3.75	.78	_		13.75	- 10.73 IK
9	WATER & SOIL FORCES F/S					
1	W.S.EL O.O. LWL	1				
;	a) WT. OF WATER ON F/s					
!	7,5'x7,5'x,0625		+3.52	-2.25		- 7,92 }
;	b) WT. OF SOIL ON F/3	-	_	_	-	1
	y LATERAL WATER PR			! ! !		
	1/2×.625×10.0 @ EL-647	3.13			3,33	10.42 9
-	9 (a+b+c)	3,13	3,52			2.50
10	UPLIFT FORCES					
	a) Imp. sheet piles					
	1625 × 4.25	,	-2.66	3.87		-10.28
	b) Peru, sheet piles					
	1/2×,625 × 12.0		-3,75	2.0		-7.5
					1	
	·					

- clockwise + Anticlock

D.		 	T	
омв 10.	DESCRIPTION	+ Fy	+ Fz	M×XM
1	Static Water pr with water at			
	SWL. No wind, Imp. sheet pile.			
	plus soil on p/s.			
	LOAD CASE NO!		9.49	+ 12.12
	2(a+b+c)	+11.89	7.97	+ 59.36
	" 3(a+b+c)	-1.2	0.90	+0,83
	1 4 a)		- 5.18	+20,05
1				
	TOTAL PER LFF TOTAL PER 40'		13.18	9Z ·36
		427,6	527.2	3694.4
2	Static Water pr. With water at.			
	SWL. No wind, peru. Sheet piles			
	with soil on P/s.			
	LOAD CASE NO.		9.49	+12.12
	2 (a+b+c)	+11.89	7.97	+ 59.36_
	3(a+b+c 4(b)	-1.2	a .90	+0.83
	" 4(b)		-7,32	+14.68
	T . 1 0 157			
			11.04	
	TOTAL PER 40:0"	427,6	441.6	3479.6

Netional Brand

 	**************************************	4		
LD.	DESCRIPTION	+ Fy	+ Fz +	MOMENT
3	Static Water pr with Water at El			
	11.5, No wind Imp. sheet piles			
	plus soil on P/s.			
	LOAD CASE NO1.		9.49	+12.12
	" 5(a+b+c)	14,45	8,91	+123,65
	" 3(atb+c)	-1,2	6,90	+ 0.83
	6 a		-5.71	- 22.10_
	TOTAL PER LFT 75% -> TOTAL PER 40'x.75	13.25		114.50
	73/1 7 10 10 10 17/3	397.5	407.7	3,435.0
4	_Static Water pr. with water at_			
	- EL 11.5, No wind, Pew. Sheet piles			·
	plus soil on P/s			
	LOAD CASE NO		9.49	+12:12
	· 5 (a+b+c)	14,45	8,91	+123.65_
	· 3 (a+b+c)	-1,2	4.90	+0.83
	· 66			-16/12
			_	
	TOTAL PER LFT	13.25	11.24	120.48
	75% -> TOTAL PER 40-0"X.	3975	337.2	3614,4
	·			

An an inclusion of the control of th

Nelloral Brat

LD.	DESCRIPTION	+ Fy	+ = +	THEMOM
5	Static Water pr with water at			
	LWL. NO Wind imp sheet piles	1		
	W/ soil on P/s.			
	LOAD CASE 1		9.49	+ 12.12
	" 9(a <u>+b+c)</u>	3.13	3.52	2,50
	" 3 (a+b+c)	-1.2	0.90	+0183
	" <u>10</u> a		-2,5	-10:0_
	TOTAL PER LFT	1.03	1 11 4 1	
	Total Per 40'		11.41	,
6	Static Water pr. with water @			
	LWL NO wind peru. sheet piles			
	_w/ soil on P/s.			
	LOAD CASE 1		9,49	+12.12
	" 9/a+b+g	3,13	3,52	2,50 _
	" 3(atbtc)	-1:2	0.90	+0.83
	10 <u>6</u>		- 3:75	-7,50
	TOTAL PER LFT	1, 93	10.16	7.95
	TOTAL PER 40%	77.2	406.4	
		· • • •	·	J. 2 ,
ı	1		l	

11 for the control of

Markonal "Branc

LD. + 12 + COMB DESCRIPTION + Fy MOMENT 10. MXX .7 Static Water pr with water a LWL Wind from \$15, per Sheet piles soil un P/s. 10.16 1 7.95 LOAD COMB 6 1.93 LOAD CASE 7 0.58 9.06 2.51 PER LFF 10.16 17.01 TOTAL PER 40' 100.4 427.6 612 8 Static Water pr. with water @ LWL which from P/s, Imp sheet piles soil on 1/s LOAD COMB 5 1.93 11.41 5.45 LOAD CASE 8 -0.78 -10,73 TOTAL PER LET 11.41 1.15 - 5.28 456.40 - 211.20 TOTAL PER 40-0" 46.0

11.70 STATE OF THE

THE MINISTRA STATE

Í

SWMMARY OF PILE LOADS.

REF. FILE PPSTW 10

DT MAR. 30 - 9B (11:22:34)

	DESCRIPTION	MAX. COMP	MAX. TGNS,	CBF	MAX. COMP STR	MAX Tens, Sta
	Floodside Piles	33.8	- 51.8	0.65	1: 04	_
2	MIDDLE ROW	38-9 B	-0.6	3	1.06	
3	PROTECTED SIDE.	71.7		6.25 4	1.24	_

Max. Axial Compression = 71.7. = 36.0 To-

Vertical component = 32.2 Tons.

Pile Ty Regd -65.0 Using Fos Cut. off -9.25 -2.0

Per Soil Report (Browniary Eusts)
Engg.

length of pile = (55-9") 1.12 62-6"

13 702 SOUGHELS FIFE CASE SOUNH C232 IOO SEEE SFEEE CASE SOUNH C232 IOO SEEE SFEEE CASE SOUNH C232 IOO RECYCLED WHITE SOUNH C232 IOO RECYCLED WHITE SOUNH C232 IOO RECYCLED WHITE SOUNH C233 IOO RECYCLED WHITE SOUNH

13-Haltonal Brand 42-42-

PRELIMINARY

U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

REACH 3

ALLOWABLE PILE LOAD CAPACITIES SQUARE PRECAST, PRESTRESSED CONCRETE PILES TOP OF PILE AND DREDGE DEPTH AT EL -10.5

SIZE	PILE TIP ELEVATION IN FEET NGVD	ALLOWABLE PILE LOAD CAPACITY IN TONS FACTOR OF SAFETY ≈ 2		
	NOVE	COMPRESSION	TENSION	
12-In. Square	-39	12	9	
	-49	16	12	
	-59	23	16	
	-69	30	22	
14-In. Square	-39	15	11	
	-49	20	15	
	-59	27	20	
	-69	36	27	
16-In. Square	-39	17	12 '	
	-49	23	16	
	-59	31	23	
	-69	41	30	

These allowable pile load capacities are suitable for piles supporting new T-wall at Units 1 through 5 of Planters Pump Station.

PRELIMINARY

U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

MODULUS OF HORIZONTAL SUBGRADE REACTION REACH 3

ELEVATION IN FEET	$\frac{K_k \times B}{DC}$
10 to 0	169
0 to -19	155
-19 to -40	167
-40 to -45	178
-45 to -50	222
-56 to -67	311

Where:

١.

K_h = Modulus of horizontal subgrade reaction (lbs/in.³)

B = Diameter of pile (inches)

C = Reduction factor for cyclic loading

C = 0.5 for cyclic loading C = 1.0 for initial loading PRELIMINARY

D = Reduction factor for effect of group action

D	PILE SPACING IN DIRECTION OF LOADING
1.0	8B
0.85	7B
0.7	6B
0.55	5B
0.40	4B
0.25	3B

T-WALL LOADING CASES:

Cose I: Static water pressure to swin, no wind, impervious start pile out off (100% for us)

State water prossure to suc, nowird, persons steet pile and off Case I:

FLOUDWALL

iau III: State motopressure to SWL+Z', no w., i, impersion: start p. 12

Static water pressure to sux+z', no wind, pervious sheet pile Case TV:

(75% forces)

Case I: water at low waterland, no wind, (100% forces)

Woder at low water level, wind from flood site (75%) Case II.

Pile supported thes for HP 12993 - Crk8 specing) F-Wall Analysis safety Factor = 1.28. Summation of Forces (using Factored Shear Strengths) Strata Anista - Lahesson PSI Degrees hverage Botton Caterion PSI Fristian Cohecity PSF Fait-enc Sind Backfill +201 Res. 57.749 Survece 17/t-1. Clay, Sitty Clay 88-41 -150 -350 5357 ---Organic Change 8223 73245 273-70426 -273 94392-1-11462 14331 clan 20 103-400 6-tobat Stability 3/2 312 500 Failure 600 Sammation of F.vcio Sucface Dr.W.

Notes: 1) Analysis indicates no imbalanced force beneath the base of the proposed I wall at EL=9.0 to maintain stability with respect to a factor of safety of 1.28. A small embalanced load is indicated is considered acceptably afactor of safety of 4.0 against piping using the Harr Method

3) I wall pressures must be carried by a botter pile foundation. +) Reach 3 50:1 parameters were used for these analyses. The tocation of Stratum 3 is based on Boring Albert -7.

Store Stubility and T wall Amaly soo Units 6 through 9 Plantens Pump Station US Army Corps of Engineers East El Harrier Comal Hurricant Protection Project Je ferson Painel, Ly

4.370

1,30

53601

Wolf PSF

0@ET-9.0

Net Fra

, 942 @ E1-4.0

Q E1 9.5

Last Modified: 03-30-98 at 11:22:34

- PO PLANTERS FUMP STATION T WALL
- 200 PROF 4074 3201 3201 196 2 0 ALL
- 300 SOIL ES 0.039 LEN 60 0 ALL
- 320 PIN ALL
- 410 DLS S 72 54 600 223 132 1510 1166 H 14 ALL
- 430 ASC S 196 457 .816 .856 1.75 O ALL
- 440 BAT 2 ALL
- 450 ANG 270 1 2 3 4 5
- 455 ANG 90 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
- 460 PILE 1 -17.5 -4.5 0 6 -17.5 1.0 0 11 -18.0 4.5 0
- 465 ROW X 5 1 4 AT 8.75
- 480 ROW X 5 6 4 AT 8.75
- .485 ROW X 10 11 9 AT 4.0
- 500 LOA 1 0 427.6 527.2 3694.4 0 0
- 510 LOA 2 0 427.6 441.6 3479.6 0 0
- 520 LOA 3 0 397.5 407.7 3435 0 0
- 530 LOA 4 0 397.5 337.2 3614.4 0 0
- 540 LOA 5 0 77.2 456.4 218 0 0
- 550 LOA 6 0 77.2 406.4 318 0 0
- 560 LOA 7 0 100.4 456.4 612 0 0
- 570 LOA 8 0 46 456.4 -211.2 0 0
- 610 FOU 1 2 3 4 5 6 7 PPSTW10
- 620 PFO ALL
- 630 PPL N

* CORPS PROGRAM # X0080 *

* CPGA - CASE FILE GROUP ANALYSIS PROGRAM

* VERSION NUMBER # 86/09/02-A *

RUN DATE 03-30-98 RUN TIME 11:22:57

PLANTERS PUMP STATION T WALL

THERE ARE 20 FILES AND

8 LOAD CASES IN THIS RUN.

ALL FILE COORDINATES ARE CONTAINED WITHIN A BOX

WITH DIAGONAL COORDINATES = $\begin{pmatrix} 18.00 & -4.50 & .00 \end{pmatrix}$

FILE PROPERTIES AS INPUT

Ë I 1 12 Θ 033 £55 KS1 IN**4 IN**4 1N**2 .40740E+04 .32010E+04 .32010E+04 .19600E+03 .20000E+01 .00000E+65

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

ES ES0IL LENGTH L LU
K/IN**2 FT FT
.39000E-01 L .60000E+02 .00000E+00

THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -

ÄLL

PILE GEOMETRY AS INPUT AND/OR GENERATED

MUM	X F I	Y F ^a T	Z ET	BATTER	ANGLE	LENGTH ET	FIXITY
			• •			• •	
1	-17.50	-4.50	.00	2.00	270.00	60.00	F-
2	-8.75	-4.50	.00	2.00	270.00	60,00	F
3	.00	-4.50	.00	2.00	270.00	60.00	E.
4	8.75	-4.50	.00	2.00	270.00	50.00	F
5	17.50	-4.50	.00	2.00	270.00	60.00	F-'
5	-17.50	1.00	.00	2.00	90.00	60.00	F'
7	-8.75	1.00	.00	2.00	90.00	60.00	F.
8	.00	1.00	. 00	2.00	90.00	60.00	F'
9	8.75	1.00	.00	2.00	90.00	60.00	F.
10	17.50	1.00	.00	2.00	90.00	60.00	F·
11	-18.00	4.50	.00	2.00	90.00	60.00	F-
12	-14.00	4.50	. 00	2.00	90.00	60.00	۴
13	-10.00	4.50	.00	2.00	90.00	60.00	P
14	-6.00	4.50	.00	2.00	90.00	50.00	P
15	-2.00	4.50	.00	2.00	90.00	60.00	F
1 &	2.00	4.50	. 00	2.00	90.00	60.00	F∙
17	6.00	4.50	.00	2.00	90.00	60.00	F
18	10.00	4.50	.00	2.00	90.00	40.00	F
19	14.00	4.50	.00	2.00	90.00	60.00	P
20	18.00	4.50	. 00	2.00	90.00	60.00	F
							•
						1200.00	

APPLIED LOADS

LOAD	FX	FΥ	PΖ	МX	MY	MZ
CASE	K	K	K	FI-K	FT-K	FT-K
1	. 0	427.6	527.2	3694.4	.0	.0
22	.0	427.6	441.6	3479.6	.0	.0
3	.0	397.5	407.7	3435.0	.0	.0
4	.0	397.5	337.2	3614.4	.0	.0
5	.0	77.2	456.4	218.0	.0	.0
င်	.0	77.2	406.4	318.0	.0	.0
7	.0	100.4	456.4	612.0	.0	.0
님	.0	45.0	456.4	-211.2	.0	.0

URIGINAL PILE GROUP STIFFNESS MATRIX

.74583E+02 -.31678E-03 -.52794E-03 -.26082E-01 .18626E-08 -.12306E+04

	-	_		_	-	•	•	~
۴	ä	q	6	2				3

31678E-03 52794E-03 26082E-01 .93132E-09 12306E+04	.88573E+04 .77059E+06 .46875E-01	.88573E+04 .35504E+05 .58582E+06 .93750E-01 15625E-01	.77059E+06
LOAD CASE	1. NUMBER O	FAILURES =	O. NUMBER OF PILES IN TENSION = 5.
LOAD CASE	2. NUMBER O	FAILURES =	O. NUMBER OF PILES IN TENSION = 5.
LOAD CASE	3. NUMBER O	FAILURES =	O. NUMBER OF PILES IN TENSION = 5.
LOAD CASE	4. NUMBER OF	FAILURES =	O. NUMBER OF PILES IN TENSION = 10.
LUAD CASE	5. NUMBER O	FAILURES =	O. NUMBER OF PILES IN TENSION = O.
LOAD CASE	6. NUMBER O	FAILURES =	O. NUMBER OF PILES IN TENSION = O.
LOAD CASE	7. NUMBER O	FAILURES =	O. NUMBER OF PILES IN TENSION = 0.
LOAD CASE	8. NUMBER O	FAILURES =	O. NUMBER OF PILES IN TENSION = O.

FILE CAP DISPLACEMENTS

LOAD	DX	PY	DZ	RX	RY	RZ
CASE	IN	N1	IN	RAD	RAD	RAD
1 2 3 4 5 6	.2160E-06 .2062E-06 .1919E-06 .1847E-06 .7716E-07 .7197E-07	2307E-01 .6098E-02 1392E-01 2519E-01 .7004E-02	.8683E-02 .3612E-02 .4667E-02 .3027E-02 .1332E-01 .1196E-01	.7225E-03 .4427E-03 .6235E-03 .7730E-03 1341E-03	7018E-11 6075E-11 6294E-11 6680E-11 8213E-12 1007E-11	6223E-11 6814E-11 6302E-11 6709E-11 .1032E-11 .7435E-12
7	.8626E-07	1078E-01	.1399E-01	.9453E-04	1753E-11	.5636E-12
8	.6517E-07	.2095E-01	.1314E-01	3342E-03	.1033E-12	

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED FILES

^{*} INDICATES FILE FAILURE

[#] INDICATES CBF BASED ON MOMENTS DUE TO (F3*EMIN) FOR CONCRETE PILES

8 INDICATES BUCKLING CONTROLS

LOAD C	ASE -	1 .								
PILE	F-1	F2	F3	M1	M2	M3 ALF	CBF	ASC	AST	
	Ł.	ĸ	K	IN-K	1N-K	IN-K		KSI	KSI	
1	- 1	.0	-37.3	.0	-7.9	.0 .69	.47	. 68	2 1	
2	- 1	.0	-37.3	. O	-7.9	.0 .69		- 58	.61 .61	
3	- 1	.0	-37.3	.0	-7.9	.0 .69		.68	.61	
4	. 1	.0	-37.3	.0	-7.9	.0 .69		.68	.61	
5	- 1	.0	-37.3	.0	-7.9	.0 .69		. 68	.61	
5	1	.0	11.5	.0	6.5	.0 .16		.93	.85	44
7	1	.0	11.5	.0	5.5	.0 .16		.93	.86	
ន	1	.0	11.5	.0	5.5	.0 .16		.93	.86	
4	1	. 0	11.5	.0	5.5	.0 .16		.93	.86	
10	1	.0	11.5	.0	5.5	.0 .16		.93	.86	
11	2	.0	71.7	.0	9.6	.0 1.00		1.24		
12	2	• 0	71.7	.0	9.6	.0 1.00		1.24		
13	2	. 0	71.7	.0	9.6	.0 1.00		1.24		
14	2	.0	71.7	.0	9.6	.0 1.00		1.24		
15	2	.0	71.7	.0	9.6	.0 1.00		1.24		
16	2	. O	71.7	.0	9.6	.0 1.00		1.24		
17	2	.0	71.7	.0	9.6	.0 1.00		1.24		
18	2	.0	71.7	.0	9.6	.0 1.00		1.24		
19	2	. 0	71.7	. O	9.6	.0 1.00		1.24		
20	2	.0	71.7	.0	9.6	.0 1.00		1.24		
					_		•	* * * "T	1.10	77
LOAD C	ASE -	2								
PILE	Fi	F2	F3	M1	M2	M3 ALF	CBF	ASC	AST	
	K	K	K	IN-K	1N - K	IN-K	CLI	KSI	KSI	
1	. 0	Δ.	4: 7	.5.	-5	_				
2	.0	.0	-46.3 -46.3	.0	8	.0 .86		.62	.58	
3	.0	.0 .0	-46.3	.0	8	.0 .86		-62	.58	
4	.0	.0	-46.3	.0	8	.0 .86		.62	.58	
5	.0	.0	-46.3	.0	8	.0 .86		- 62	.58	
<u>.</u>	.0	.0	23.8	.0	8	.0 .86	.56	62	.58	
7	.0	.0	23.8	.0	3	.0 .33		. 78	.94	
8	.0	.0	23.8	.0	3 - 3	.0 .33		.98	94	
9	.0	.0	23.8	.0	3	.0 .33		. 98	. 94	
10	.0	.0	23.8	.0	3	.0 .33		. 98	- 74	
11	.0	. Ú	20.0 60.6	.0.	3	.0 .33		.98	. 94	
12	.0	.0	60.6	. O	1.6 1.5	.0 .84		1.17		
13	.0	.0	60.6	.0	1.5	.0 .84		1.17		
14	.0	.0	50.5	.0	1.6	.0 .84		1.17		
- •		• •	G-0-1-0	• •	4 • Q	.0 .84	• 4.4	1.17	1.12	##

									Page	30798 1 5
15	• O	.0	60.6	. 0	1.6	.0	. 84	22	1.17	1.12
15	. 0	. 0	60.6	• 0	1.6	.0	.84			1.12
1.7	. Q	.0	60.6	. 0	1.6	.0	.84			$\frac{1.12}{1.12}$
18	. 0	. ()	60.6	.0	1.0	. 0	.84			1.12
15	. O	.0	50.5	. O	1.5	.0	.84			1.12
20	.0	.0	60.6	.0	1.6	.0	.84			1.12
LOAD (CASE -	3								
FILE	F1	F.2	F3	M1	M2	МЗ	ALF	CDC	600	44.5.3
	K	K	ĸ	IN-K	IN-K	1N-K	HLI	CBF	ASC KSI	AS1 KS1
1	. 1	.0	-43.7	.0	-5.8	.0	.81	5 0	. g.*	1= 00
2	. 1	.0	-43.7	.0	-5.8	.0	.81	• 54 = 4	-65	- 58
3	. 1	.0	-43.7	.0	-5.8	.0	.81	.54	. 65	.58
4	. 1	. 0	-43.7	.0	-5.8	.0		. 54	- 65	.58
5	. 1	.0	-43.7	.0	-5.8	.0	.81	.54	- 65	.58
ò	1	.0	10.3	.0	4.1		. 81	.54	. 65	.58
Ī.	1	.0	10.3	.0	4.1	.0	. 14	.21	.92	.86
8	1	. 0	10.3	.0	4.1	. O	. 14	. 21	.92	.86
9	1	.0	10.3	.0	4.1	.0	- 14	.21	. 92	-85
10	1	.0	10.3	.0	4.1	.0	. 14	-21	. 92	.86
11	1	. 0	62.3	.0	6.8	.0	. 14	.21	.92	.85
12	1	. 0	52.3	, o	6.8	.0	.86		1.19	
13	1	. 0	62.3	Õ	6.8	. 0	- 86		1.19	
14	1	.0	62.3	.0	5.8	.0	. 86		1.19	
15	1	.0	62.3	.0	5.8 5.8	.0	-85		1.19	
16	1	.0	62.3	.0	6.8	.0	.86		1.19	
1.7	1	.0	62.3	.ŏ	6.8	.0	.85		1.19	
18	1	.0	62.3	.0	6.8	.0	-86		1.19	
19	1	.0	62.3	.0	6.8	.0	.85		1.19	
20	1	.0	62.3	.0	6.8	. O . O	.86 .85		1.19 1.19	
LÜAD (CASE -	4								
PILE	Fi	F2	F3	M1	Auto to					
	ĸ	ĸ			M2	MB	ALF	CBF	ASC	AST
		15.	r.,	1 N-K	IN-K	IN-K			KSI	KSI
1	. 1	, O	-51.8	.0	-9.1	.0	. 96	. 65	-61	.53
2	. 1	.0	-51.8	.0	-9.1	.0	. 96	.65	.61	.53
క	. 1	.0	-51.8	.0	-9.1	.0	. 9a	- 65	.61	.53
4	. 1	.0	-51.8	.0	-9.1	.0	.96	.65	.61	.53
5	. 1	.0	-51.8	.0	-9.1	.0	. 96	.65	.61	.53
6	· 1	. O	6	.0	6.4	.0	.01	.02	.87	.80
7	1	.0	Ġ	.0	6.4	.0	.01	.02	.87	.80
8	1	.0	6	.0	5.4	.0	.01	.02	.87	
9	i	.0	6	. 0	6.4	.0	.01	.02	.87	.80 en
10	1	.0	6	.0	5.4	.0	.01	.02	.87	.80
					•	• •	• W L	4 OZ	.0/	.80

	į									rage	6	
· · r	1 1	2	.0	63.8	.0	Y. S		C) C)	<i>-</i>	4 45.2		
•	12	2	.0	63.8	.0	7.8 9.8	.0	.89			1.12	
	13	2	.0	63.8	.0	7.8 7.8	.0	. 89			1.12	
	14	2	• • • • • • • • • • • • • • • • • • •	63.8			.0	-89			1.12	
	15	2			.0	9.8	.0	. 89			1.12	
	16	2	. 0	63.8	.0	9.8	- 0	- 89			1.12	
	17	2 2	. O	63.8	. 0	9.8	.0	. 89			1.12	
			.0	63.8	.0	9.8	.0	. 89			1.12	
	18	2	. 0	63.8	.0	9.8	• 0	. 89			1.12	
	19	2	.0	63.8	.0	9.8	. O	. 89			1.12	
	20	+,2	. 0	చ్∙8	.0	9.8	.0	. 89	. 25	1.20	1.12	#
	LOAD	CASE -	5									
	PILE	F1	F2	F3	M1	M2:	MB	ALF	CBF	ASC	AST	
		K	K	K	IN-K	IN-K	IN-K	• • •	O.L.	KSI	KSI	
	1	1	.0	33 . 8	.0	3.6	.0	. 47	.15	1.04	. 98	#:
	2	1	. O	33.8	.0	J.5	.0	. 47		1.04	.98	
	3	1	.0	33.8	. 0	3.6	.0	. 47		1.04	.98	
	4	1	. 0	33.8	. Ö	3.6	.0	. 47		1.04	.98	
	5	1	. 0	33.8	.0	3.6	.0	. 47		1.04	. 98	
	5	• 0	. O	30.2	.0	2	.0	.42		1.01	.97	
	7	. 0	.0	30.2	.0	2	.0	.42		1.01	.97	
_	8	.0	.0	30.2	.0	2	.ŏ	. 42		1.01	.97	
	Ŷ	.0	.0	30.2	.0	2	.0	. 42		1.01	.97	
	10	.0	.0	30.2	.0	2	.0	42		1.01		
	11	.0	.ō	19.0	.0	8	.0	. 26			. 97	
	12	.0	.0	19.0	.0	8	.0	. 26	.19		.91	
	13	.0	.0	19.0	.0	8			.19	.95	.91	
	14	.0	.0	19.0	.0	~.8	.0	. 26	.19	. 95	-91	
	15	.0	.0	19.0	.0	8	.0	.26	.19	- 95	- 91	
	16	.0	.0	19.0	.0		.0	. 26	.19	. 95	. 91	
	17	.0	.0			8	.0	. 26	. 19	. 95	- 51	
	18	.0		19.0	.0	8	. 0	. 26	.19	. 95	.91	
	19	.0	.0	19.0 19.0	.0	8	.0	. 26	.19	. 95	.91	
			.0		.0	8	.0	. 26	. 19	. 95	.91	
	20	.0	.0	19.0	.0	, S	.0	.26	.19	. 95	. 91	#
	LOAD	UASE -	6									
	FILE	Fi	F2	F3	M1	M2	MB	ALF	CBF	ASC	AST	
		K	K	K	IN-K	IN-K	IN-K			KSI	KSI	
	1	.0	.0	28.2	.0	1.9	.0	.39	.17	1.00	. 96	#
	2	.0	.0	28.2	.0	1.9	.0	.39		1.00	. 96	
	ٽ	.0	. O	28.2	.0	1.9	.0	.39		1.00	.96	
	4	. O	.0	28.2	.0	1.9	.0	.39		1.00	.96	
	5	.0	, O	28.2	.0	1.9	.0	.39		1.00	.96	
	6	. 0	.0	24.1	.0	.8	.0			.98	.94	
									- 			••

D: \PILE	EXEPSTW1	U							03/. Page	30/98 : 7
7	0	43	25.4.4	_	•				. 1.40	
8	.0 .0	. 0	24.1	.0	.8	.0	.33	.18	. 98	. 44
9		.0	24.1	.0	.8	. Ú	.33	.18		. 94
10	.0	.0	24.1	. 0	.8	.0	.33	.18		.94
	. O	• O	24.1	.0	. 8	.0	.33	.18		. 94
11	. 0	. 0	19.3	.0	• 5	. O	. 27	. 19		.91
12	.0	. O	19.3	.0	. 6	. 0	. 27	.19		.91
13	• 0	• 0	19.3	.0	. 6	.0	. 27	.19		.91
14	.0	-0	19.3	.0	. &	. O	.27	. 19		.91
15	• 0	.0	19.3	.0	. 5	.0	. 27	.19	95	- 91
15	. 0	. O	19.3	.0	. 5	.0	.27	- 19	.96	- 71 - 91
17	. 0	.0	19.3	.0	.6	.0	.27	19	.96	
18	. 0	.0	19.3	.0	.6	.0	.27	.19	. 96	. 91
19	.0	.0	19.3	.0	.6	.0	.27	.19		-91
20	.0	. 0	19.3	.0	. 6	.0	.27	.19	.96 .95	.91 .91
LOAD (CASE -	,								
FILE	F1	F2	F3	M1	M2	54.7°				
	K	K	K	IN-K	IN-K	MJ IN-K	ALF	CBF	ASC KSI	AST KSI
1	.0	.0	28.3	.0	1 - 7		~ ~			
2	.0	.0	28.3	.0	-1.3	.0	. 39		1.00	- 96
3	.0	.0	28.3	.0	-1.3	• 0	. 39		1.00	. 95
4	.0	.0	28.3	.0	-1.3	. O	.39		1.00	- 96
5	.0	.0	28.3		-1.3	.0	- 39		1.00	<u>,</u> 76
ద	1	.0	19.3	.0	-1.3	.0	. 39	. 17	1.00	•,
ž	1	.0		.0	3.8	.0	. 27	. 19	.96	٣ کے •
8	1		19.3	.0	3.8	.0	- 27	- 19	.96	.71
ن اخ		.0	19.3	.0	3.8	. O	.27	.19	- 96	.91
10	1	.0	19.3	.0	3.8	.0	. 27	.19	- 96	.91
	1	.0	19.3	.0	3.8	.0	. 27	.19	.96	91
1.1	i	. 0	27.2	.0	4.2	.0	.38		1.00	.95
12	1	.0	27.2	. 0	4.2	. O	.38		1.00	.95
13	1	.0	27.2	.0	4.2	.0	.38		1.00	95
14	1	.0	27.2	.0	4.2	.0	.38		1.00	. 95
15	1	.0	27.2	.0	4.2	.0	.38		1.00	.75
16	1	.0	27.2	.0	4.2	.0	.38		1.00	
1.7	1	. 0	27.2	.0	4.2	.0				.95
18	- <u>.</u> 1	.0	27.2	.0	4.2		.38		1.00	. 95
19	1	.0	27.2	.0	4.2	.0	.38		1.00	.95 🗄
20	1	.0	27.2	.0		.0	.38		1.00	. 95 :
		- •·		• •	4.2	.0	.38	.17	1.00	.95 1
LOAD C	ASE -	੪								
FILE	F1	F2	F3	M1	M2	64 - 7				
	K	K	ĸ	1N-K	IN-K	M3 INLa	ALF	CBF	ASC	AST
			•	••	AIN The	IM-K			KSI	KSI

-- 1

-- 1

41.1 41.1

.0 .0 7.5 7.5

.0

.0

.0 .57 .14 1.08 1.01 +

D: \PILE\PPS(W1)

03/30/98 Page: 8

<i>j</i>											
3	1	.0	41.1	.0	7.5	.0	.57	. 14	1.08	1.61	
4	1	. O	41.1	. U	7.5	.0	. 57		1.08		
5	1	.0	41.1	. 0	7.5	.0	.57		1.08		
5	. 1	. 0	38.9	.0	-3.4	, Ō	.54		1.06		
7	- 1	10	38.9	. O	-3.4	.0	.54		1.05		
ਝ	. 1	٠.٥	38.9	. 0	-3.4	.0	.54		1.06		
9	. 1	.0	38.9	.0	-3.4	.0	.54		1.08		
10	. 1	.0	38.9	.0	-3.4	.0	.54				
1 1	. 1	. 0	11.1	.0	-4.8	.0	.15		1.06	1.01	
1.2	. 1	.0	11.1	.0	-4.8			. 20	.92	.86	
13	. 1	.0	11.1			.0	. 15	. 20	. 92	.86	
				.0	-4.8	• 0	. 15	.20	. 92	.86	4
14	- 1	.0	11.1	.0	-4.8	. 0	. 15	. 20	.92	.86	4
15	- 1	.0	11.1	.0	-4.8	.0	.15	.20	.92	.86	4
15	. 1	.0	11.1	.0	-4.8	.0	. 15	.20	. 92	.86	
17	. 1	.0	11.1	.0	-4.8	.0	.15	.20	.92	-85	
81	- 1	.0	11.1	. 0	-4.8	.0	.15	.20	.92	.85	
19	- 1	.0	11.1	.0	-4.8	.0	.15	.20	.92		
20	- 1	.0	11.1	. 0	-4.8	.0	.15	.20		.86	
		· -	-			• •	- 10	• 20	. 92	.86	7

PILE FORCES IN GLOBAL GEOMETRY

LOAD	CASE -	1

FILE	FX	F'Y	₽Z	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	. 0	15.5	-33.4	. 0	.0	.0
2	.0	16.6	-33.4	.0	.0	.0
3	. 0	16.5	-33.4	. 0	.0	.0
4	.0	16.6	-33.4	.0	.0	.0
5	. 0	16.6	-33.4	.0	.0	.0
చ	.0	5.1	10.4	.0	.0	.0
7	.0	5.1	10.4	.0	.0	.0
8	.0	5.1	10.4	.0	.0	.0
÷	.0	5.1	10.4	.0	.0	
10	.0	5.1	10.4	.0	.0	.0
11	.0	31.9	64.2	.0	.0	.0
12	. 0	31.9	64.2	.0		.0
13	.0	31.9	64.2	.0	.0	.0
14	.0	31.9	64.2	.0	.0	.0
15	.0	31.9	64.2	.0 .0	.0	.0
15	.0	31.9	64.2		.0	.0
17	.0	31.9		.0	.0	.0
18	.0		64.2		. 0	.0
		31.9	64.2	.0	.0	.0
19	.0	31.9	54. 2	. 0	.0	.0

						fage:	ټ
20	.0	31.9	64.2	.0	.0	.0	(, ,
LOAD CASE -	2						

FILE	FΧ	PΥ	₽Z	Mx	MY	ΜZ
	K	ĸ	K	IN-K	1M-K	IN-K
1	.0	20.7	-41.4	.0	.0	.0
2	. O	20.7	-41.4	.0	ĨŰ	.0
3	. 0	20.7	-41.4	.0	.0	.0
4	.0	20.7	-41.4	.0	. 0	.0
5	. 0	20.7	-41.4	.0	.0	.0
6	.0	10.5	21.2	.0	.õ	.0
7	.0	10.5	21.2	.0	.o	
ខ	.0	10.5	21.2	.0	.0	.0
タ	. O	10.5	21.2	. 0	.0	.0
10	.0	10.5	21.2	.0		.0
1 1	.0	27.1	54.3	.0	.0 .0	. 0
1.2	. 0	27.1	54.3	.0	.0	.0
1.3	.0	27.1	54.3	.0		• 0
14	.0	27.1	54.3	.0	.0	.0
15	.0	27.1	54.3	.0	• O	.0
16	.0	27.1	54.3		.0	.0
17	.0	27.1	54.3	.0	.0	.0
18	.0	27.1	54.3	.0	. O	.0
1.5	.0	27.1	54.3	.0	. 0	• 0
20	.0	27.1		.0	. 0	.0
	• •	4/.1	54.3	.0	. 0	.0

LÜAD	CASE -	3
------	--------	---

PILE	PX K	₽Y K	PZ K	MX IN-K	MY IN-E	MZ IN-K
4 2	, Ó	19.5	-39.2	.0	.0	.0
3	.0	19.5 19.5	-37.2 -39.2	.0	.0	.0 .0
4 5	.0 .0	19.5 19.5	-39.2 -39.2	.0	.0 .0	.0
6 7	.0	4.5 4.5	9.2 9.2	.0	.0	.0
8 9	.0	4.5 4.5	9.2	.0	.0	.0
10	.0	4.5	9.2 9.2	.0 .0	.0	.0
11	.0	27.7 27.7	55.7 55.7	.0	.0	. 0
13 14	.0	27.7 27.7	55.7 55.7	.0 .0	. o . o	.0
15	.0	27.7	55.7	.0	. 0	.0

DI WILL WISHAID							03/30/98	
						Fage:	$1_{\mathcal{D}}$	
						·		
16	. 0	27.7	55.7	.0	.0	. O		
17	• O	27.7	55.7	. 0	. O	.0		
						- -		

1 &	. 0	27.7	55.7	. (<i>)</i>	.0	. 0
1.7	. O	27.7	55.7	. 0	. O	.0
18	.0	27.7	55. 7	. 0	• O	.0
19	. O	27.7	55.7	. 0	.0	.0
20	•0	27.7	55.7	• O	.0	.0
LOAD CASE	- 4					

PILE	PΧ	FΥ	PΖ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	.0	23.0	-46.4	. 0	.0	.0
2	.0	23.0	-46.4	• 0	.0	. O
3	.0	23.0	-46.4	.0	.0	.0
4	.0	23.0	-46.4	.0	. O	.0
5	.0	23.0	-46.4	. 0	. 0	.0
6	.0	4	5	. 0	. 0	.0
7	. O	4	5	. O	.0	.0
ន	. Q	4	5	.0	-0	.0
Ŷ	.0	4	5	. 0	.0	. 0
10	.0	- 4	5	.0	. 0	.0
11	.0	28.4	57.2	. 0	.0	.0
12	.0	28.4	57.2	.0	.0	.0
13	.0	28.4	57.2	. 0	.0	.0
14	.0	28.4	57.2	.0	.0	.0
15	.0	28.4	57.2	. 0	. 0	.0
1 &	. O	28.4	57.2	. 6	.0	.0
1 <i>7</i>	.0	28.4	57.2	. 0	.0	.0
18	.0	28.4	57.2	.0	.0	.0
19	.0	28.4	57.2	.0	.0	.0
20	.0	28.4	57.2	. O	.0	.0

LOAD CASE - 5

PILE	FX K	FY K	PZ K	MX IN-K	MY IN-K	MZ 1N-K
i	.0	-15.1	30.3	.0	.0	.0
2	. O	-15.1	30.3	.0	.0	.0
3	.0	-15.1	30.3	.0	.0	.0
4	.0	-15.1	30.3	.0	. 0	.0
5	.0	-15.1	30.3	. 0	.0	.0
6	.0	13.5	27.0	. 0	. 0	.0
7	.0	13.5	27.0	.0	. 0	.0
8	.0	13.5	27.0	.0	. 0	.0
9	. 0	13.5	27.0	. O	. 0	.0
10	. O	13.5	27.0	.0	.0	.0
11	.0	8.5	17.0	.0	.0	.0

8.5

8.6

17.3

17.3

. O

.0

. O

. 0

.0

. O

. Q

. 0

6

Fage: 12

ı						
໌ ຮ	• O	8.6	17.3	.0	. 0	.0
9	.0	8.6	17.3	. 0	.0	.0
10	. 0	8.5	17.3	. ()	.0	.0
1 1	.0	12.1	24.3	. 0	. 0	.0
12	.0	12.1	24.3	.0	.0	.0
13	. 0	12.1	24.3	.0	. O	.0
14	. O	12.1	24.3	.0	.0	.0
15	• 0	12.1	24.3	.0	. O	.0
16	.0	12.1	24.3	.0	. O	.0
1 7	.0	12.1	24.3	.0	.0	.0
18	.0	12.1	24.3	.0	.0	.0
19	.0	12.1	24.3	.0	.0	.0
20	.0	12.1	24.3	.0	.0	.0
LOAD CAS	SE - 8					
PILE	F'X	FΥ	FZ	Mx	MY	* * "'
	K	K	K	IN-K	IN-K	MZ 1N−k
1	.0	-18.3	36.8	.0	.0	.0
2	.0	-18.3	36.8	.0	. O	.0
3	.0	-18.3	36.8	.0	.0	.0
4	.0	-18.3	36.8	. O	.0	.0
5	.0	-18.3	36.8	.0	. 0	.0
6	. O	17.4	34.8	. O	.0	.0
7	.0	17.4	34.8	.0	.0	.0
ខ	. O	17.4	34.8	.0	.0	.0
9	.0	17.4	34.8	.0	. 0	.0
10	.0	17.4	34.8	. 0	.0	.0
1 1	.0	5.0	9.8	.0	.0	.0
12	. O	5.0	9.8	. ()	. 0	.0
1.3	. ()	5.0	9.8	.0	. O	. 0
14	.0	5.0	9.8	.0	.0	.0
15	. 0	5.0	9.8	.0	.0	.0
16	• O	5.0	9.8	.0	. 0	.0
17	.0	5.0	7.8	. O	.0	.0
18	. O	5.0	9.8	.0	.0	.0
19	. 0	5.0	9.8	.0	.0	.0
20	•0	5.0	9.8	.0	.0	.0

PLANTER'S PUMP STATION

DISPLAY OF PILE LAYOUT

LEGEND

16.57.15

01-AFE-1998

SEWB#13 UNITS 1-3 STABILITY ANALYSIS

-FAILURE SURFACE BY - Rog of Pronounce = 1211psf wt = 663 psf

remaining pressure = 1211-663 - 548 ps.f

area = 1043.34

total load = (1043.34)(548)/1000 = 572 k

#Piles = 86

load/pile = 572/86 = 6.6 ×/p. 12

allowable: 20 CK

FAILURE SURFACE @@ , log d prosoure = 1008

wt = 663

remanning ut = 1008-663 = 395 ps f

area = 15/3sf

total load = (345)(1513)/1000 = 522 x

piles = 119

load | P. le = 522/19 = 4.4 OK

- Station is stable, no T-wall regid

(-

54WB#13 - STABILITY ANALYSIS FOR UNITS 4-7 SWL=9.5 NGUD

- FOR FAILURE SURFACE (B)(3), Rog of Pressure = 1478 psf

Pressure to be taken by tension piles = 1478-865.7
= 612.3 pof

area = 907,5 sf

Total load to be taken by p.10 = 612.3(907.5) = 555.6 ×

piles: 66 , tension/ple = 555.6/66 = 8.4 4/pile

- red 8.4°/pile - capacity below -40

capacity = 13° = 26° OK

- FAILURE SURFACE BY - Pressure = 778 psf wt = 222.5 psf

remarring wt = 778 · 222.5 = 555.2 pof

aren = 1028.55f

total load: 555.2(1028.5)/1000 = 571.3 K

pilm = 25

load/pile = 571.3/25 = 22.8 K

capacity = 26 K OK

-FAILURE SURFACE @@, Rog d Pussure = 971psf wt = 865 Remang wt = 971-865= 106psf

OK

- FAILURE SURFACE @@, Rog'd Presenc = 389 wt = 222.5

Remaining wt = 389-222.5 = 166.5 ps f

area = 2238.5

to tal load = (106.5)(2238.5)/1000 = 372.7 K

#piles = 82

load /pile = 372.7/82 = 4.5 K/pile

allowable = 22 K OK

-NO Twall needed

20.34±13, 711±4 5.500.44E 20.35±15.45 £2.55 5.00.44E 20.35±15.45 £2.55 5.00.44E 20.35±15.45 £2.55 5.00.44E 20.35±15.45 £2.55 5.00.44E 20.35±15.45 £2.55 5.00.44E

Mettonal Brand

SEWERAGE & WATER BOARD #13:

STATION ADDITION:

TOP OF DISCHARGE TUBE - EL. 33.0 C.D = 12.57 NGV.D.

ORIGINAL STATION:

TOP OF CONCRETE DISCHARGE TUBE : 33,00 C.D. = 12.57

TOT OF WALL @ VERTICAL PUMPS: 33,00 C.D. = 12.57

TOP OF WALL OUTSIDE OF PUMPAREA = 33,00 = 12,57 NG, UD.

TOP OF BASE SCAB= 20.31CD = 5.88

-top of Cever - 9.5

- transition 10 HIV -

vertical difference - 9.5 - 5.88: 3.62

need 36.2' for travition.

- have 100' - ok

PR SOBIETIS THER SONARIAND STREET STREET SONARIAND SONAR

Netional

STUBELL - WEST STATION - MODIFIED BY ADDING CONCRETE
DISCHARGE TUBE

SWL: 9.5 NGVD

- FOR FAILURE SURFACE BQ, Reg'd Prisoure : 2110 psf

wt = 319 ps f

Remaining ut + 2110-319 = 1791psf

total loud/pile = (1791)(131/(71)/100(66)

= 25 × /pile

Allowable = 22k N.G.

- Fwall is Regid

SOURCE DE LES SOURCE SOUS SETTE SET

National Brand

59 WB# 11

SWL = 9.5

T- Wall Analysis still require wer troll pressure: HORIZONTAL PUMPSTATION (NEWSTATION) Forture Surface B@ requires presoure of 278 psf

-total wt of station = 266psf

difference of 278-200: 12 post - say ok

HAAH

Failure Surface OF requires pressure of 249psf -total wt of station = 266 psf >249

ORIGINAL STATION:

STABILITY ANALYSIS OF STATION ONLY:

FAILORE SURFACE BO Regumo Prisoner of 25 35 psf tokelut of station = 319 psf Prosonce to be taken by known piles = 2585-319 = 2266psf #piles in passive wedge aren = 66

Tension per pile: (2266)(13)(71)/1000(66)
= 32k per pile

Allowable tonsion per pile = 22K N.G. - T-WALL IS NEEDED. ~ 63' from edge of building @ SWL = 7.5:

ORIGINAL STATION IS STABLE, NO T-WALL NEEDED

NEW STATION IS NOT STABLE, T-WALL REQUIRED

@ SWL = 9,5:

- EUSTIS HAS NOT FINISHED STABILITY ANALYSIS YET

13.762 SUDSHELS, FILLER ASCUME, ASSUMER

Mellonel Brand

SEWERAGE & WATER BOARD # 11

FLOODWALL TO EC. 12.75 ETTEPT WINDOWS

ORIGINAL STATION

FAILURE SURFACE (A)():

REO'D PRESSURE = 1668 pot

BASE SCAB THICKNESS = 22"

wt = (150 pcf - 92 pcf)(22/2) = 106.33 psf
(92 pcf = wt. soil used by Enotis in stainlify analysis)

FLOOR SLAG THICKNESS : 8"

wt = (150)(8/12): 100 psf

WALLS: 2 WALLS @ 14" THICK X 21.25'

wt= (14)(21.25)(150)(2)= 7487.5 p/f/66.08,= 112.5 psf

Total= 106.33+100+ 112.5= 318.83 psf

Pressure to be taken by knsimpiles = 1668-317 = 1349psf

piles in passive wedge area (13' width)

Total load in passive urdge area = (349psf)(13')(71'/1000 = 1245 k

Ave tegid tension lood per pile = 1245/66: 18.9 K/pile

Available tension par pile below et. -21 = 22 K/pile

22 > 18.9 ok

- Station is stable at SPH Levels, NO T-WALL IS NEEDED.
- MODIFY EXISTING FLOODWALL TO EL. 9.5

2.91 SO SHEETS INTER STANDARD
2.91 SO SHEETS FEELES & SCOLME
2.90 DO SHEETS FEELES & SCOLME
2.90 ZOO SHEETS FEELES & SCOLME
2.390 ZOO SHEETS FEELES
2.390 ZOO SHEETS FEELES
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S SOUWH
2.390 ZOO HECYCLED WHITE S

Mattonal Bran

SEWERAGE & WATER BOARD # 11 (CONT.)

FLOODWALL TO 3250.D.
(TOP OF DISCHARGE TUBE!

NEW STATION:

FOR FAILURE SURFACE DO:

REQUIRED PRESSURE = 942psf

BASE SCAB THICKNESS : 2'-0"

wt = (150-92)(2) = 116 psf

FLOOR SLAB THICKNESS = 1-0"

wt = 150 psf

TOTAL wt = 266 psf

Pressure to be toben by tension piks = 942-266 = 676 psf

Passive wedge area is 21' x 60.5'= 1270.5sf

Total/load in passive wedge = 676(1270.5)/1000 = 859 K

#piles = 85 + 2(12) = 91

Total tension regil per pile = 859/91 = 9,4 K

-below el-40.

- Tension capacity (by Eustis) = 18 K

18 > 9.4 OK.

-Station is stable for failure surles BQ - NO TWALL

TENSION CORNECTORS? - Call NY Associated - 885-0500 MILOGAN - THERE ARE NO TENSION CONNECTORS FOR PILES NY ASSOC. UNDER THE BASE SLAB

42.38 SOSHETS FILER S SOUNRE 42.39 SOSHETTS FEELS SOUNKE 42.39 SOSHETTS FEELS SOUNKE 42.39 SOSHETTS FEELS SOUNKE 43.39 SON SHETTS FEELS SOUNKE 5.39 SON HETTS FEELS SOUNKE 5.30 SON HETT

Mational Brand

A4H

S&WB # 11 (cont.)

FAILURE SURFACE COD - Regid Pressure = 699psf Total wt = 266 psf

Pressure to be taken by known piles = 699-266 = 433 psf

Passire wedge area = 30'x 60.5'= 1815 sf

Total lension load in passive wedge aren = 433(1815)/1000 = 786 K

PILES = {(12)+ 12(8)+8(2) = 118

leg d tension per pile: 786/118 = 6.6 K/pile below failure surface el. -50

Tensim capacity (by Eustis) = 14 K 14 > 6.6 OK

FAILURE SURFACE PD: Reg of pressure = 300psf total wt = 266psf

Prisoure to be taken by tension piles = 300-266= 34 psf Passive wedge area = 40'x 60.5' = 2420 sf Total tension load on passive wedge = 34(2420/1000 = 82K #piles = 9(8) + 8 + 2(12) = 86 Reg d lension per pilo = 82/86= / E/pile - below failure surface el -60

WIND PRESSURE ABOVE EL. 1.0 P/S:

(10.5')(50 psf):

0.52 K/F4

T-WALL LOADING CASES:

- I. STATIC WATER PRESSURE TO SWL, NO WIND, IMPERVIOUS SHEET PILE CUTOFF (1004'S FORCES)
- IL STATIC WATER PRESSURE TO SWL, NO WIND, PERVIOUS SHEET PILE CUTOFF (100 % FORCES)
- III' STATIC WATER PRESSURE TO SCIC+Z', NOWIND, IMPERVIOUS SHEET PILE CUTOFF (75% FORCES)
- STATIC WATER PRESSURE TO SWL+Z', NO WIND, PERVIOUS SHEET T PILE CUTOFF (250% FORCES)
- WATER @ LOW WATER LEVEL, NO WIND (100% FORCES) V
- WATER @ LOW WATER LEVEL, WIND FROM P/S (75% FORCES) 虹

AAH

	T-WALL	FORCE	TAB	4CA TION	J +7
DESCRIPTION	FORCE S	(KIPS)	CENE	RARM	MOMENTS
	Fx	Fe	×	Z	My
DEAD LOADS:					
51 E M		3.08	3.0		- 9.24
•		2.31	4.0		-9.24
BASE		5.25	0	}	٥
SWC SWGZ'		10.98	-2.25		+ 24.71
LWL		12.17 5.34	-2.25		+ 27.38
P/5		1.25	6.0		+ 12.02
. 3					- 7.50
WATER LOADS					
SWL	1			_	
2(1.31)(21)	13.76		!	-7.0	-96.32
Buoyancy impervious:	1				
(1.31)(5.0)		-6.55	-4.5		-29.48
pervious:					
(E)(1-31)(14)		-9.17	-2.33		-21.37
SWC+2':					
2(1.44) (23)	16.56			-7.67	-1
Busyancii	16.5			7. 6 7	-127.02
#321 MOUS					:
[1.44](5)		-7,2	- 4.5		-32,40
(L)(1.44)(14)		-1008	-2 22		
(2)(1.17)(17)		10,00	2.55		-23.49
LWC:					-
1(.72)(115)	4.14			3. 83	-15.86
Buoyancu				00	(3. 20
impervious:					
(,72)(5)		-36	-4.5		-16.20
(2)(,72)(14)		-6-11	7 72	1	
(2)(,)2)(14)		7,09	-2.33		-11.74
WATER ON PIS:					ŀ
(2)(.163)(15.0)	- 3.15		•	-5.83	+18.36
].60	
- 4					
NIND ON 8/5					
(.52)(10.5)	-, 52,	ĺ		-17,75	+9.23
			;		
					}
	1				
1	•	· •		'	i

13-782 500 SFEETS L 42-382 100 SFEETS E 42-389 200 SFEETS E 42-399 100 FEETS E 42-399 200 FEETS E A2-399 200 FEETS E

LOAD COMBINATIONS

			DINNI		
LOADING	DESCRIPT	10 N	FOR	CES	MOMENTS
CASE			Fx	Fz	Му
I	0, sw., imps/p 100%	SUL SUL IMP YE TOTAL		22.87 -6.55	-1.27 -77.96 -29.48
		FOR 40'	424.4	652.8	- 4348.4
工	DL, SWL, P&P 5	SUC SUC PER TOTAL	10.6l	22.87 -9.17	
		FOR 40'	424.4	548.0	-4024.0
Ш	DL, SWC+2', 1m?), DL sw(+2)	13.41	24.06	+1.4 -108.66 -32.40
		75% FOR 40'	13.41	, ,	-139.66 -104.75 -4189.8
_TV	0c,5w42,267.	DL SWL12' PEF. TOTAL	13.41	24.06 -10.08 13.98	+1.4 -108.66 -23.49 -130.75
		75% FOR40'	70.04 7.504	10.49	-98.04 -39.22,5
工	DL, LWL, IM ?	٥ ر رسد اسک	0.99	17.23	-13.96 2.50 -14.20
		FORYJ		13,63 545.2	-27.66 -1104.4
<u>A</u>	DL, LW, WIND 75%	EL LMC 1MF	0.99	17 23 -3.6	-13.9 6 2.50 -16.20
		TOTAL 75% FOR 40'	-0.52 0.47 0.35 14.1	13.63 10.22 408.9	9.23 -18.43 -13.82 -552.9

13 702 SOLE IS HILLY S SOUNH.
20 31 105 SOLE IS HILLY S SOUNH.
20 31 105 SOLE IS THE ACCOUNT.
20 30 IONICOTE WHITE S SOLENY.
20 30 IONICOTE WHITE S SOLENY.
20 30 CON ECCUIT.

National Bran

(

LINE 300 PSOIL : ES

Esoil Ez=KnB

FROM EUSTIS: KAB = 213

C = 1.0

D: -14" PILES @ 4'-0" = po co-g

SPACING: #8 = 3.4B

D= 0.25 + (.4-,25)(.4)

K,B = (213)(0.31)(1.0) = 40 psi = 0.066 ksc

PILE CAPACITY (FROM EUSTIS)

14" \$, PICE TIP -69 NGU.D. , TOP OF PICE -11.5

COMP: 32 TONS VERTICAL CAPACITY

VERTICAL LEIDGTH = 69-11.5: 57.5'

BATTER : 2 WITH

OVERALL LENGTH = \((57.5)^2 + (57.5)^2: 64'

OVERALL CAPACITY. COMP: $\sqrt{(32)^2 \cdot (32)^2} = 358^{T} = 71.6^{K}$ TENS: $\sqrt{(27)^2 \cdot (12)^2} = 26.8^{T} = 53.6^{K}$

NE SOUSHELS HILL SCOUNTER
BB SOSHETISETY LASS® SCOUNTE
SNE TO SHETISETY LASS® SCOUNTE
SNE TO SHETISETY LASS® SCOUNTE
SNE TO SHETISETY LASS® SCOUNTE
SNE TO SHETISETY LASS® SCOUNTE
SNE TO SHETISETY LASS® SCOUNTER
SNE TO SHE

Netional Brand

8

Brand 4239 200 SHELS FILE AND 4239 200 SHELS FILE AND 4239 200 SHELS FILE AND 5429 200 SHELS FILE AND 5429 200 SHELS FILE AND 54299 200 SHECKCITCO WHITE 55 WARREN SA

National Brand

520

530

540

550

620

6:0

\$? n

3

4

5

1

2

402.4

402.4

39.6

14.1

3

0

0

0

0

4 5

505.8

419.4

545.2

ن ت

408.9

2

2

0

0

5wE!! 50

-4189.8

-1106.4

-552.9

13912,5 0

LOAD

LOAD

LOAD

LOAD

PFO ALL

FRE SUBSEP

FOUT

SUMMARY OF PILE LOADS:

ACLOWABLE: $C = 71.5^{k}$ $T = 53.6^{k}$

63.9-710/71.4 = 3.21% over

i. We dip Elevation slightly deeper than -69 NGID

-use -72 NS. I.D. - add roke to verify wilderper

boring diving final decign.

```
100 S&WB #11 EAST T-WALL
200 PROP 4074 3201 3201 196 2.0 0.0 ALL
300 SOIL ES 0.066 LEN 64 0 ALL
320 PIN ALL
400 DLS S 72 54 600 223 133 1510 1167 H 14 ALL
420 ASC S 196 457 0.816 0.856 1.75 0.0 ALL
440 BAT 2.0 ALL
450 ANG 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
455 ANG 180 16 17 18 19 20
460 PILE 1 5.5 -18 0
470 PILE 11 1.5 -18 0
470 PILE 16 -5.5 -18 0
475 ROW Y 10 1 9 AT 4.0
485 ROW Y 5 11 4 AT 9.0
500 LOAD 1 424.4 0 652.8 0 -4348.4 0
510 LOAD 2 424.4 0 548.0 0 -4024.0 0
520 LOAD 3 402.4 0 505.8 0 -4189.8 0
530 LOAD 4 402.4 0 419.4 0 -3922.5 0
540 LOAD 5 39.6 0 545.2 0 -1106.4 0
550 LOAD 6 14.1 0 408.9 0 -552.9 0
600 FOUT 1 2 3 4 5 6 7 SWB11EO
610 PFO ALL
620 FPL SWB11EP
```

```
CPGA - CASE PILE GROUP ANALYSIS PROGRAM
                             RUN DATE 03-31-98
                                               RUN TIME 13:19:53
S&WB #11 EAST T-WALL
THERE ARE 20 PILES AND
           6 LOAD CASES IN THIS RUN.
ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX
                              -5.50
WITH DIAGONAL COORDINATES
                                       -18.00
                                                   .00
                               5.50 ;
                                        18.00
                                                   .00
***********************
        PILE PROPERTIES AS INPUT
                           12
                                                  C33
                                                             B66
    KSI
               IN**4
                          TN**4
                                      IN**2
  .40740E+04
             .32010E+04
                         .32010E+04
                                    .19600E+03
                                                .20000E+01
                                                           .00000E+00
THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -
   ALL
************************
        SOIL DESCRIPTIONS AS INPUT
  ES
        ESOIL
                  LENGTH
                                         LU
        K/IN**2
        .66000E-01
                           .64000E+02
                                        .00000E+00
THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -
   ALL
************************
       PILE GEOMETRY AS INPUT AND/OR GENERATED
NUM
        X
FT
                                  BATTER
                                          ANGLE
                                                 LENGTH FIXITY
        5.50
5.50
                -18.00
                                   2.00
2.00
2.00
2.00
                             .00
                                            .00
                                                  64.00
                                                         PPPP
                -14.00
                             .00
                                             .00
                                                  64.00
        5.50
                -10.00
                             .00
                                            .00
                                                  64.00
        5.50
                 -6.00
                             .00
                                            .00
                                                  64.00
        5.50
                                   2.00
                 -2.00
                             .00
                                            .00
                                                         P
                                                  64.00
```

.00

64.00

Þ

7 8 9 10 112 13 14 15 17 18 19 2	000000000000000 5555555555555555555555	6.00 10.00 14.00 18.00 -18.00 -9.00 9.00 18.00 -19.00 9.00 18.00	.00 .00 .00 .00 .00 .00 .00	222222222222222222222222222222222222222	.00 .00 .00 .00 .00 .00 .00 .00 180.00 180.00 180.00	64.00 64.00 64.00 64.00 64.00 64.00 64.00 64.00	
						L280.00	

APPLIED LOADS

LOAD	PX	PY	PZ	MX	MY	MZ
CASE	K	K	K	FT-K	FT-K	FT-K
1 2 3 4 5 6	424.4 424.4 402.4 402.4 39.6 14.1	.00	652.8 548.0 505.8 419.4 545.2 408.9	.0 .0 .0	-4348.4 -4024.0 -4189.8 -3922.5 -1106.4 -552.9	.00

ORIGINAL PILE GROUP STIFFNESS MATRIX

.84063E+04	.18131E-03	.82956E+04	15625E-01	89593E+06	15625E-01
.18131E-03	.11066E+03	36261E-03	.00000E+00	23932E-01	.23239E+04
.82956E+04	36261E-03	.33293E+05	31250E-01	69916E+06	.31250E-01
15625E-01	.00000E+00	31250E-01	.70475E+09	.00000E+00	15768E+09
89593E+06	23932E-01	69916E+06	.00000E+00	.11147E+09	.00000E+00
.00000E+00	.23239E+04	.31250E-01	15768E+09	.00000E+00	.17831E+09

- LOAD CASE 1. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5.
- LOAD CASE 2. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5
- LOAD CASE 3. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5
- LOAD CASE 4. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5.
- LOAD CASE 5. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5
- LOAD CASE 6. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5.

PÎLE CAP DISPLACEMENTS

LOAD	DX	DY	DZ	RX	RY	RZ
CASE	IN		IN	RAD	RAD	RAD
1234 56	2627E-01 .1419E-01 2021E-01 .1313E-01 1148E+00 7649E-01	4038E-07 5907E-07 6036E-07 7577E-07 .8622E-07 .7129E-07	.1369E-01 .7166E-02 .8458E-02 .3079E-02 .2660E-01	4916E-12 .6528E-12 2850E-12 .6581E-12 3315E-11 2247E-11	5934E-03 2742E-03 5604E-03 2974E-03 8747E-03 5502E-03	2308E-11 .9128E-13 9478E-12 .1030E-11 8718E-11 6383E-11

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED PILES * INDICATES PILE FAILURE # INDICATES CBF BASED ON MOMENTS DUE TO (F3*EMIN) FOR CONCRETE PILES B INDICATES BUCKLING CONTROLS

LOAD	CASE -	1					
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 ALF	CBF ASC AST KSI KSI
12345678901234567890 11111112	333333333333333222222222222222222222222	000000000000000000000000000000000000000	73333333333333333333333333333333333333	000000000000000000000000000000000000000	14.1 14.1 14.1 14.1 14.1 14.1 10.3 10.3 10.4 -10.4 -10.4	.0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03 .0 1.03	**####################################
LOAD	CASE -	2					
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 ALF	CBF ASC AST KSI KSI
1 2	:0	.0	60.2 60.2	:0	4 4	.0 .84 .0 .84	:21 1:16 1:12 # :21 1:16 1:12 #

34567890 11234567890 11234567890	000000000000000000000000000000000000000	••••••••••••••	222222227777775555 66666666633333333333333333333	000000000000000000000000000000000000000	444444422222333333		4444444000000222222 888888855555666666666666666666666	.21 1.16 .21 1.16 .21 1.16 .21 1.16 .21 1.16 .21 1.104 .15 1.04 .15 1.04 .15 1.04 .15 1.04 .15 1.04 .15 1.04 .15 1.04 .15 1.04	######################################
LOAD	CASE -	3							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
123456789011234567890 111234567890	2222222222111122222	000000000000000000000000000000000000000	55555555555555555555555555555555555555	000000000000000000000000000000000000000	111		999999999999999999999999999999999999999	.26 1.22 .26 1.22 .26 1.22 .26 1.22 .26 1.22 .26 1.22 .26 1.22 .26 1.22 .26 1.22 .26 1.22 .29 .95 .19 .95 .19 .95 .19 .95 .19 .95 .19 .44 .70 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44	######################################
LOAD C	CASE -	4							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC	AST KSI
1 2 3 4 5 6 7 8	00000000	.00000000000000000000000000000000000000	54.4 54.4 54.4 54.4 54.4 54.4	.0	555555555	.00	.76 .76 .76 .76 .76 .76	.17 1.13 .17 1.13 .17 1.13 .17 1.13 .17 1.13 .17 1.13 .17 1.13 .17 1.13	1.09 # 1.099 # 1.099 # 1.099 # 1.099 #

...

9 10 112 13 14 15 17 19 20	000000000000000000000000000000000000000		54.4 54.9 27.9 27.9 27.9 27.0 -43.0 -43.0 -43.0	•••••••••••••			.76 .39 .39 .399 .880 .880	.17 1.13 .17 1.00 .17 1.00 .17 1.00 .17 1.00 .17 1.00 .52 .64 .52 .64 .52 .64	######## 9955555599999 00999999555555 11
LOAD		5							
PILE	F1 K	F2 K	F3 K	N1 N-K	M2 IN-K	IN-K	ALF	CBF ASC KSI	AST KSI
12345678901234567890	88888888888777777666666	000000000000000000000000000000000000000	1111111111100000 5500000000000000000000	000000000000000000000000000000000000000	999999999993333888888 111111111111116666644444 44444443333333333			.13 1.20 .13 1.20 .13 1.20 .13 1.20 .13 1.20 .13 1.20 .13 1.20 .13 1.20 .13 1.20 .142 .79 .42 .79	######################################
LOAD (CASE -	6							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
1 2 3 4 5 6 7 8 9 0 11 2 3 4 11 12 3 4	555555555555555555555555555555555555555	0000000000000000	222222222299999 33333333333333333333333	.00000000000000000000000000000000000000	27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9		.44666666699999 .4466666699999	.16 1.09 .16 1.09 .16 1.09 .16 1.09 .16 1.09 .16 1.09 .16 1.09 .16 1.09 .16 1.09 .25 .83 .25 .83	######### 99999999999998888 99999999999

15 16 17 18 19 20	5 .4 .4 .4 .4	.0	-15.9 40.4 40.4 40.4 40.4	.00	24.4 -22.6 -22.6 -22.6 -22.6 -22.6	•0	.25 .55 .55 .55 .55	.25 .83 .14 1.11 .14 1.11 .14 1.11 .14 1.11	.68 .977 .977 .977 .977
****	*****	*****	*****	*****	*****	*****	****	*****	****

PILE FORCES IN GLOBAL GEOMETRY

	PILE FORCE	ES IN GLO	BAL GEOMETF	RY		
LOAD C	ASE - 1 PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
		K		IN-K	IN-K	IN-K
12345678901234567890 1111111112	888888888882222211111 333333333333333333	000000000000000000000000000000000000000	222222222222 6666666666666666666666666	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
LOAD CA	ASE - 2					
PILE	PX K	PY K	PZ K	MX IN-K	IN-K	MZ IN-K
123456789011234	26.9 26.9 26.9 26.9 20 20 20 20 20 20 20 20 20 20 20 20 20	••••••••••••	8888888899999 555555555553333	.00000000000000000000000000000000000000		.00000000000000000000000000000000000000

15 16 17 18 19 20	16.0 15.0 15.0 15.0 15.0	.00	31.9 -30.0 -30.0 -30.0 -30.0	.0	.0 .0 .0	.0
LOAD CA	ASE - 3					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
12345678901234567890 11234511890	222222222222 9999999999999999999999999	000000000000000000000000000000000000000	9999999999991111177777 58888888888888888888888888888	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
LOAD CA						
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1234567890 111234567890 11234567890	24.4 24.4 24.4 24.4 24.4 24.4 224.1 224.1 2222222222	000000000000000000000000000000000000000	48.7777777777777779999994444444444444444	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

LOAD C	ASE - 5					
PILE	PX K	PY K	PZ K	MX IN-K	IN-K	MZ IN-K
12345678901234567890 111111112	21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.1 -13.1 -13.1 -13.1 -13.1 -22.2 -22.2 -22.2	000000000000000000000000000000000000000	2222222222777774444 555555555444444 4444444444	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••
LOAD CA	SE - 6					
PILE	PX K	PY K	PZ K	MX IN-K	IN-K	MZ IN-K
12345678901234567890 11111112	14.4 14.4 14.4 14.4 14.4 14.4 14.5 1777.5 1777.7 188.4 188.4	000000000000000000000000000000000000000	999999999999999999999999999999999999999	000000000000000000000000000000000000000	•••••••••••••••••••••••••••••••••••••••	000000000000000000000000000000000000000

U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

Proposed T Wall SHUB P. Stution II East

ALLOWABLE PILE LOAD CAPACITIES SQUARE PRECAST, PRESTRESSED CONCRETE PILES TOP OF PILE AT EL \$\infty\$ -10

SIZE	PILE TIP ELEVATION IN FEET NGVD	ALLOWABLE PILE LOAD CAPACITY IN TONS FACTOR OF SAFETY ~ 2		
	NGVD	COMPRESSION	TENSION	
12-In. Square	-39	12 46	9 12	
	-49	16 20	1216	
	-59	21 -26	16 28	
	-69	27 32	20 24	
14-In. Square	-39	14 19	10-14	
	-49	19 24	14-18	
	-59	25 30	18-23	
	-69	3237	14-28	

PROTECTED SIDE

FLOODSIDE

- CLOCKWISE

		 				+ ANTIC! OCH
BASIC LOAD CON	DESCRIPTION	Fy RIPS	F _Z	- 7 F1	3 F1	MOMENT
properties shows all the second	WATER ON FLOODSIDE					
41.74	a) VERTICAL			2.25	: 	
	9.5x20.5'x.0625 b) LARRAL_		12.18	2,25		.27,40
	1/2× 1.438 × 23,0	16.54		7.67		126.86
	Total	16,54	12.18			99-46
6)	BUDYANCY WIS EL 11,50					
	a) Pernous 发又1.438×14'		-10.07	2,33		23.46
	b) Імрёгиючs 1.438 X 5 '		-7,2	4,5	· . <u>.</u> .	32·4 S
				-		

6

DESCRIPTION WATER ON FLUODSIDE. LWL = 0.0 Water 9.5x9.0x.0625 b) Lateral 115x.0625 E.719 Ex.719 x 11.5	4.13	+ 1 FZ kips	у F1	3 F1	16.05
(a) Vertical Water 9.5x9.0x.0625 b) Lateral 115x.0625 = .719 \$\$\times \tau \tau \tau \tau \tau \tau \tau \tau	4.13		3.00	3,83	
Water 9.5x9.0x.0625 b) Lateral 11.5x.0625 E.719 6x.719×11.5	4.13		3.00	3,83	
版×·719× 11.5	4:13			3,83	15,83
Total	4,13				
	-	5.35			0.22
Vivany LWL 0:0					
Pervious \$x0,719x14		-5.03	2,33		11,73
Impervious 0.719 x 5		- 3,60	4,5		16.2
					
	发×0.719×14 Impervious	左×0.719×14 Impervious	1/2 × 0.719 × 14 -5.03	1/2 × 0.719 × 14 -5.03 2.33	1/2 × 0.719 × 14 -5.03 2.33

194949 194949

Ms.

LD. Fet CHB DESCRIPTION FY MOMENT 10. MXX 1 SWL a) EL 9.5 PERV. SHT. PILE, Soil O PROTI SIDE UPTO EL O.O No WIND DL-___ 1) 10.64 18,48 5 2) Water F/s. 13.8 10.98 71.9 3 a) Buoy Peru. -9.2 21.44 4) Soil PROT. SIDE -3.97 2.20 -2,39 +2.1 unbalancea soil JATOT PER LFF 11.93 14.62 109,43 TOTAL PER 40' 477.2 584.8 4377.2 SWL @ EL 9,5, IMP. SHT. PILE, 2 _Soil a PROT SIDE UPTO EL O.O. NO WIND. 10.64 18,48 n. D.L. 2) WATER F/S 13.8 71,9 5 10.98 3 b) Buoy IMP -6.56 29.5 4) Soil 1/5 - 3.97 マショ -2139 2 unbalanced soil +2.1 TOTAL PER LFT 11.93 17.26 117,49 TOTAL PER 40'0" 690.4 477,2 4,700 3

The Control of the Co

g. Jengoni 🏂

LOAD COMBINATIONS.

LD. Comb	DESCRIPTION	FY	Fe	TH3MOM XXM
3	Wis EL 1115, PERV. SHT. PILE, Soil			
	ON P/S UPTO EL O.O NO WIND		_	
				
	1) Dil	-	10.64	18.48
	5) WATER FL	16.54	12/18	99. 46
	Ga) BUOY PERV	,	-10.07	23,46
	4-) soil P/s	-3.97	2.20	- 2.39)
1	Unbalanced Soil			
	TOTAL PER LFF TOTAL PER 40'X75	12,57	14.95	139.01 7
4	ON P/S UPTO EL OO NO WIND.			
	1) D.L.			18.48
	5) Water Fls	16.54	12.18	99.46 5
	(b) Buoy IMP		-7.2	32.43
	4) Soil <u>P/s</u>	-3.97	2.20	- 2,39
	Unbalanced Soil	12.57	17.82	
	TOTAL PER LFT			

APRIL16

April 20, 1998

Page 1

D. E. I.

MEMO

Ψ):DEI

TENTION: MS APRIL HURRY FROM: EUSTIS ENGINEERING

TOM STREMLAU

SUBJECT: PREL INFO OF MODIFIED S &WB STATION 11 WEST

ALGIERS CANAL PROJECT

I HAVE ENCLOSED PREL PENCILED COPIES OF SLOPE STABILITY AND T WALL ANALYSES FOR A MODIFIED P STATION 11 WEST WITH A NEW T WALL 63' FROM FACE OF PUMP HOUSE.

ALSO I INCLUDED PILE CAPACITY INFO FOR PILES SUPPORTING NEW T WALL.

EUSTIS ENGINEERING COMPANY, INC.

Geotechnical Engineers Metairie, Louisiana

Date	3/3/198

Page

Project	PR	Ci	1	M	НН	H	HE	Y
	PK			M		W	417	A T

Subject Checked By

Allowable P. le Lond Capreities T Wall Formatation

Modified S+WB Station 11 West

Pile Type 14 in , Sq. Prestrissed Concrete	Pile Tipation Elevation -80 -90 -100 -110	Estimated Allowald Load copparity Factor of So Compression 25 37, 50 60	le Single Pile in Tono Lension 18 27 37. 48
16 in. Sq.	-50	29	21
Precast,	-90	43	31
Prostressed	-100	57	42
Concrete	-110	68	55

Note: 1) Capacity contribution to E1-47 has been ignored.

2) Reach 4 soil parameters have been noed for this analysis. However, soil parameters below EI-80 have been assumed. Soil borings must be parlamed to confirm soil conditions belowd this level for final distan,

PUMPING STATION MECHANICAL CALCULATIONS

Calculations - Belle Chasse Z Pumping Station

1) Priming Horsepower Available
Assumptions: - Future -10.00 pump start up
- 115,000 gpm flowrate to prime tube
- 70% Efficiency at Priming

Priming Head

STATEC = EL. -10.00 to
$$\pm$$
 15.50 (topof pipe) = 25.50
Velocity Head = $\sqrt{2}$ g = $(256/28.27)$ /2.32.2 = 9.06 /4.44 = 1.28
Hf/z (Halfpipe) = $(80/100)$ 1.7083 (100) 1.50001.88
Z

Horsepower Regid at Priming

H.P. =
$$\frac{115,000(26.88)}{(3960)(.70)(1)} = 1/15.2 \text{ h.p.}$$

Available priming horsepower = 1280 h.p.

Additional head loss due to extended 72 inch pipe $H_f = \left(\frac{36'}{100}\right) \cdot 2083 \left(\frac{100}{140}\right)^{1.84} \left(\frac{180,000}{724.864}\right) = 0.218 ft.$

Horse power demand due to additional friction

H.P. = (180000 gpm) (0.218ft) = 13.21 horsepower

(3960) (0.75) (1)

Cakulations

Planters Pumping Station

Head and Horsepower requirements

1) 72 inch (310 cfs) pumps — Station addition
a) Pipe friction - 64 ft. Tube extension
$$\Delta H_{\varsigma} = \frac{64 \, \text{ft}}{100} \left(.2083\right) \left(\frac{100}{140}\right)^{1.86} \left(\frac{316 \, \text{K448.81}}{84^{4.864}}\right) = 0.114 \, \text{ft}$$

b) horse power

$$Hp = \frac{(310)(448.8)(0.114 ft)}{3960(.78)(1)} = \frac{5.13 \text{ h.p.}}{3960(.78)(1)}$$

2) 72 inch (290cfs) pumps - Original station
a) Pipe friction - 64 ft Tube extension

$$\Delta H_{\zeta} = \frac{64}{100} (.2083) \left(\frac{100}{140} \right)^{1.86} \left(\frac{[(290)(448.8)]^{1.86}}{78.4866} \right) = 0.144 \text{ ft.}$$

.b) horse power

$$Hp = (290)(448.8)(0.144 \text{ ft.}) = 5.84 \text{ h.p.}$$
 $3960(.81)(1)$

36 Inch (50 cfs) vertical pump

a) Pipe friction - 64 A tube extension

$$\Delta H_{f} = \frac{64}{100} \left(.2083\right) \left(\frac{100}{140}\right)^{1.86} \left(\frac{50}{448.81}\right)^{1.86} = 0.236 \text{ ft}$$

b) horsepower

$$Hp = \frac{(50)(448.8)(0.236')}{3960(.75)(1)} = \frac{1.78 \text{ h.p.}}{}$$

New Orleans sewerage & Water Board STA # 11 Calculations on 100" wood Propeller Pumps

Scope - Replace steel Conical Discharge tube w/
Flaving Concrete discharge- Determine head
loss charge and allect on pump operation

Method - Cakulate total head loss attributed to the pump by the existing mitered elbow and cone. Cakulate the total head losses that would be attributed to the pump when using the flared concrete discharge. By taking the difference in these arrangements we can add these losses to the operation point on the curve and determine flow changes as well as new horsepower demands.

- Indake

Pump to

Remain

Bi73' 4Pump

(6'x 20'

EL 9:50

D

G'x 20'

discharge

```
i) uples of asiphan
                           105 0 Discharge to 3.5 x. 20'
    hf = L ( 1/(cR 3/3)2
                                 R= W.D/W+ZD
                                C= 1.486/0.01Z = 123.83
C = 1.486/n n= 6.612
           105"Ø
                             3.5 x 70'
                                               Average
 Area
           60-13 ft2
                                70.00
                                                 65.07
  R
           2.188
                               2.59
                                                 2,389
 V250 CFS 9/A
             4.16
                                 3.57
                                                  3.87
              3.83
 V 230 GS
                                3,29
                                                 3.56
               3.49
                                                  3,25
  V210 CFS
                                3.00
             use L= length = 45'
h = (9/65.07 (2:889) 2/3) 2 · 45 > h = 2:17/10. 673
    Down leg of Siphon - 3.5'x 20' to 6'x 20'
315'x 20' 6'x 20' Ava
                              6'x 20'
Avea
               70.0
                                 120
 8
                2.59
                                  3.75
                                                3:17
V250 CG5
                3.57
                                                2.83
                                  2.083
V230 (5
               3.29
                                  1,917
                                                2160;
V<sub>210</sub>Cf5
               3.00
                                  1,75
                                                 2.38
                                        261
                                   上二
hr = [(Q/AS)) (38171)3/3]2 · 24
     4.0 1 10-8 QZ
```

3) Siphon Crown Elbow

$$hf = 0.25 \sqrt{\Delta/q0^{\circ}} (\sqrt{2g})$$

where $\Delta = 45^{\circ} \stackrel{?}{\circ} V = Q/A = (Q/70)$
 $hf = 0.25 \sqrt{45/q0} ((Q/70)^{2}/2.32.2)$
 $hf = 5.60 \times 10^{-7} Q^{2}$

4. Exit loss
$$6' \times 20' = 120 \text{ ft}^2$$

$$h_f = \frac{V^2}{2g} = \frac{(Q/A)^2}{2g} = \frac{(Q/120)^2}{2.32.2}$$

$$= 1.078 \times 10^{-6} Q^2$$

Total losses in new concrete discharge =

$$V = Q/A = Q/160.22$$

$$H = 1.0 \left[\frac{Q^2/A^2}{2.32.2} \right] = 1.0 \left[\frac{Q^2/160.22^2}{64.4} \right]$$

$$Hf_{TOTAL} = 5.54 \times 10^{-7} Q^{2} + 1.16 \times 10^{-6} Q^{2} + 6.05 \times 10^{-7} Q^{2}$$

$$= 2.319 \times 10^{-6} Q^{2} \text{ or QM5 ft. @ 250cfs}$$

Difference in head losses between new system and existing discharge.

$$\begin{array}{rcl}
\text{"AH}_f &=& \text{Hf proposed} - & \text{Hf existing} \\
&=& 8.28 \times 10^{-7} Q^2 - 2.319 \times 10^{-6} Q^2 \\
&=& -1.491 \times 10^{-6} Q^2
\end{array}$$

Therefore the discharge system proposed will actually reduce the friction losses in the total pump system. In terms of feet of friction losses which equates to feet of additional pool to pool head available, it is as follows

11

1) Estimated Priming Horsepower 72" pumps

STATIC EL- 10.00 to EL. 1.88 (top of pipe) = 22.88 Velocity Head $\frac{\sqrt{2}}{2} = \frac{200/28.27}{2.32.2}$ = 6.78 Frictional Head $\frac{128}{100} = \frac{128}{100}$

> Total 23.86

Priming Horse power = (23.86)(90,000gpm)_ 753 h.p. (3960)(.72)(1)

.. 2) · Additional head loss due to extended discharge (72"

Hq = 40/100 [12083] [100/40] 1.86 [(250.448.8) 1.86] = 0.100 ft

Horsepower due to extended pipe (72") H.P. = (0.100) (112,200 gpm) = 3.76 H.P. (3960) (.76) (i)

Calculations: Plaquemines Pump STA (NO.1)
132 Worthington Pumps

Scope: Replace Existing Concrete discharge tubes with Flaring Steel Discharge - Determine Differential Head loss between each system

A) Uples of siphon (132"\$ to 12.5' x 13.5')

$$h_f = L(\frac{132}{CR})^2 C = \frac{1.486}{n} n = 0.612 C = 123.83$$

$$R = \frac{132}{6} \frac{12.5 \times 13.5}{12.5 \times 13.5} \frac{Avg.}{131.89}$$

Area 95.03 ft² 168.75 131.89

$$R = \frac{4.27}{4.27} \frac{3.51}{3.51}$$

Valority 9.47 fps 5.33 7.40

Length = 15'

$$hf = \frac{(Q_{131.89}^{2})^{2}}{(123.83) 7.40^{245}} \times 15' \qquad hf = \frac{4.0 \times 10^{-9}}{Q^{2}}$$

Downleg of Siphon 12.5 x 13.5 to 16.5 x 14.5'

12.6 x 13.5

Area 168.75

R 4.27

Value 5.50

Length =
$$\frac{(Q/270.6)}{(123.83)(4.32)^{2/3}}$$
 $\frac{(Q/270.6)}{(123.83)(4.32)^{2/3}}$
 $\frac{12.5 \times 13.5}{(123.83)(4.32)^{2/3}}$
 $\frac{12.5 \times 13.5}{(125.5)}$
 $\frac{12.5 \times 13.5}{(125.5)}$
 $\frac{12.5 \times 13.5}{(125.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 13.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 13.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 13.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 13.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 13.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 10.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 10.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 10.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 10.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 10.5)}$
 $\frac{12.5 \times 13.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$
 $\frac{16.5 \times 16.5}{(12.5 \times 10.5)}$

c) Siphon Crown Elbow

$$hf = 0.25 \sqrt{\Delta/90} \sqrt{2/29}$$
 where $\Delta = 115^{\circ} \sqrt{2/4} = 1.66 \times 10^{-7} Q^{2}$
 $hf = 0.25 \sqrt{115/90} (0/162.5)/64.4 = 1.66 \times 10^{-7} Q^{2}$

d) Exit Loss

$$16.5 \text{ ft} \times 16.5 \text{ ft} = 272.25 \text{ ft}^2$$

 $hf = \sqrt{2}/2g = (Q/A)^2/2g = (Q/272.25)^2/64.4$
 $hf = 2.09 \times 10^{-7} Q^2$

Total Friction losses in Existing Concrete Tubes

Hf = 4.0 ×10-9 Q2+ 5.0 ×10-9 Q2+ 1.66×10-7 Q2 + 2.09 ×10-7 Q2

Belle Chase #1

Secretary of the second

12 Foot Diameter Original Wood Horizontal Pumps

Scope - Replace Steel Conical Discharge Tube with
Flaved Steel Cone including offsets to
achieve the minimum 9.50 NGVD Flood Protection

Method - Cakulade the head loss in the existing steel come to be replaced. Calculate the losses in the replacement discharge arrangement By taking the difference in headlosses for the two arrangements we can determine what additional head is place on the pump. Since the existing engines are already overloaded at higher pool to pool heads, whatever additional head would only decrease this available pool to pool operating envelope.

Existing Cone

1) 35° Mitered Joint use
$$K = 0.129$$
 $H_{\varsigma} = K \frac{\sqrt{2}}{2g} \qquad V = \frac{Q}{A}$
 $= (.129)(\frac{Q^{2}/2.32.2}{2.32.2}) \Rightarrow A = \frac{12.16^{2}\pi}{4} = 116.26 \text{ H}^{2}$
 $= (.129)(\frac{Q^{2}/116.26^{2}/64.4}{4}) = \frac{1.48 \times 10^{-7} Q^{2}}{4}$

$$Hf = K \left[1 - \left(\frac{D_1}{D_2} \right)^2 \right]^2 \sqrt{2g}$$

$$Hf = 0.50 \left[1 - \left(\frac{2.17}{15.50} \right)^2 \right]^2 \frac{Q_1^2 \ln 26^2}{64.4}$$

$$K = 0.50$$

$$H = 8.4 \times 10^{-8} Q^2$$

Area = TT/4 (LXW) = (T/4) (20.5 + 16.5) = 265.66 ft2

$$H_f = K \frac{V^2}{2g}$$
 where $K = 1.0$ and $V = Q/A$
= $(1.0) \left(\frac{Q^2/A^2}{2g} \right) = 1.0 \left(\frac{Q^2/265.66^2}{641.47} \right)$
= $2.20 + 10^{-7} Q^2$

$$H_{\text{TOTAL}} = \frac{1.48 \times 10^{-7} Q^2 + 8.4 \times 10^{-8} Q^2 + 2.20 \times 10^{-7} Q^2}{4.52 \times 10^{-7} Q^2}$$

Replacement Discharge

K= OIIZ

Total Mitered losses =
$$K^{\frac{12}{28}}$$
 $K = (2)(0.112) + (1)(0.129)$
 $V = Q/A$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$ $K = 0.353$

2) Straight Pipe 12'-2"
$$\emptyset$$
 \star 20' = 20ng.)
 $V = Q/A$ $E = 0000Z$ $A = T \cdot \frac{12.17^2}{4} = 114.26 \cdot \frac{1}{7} = 100016$
 $NRE = \frac{VD}{V}$ where $V = 6.88 + 1/5e$ $D = 12.17$ $V = 000017$
 $NRE = \frac{V}{V} (6.88)(12.17)/00001217 = 6.88 \times 10^6$
From Fig III $A - 3$ $f = 0.0096$

$$Hf = f(\frac{1}{D})(\frac{\sqrt{2}}{29}) \text{ where } \sqrt{=Q/A}$$

$$= (0.0096)(\frac{20}{12.17}) \frac{(0.20^{2})(10.26^{2})}{64.4}$$

$$= 1.80 + 10^{-8} Q^{2}$$

3) Cone

$$h = K \left(1 - \left(\frac{D1/D_2}{D_2}\right)^2\right)^2 \frac{V^2/2g}{\sqrt{2g}}$$

 $\Rightarrow K = 0.30 \quad A = 116.26$
 $h = 0.30 \left(1 - \left(\frac{12.17}{17.62}\right)^2\right)^2 \frac{Q^2/116.26^2}{64.4}$
 $= 9.40 \times 10^{-8} Q^2$

If =
$$K(\sqrt{2}g)$$
 where $K=1.0$ and $V=0/A$
= $1.0(\frac{0.7356.73^2}{2.32.2})$

Total Losses in 12ft Wood Pump Replacement Discharge

Therefore the difference in headlosses between the two systems are:

$$\Delta H_{f} + total = H_{f} + proposed - H_{f} + existing = 6.40 \times 10^{-7} Q^{2} - 4.52 \times 10^{-7} Q^{2} = 1.88 \times 10^{-7} Q^{2}$$

Therefore at its nomeal flow rate of 800 cm

$$H_{fadditional} = 1.88 \times 10^{-7} (800)^2 = 0.120 \text{ ft}.$$

Additional Horse power due to additional friction loss $H.P. = \frac{(600)(448.8)(0.12)}{(3960)(.68)} = 16.0 \text{ h.p.}$

A) Expansion 132"
$$\emptyset$$
 to 146" \emptyset

A₁₃₂" = 95.03 ft²

A₁₄₆" = 1/6.26 ft²

Hf = $(V_1 - V_2)^2$ $(Q_{A_1} - Q_{A_2})^2$ = $Q^2 (A_1 - A_2)^2$

2 Q_2

Hf = $Q^2 (\frac{1}{95.03} - \frac{1}{116.26})^2$ = $\frac{5.7 \times 10^{-8} Q^2}{2.32.7}$

B) Mitered Losses 146" & Pipe

a) 2-36° 3piece Miters
$$K = 0.112$$

b) 1-35° 1piece Miter $K = 0.129$

Total Mitered losses = $K \sqrt[3]{2} + (2)(0.112) + (1)(0.129) = 0.353$

Hf = 0.353 $\frac{Q^2}{A^2}/64.4 = 0.353 \frac{Q^2}{64.4}$

c) straight fipe 146" \emptyset x 20' long. $V = \sqrt{A}$ E = 0.0002 $A = \frac{\Pi(12.17)}{4} = 1/4.26$ E/7 .006016 $NRE = \sqrt{D}/\mathcal{D}$ where V = 4.88 fps D = 12.17 $\mathcal{D} = .00061217$ $NRE = (4.88)(12.17)/(.00001217) = 4.88 \times 10^6$ From HI. Fig $\Pi A - 3$ f = 0.0096

Hf = $f(\frac{1}{D})(\frac{\sqrt{2}}{2})$ where $\sqrt{2} = \frac{Q}{A}$ = $(0.0096)(\frac{20}{12.17})(\frac{Q^{2}}{116.26})/64.4$ = $1.86 \times 10^{-8} Q^{2}$

d) Cone $hf = K(1-(Di/Dz)^{2})^{2}V^{2}/2g$ $K = 0.30 \qquad A = 1/6.26$ $hf = 0.36(1-(\frac{12.17}{17.6z})^{2})^{2}(\frac{Q^{2}/116.26^{2}}{64.4})$ $hf = \frac{9.40 \times 10^{-8} Q^{2}}{4}$

e) Exit Loss - Cone Area = 1/4 (Lxw) = 4 (26.52x17.13) = 354.73 ft²

 $Hf = K (\frac{\sqrt{2}}{2}) \quad K = 1.0 \quad V = \frac{Q}{A}$ $= 1.0 (\frac{Q^{2}/A^{2}}{64.4}) = \frac{Q^{2}/356.73^{2}}{64.4}$ $= \frac{1.22 \times 10^{-7} Q^{2}}{4.4}$

Total Losses = $5.7 \times 10^{-8} Q^2 + 4.06 \times 10^{-7} Q^2 + 1.80 \times 10^{-8} Q^2$ + $9.4 \times 10^{-8} Q^2 + 1.72 \times 10^{-7} Q^2$ = $6.97 \times 10^{-7} Q^2$ Therefore the difference in head losses between the proposed discharge tube and that of the existing is as follows

$$\Delta H_f = H_f \, \text{proposed} - H_f \, \text{Existing}$$

$$= 6.97 \times 10^{-7} \, Q^2 - 3.84 \times 10^{-7} \, Q^2$$

$$= 3.13 \times 10^{-7} \, Q^2$$

At the nominal flow rate of 900 cfs, the additional head seen by the pump is:

Additional Horse power Required

H.P. =
$$\frac{(900 \text{ Gs})(448.8)(0.253\text{ ft})}{(3960)(0.68)} = 37.95 \text{ H.P.}$$

*** FROM DECEMBER 1983 REPORT PREPARED BY PRESCOTT FOLLET & ASSOCIATES CONCERNING PLAQUEMINES PUMPING STATION

SECTION IV

PUMPING EQUIPMENT MODIFICATIONS AND OPERATION

The purpose of this Phase I Report is to provide methods of rehabilitating the existing pumping equipment and to propose additional pump priming capacity to accelerate the start up procedure. These proposals will enhance the overall drainage resulting in quicker response during pump priming, enhance the flow rate of the oldest pumping equipment such that full rated capacity can be obtained at all operating water levels, and return the old equipment to new condition thereby extending their productive life by perhaps another 10 to 15 years. Consideration is also being given to adding pump capacity to the plant in an effort to compensate for increased runoff. Twenty years have passed since the newest pumps were installed, normal development, land subsidence, lowering of water tables, all contribute to usual gradual increase in station capacity demands. It should be noted that we have considered replacement of the two 1953 diesel engines with new engines of the same horsepower but the initial cost would be excessive (approximately \$900,000) and we believe that the existing engines can be rebuilt to give at least 10 to 15 years additional service.

We have obtained copies of the original "Horsepower Performance
Test" for the Baldwin-Hamilton engines and these tests define the
original engine horsepower for both engines. During these "tests" the
engine demand for these original pumping conditions were established and

the throttle control blocked at a point ten percent (10%) above the required horsepower. This information was given by Mr. Rentschler of Baldwin-Hamilton. See letter dated August 3, 1983 (Appendix). The purpose of this setting was to guarantee against engine overload if for some reason the pump propeller was jammed by debris.

These engines, in the proposed rehabilitation process, will have their speed-horsepower control recalibrated to meet the present operating conditions.

During a heavy rainstorm this spring the oldest equipment was placed into operation and after several hours of pumping at full capacity the engine speed deteriorated. Flow capacity was reduced by approximately thirty-five (35%) percent by this speed reduction. It is the general opinion of Mr. Rentschler, and this office, that this speed change was caused by the need for engine overhaul and the locked in throttle setting. After engine work is completed and the required adjustments made we can expect design pump speed during operation at normal hydraulic head conditions.

We have directed most of our study toward the oldest pumps and engines since their need for performance improvement is the most apparent. We plan also to recommend that all existing engines and pumps be inspected for damage or wear which may reduce their capacity. This will require that pump inspection ports be opened and pump propellers,

diffusers, along with other internals subject to wear or damage be thoroughly checked. These individual pieces should be compared to the manufacturer's drawings or operational manuals to insure conformity.

The newest four diesel engines will also be inspected along with tabulating their approximate hours of operation. This information will then be studied to establish a predictable preventative maintenance program or rehabilitate the equipment if this need is indicated.

Since this pumping station is the total and only means of providing drainage for the Belle Chasse area it is the recommendation of this report that all equipment be returned to top efficiency condition. Only with the plant in first class operating condition can adequate and reliable drainage be provided for the drainage district.

Operational requirements have resulted in increases in the power demand for pumping with the original 144 inch drainage pumps. These changes, which have taken place in steps since the early years of this station's operation have steadily increased the differential pressure against which the engines must perform. This fact is the primary reason for the need to rehabilitate the equipment and increase the power capabilities of the existing diesel engines.

The original pumping station drawings indicate suction basin design high water elevation as EL -4.0 Ft. and low water elevation as EL -6.0

Ft. the outfall basin water elevation is indicated as EL +4.0 Ft.

The National Geodetic departments charged with maintaining vertical datum control have adjusted the reference bench marks in this entire area in recent years. We have not yet run a level loop to the Plaquemines Pumping Station but we estimate this elevation correction as 1.3 Ft. downward. As listed in an earlier section the original design water levels when corrected are:

Suction Basin High Water LevelEL -5.3 Ft.
Suction Basin Low Water LevelEL -7.3 Ft.
Discharge Basin High Water LevelEL +2.7 Ft.
Pool to Pool Pumping Head8.0 Ft.
Present Suction Basin Low WaterEL -8.0 Ft.
Present Suction Basin High WaterEL -6.0 Ft.*
Discharge Basin "Hurricane Tide" WaterEL +6.0 Ft.*
Pool to Pool at Extreme Conditions12.0 Ft.
*Hurricane Conditions

The water levels listed in Mr. Olano's April 18, 1983 (See Appendix) letter are assumed to be recorded in accordance with the new corrected elevations. We feel that his datum for water levels is relatively up to date because the drainage system has several automatic recording water level gages and these must have been corrected recently. We will work with corrected current water levels as:

Suction Basin High Water (Pumps Put Into Operation)......EL - 8.0 Ft. Suction Basin Low Water (Pumps Shutdown).......EL - 9.0 Ft.

Initially these pumps were operating with a total pool to pool differential of 8.0 Ft. (-5.3 Ft. to +2.7 Ft.) and a maximum of 10.0 Ft. (-7.3 Ft. to +2.7 Ft.) Presently they should be operating under normal drainage situations with a total pool to pool differential of 10.7 Ft. (-8.0 Ft. to +2.7 Ft.) and a maximum differential under normal drainage of 11.7 Ft. (-9.0 Ft. to +2.7 Ft.). This differential head increase is expanded by the possibility of "Hurricane Tide" discharge basin level. In the event of a Hurricane Tide the outfall elevation is predicted to reach EL. +6.0 Ft. Under these conditions the suction basin water level would be higher than the normal -8.0 Ft. elevation possibly -6.0. Even with minimal "overbank storage" the pool to pool pumping head would equal or exceed 10.0 Ft.

Under the normal drainage conditions the additional pool to pool differential of 1.7 Ft. (say two feet) represents twenty-five percent of the original pool to pool. The expected differential under hurricane conditions could increase the power demand further. From a horsepower demand viewpoint this is an increase equal to the existing available reserve power.

Presently these pumps "should be" operating at these higher heads; because of other considerations the station operators have devised the

methods mentioned in the previous sections to circumvent this higher demand on the equipment. On those occasions when flooding rains required the use of all equipment the pump's diesel engine drives were unable to maintain full pump speed. When these engines are rehabilitated and produce the necessary horsepower under these circumstances the pumps will be capable of producing design pumping capacity at all regular operating conditions.

The following tabulation of pump capacity; pool to pool water levels, and required horsepower was taken from pump curves for 12 Ft. Wood Screw Pump -61.56" pitch at 97 R.P.M. (Engine Speed 625 R.P.M.):

Pool To Pool	C.F.S.	G.P.M.	<u>H.P.</u>
8.0 Ft.	820	368,000	1100
10.0 Ft.	780	350,100	1280
10.7 Ft.	760	341,100	1340
11.7 Ft.	750	336,600	1420

The "Engine Manual" and "Rating Curves for Baldwin Series 600 Engines" lists various rated horsepower for these engines. This information was used to predict the future usefulness of these pump drives. Horsepower ratings are generally a function of the engine design features, permissible B.M.E.P. levels, combined with the manufacturer's desire for a long life product. The Baldwin engine curves at 140 B.M.E.P. lists 1315 as its maximum horsepower rating. The engine manual

lists 1200 H.P. under the heading "H.P. for traction". Since these engines were originally used in diesel locomotive applications this traction H.P. is 10% derating of the 140 B.M.E.P. rating. The derating is a conservative approach because of the long operational hours at high horsepower demand that locomotive service requires.

We propose to have the engine throttle and governor reset to provide for 10% increase in horsepower above the 1315 listed. Increasing these settings will provide adequate power at all pumping situations including the highest hydraulic head condition and still will be, we feel, within the engines capabilities.

This increase of 10% would mean that the engine rated B.M.E.P. is increase from 140 which is listed to 154 B.M.E.P. Since drainage pumping equipment seldom is called upon to operate at maximum horsepower for extended time periods we are not concerned that using the higher rated B.H.P. (Brake Horsepower) will accelerate engine wear. After the engines have been totally rehabilitated we feel that this ten percent overload caused from pumping at 11.7 Ft. pool to pool could be handled without equipment damage.

B.M.E.P. which stands for Brake Mean Effective Pressure is a measure of performance of a diesel engine. It is a difficult term to appreciate since it has only a theoretical existence. It is stated as being the average (or mean) effective pressure inside the cylinder

during the power stroke which would produce power equal to the engine horsepower. This average pressure times the piston area will develop the force necessary to produce power. The higher the B.M.E.P. the higher the demands on the engine components and the lower the B.M.E.P. the lower the demands on the engines. Naturally the engine power pressures are higher at the top of the stroke and lower at the end giving an average pressure to produce the required power.

The engine application at this station does not require that this equipment run at the Higher B.M.E.P. situation on a regular basis. Only when the suction level reaches elevation -9.0 and the discharge basin level at elevation +2.7 or under hurricane tide and high water suction levels will the power demand be a maximum. In short it is our opinion that these engines can safely be expected to perform satisfactorily at all of the water level situations mentioned in this report.

The engine rehabilitation contemplated for this application is extensive but can be accomplished at the site. In order for these two engines to be rebuilt to "as new" capabilities all of the areas where age or normal wear could be expected to reduce the horsepower must be replaced. Since they are presently in running condition without evidence of misalignment or broken components we feel that the exchange of existing major components for factory rebuilt components is the most economical method to propose. The general listing illustrate the extent of these replacement parts.

- a. Replace cylinder heads with factory exchange rebuilt units.
- b. Replace with new all cylinder liners.
- c. Inspect crankshaft for wear; if necessary regrind all journal areas.
- d. Install all new main bearings.
- Install new bearings on all engine drive train components.
 (Camshaft, camshaft drive, water pump drive, etc.)
- f. Replace turbocharger assembly with factory reconditioned unit.
- g. Replace all six fuel injectors with factory reconditioned units.
- h. Replace engine governor with factory reconditioned unit.
- i. Replace water pump with factory reconditioned unit.
- Replace lubricating oil pump with new unit.
- k. Replace fuel oil transfer pump, recondition strainer and fuel filters. Inspect entire fuel transfer system for leaks or obstructions.
- 1. Inspect and recondition engine starting system.

After the engines are disassembled some additional areas of repair may come to light. Since the direction of this program is to return these engines to "new" condition we are recommending complete rebuilding to factory tolerances instead of repairing the obvious damage only. When complete they are expected to develop their design B.H.P. and with the modifications mentioned to accept the ten percent extra occasional demand.

When the engines begin developing their rated horsepower on a regular basis the rejected heat from the jacket water system must be transferred thru the heat exchanges to waste. The existing atmospheric (open) heat exchangers presently in use have been trouble free to this time but an increase in horsepower demand must be accompanied by some increase in heat transfer capacity. This can be accomplished by adding water flow thru the basin. The mechanics of these alterations should not be extremely costly and will be detailed when final planning is accomplished.

The attached bar graph illustrates the estimated time scheduling which will be necessary to accomplish the rehabilitation with a minimum of equipment "out of service" at one time. The "inspection" which can be done without disassembly is shown separately from the more involved "condition survey". Inspection of the original pumping station engines will be completed first. As the necessary rehabilitation is being done and the involved equipment "out of service" these speed reduction drives and horizontal pumps will be completely surveyed. All information from this survey will be studied and recommendations made for whatever corrective measures appear to be required.

All rehabilitation work on the original station equipment will be complete before the newer units are scheduled for any inspection or survey of condition.

The cost of this engine, cooling system and related rehabilitation are estimated (for budget purposes) to be approximately \$150,000.00 for each unit. It is our opinion from conversations with persons who are knowledgeable about these pumps and engines that this rehabilitation will return the equipment to its original capabilities.

The work outlined in this report for the original pumping station equipment and through inspection of the newer equipment units will serve to expand the pumping station ability from its present strained capacity to its original 3800 C.F.S.

Sections II and III of this report outline the hydraulic operation of this drainage district and give an insight into its history and design. These sections are perhaps a tribute to the Operations Department who manipulate the water levels to avoid flooding during heavy rains. The manipulation of water levels enhances the pumping capacity, it does not however replace capacity. It is our opinion that the existing pumps could be more quickly brought into operation if additional vacuum pump capacity were added to the present system.

The existing vacuum pump system consists of two Nash liquid seal pumps driven by diesel engines for servicing all four horizontal drainage pumps. The vacuum priming piping is interconnected by a manifold at the pumps which makes it possible to use both vacuum pumps for priming each drainage pump. This is the most efficient use of the existing

equipment but the drainage pumps can only be put into service by a series start-up; one after the other. The priming time for all four pumps under these conditions is very long and can be a burden to the system if rapid runoff is the initial situation.

It is our recommendation that two new vacuum pumps be added to serve primarily the 1963 addition pumps. The existing priming equipment would remain where it is to serve the renovated system. The new and existing piping would, of course, be interconnected to guarantee continuity in case of equipment failure. These two new vacuum priming pumps with their related piping and accessories would cost approximately \$60,000.00 for each installation. (Total Cost \$120,000.)

We feel that these two new Vacuum Priming pumps would prove to be a most valuable addition to the overall pumping station operation. It does not add to the existing drainage pump capacity but it provides the means whereby the existing pumps can be brought into service quickly when the need is imminent.

The attached "Time Schedule" bar graph for the recommended work illustrates the estimated time required for each phase of the project. The fact that several phases of this renovation are being accomplished at one time is apparent from this type graph. Each individual project has a time period for "Inspection", "Design", "Specifications", and "Bidding". These separated divisions of each project make it possible

to monitor the work as it progresses which with renovation is very important.

The Phase II section of the Report to be submitted subsequent to this Phase I Report will deal with what further improvements might be recommended at the Plaquemines Pumping Station. Some of these considerations would include long term pumping requirements with additional pumping capacity, repowering the existing pumps for the higher pool to pool heads, methods to improve trash screen cleaning procedures and other general recommendations for the "long term".

The Phase I recommendations should be thought of as "short term" (less than 20 years) improvements to maximize the pumping capability of the existing Plaquemines Pumping Station until the end of the 20th century.

SECTION V

CONCLUSIONS

As a result of our study of the existing condition of the pumping equipment in the original (1953) portion of the Plaquemines Pumping Station we have reached the following conclusion:

- 1.) Main diesel engine in the 1953 portion of the station are no longer adequate for developing full capacity of the two 144" diameter horizontal pumps.
- 2.) Priming time for all four (4) horizontal pumps can be shortened by installing two (2) additional priming pumps which will improve the pumping capability of the station.
- 3.) There is a reliable source of new or reconditioned parts for the engines driving the 144" diameter horizontal pumps (1953).
- 4.) There are a sufficient number of machine shops in the general area who could make the necessary replacements at the site.
- 5.) Replacement of the major engine components of the 1953 engines is preferable to random repair of parts that are obviously worn out on these engines.
- 6.) Replacement of 1953 diesel engines with new engines of equivalent horsepower is not cost effective at this time.
- 7.) At some future date replacement of the 1953 engines with higher horsepower with matching reduction gears may be warranted due to higher

pool to pool requirements resulting from lowering of suction side water levels.

- 8.) Rebuilding the existing engines for the 1953 horizontal pumps should extend the life of these engines by 10 to 15 years at which time they probably should be totally replaced as outlined in conclusion No.7.
- 9.) Lowering suction bells on 1953 horizontal pumps would not be cost effective at this time. When the 1953 engines are replaced with new larger engines, lowering the bells would be required and cost effective.
- 10.) Additional pumping capacity of at least 500 c.f.s. would be desirable at this time however the Phase II Report will define more clearly the need for additional capacity at the Plaquemines Pumping Station.
- 11.) At present the 1963 pumping equipment appears to be functioning properly however a complete inspection of this equipment could reveal areas needing preventative maintenance.
- 12.) The water cooling system for the 1953 engines may be insufficient after the engines are rebuilt and operated at higher speeds.

SECTION VI

RECOMMENDATIONS AND COST ESTIMATE

Based on the conclusions outlined in Section $\mathbf V$ the following recommendations can be made:

1.) Inspect all existing mechanical equipment in the entire station as outlined below:

INSPECTION OF EXISTING EQUIPMENT

- a. Inspect Original Station Diesel Engines for repair requirements.
- b. Condition Survey of Vacuum Priming Equipment and System.
- c. Condition Survey of Original Station Drainage Pumps.
- d. Condition Survey of Original Station Speed Reduction Gear Drives.
- e. Condition Survey of Original Station Pump Suction and Discharge Piping.
- f. Condition Survey of Suction Basin Trash Screens.
- g. Condition Survey of Emergency Generator and Electrical system.
- h. Condition Survey of Newer Station Addition Diesel Engines.
- i. Condition Survey of Newer Station Addition Drainage Pumps.
- j. Condition Survey of Newer Station Addition Speed Reduction Gear Drives.
- 2.) Rebuild, at the site, the two (2) main diesel engines that drive the 1953 144" horizontal pumps.
- 3.) Rebuild or repair any other equipment components including trash screens that may need replacement or adjustment.

- 4.) Modify and expand station engine cooling system.
- 5.) Install two (2) vacuum pumps and piping system for 1963 portion of the station. Existing vacuum pumps would be interconnected with new vacuum pumps but would be basically dedicated to 1953 pumps.

CONSTRUCTION COST ESTIMATE

<u>Item</u>	Cost
1. Rebuild Original Station Diesel Engines	\$ 300,000.00
* New Engines (Not Recommended)	(\$ 900,000.00)
2. Modify Original Station Engine Cooling System	\$ 40,000.00
3. Purchase and Install Two New Vacuum Pumps	
and Associated Piping System	\$ 120,000.00
4. Inspection and Condition Survey by Equipment	
Representative or equivalent	\$ 20,000.00
5. Engineering Inspection, Design and	
Specification	\$ 60,000.00
ESTIMATED TOTAL COST FOR REHABILITATION	\$ 540,000.00

The Time Schedule in Section IV shows graphically the time estimated for each separate division of the work from "Inspection" thru "Test". The final five months are devoted to a condition survey of the 1960 addition equipment. It is apparent from this schedule that eighteen months will be required for the project. This is a minimum time estimate and is dependent upon each phase moving in a positive direction quickly and as predicted. The time schedule therefore is an

optimistic approach to upgrading the pumping station. The schedule does not list all inspection work to be included, only those areas we feel must be renovated are shown.

The Pumping Station is the only means of providing drainage for the Belle Chasse area. The work proposed will return the pumping equipment to its original capacity of 3800 C.F.S. Unless additional pumping capacity is added to the system we will only have that which existed in 1963. Phase II of this report will address the problem of run-off increases, future development, and related necessary drainage system improvements.

NAME PLATE DATA FOR PUMPING STATION EQUIPMENT

Horizontal Propeller Pump No. 1
Order No. RR-335 (Installed 1955) Unit No. 1
Capacity 800 CFS Static Head 8 Ft. RPM - 97
Built By:
Hardie-Tynes Manufacturing Company
Birmingham, Alabama

Westinghouse Horizontal Pedestal Gear for Pump No. 1 Serial No. 112214 Ratio 6.429:1.0 Size 50 Type LMR Style PH-13629-1 Service Factor 1.25 Pinion Speed .625 RPM Catalog Rating H.P. 1500 Service Rating H.P. 1200

Diesel Engine No. 1
Model 606A Rated BHP 1200 625 RPM
Serial No. 7031 12-3/4" Bore X 15½" stroke
Build 7th Month 1952
Baldwin Lima Hamilton Corporation
Philadelphia, Pennsylvania

Horizontal Propeller Pump No. 2 Order No. RR-335 (Installed 1955) Unit No. 2 Capacity 800 CFS Static Head 8 Ft. RPM - 97 Built By:

Hardie-Tynes Manufacturing Company Birmingham, Alabama

Westinghouse Horizontal Pedestal Gear for Pump No. 2 Serial No. 112215 Ratio 6.429:1.0 Size 50 Type LMR Style PH-13629-1 Service Factor 1.25 Pinion Speed .625 RPM Catalog Rating H.P. 1500 Service Rating H.P. 1200

Diesel Engine No. 2
Model 606A Rated BHP 1200 625 RPM
Serial No. 7032 12-3/4" Bore X 15½" stroke
Built 7th Month 1952
Baldwin Lima Hamilton Corporation
Philadelphia, Pennsylvania

Vertical Pump - Pump No. 3
Fairbanks Morse Pump Company
Contract No. - DA-16-047-ENG-1774
Serial No. 794401 Built 7th Month 1953
Size 54 6310 Pump
150 CFS at 8 Ft. Hd. 248 RPM
Pomona Works - Pomona, California

Right Angle Gear For Pump No. 3 Universal Gear Corporation Model PRV-25 Ratio 2.9:1 Serial No. 42113-1

Diesel Engine No. 3
Fairbanks Morse Engine Company
Model 31A6½
H.P. = 240 RPM - 720
Serial No. 960807

(Laur

Baldwin-Hamilton

an

Company

BALDWIN-HAMILTON COMPANY One Country View Road Malvem, PA 19355 Phone 215-647-9900 Telex 83-1395

August 3, 1983

Prescott Follett & Associates Inc. Consulting Engineers 822 Baronne Street New Orleans, LA 70113 ATTN: Mr. James A.Tocho

> RE: Plaquemines Pumping Station Diesel Engines Serial Numbers 7031 & 7032

Dear Sir:

With reference to your July 11 letter describing the operation of subject diesel engines, a review of the application would indicate that we should give more thought to the matter before making a definite decision regarding the future for these engines.

The engine manual that was published for these units shows the pumps to be rated at 800 C.F.S. with an 8 Ft.head. Your letter states this is now a 10 Ft. head and you anticipate a 3 Ft. change in water level differential which will increase the total dynamic head and the horsepower demand.

We made a review of the engine block-test record and note that the engines were tested for 1220 HP at 100% load and 1340 HP at 110% load. These values would place the engine load within normal demands at present but will not allow for future load demands which you anticipate will go to 1500 HP. We do not recommend operating these engines at 1500 HP.

You mentioned that during a flooding rain this past spring that the engines were not maintaining their goverened speed of 625 RPM. This could be an indication of engine overloading and not necessarily an indication of the need for overhaul. We note that at 110% load, or 1340 HP, the rack millimeter is 30 mm on engine 7031 and 29mm on engine 7032. It is normal practice to operate the engine at 110% load when on the test block and then take note of the mm reading on the No. 1 pump rack, add one mm and install a stop collar on the pump rack in the rear of the pump. This prevents loading the engine beyond 1340 HP. If the load demand should exceed 1340 HP, the fuel delivery will be restricted and the engine speed will drop off with any further increase in the loading. We should mention also that the #1 pump may have been changed at some time and the stop collar applied at a lower setting. The pump control linkage must be free to allow the pump rack to open-up to 30 mm or whatever the maximum load demands.

Mr. James Atocho August 3, 1983 Page Two Baldwin-Hamilton

When on the test block, the engines are connected to a generator. The load on the engine can then be set accurately to any desired value by adjusting the field for the desired output. When connected directly to the pump drive it is difficult to determine the actual horsepower demand. It would need to be calculated on the basis of the pump design data. We are sending herewith, copies of the test figures taken when the engines were checked out on the test block. By taking note of the fuel pump millimeter reading and the exhaust temperature of the engine, a comparison can be made against the test record and a close approximation of the horsepower can be determined.

We hope you will find the actual pump demand within the load capabilities of the engine so that we can count on keeping the units in service.

Regarding your request for a list of "parts for complete overhaul"; you will find herewith a complete engine parts list. In each area we indicated with an "X" those parts that most likely need to be replaced due to normal wear or deterioration.

In order to make a realistic recommendation on overhaul requirements, it would be necessary to have specific information on the conditions of major engine components. Inasmuch as this information is not usually available until the engine is disassembled, cleaned and inspected it would appear that serious consideration be given toward a major overhaul, especially if total accumulated running time has exceeded 20,000 hours. In order that you will have some idea of what is involved, we are enclosing eight sheets of form 01 which we would use for the initial inspection process (make extra copies for your file). We would then use this information to itemize the parts and material requirements. The approximate time required to tear-down an engine would be 300 man hours. The approximate time required to re-assemble an engine would be 700 man hours.

We no longer have shop facilities to perform the work, however we have re-built a number of Baldwin engines at a shop in South Carolina. Obviously even a major overhaul would cost much less than new engines.

This information, although not resolving any problems, will give you a good enough view of the overall picture and enable you to arrive at the correct solution. Please do not hesitate to contact Mr. Matt Gray as questions arise.

Very truly yours,

HAR:par Enclosures Henry A. Rentschler President

CC: Matt Gray - Baldwin-Hamilton (Malvern)

FLOODGATE CALCULATIONS

EAST OF HALVEY FOM	ENGINEE NEV		KLEINPE B, PLANNERS, BATON ROU	ETER, INC., ENVIRONMENTA	, AL SCIENTISTS LOOSA, AL
	Job No.	Designed By:		Checked By:	Page /
FLOODGATES PILE DESIGN	9551-01	R. CHOPIN	4/29/98		of 18
FLOODEATES PILE DESIGN DEAD LOADS: (1-10" FLOOD WALLS EITHER: (8.5' × 1.8333' × (2'-6" PILASTERS EITHER SID (2.5' × 2.5' × 9.25' (MONOLITH BASE) (8' × 40' × 2.5') (150 (FLOOD GATE) (2 × 28.5' × 62 */47) + [(-10)]	5,0E) 4.5')(150 pc E) (150 pcf)	€) = 10,5. = 8,672 120,000 #	19	10.52 K 8.67 K 120 K	
+ (2 x 7.9167 x 1.9792	x 0.5"	+ (6 × 7,916	(7'x 0.5'x	(<u>0.5"</u>)	
+ (4 × 7.9167' × 2' × 0:	375") + (Z8,5' × 0,	5' x 0.5	"",) "",	·
+ (2× 29,5' × 0,4418,22)] (490 pc	(*) = 5	5,646#	= (5,65)	
HORIZONTAL REACTION ON					
$\left(5.65^{\kappa} \times \frac{28.5'}{2}\right)$	7.5833'	= 10.62 K	TENSION Campress	I ON TOP SIEN ON BOTTAM	
VERTICAL REACTION OF	Hwbes	= 2.825 K	on 70P \$	Bottan	

BURK-KLEINPETER, INC. EAST OF HARVEY FOM ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS BATON ROUGE, LA TUSCALOOSA, AL Designed By: Date: Job No. Checked By: Page 2 7551 -01 PILE DESIGN 18 DEAD LOAD FOXCES ABOUT THE DRIGIN: $2 \times 10.52^{K} + 2 \times 8.67^{K} + 120^{K} + 5.65^{K} = 164.03^{K}$ EMx = 5.65 × 14.25 1- 2.825 × 10.7088 + 2.825 × 3.125 = 59.09 F.K. (GATE CLOSED) ZMx = 5.65' x 14.25. + 2.825" x 10.7083' - 2.825" x 3.125' = 101.94. Fr. K. EMy = 2×10.52" x -0.9167' + 2x 8.67" x-1.25' + 5.65" x -0.3333' - 42.85 A.K $\leq M_{z} = 0$

 $\{p_j^{(i)}\}$

EAST OF HARVEY FOM BURK-KLEINPETER, INC. NEW ORLEANS, LA BATON ROUGE, LA Designed By: Date: Job No. Checked By: Page 4 PILE DESIGN 9551.01 R. CHOPIN Top = R x 1.545 / 7.5833' = 0.2037 R BOTTOM = R-0.2037R = 0.7963 R TOTAL TOP REACTION = (27.167) (0,2037) (1.32") = 7.31" TOTAL BOTTOM REACTION = (27.167')(0.7963)(1.32") = 28.56 K LIVE LOADS ABOUT ORIGIN: $\xi F_{x} = (40')(0.21^{k} + 2.53^{k} + 0.41^{k}) = 93.2^{k}$ $\xi F_2 = (40')(1.62^K - 2.25^K - 0.62^K) = -50^K$ EMx = 0 $\leq M_{y} = (-0.21^{K} \times 0.8833' - 2.53^{K} \times 3' + 1.62^{K} \times 2' - 2.25^{K} \times 2' + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833' + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.62^{K} \times 2' + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.62^{K} \times 2' + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.62^{K} \times 2' + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.62^{K} \times 2' + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833' + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833') + 0.62^{K} \times 2' + 0.41^{K} \times 0.8833' + 0.62^{K} \times 2'$ EM = 0 $\xi F_{X} = \emptyset + 93.2^{k} = \sqrt{93.2^{k}}$ EFZ = 164.03 K - 50 K = (114.03 K) EMx = 59.09 F.K+ 0 = 59.09 F.K £My = -42.85 Fr. K - 297.73 Fr. K = [-340.58 Fr. K]

EM2 = 0 +0 = [0]

٠	EAST OF HARVEY FOM			5, PLANNERS,	TER, INC. ENVIRONMENTAL E, LA TUSCALO	
		Job No.	Designed By:		Checked By:	Page 5
	FLOODGATES PLE DESIGN	9551-01	R. CHOPIN	4/29/98		of 18
	FLOOD SIDE	OAD CAS	8'-0" 2'-6" W-		PROTEC	TEO SIDE
	EL. 11.5	-				
	SWL 9.5				LOADS SH PER LIVERI	t FOOT
	Note: And other Long, 1/2 Same As Case I.				OF MONOLI	4.
	£L. 0.5		V × 1	7,2		
			2 56%	4"STAGIL	ZATION SLAB	
	561.6%	R=1.62 ^K	30			
	40-0" MONOCLITH		R=1.25			
	26'-0" GATE OPENING					
445						

BURK-KLEINPETER, INC. EAST OF HARVEY ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL Designed By: Date: Job No. Checked By: Page 6 9551-01 R. CHOPIN PILE DESIGN 18 LOAD CASE II: $\xi F_{x} = (40')(0.21^{k} + 2.53^{k} - 0.41^{k}) = 93.2^{k}$ $\mathcal{E}F_{2} = (40')(1.62^{\kappa} - 1.62^{\kappa} - 1.25^{\kappa}) = -50^{\kappa}$ EMy = (40') -0.21" × 0.8333' -2.53" × 3' + 1.62" × 2' - 1.62" × 1.3333' + 1.25" ר + 0.41" × 0.8363')
= -253.73 FT.K TOTAL LOADS ABOUT ORIGIN $\xi F_{x} = 0 + 93.2^{k} = 93.2^{k}$ £ Fy = 0 + 0 = 0 $\xi F_2 = 164.03^K - 50^K = (114.03^K)$

•	F	A	;	,	. =	F	<u>د</u> ل	ρ.	,,,	,	·		אנ	1		·			EN			:RS,	, Af	RCH	KT.	EC1	ΓS,	PL/	M	ERS	ET s, e JGE	NVII	RON	ME	TN:	'AL				rs	
ľ	_	,,,	''	Ü	7	. •	<i>i</i> n.	χ.	iei		•	·			•		ľ	lob	N	_		_		gne				ate			_	hec						ge			
	J	-	Λ.C	~	4 T	ES	<		:		P] 		Des	516-1	J.		95:	51	-n	,	F	2. 2	CHO	lin	, .	۱,	1/2	9/	1 18 ·							of		18		
į	.!			_			1	:			į				1.		L	;	,			:		i	Ť		<u></u>	; ·	:/ ` :	:	-	•	;	ţ	· ·	į					1
		-	: ·				!	: <u>:</u>). 	-	. [1.	1 -	1			0	AO		<u>A</u>	•		<u>m.</u>	=		:	:	:	:	•	İ	•	,	:			_	i	٠.
ŀ	ţ	<u></u>	<u>Lo</u> :	00	;	5	10	E		·	į .	į	- 4	,				ļ.	•		: .	8	-0	<u>,"</u>				1	;	:	į	•		<u> </u>	હિર	Ec	El	2	510	E	:
		ن بدر.	į.		ن. أ أحر ،	2				ر بدر			1.1				•			4!-	0"			2'-	," <u>!</u>	J	ا الم	ļ.,		:	•		:	:						· .	
İ			j.							j		-	,			ļ.,		- 1	Ì	,	<u> </u>	; .	<u> </u>	1	1	*	•			:	٠	:	t : ·	;		i	. ;				ļ
	*# 1	<u>~</u>	<u>L</u>	<u> </u>	2		-	+		<u>!</u> 	<u> </u>	7		EL	<u>) ((.)</u>	5	:	- -	1	<u> </u>	 	1	-	1	-	-			!	!	1/	OA	n <	1	ىندې		,			,]
ŀ,	:	÷.	;		į			. ;) .		1	/	ا المنات				Ì			٠٠]			. [•				•			ER						-			
				. : 14 14						.,	1/	1	314	وزند		j.	. j	R	- 2	2.12	 	į,								1		F	: '	Į.			!] - ! !,
				٠,							\vdash	>		- 5		1			. }	• 3					-							١.		i	i						
						•						7	1		 		ì	5	30	4/] -	i;			- {				:					Ì	:	1	;	į			
٠.			!	,		2 = :	3	18	K	L	Ι.	₹	1											:1	1					:	1			}	j	•					-
	,						Ť		-/		1	7		EL.	3.0	رار			- [<i>?</i> 1	 		<u></u>				. . .		· •	ļ.,	•	· !	1-		- -			- 1		45.	
١			 	1	1	6	-	. 1	F	130	1	衤		4.7	1			Ī	1		70.0	1						1	7:		1			1		K	Ì	1.			
ľ	Z	1	Z	<u>/</u> =	Ż ,	e).		1	 -			7	É	L.	() ± D • 5	de de			į	/	1	Ÿ	_	دا	< 1	`	• •	12	};	4 _	K	/-	R	1	. <u>4/</u>	833	,			10 m	
(٥	823	(7	97	br.		E	86	.4	Fr		1	:-f			1.	F	1	/1			1	1	1	7			F			,	5%	:/	- [ş	:			- #* 14	
	•						ļ		. .,,		١.,	-					. 	$\cdot _{\lambda}$	1			1.	12			.,5	*	, 1	4"	STABL	42	4man	50	18	÷	2				1	
	-		i :								-	4						Æ				Ŀ		·ļ.			. \	١.		!	-	ļ.,		1	, i ,	:					
			}						_	i i	1		93 1			1	/	68	6.	14	7			1				\	! -			-	1		. i	1		į			
١.		-					,		:		ĺ				, ,				•				ľ	•	`	R	- 0.	62	k			:	:	Ì	:	:	1	. [ا ۽ ا	
			1	· į	!	سوند څ.			٠, ٨.		1.	: .	N 44			-				·K						: اد ا	····		: :			1			. 1	1					
	-		i	i L	•	- :.: î. :		• •							i .	:	1	= 2	4.7	5		1			1	;		!	;	:			:					,			
	i. :4	4	0-	D	"	,,,,,	n	ام ہ	IPL	! ! T}	<u> </u>					1 ··	1				: . :	1									·	1	:	•	• ;	:	;	* - 1	· .		
	1	2	6'-	o	"	6	FA	76	ا	OPE	HI	٢	4									1	-		i					` {:	-			•		•	Ì	. j			٠.
		to e	ļ	:	-		ļ	4	* 5°		-	. .		.1	-	-	4-		-		4	-	١							i	1	\ 	ļ		. !	4.				الماق وه	
•	Ì			ļ		•		- 4 - 1				•		•					-		اغاندًا ا												:		•	•		. !			:
					İ		_		l'							į	. !								1	1		ļ 1. :		:			•	٠.		-	,	•			
			:		Í		1	-		i ,			,		ļ							<u>i</u> .	· .	41-4-			::		-	-		•	:	:	:	<i>j</i>		!	- 1		ļ
•	-			, i,	^	- Žinia	-	٠Į. ا			1.		4			ļ.,	1	-	,	****	*	ļ.,	J.,	.4	1	إد. ء٠	4 i i i i i i i i i i i i i i i i i i i	ļ	-	ļ			-		- :	i T	. 4			·	
٠		;	Y. *				1			!			-			1	. 1			٠		1.: 1.:			-]			-	;			·. ·		: :		:	;			:
	:	•	•	1						•	ļ				!	1.	•		1				Γ.			1		:	•	i	1		•								
	:		:		. !	<u>.</u>		1	:		ļ.,	1			i •	į .	. j.*	1	-		: :		;	:	-			! ! ···	ļ.,			i			٠	•		:			, ·
٠,		•••	-	1			-	- -				1					+-			 -	! • • •	; ; {	į.		-	i	٠ -	 !		: :	1				. :		:			• • • •	:
				İ		1 to 1		1	-					-4, 1		1	- 1 -	- 	44.4			- -	. i.							! .	Ì		•		•	•	!	:	• • •		!
	•						Ì.,									1	.].	Ţ					ļ.,								Ĭ	;	!			1					(
:	1					وريوه و	,		•			i.	.,		1	1	.	. .	1	٠.	! !- • ·	ļ	i		Ì			:	•				•	٠						! •	

BURK-KLEINPETER, INC. EAST OF HARVEY ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL Job No. Designed By: Date: Checked By: Page 8 PILE DESIGN 9551-01 R. CHOPIN 18 $\angle F_{x} = (40!)(0.21^{k} + 3.78^{k} - 0.41^{k}) = 143.2^{k}$ $\mathcal{E}F_{Z} = (40')(2.12^{K} - 2.75^{K} - 0.62^{K}) = -50^{K}$ TOTAL LOADS ABOUT ORIGIN (75% FORCES USED) $2F_{x} = (0 + 143.2^{k})(0.75) = (107.4^{k})$ ZFy = 0+0 = 0 2F2 = (164.03 - Sok)(0.75) = (85.52K) EMx = (59.09 Fr.K + 0)(0.75) = (44.32 Fr.K)

ZMg= (-42.85 F.K - 549.04 F.K) 0.75) = (-443.92 F.K

EM2 = 0 + 0 = [0]

		-					، ما	1		<i>E</i>	DN	<u> </u>				£			ERS,	, AR	CHI	TEC	TS,		ทท	ERS	, Er	4YIF	ION	ME	NTA	, L 50			rs	
•	_	.zis			-		771 F	.ve	7 :		Or.				4	d do	ło.		D	esig	ned	By	/: [I	ate	: ,			necl				Pa	ıge	9		
	_	20	o C	GA	7	ES				P	e	DEC	516	٧.	9	55	1-0	1.	F	?. <i>C</i>	Hol	Ņ	4	1/29	19	3		٠.				of	•	18		
	-	: :	; ; !	i	1	A		!			i (.		l .	i :		1	bΑ	ø	CA	\$E	ı	Į V						: .		; :	:	•	:	i (
		<u>_</u> F	Lo	00	. ?	5	06	<u> </u>	·				1	!		∢			8	-0'	•	Γ	<u> </u>	H				:		PK	0E	CTE	0	510	'E	
		i		-	į	3			7.				1				4!	-0"			2'-6*		1-6".				{ 	; . ; .	:	1			:			·
	:	Hv	i VL	11	: 5.	•		1 .	• •			EL	11:	5			į	1			1		1.		!	: : 	:	:		: 			1			
	:			===	-				 	 	, ,			,	1	-		\	2 4 4 2				-		• •	:						nw	•			·
-	- ;	!		No	TE		-1.2	1	0	THE	e										1				1	i !* !						I TH		- j		نيد
				1		/.	Lot	0,4	,	SA.	Æ				•																102		'i → . • •			7
				*. ":			As.	a	SE	711			15		i						į.					! !		•				₹^.				
		: .	:		:	. :								· · ·								2		Ì	* : :	•			:	:	•		; • •			
		:	: :	-:			.,.	1	-		i	EL.	3.0) 	· · ·		} -	1-	-	-				-				i		<u>}</u>		1	i		1 - 1	y.*.
		t !	· ·	.•	-	•		1						i Lagar	•						v			5.6"		i				1	:	*				
1			•				o,					EL.	0.5	1:		ļ.,	\bigvee	<u>^</u>	- Y	⋪≡	Ě		<u> </u>	=	L	1	1			-	:	į				3) 5)
:						ψ,									1	/				2			4) .	4":	i itabi	ļ 424	nod	50	 48	:				3	
		-													/		_	+	1				\		56	fer		i 1 :		:	i.	:				
			•	•											168	6.4	fer									:		:			· !	1	• •	1	ا به در ا ا	
:				:		:::							1		! 	•					:				i :	:			;		•	;	<i>i</i>		; ;	
	:		!	!	ì		~								R	= 2	12		1	R	= /.	25	K			·• ·	•		! "'	· • · · ·	:	;	! `			- ~.
	-!	4	0-	-0	, l		no.	Noc	174	1	1													1		;	1				1	į.				;;·
		2	6'-	0	1	. 6	(A	E	I TH OPE	MIN	-													1		1) - :						
	i			. 1		-1				14		11.	ii.	Ļį.					1	<u>, </u>	13.) 	ļ :	ļ. 	ا ایرا	₹ 	ļ.,		: Î:				•
		i	: .		4					1			1) 1.					;							!						,	1				
				i.	 	1	2.,	 				2000 1000			-					1	-		.] }	ļ	:	! .		: . •	:		i.	•	! -		:	÷
		-													.,							ļ			ļ.,			! !*					ļ.,			
	: 1						- 4 - 4											1		4 1. 3 1			-		ļ.,		1				; ·		j			
		:	;			*																	1		į	i i		•				:	:		•	
			ļ												 	1		; ; ;											:		•			:	, !	
	,			ĺ	-]	11												}	1			-	-			[: .	:			; ;	!	:		
1								ļ.					. : . 1				.	17.4		4-2		-		, eq. , .		:		:	!			i.	!	:		
7 5,•					1			1 2	*	1.				1 (3) 1 (2)				1		13				1. 1	; ^				i			1		: !	j i i r i i	

BURK-KLEINPETER, INC. EAST OF HARVEY Job No. Designed By: Date: Checked By: Page 10 9551-01 LOAD CASE IV: $\xi F_{x} = (40')(0.21^{K} + 3.78^{K} - 0.41^{K}) = 143.2^{K}$ $\xi F_z = (40')(2.12^K - 2.12^K - 1.25^K) = -50^K$ EMy = (40')(-0.21" × 0.8333" - 3.78" × 3.67" + 2.12" × 2" - 2.12" × 1.3333" + 1.25" × 0 + 0.41" × 0.8033")
= -491.70 Fix TOTAL LOADS ABOUT ORIGIN (75 % FORCES USED) $\xi F_{\mathsf{X}} = \left(0 + 143.2^{\mathsf{K}}\right)\left(0.75\right) = \left[107.4^{\mathsf{K}}\right]$ $\xi F_{z} = (164.03^{K} - 50^{K})(0.75) = (85.52^{K})$ EMX = (59.09 FIX + 0)(0.75) = (44.32 FIX) EMy = (-42.85 FIX - 491.70 FIX) (0.75) = -400.91 FIX

EM = 0+0= (0)

BURK-KLEINPETER, INC. ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS EAST OF HARVEN FOM NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL Designed By: Date: Job No. Checked By: Page // R. CHOPIN 9551-01 GATE DEN, No WIND, TRUCK ON PLOTECTED SIDE EDGE OF LIVE LOTADS ABOUT ORIGIN: (ONE TRUCK TOWARDS HINGE SIDE OF GATE OFFICE) EMx = 16 x 11 + 16 x 5 = 256 Fick EMy = -32" × 4 = -128 A.K TOTAL LOADS ABOUT ORIGIN. $\xi F_X = 0 + 0 = 0$ EFy = 0 +0 = [0] £FZ = 164.03 K + 32 K = [196.03 K) EMX = 101.94 FIX + 256 FIX = (357.94 FIX) EMy = - 42.85 A.K - 128 A.K = (-170.85 A.) 2Mz=0+0=[0]

BURK-KLEINPETER, INC. EAST OF HARVEY FOM ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL Job No. Designed By: Date: Checked By: Page 9551-01 R. CHOBN 18 GATE OPEN, No WIND, 2-TRUCKS ON PROTECTED SIDE FACE $\begin{aligned}
& £ F_{4} = \underline{0} \\
& £ F_{2} = 32^{K} + 32^{K} = \underline{64}^{K}
\end{aligned}$ EMX = 16" × 11' + 16" × 5' + 16" × 1' - 16" × 5' = 192 FT.K EMy = -64" x 4' = -256 Fix TOTAL LOADS ABOUT ORIGIN: ¿Fz = 164.03 + 64 = [228.03] E Mx = 101.94 Fr.K + 192 Fr.K = 293.94 Fr.K ZMy = -42.85 F.K -256 F.K = [-298.85 F.K]

EM2 = [0]

EAST OF HAN	WEN FOM		BURK- ERS, ARCHITECTS ORLEANS, LA				STS
		Job No.	Designed By:		Checked By:	Page 14	1
RODOGATES	PILE DESIGN	9551-01	R.CHOPIN	4/29/98		of 18	3
LOAO CASE I	TIL! GAVE	OPEN NO BASE SLAC	WIND 2-7.	ducks on	FL000 SIDE	FACE	
LIVE LOADS AC	BOUT ORIGIN:		•				
EFx = 0				:			
2Fy = 0			•				
EF2 = 64K				:			
EMx = 192 FT.	K						
E My = 64 x 4	'= 256 FT.1	<u>K</u> .			·		
EMZ = 0							
· · · · · · · · · · · · · · · · · · ·							
TOTAL LOADS	ABOUT ORIGIN	: =					
2 Fx = 0							
E F = 0							
ź Fz = (228.0	3 ^K			•			
EMx = (293.94	(Fr.K)	i					
EMy = -42.85A	F.K + 256 F.K	= [213.1	5 FT.K				
EM2 = [0]							

	EAST OF HARVEY FO	DM	ENGINEEI NEW	BURK- RS, ARCHITECTS ORLEANS, LA	S, PLANNERS,	TER, INC. ENVIRONMENTAL GE, LA TUSCALO	. SCIENTISTS
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Job No.	Designed By:		Checked By;	Page 15
	FLOODGATES P.	LE DESIGN	9551-01	R. CHOPIN	4/29/98		of 18
	12 14 1 19 1		WIND !	OADING FOR		i : 1	,,,
ı			LOAD CA	SES TX +	X		
ı	FLOOD SIDE			8'-0"	 :	PROTEC	TEO SIDE
ı		gi es es es .					
ļ			4-0"	2'-6" 0 1-6	,,		
ı		EL. II.5			- 50 ρς		
ı					July ps	f	
ŀ					4		
ı				*	44		
1	· 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1			\$		1 R	
1					 		
ı							
Ì		EL. 3.0			, Y	2	
ı					1:1	6	
١		EL. 0.5		y ×	1,7		
1		1 1 1	-		1-1-	/ -	
ı					4" STAGIL	24-11 5.40	
				2	\ \	THINK OLIO	
1					\mathcal{L}		
1					-1.		
ł							
1							a decision a market
ł							
İ	40-0 MONOLITH						
İ	26'-0" GATE OPENING						
l							e y se y ee kaasea
ı	WIND LOADING AL	BOUT, ORIG					
	EFX = (-50 pse) (8	51/141	= -5.9	5 X			
		17111					
ı	EFG= 0						
l	46	. V					
-	EF2=0						i i e gerila 📗
	EMx = 0						
	EMy = 5.95 x 6.75	= 40.16	Fr.K				
	2m2 = 0					1 1	
1			1-1-1-			1	

•		·				
	EAST OF HARVEN FOM	1		S, PLANNERS	ETER, INC. , environmental ge, la tuscalo	
I		Job No.	Designed By:	1 / /	Checked By:	Page 16
	FLOODGATES PILE DESIGN	9551-01	R. CHOPIN	4/29/98		of 18
			•		ск он Геого	510€
	TOTAL LOADS ABOUT ORIG	<u>~</u> (75% Force	ES USED)		
	¿Fx = (0 - 5.95)(0.75) =	-4.46	*)			
İ	EFy = 0 +0 = 0					
	2FZ = (196.03 × + 0)(0.75) =	(147.02	*			
	EMx = (357.94 FT.K +0)(0.75) = [268.	46 F.K			
	EMy = (85.15 FT.K + 40.16 FT.K)(0.75) =	193,98 Fr.K	7		
1	EM2 = 0+0 = (0)					
	LOAD CASE X: GATE EOGE	OPEN, WIN	ro From lever	40 SIDE ,	2-TRUCKS ON	FLOOD SIDE
	TOTAL LOADS ABOUT ORIGINE $ \xi F_{X} = \left[-4.46^{K} \right] $	<u>1</u> (75	% Forces	USED)		

Term Loads About ORIGIN (75% FORCES USED) $\xi F_{X} = \begin{bmatrix} -4.46^{K} \end{bmatrix}$ $\xi F_{Y} = \begin{bmatrix} 0 \end{bmatrix}$ $\xi F_{Z} = (228.03^{K} + 0)(0.75) = \begin{bmatrix} 171.02^{K} \end{bmatrix}$ $\xi M_{X} = (293.94 \text{ fr.k} + 0)(0.75) = \begin{bmatrix} 220.46 \text{ fr.k} \end{bmatrix}$ $\xi M_{Y} = (213.15 \text{ fr.k} + 40.16 \text{ fr.k})(0.75) = \begin{bmatrix} 189.98 \text{ fr.k} \end{bmatrix}$ $\xi M_{Z} = \begin{bmatrix} 0 \end{bmatrix}$

EAST OF HARVEY FOM BATON ROUGE, LA TUSCALOOSA, AL Job No. Designed By: Date: Checked By: Page 17 PILE DESIGN FLOODGATES 9551-01 R. CHOPIN 18 WIND LOADING FOR LOAD CASES XI + XII FLOOD SIDE PROTECTED SIDE EL! 11.5 5015 4" STABILIZATION SLAB 40-0" MONOLITH 26'-0" GATE OPENING WIND LOADING ABOUT ORIGIN: EFX = (50 psf) (85' X 7 + B.S' x 27, 167/2) = 8.75 $\geq M_{\chi} = 0$ $\geq M_{\chi} = -8.75^{K} \times 6.75^{'} = -59.06 \text{ M}.K$ $\geq M_{\chi} = (-50 \text{ pse})(8.5' \times 27.167')(14.25') + (50 \text{ pse})(85' \times 7')(16.5') = 0$

	<u> </u>	BIIDK-	KI FINDS	TED INC	
EAST OF HARVEN FOM			5, PLANNERS,	ETER, INC. , environmenta ge, la tuscal	L SCIENTISTS
	Job No.	Designed By:		Checked By:	Page /B
FLOODEATES PILE DESIGN	9551-01	R. CHOPIN	4/29/98		of 18
LOAD CASE XI: GATE EDGE	OPEN, WI	no From Ros E SLAB.	no 510E 72	ivek on Prote	ECTED SIDE
TOTAL LOADS ABOUT ORIGI	<u>w</u> (7.	5% Force	s used)		•
EFx = (0 + 8.75 K)(0.75) =	[6.56 ^K]				
2 Fy = 0					
$ \leq F_{Z} = (96.03^{K} + 0)(0.75) = ($	147.02K))			
EMx = (357.94 F.K +0) 0.75)= (268	3.46 Fr.K)			
EMy = (-170.85 F.K - 59.06	6 FT.K) (0.75)= [-172,	43 FT.K		
EMZ = (0 -33.18 F.K) (0.75	5) = (-2-	4.89 Fr.K)		
LOAD CASE XII: GATE OF	OF BASE	o Flom Flood SLAB,	Side, 2-	-TRUCKS ON T	ROTECORD SIDE
TOTAL LOADS ABOUT DRIGI	<u>~</u> (75	% FORCES	useo)		
$\xi F_{x} = 6.56^{\kappa}$			•		
EF = 0					·
¿Fz = (228.03 + 0) (0.75)) = (171.	025			
EMX = (293.94 F.K + 0)(0.7	(220	0.46 H.K			
EMy = (-298.85 FT.K -59.06 F	·K (0.75)	= (-268.43	B FT.K		
EMZ = (0 - 33, 18 F.K) (0.75)	= (-24	(.89 F.K			

		1	BUSE	/// History		
EAST OF HAX	EVEN FOM		RS, ARCHITECT	S, PLANNERS	ETER, INC. , ENVIRONMENTA	
		Job No.	Designed By:	BATON ROU	GE, LA TUSCAL	D 40
	0 - 0		R. CHOPIN	1 //	Спескей ву:	Page /Ba
FLOOD GATES	PILE DESIGN	1351 -01	N. CHOTIN	13/1/70		01 18a
LOAD CASE	XIII :	GATE C	CLOSED WIN	no From	PROTECTES S	SIDE
WIND LOADING	ABOUT ORIGIN	_:·				
£Fx = (-50	ps€)(8.5')(40	o') = <u> </u>	-17. ^K			
EF = Q						
£ F2 = 0						
EMx = 0						
EMy = 17K	× 6.75' = 114.	. 15 Fr . K				
EM2 = 0						
TOSAL LOAD.	S ABOUT BRIGH	y (75	% Forces	USED)		
£Fx = (-17	7 + 0) (0.75) =	- (-12.7	75 ×			
EFy = 0+	0 = [0]					
EFZ= 0+	0 = 0					
EMx = (0+	59.09 FT.K)(0.75	s) = (44.	32 FI.K	•		
$EM_{Y} = \begin{pmatrix} 1/4 \\ 0 \end{pmatrix}$ $EM_{Z} = 0 + 0$	75 FI.K - 42,85	F1.K) (0.75) = (53.95	3 F.K.		
LOAD CASE	XIV: GATE	E CLOSED	Wiso Fre	Com From	D SIDE	
TOTAL LOADS	ABOUT ORIGI	1 (75	% FORCES	USED)		
EFx = (17'	×+0)(0.75)=	12.75	5 *			
£ m = 0+	-0 =0					
ÉFZ= 0+	0= 0					
EMX = (0+	59.09 FICK) (0.7	s = (44.	32 A.K			
EMy = (-114.	75 A.K - 42.85	r.K)(0.75)=(-118.2	FT.K		
EM= 0+	0 = (0)					

PILISTELS. 3-#B E.F.

BASE TRANS. #7212"O.C. TOP OLOT.

Computation Sheet

BURK-KLEINPETER, INC. ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS EAST OF HARVEY FOM NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL Job No. Designed By: Date: Page 2 Checked By: FLOODGATES 9551-01 R. CHOPIN of REMERCIAL DETAILS FLOOD SIDE PROTECTED SIDE EL. 11.5 BARS (SEE PLAN EL. 3.0 STABILIZATION SLAB NOTE To DRAFFESMA. SPACE. SHEET PILIDE 9-47 BAGS C12" & PAECAST TU MISS IN BUTTON CONCRETE PILE. W/TENSION HOOKS MONOLITH GATE OPENING Note: Buen Holes IN SHEET PILLE TO PASS REINFOXCEMENT SECTION A-A

BURK-KLEINPETER, INC. BATON ROUGE, LA TUSCALOOSA, AL Checked By: Designed By: Date: 9551-01 fe'= 4,000 Psi WALL DESIGN ! Eg = 60,000 PS. BY INSPECTION LOAD: CASE III M= (2,254 4/47) (2.8353') = 6,386 41.4/4. Mu = (1.7)(1.3)(6,386 F.*/F) = 14,113 F. 11/F No = (1.7)(1.3)(2,254 /A) = 4,981 #/A. FLEXURE DESIGN: Smin = 200/60,000 = 0.0033 $\mathcal{S}_{b} = \left(\frac{0.85 \, \beta, \, f_{c}}{f_{c}}\right) \left(\frac{87,000}{87,000 \, + f_{v}}\right) \qquad \beta_{r} = 0.85 \, \text{ For } f_{c} = 4,000 \, \text{ Fs};$ $S_{b}^{b} = \left(\frac{(0.85)(0.85)(4,000)}{60,000}\right) \left(\frac{87,000}{87,000+60,000}\right) = 0.0285$ SMAX = 0.25 × 0.0285 = 0.007/ RECOMMENSES d=22"-3"-(78")(12) SMAX PERMITTED = 0.375 × 0.0285 = 0.0107 $R_{\Lambda} = \frac{M_{\nu}}{\phi b d^{2}} = \frac{(14,113 \text{ fr.} \#)(12\%)}{(0.9)(12\%)(18.56\%)^{2}} = 45.52$ S= 0.85 fc (1- \sqrt{1-\frac{2Pn}{0.85fc}}) = 0.0008 < Smm = 0.0033 USE 1/3 INCREASE 9 = 1.33 × 0.0008 = 0.0011

	EAST OF	HARVEY FOR	n	ENGINEE NEW		KLEINPI s, planners baton rou	ETER, INC., ENVIRONMENTA	AL SCIENTIST	rs
1				Job No.	Designed By:	····	Checked By:	Page 2	
1/	2000 GATES	CONCESSE	DENGU	1551-01	R. CHOPM	5/4/98		of 7	(
ľ	Aspen =	(0.0011)(12	")(18.5	(6") = 0.	245 m2/F	MIN. AT	emp = 0,0028 x		37~2/
	Lu	se #6 81	res C 18	2"o. c. (E.F.) . IN	varis	:	,	
	CHECK :	SHEAR ACROS	s BAS	E 0F	THE WALL		•		
		4,981 #/#	1	:				•	
	puz = p	2 N fc bd			4,000 (12")	(18.56") =	23,946		
	TEMBEROL	23,946"			<i>(=)</i>	, .			
1	/ /	0.0028 × 2				3 m²	* • • • • • • • • • • • • • • • • • • •		
	ASTEMP EN	out Face				/FACE			
		USE	11-	5 BARS	E.F.				Ţ
	PILASTER I	DESIGN:	(2'-6'	" × 2'-6"	PILASTERS)				
	GATE READ	ट्ना∂45 °.		R × . 2.20 = R - 0.2	183 / 7.5893 : 1912 R =	0.291			
	TOTAL GA	HE REACTIONS	on fin	ASTELS				•	
		Top = (0.2	912)(2,2	.s4 #/Fr)(2	27.167/2) =	8,915.	フ#		
	:	Botton = (0.70	08B)(Z, 2	259 #/FT)(27.167/2)=	21,701.	5 ^{##}		
			B,915.	# 8.20 0.625					

BURK-KLEINPETER, INC. EAST OF HARVEY FOM ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL Designed By: Date: Checked By: 9551-01 R.CHOPIN M= 8,915.7 × 8.2083 + 21,701.5 × 0.625 = 86,747 F. # V = 8,915.7 + 21,701.5 = 30,617 + Mu= (1.7)(1.3) (86,747 F.#) = 191,711 F.# $V_{\nu} = (1.7)(1.3)(30,617)^{\#} = 67,664$ d = 30" - 3" - (1")(1/2) = 26.5" $R_{A} = \frac{M_{U}}{6b d^{2}} = \frac{(191,711 + 1.4)(12")}{(0.9)(30")(26.5")^{2}} =$ S = 0.0021 < Sm. = 0.0033 USE \(\frac{1}{3} \) INCREASE \(\frac{1.33}{3} \times 0.0021 = 0.0028 \) Aspend = (0.0020)(30")(26.5") = 2.23 m2

CHECK SHEAR AT BASE OF PILASTER! $V_{0} = 67,664^{\#}$ $\psi_{C} = (0.85)(z) \int_{0.00}^{2} (30'')(26.5'') = 85,476^{\#} > 67,664^{\#} \text{ D.K.}$ $v_{SE} \neq 4$ Ties @ 12" o.c. Assum #B VERTICAL BARS

BURK-KLEINPETER, INC.

ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL

Job No.

Designed By: Date:

Checked By:

CONCARTE DESIGN 9551-01

R. CHOPN

5/5/98

TRANSVERSE FLEXURE DESIGN:

$$M = (1-1)(1)(1-1)$$

Mu = (1.7)(1.3)(47.703 F.K) = 106. F.K (POSITIVE MOMENT)

Mu = (1.7)(1.3)(-42.6276 FIX) = -95 FT.K (NEGATIVE MANEY)

 $d_{pos} = 30" - 9" - \frac{1}{2}" = 20.5"$ $d_{nec} = 30" - 3" - \frac{1}{2}" = 26.5"$

 $\ell_{0.165} = \frac{(106 \, \text{Fi.K.}) (12",) (1,000 \, \text{m/k.})}{(0.9) (105") (20.5")^2} = 32.03$

 $R_{n NEC} = \frac{(95 \text{ et.K})(12"/)(1,000 */K)}{(0.9)(105")/26.5")^2} = 17.18$

 $S_{fos} = 0.0005 < S_{min} = 0.0053$ USE $1.33 \times 0.0005 = 0.0007$

As = (0.0007)(105")(20.5") = 1.54 m2

USE 1.33 × 0.0003 = 0.0004

As NZC = (0,0004)(105")(26.5") = 1.17 IN2

CHECK TEMERATURE ASD SHRINKAGE REQUIREMENTS IN SAME DIRECTION

As TEMP = (0.0028 × 30" × 105")/2 = 4.41 IN 2 - GOVERNS

USE #7 @ 12" O.C. TOP + BOTTOM

LONGITUOME FLEXURE DESIGN:

(GATE OPEN WITH . TRUCKS CROSSING)

M MAX NEC - 24.5 FT.K

V_MAK TEUCK = 16.3 K

EAST OF HANNEY FOM	1	RS, ARCHITECTS	, PLANNERS	ETER, INC., ENVIRONMENTA GE, LA TUSCAL	
		Designed By:		Checked By:	Page 7
FLOODGEMES CONCRETE DESIGN	9551-01	R. CHolin	5/5/98		of 7.
Mu = (1.7)(1.3) (3 */r × (8.75)					
Muner = (1.7)(1.3) [3 / 1 x (8.75	1)2/10 +	24.5Fi.K =	105 Fr.	K	
Rolls = (87.2 Fix) (12"/2) (1,000) (0.9) (96") (20.5") 2					
PANER = (105 F.K) (12"/) (1,00 (0.9) (16") (26.5") 2	20 4/K)	20,77			
Spos = 0.0005 USE 1.33			,		
As (0s = (0.0007)(96")(2	20.5")=	1.38 m²			
\$\text{\$\text{\$\gamma_{\text{\$\text{\$\general}\$}}} = 0,0003 \text{\$\sigma_{\text{\$\general}\$} \text{\$\sigma_{\text{\$\general}\$}} \end{and} \text{\$\sigma_{\text{\$\general}\$} \text{\$\general}\$} \end{and} \text{\$\general}\$	× 0.0003 =	- 0.0005			
As NEC = (0.0005)(96")(2	26.5")=	1.28 m²			
CHECK TEMPERATURE AND SINCIP	•			Dekearen	
A5 = (0.0028 × 9)	16" × 30"]	$\left \right z = 4.$	03 /w ^Z		
USE 9-#7	BALS	Tot + Born	Fon		
CHECK BASE FOR TORSION					
MAX, THISION AT FACE OF PIL	us Sullon	£75			
TOLSION PER FOOT OF WALL (55.885 6).K	+ 52.28	6 A.K)/8.75	s'= 12.3	7 Frik/A	
Tu = (1.7)(1.3) 12.37 4.12/ 17	f. 375') :	= 119.6 F.	«		
Tonsional STRENGTH OF CONCRET $ \phi T_C = \phi \left(0.5 \Lambda F_C \mathcal{E} \right) $		Whele p	=0.85		
= (6,85)(0.5)) 4,00 = 619 F	700 (96")2 (30") = 7, 7.6 F K.	431,605 0.K.	In ·#	
BY INSTECTION PUNCHING to BEA	ım <i>SHEAR</i>	O.K.			

Computation Sheet

```
1000 FG2 5/1/1998 BKI 9551 FLOODGATE MONOLITH -
                                                                                     70 PILES
1005 CONCRETE PILES 14 INCH (2 PILE / 8 FT. BASE 8.75 FT. SPACING)
1010 PIN ALL
1020 BIJ 29.532 29.532 1901.2 0 0 0 0 3 8
 )30 BIJ 29.532 29.532 1798.4 0 0 0 0 0 1 2 4 TO 7 9 10
_040 TENSION 1.0 ALL
1050 DLS S 70.0 54.0 736.0 210.7 173.0 1548.7 1123.5 H 14 3 8
1060 DLS S 73.8 56.9 736.0 210.7 173.0 1548.7 1123.5 H 14 1 2 4 TO 7 9 10
1070 ASC S 196 457.3 0.822 0.901 1.75 0.00 ALL
1080 PMAXMOM 30.85 30.85 ALL
1090 BATTER 3.0 1 2 4 TO 7 9 10
1100 ANGLE 180 1 TO 5
1110 ANGLE 0 6 TO 10
1120 PILE 1 -2.50 17.50 0.00 6 2.50 17.50 0.00
1130 ROW Y 5 1 4 AT -8.7500
1140 ROW Y 5 6 4 AT -8.7500
1150 LOAD 1 93.20 0.00 114.03 59.09 -340.58
1160 LOAD 2 93.20 0.00 114.03 59.09 -296.58
                                                          0.00
1170 LOAD 3 107.40 0.00 85.52 44.32 -443.92 0.00
1180 LOAD 4 107.40 0.00 85.52 44.32 -400.91
                                                          0.00
1190 LOAD 5 0.00 0.00 196.03 357.94 -170.85 0.00 1200 LOAD 6 0.00 0.00 228.03 293.94 -298.85 0.00 1210 LOAD 7 0.00 0.00 196.03 357.94 85.15 0.00 1220 LOAD 8 0.00 0.00 228.03 293.94 213.15 0.00 1230 LOAD 9 -4.46 0.00 147.02 268.46 93.98 0.00
1240 LOAD 10 -4.46 0.00 171.02 220.46 189.98
                                                          0.00
1250 LOAD 11 6.56 0.00 147.02 268.46 -172.43 -24.89 1260 LOAD 12 6.56 0.00 171.02 220.46 -268.43 -24.89
1261 LOAD 13 -12.75 0.00 0.00 44.32 53.93
1262 LOAD 14 12.75 0.00 0.00 44.32 -118.20
                                                          0.00
 970 TOUT 1 2 3 4 5 7
 280 FOUT 1 2 3 4 5 6 7 OFG2
1290 PSO 1
1300 PFO ALL
```

1310 FPL PFG2

CORPS PROGRAM # X0080

* VERSION NUMBER # 90/11/30

CPGA - CASE PILE GROUP ANALYSIS PROGRAM

RUN DATE 98/05/01 RUN TIME 10.16.36 * ********

FG2 5/1/1998 BKI 9551 FLOODGATE MONOLITH CONCRETE PILES 14 INCH (2 PILE / 8 FT. BASE 8.75 FT. SPACING)

THERE ARE 10 PILES AND 14 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

-----2.50 , WITH DIAGONAL COORDINATES = -17.50 , .00) 2.50 , 17.50 , .00)

PILE STIFFNESSES AS INPUT

.29532E+02	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
.00000E+00	.29532E+02	.00000E+00	.00000E+00	.00000E+00	.00000E+00
.00000E+00	.00000E+00	.19012E+04	.00000E+00	.00000E+00	.00000E+00
.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00

THIS MATRIX APPLIES TO THE FOLLOWING PILES -

3 8

.29532E+02	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
.00000E+00	.29532E+02	.00000E+00	.00000E+00	.00000E+00	.00000E+00
.00000E+00	.00000E+00	.17984E+04	.00000E+00	.00000E+00	.00000E+00
.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00

THIS MATRIX APPLIES TO THE FOLLOWING PILES -

1 5 6 7 9 10

PILE GEOMETRY AS INPUT AND/OR GENERATED

NUM	X FT	Y FT	Z FT	BATTER	ANGLE	LENGTH FT	FIXITY
1 2	-2.50 -2.50	17.50 8.75	.00	3.00 3.00	180.00 180.00		P P

3	-2.50	.00	.00	V	180.00	P
4	-2.50	-8.75	.00	3.00	180.00	P
5	-2.50	-17.50	.00	3.00	180.00	P
6	2.50	17.50	.00	3.00	.00	P
⁾ 7	2.50	8.75	.00	3.00	.00	P
8	2.50	.00	.00	V	.00	P
9	2.50	-8.75	.00	3.00	.00	P
10	2.50	-17.50	.00	3.00	.00	P

APPLIED LOADS

LOAD	PX	PY	PZ	MX	MY	MZ
CASE	K	K	K	FT-K	FT-K	FT-K
1	93.2	.0	114.0	59.1	-340.6	.0
2	93.2	. 0	114.0	59.1	-296.6	.0
3	107.4	.0	85.5	44.3	-443.9	.0
4	107.4	.0	85.5	44.3	-400.9	.0
5	.0	.0	196.0	357.9	-170.9	.0
6	.0	.0	228.0	293.9	-298.9	.0
7	.0	.0	196.0	357.9	85.2	.0
8	.0	.0	228.0	293.9	213.2	.0
9	-4.5	.0	147.0	268.5	94.0	.0
10	-4.5	.0	171.0	220.5	190.0	.0
11	6.6	.0	147.0	268.5	-172.4	-24.9
12	6.6	.0	171.0	220.5	-268.4	-24.9
13	-12.8	.0	.0	44.3	53.9	.0
714	12.8	. 0	. 0	44.3	-118.2	.0

ORIGINAL PILE GROUP STIFFNESS MATRIX

.17104E+04 .61856E-04 .81855E-11 .00000E+00	.61856E-04 .29532E+03 18557E-03 .00000E+00	.84128E-11 18557E-03 .16775E+05	.00000E+00 17347E-17 .00000E+00	12736E+06 55670E-02 .14552E-10	18557E-02 16280E-09 .55670E-02
12736E+06 18557E-02	55670E-02 16189E-09	.00000E+00 .14552E-10 .55670E-02	.35754E+09 .00000E+00 23097E-06	.00000E+00 .15097E+08 .16701E+00	22352E-06 .16701E+00 .45781E+08

- LOAD CASE 1. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5.
- LOAD CASE 2. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5.
- LOAD CASE 3. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5.
- LOAD CASE 4. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5.
- LOAD CASE 5. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 0.
- LOAD CASE 6. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 1.
- OAD CASE 7. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 0.
- LOAD CASE 8. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 1.

														•
LOAD	CASE	9.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	10.	NUMBER	OF	FAILURES FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	į
LOAD	CASE	11.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	12.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	1.
LOAD	CASE	13.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	5.
LOAD	CASE	14.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	5.

PILE CAP DISPLACEMENTS

LOAD	DX	DY	DZ	RX	RY	RZ
CASE	IN	IN	IN	RAD	RAD	RAD
1 2 3 4 5 6 7 8 9 10 11 12 13	.9233E-01 .9933E-01 .9821E-01 .1051E+00 2719E-01 4757E-01 .1355E-01 .3393E-01 .7946E-02 .2323E-01 1713E-01 3241E-01 1146E-01 .1233E-02	5488E-08 5181E-08 8400E-08 8101E-08 .6154E-08 .6463E-08 .7936E-08 .1002E-07 .6515E-08 .8082E-08 .3787E-08 .4019E-08 .1386E-08 1833E-08	.6798E-02 .6798E-02 .5098E-02 .5098E-02 .1169E-01 .1359E-01 .1359E-01 .8764E-02 .1020E-01 .8764E-02	.1983E-05 .1983E-05 .1487E-05 .1487E-04 .9865E-05 .1201E-04 .9865E-05 .9010E-05 .7399E-05 .7399E-05 .7399E-05	.5082E-03 .6022E-03 .4756E-03 .5676E-03 3652E-03 6388E-03 .1820E-03 .4556E-03 .1417E-03 .3469E-03 2816E-03 4868E-03 5383E-04 8355E-04	.1062E-11 .1003E-11 .1626E-11 .1568E-11 1191E-11 1251E-11 1536E-11 1940E-1 1261E-1 1564E-1 6524E-05 6524E-05 6524E-05 2682E-12 .3548E-12

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED PILES
* INDICATES PILE FAILURE
INDICATES CBF BASED ON MOMENTS DUE TO

(F3*EMIN) FOR CONCRETE PILES
B INDICATES BUCKLING CONTROLS

LOAD	CASE -	1								
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF	ASC KSI	AST KSI
1 2 3 4 5	-2.8 -2.8 -2.7 -2.8 -2.8	.0.0.0	-14.2 -14.5 41.9 -15.3 -15.6	.0 .0 .0 .0	86.3 86.2 84.1 86.1 86.0	.0 .0 .0	.25 .26 .60 .27	.24 .40	1.02 1.02 1.30 1.01	.56 .50 .50

6 7 8 9	2.7 2.7 2.7 2.7 2.7	.0 .0 .0 .0	38.8 38.5 -16.1 37.7 37.4	.0 .0 .0 .0	-82.1 -82.2 -84.1 -82.3 -82.4	.0 .0 .0	.53 .52 .30 .51	.25 1.28 .25 1.28 .41 1.00 .26 1.27 .26 1.27	.84 .84 .56 .83
LOAD	CASE -	2							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
1 2 3 4 5 6 7 8 9	-3.0 -3.0 -2.9 -3.0 -3.0 2.9 2.9 2.9 2.9	.0.0.0.0.0.0.0.0.0	-13.4 -13.7 47.3 -14.4 -14.8 38.0 37.6 -21.4 36.9 36.6	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	93.1 93.1 90.5 93.0 92.9 -89.0 -90.5 -89.2 -89.2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0		.40 1.04 .40 1.03 .23 1.34 .41 1.03 .41 1.03 .27 1.29 .27 1.29 .49 .99 .27 1.28 .27 1.28	.55 .55 .87 .55 .54 .82 .51 .82
LOAD	CASE -	3							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
1 2 3 4 5 6 7 8 9	-2.9 -2.9 -2.9 -2.9 -2.8 2.8 2.8 2.8	.0.0.0.0.0.0.0	-22.3 -22.5 36.8 -23.1 -23.3 40.7 40.5 -17.4 39.9 39.7	.0 .0 .0 .0 .0 .0	90.6 90.5 89.5 90.4 90.4 -87.4 -87.5 -89.5 -87.6	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.39 .40 .53 .41 .55 .55 .32 .54	.50 .99 .51 .98 .27 1.28 .51 .98 .52 .98 .25 1.30 .25 1.30 .44 1.01 .26 1.30 .26 1.29	.51 .51 .51 .51 .84 .84 .54 .83
LOAD (CASE -	4							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
1 2 3 4 5 6 7 8 9	-3.2 -3.2 -3.1 -3.1 -3.1 3.1 3.1 3.1 3.1	.0.0.0.0.0.0.0.0	-21.5 -21.7 42.1 -22.3 -22.5 39.9 39.7 -22.7 39.1 38.9	.0.0.0.0.0.0.0.0.0	97.3 97.2 95.7 97.1 97.1 -94.1 -94.2 -95.7 -94.3	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.38 .38 .60 .39 .40 .54 .54 .42 .53	.51 1.00 .51 1.00 .26 1.32 .52 1.00 .52 1.00 .27 1.31 .27 1.31 .52 .99 .27 1.31	.50 .50 .83 .50 .49 .82 .82 .50 .82

PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	
1 2 3 4 5 6 7 8 9	.7 .8 .8 .8 -1.0 -1.0 8 -1.0	.0.0.0.0.0.0	21.0 18.9 1.4 14.6 12.4 27.5 25.3 43.0 21.0 18.9	.0 .0 .0 .0 .0 .0	-22.6 -22.9 -24.8 -23.7 -24.0 30.8 30.4 24.8 29.7 29.3	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.28 .26 .02 .20 .17 .37 .34 .61	.24 1.06 .24 1.05 .31 .96 .25 1.03 .26 1.02 .22 1.11 .23 1.10 .20 1.17 .24 1.07 .24 1.06	.84 .84 .83 .89 # .89 # .89 # .85
LOAD	CASE -	6							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
1 2 3 4 5 6 7 8 9 10	1.4 1.4 1.4 1.7 -1.6 -1.6	.0.0.0.0.0.0.0.0	21.1 19.3 -10.6 15.8 14.0 32.4 30.6 62.3 27.1 25.3	.0 .0 .0 .0 .0 .0	-42.1 -42.4 -43.3 -43.0 -43.3 51.1 50.8 43.3 50.3	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.29 .26 .20 .21 .19 .44 .41 .89 .37	.26 1.10 .27 1.09 .24 .94 .28 1.08 .29 1.07 .23 1.18 .23 1.17 .16 1.31 .25 1.15 .25 1.14	.84 .83 .67 .81 .80 .88 .87 1.04 # .85
LOAD (CASE -	7							Ę
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
1 2 3 4 5 6 7 8 9	6 4 5 5 3 .3 .4	.0.0.0.0.0.0.0.0.0	25.9 23.7 32.6 19.4 17.2 22.6 20.5 11.8 16.2 14.0	.0 .0 .0 .0 .0 .0 .0 .0	17.4 17.0 12.3 16.3 15.9 -9.2 -9.6 -12.3 -10.3	.0.0.0.0.0.0.0.0.0	.35 .32 .47 .26 .23 .31 .28 .17 .22	.23 1.07 .23 1.06 .21 1.09 .24 1.04 .24 1.02 .23 1.04 .24 1.03 .25 .99 .24 1.01 .25 1.00	.92 # .91 # .96 # .89 # .88 # .91 # .86 # .88 #
LOAD C	CASE -	8							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
1 2 3 4 5	-1.2 -1.2 -1.0 -1.2 -1.2	. 0 . 0 . 0 . 0	30.8 29.0 51.8 25.5 23.7 22.7	.0 .0 .0 .0	37.8 37.5 30.9 36.9 36.6 -28.7	.0.0.0.0.0	.42 .39 .74 .34 .32	.22 1.14 .22 1.13 .18 1.23 .23 1.11 .24 1.10 .23 1.08	.90 # .89 # 1.02 " .8 .8 .87 #

									F62 6/11
7 8 9 10	.9 1.0 1.0 1.0	.0 .0 .0	20.9 1 17.4 15.6	. 0 . 0 . 0	-29.0 -30.9 -29.6 -29.9	.0.0.0	.28 .00 .24 .21	.24 1.07 .08 .97 .25 1.05 .26 1.05	.87 # .75 .85
LOAD C	CASE -	9							
PILE	F1 K	F2 _. K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC	
1 2 3 4 5 6 7 8 9 10	4 4 2 3 3 2 .2 .2	.0 .0 .0 .0 .0 .0 .0 .0	20.9 19.3 24.7 16.1 14.5 15.4 13.8 8.6 10.6 9.0	.0 .0 .0 .0 .0 .0	11.2 10.9 7.2 10.3 10.1 -5.0 -5.3 -7.2 -5.8 -6.1	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.28 .26 .35 .22 .20 .21 .19 .12	.24 1.03 .24 1.02 .23 1.04 .24 1.01 .25 1.00 .25 .99 .25 .98 .26 .96 .25 .97	.90 # .93 # .88 # .87 # .89 # .88 #
LOAD C	ASE -	10							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
1 2 3 4 5 6 7 8 9	9 7 8 8 6 7	.0.0.0.0.0.0.0.0.0	24.6 23.3 39.2 20.6 19.3 15.5 14.2 4 11.5	.0.0.0.0.0.0.0.0	26.5 26.2 21.2 25.8 25.6 -19.7 -19.9 -21.2 -20.4 -20.6	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.33 .32 .56 .28 .26 .21 .19 .01	.23 1.08 .23 1.08 .20 1.15 .24 1.06 .24 1.06 .25 1.02 .25 1.02 .06 .95 .26 1.00	.89 # .88 # .98 # .87 # .86 # .85 .77 .84
LOAD C	ASE -	11							
PILE	F1 K	F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF ASC KSI	AST KSI
1 2 3 4 5 6 7 8 9 10	.4 .5 .5 .5 6 7 7	.0.0.0.0.0.0.0.0.0	12.7 11.5 .6 9.1 7.8 23.6 21.6 32.7 17.6 15.6	2 2 2 2 2 2 2 2	-13.0 -13.9 -15.6 -15.6 -16.4 19.1 19.4 15.6 20.1 20.4	.0 .0 .0 .0 .0 .0 .0 .0	.17 .16 .01 .12 .11 .32 .29 .47 .24	.25 .99 .25 .99 .30 .94 .26 .98 .27 .98 .23 1.06 .23 1.05 .21 1.10 .24 1.04 .25 1.03	.86 # .85 # .79 .83 .83 .90 # .89 # .95 #
OAD C	ASE -	12							
PILE	F1	F2	F3	M1	M2	МЗ	ALF	CBF ASC	AST

	K	K	K	IN-K	IN-K	IN-K			F KSI	162 7/ KSI 11
1	.9	. 0	12.8	2	-27.7	.0	.17	.27	1.03	.83
2	.9	. 0	11.8	2	-28.5	.0	.16		1.02	. 8,
3	1.0	.0	-8.4	2	-29.5	.0	.16	.18	.92	.8, .7()
4 5	1.0 1.0	.0	10.0	2	-30.1	.0	.14		1.02	.81
6	-1.1	. 0 . 0	9.0	2	-30.9	.0	.12		1.02	.80
7	-1.1	.0	27.3 25.6	2 2	34.4	. 0	.37		1.12	.89 #
8	-1.0	.0	47.1	2 2	34.8	. 0	.35		1.11	.88 #
9	-1.2	.0	22.2	2	29.5 35.5	.0	.67			1.00 #
10	-1.2	.0	20.4	2	35.9	.0	.30 .28		1.09 1.08	.86 .85
LOAD C	CASE -	13								
PILE	F1	F2	F3	M1	M 2	МЗ	ALF	OD E	3.00	a om
	K	K	K	IN-K	IN-K	IN-K	ALL	CBF	ASC KSI	AST
						111 10			VSI	KSI
1	.3	. 0	4.3	.0	-10.3	.0	.06	.27	.95	.82
2	.3	. 0	4.0	.0	-10.3	.0	.05	.28	.94	.82
3	.3	0	-3.1	.0	-10.4	. 0	.06	.06	.91	.78
4	.3	. 0	3.5	. 0	-10.4	. 0	.05	.28	.94	.82
5 6	.3	.0	3.2	.0	-10.5	.0	.04	.28	.94	.82
7	3 3	.0	-3.2	. 0	10.5	. 0	.06	.07	.91	.78
8	3	. 0 . 0	-3.5 3.1	. 0	10.4	. 0	.06	.07	.91	.78
9	+.3	.0	-4.0	.0	10.4	.0	.04	.28	.94	.81
10	3	.0	-4.3	. 0 . 0	10.3	. 0	.07	.08	.90	.78
	• •	.0	-4.5	.0	10.3	.0	.08	.08	.90	.78
LOAD C	מפר _	14								<i></i>
HOAD C	AUL -	14								<i>S</i>
\mathtt{PILE}	F1	F2	F3	M1	M2	МЗ	ALF	CBF	ASC	AST
	K	K	K	IN-K	IN-K	IN-K		CDI	KSI	KSI
1	. 0	.0	-4.4	.0	. 4	.0	.08	.06	0.0	9.0
2	. 0	.0	-4.7	.0	.4	.0	.08	.06	.88 .88	.80 .80
3	.0	.0	-4.8	.0	1.1	.0	.09	.06	.88	.80
4	.0	.0	-5.2	.0	.3	.0	.09	.07	.87	.79
5	. 0	.0	-5.5	.0	.3	.0	.10	.07	.87	.79
6	. 0	. 0	5.5	.0	3	.0	.07	.26	.93	.85 #
7	.0	. 0	5.2	.0	3	.0	.07	.26	.93	.85 #
8	.0	. 0	4.8	.0	-1.1	.0	.07	.27	.93	.84 #
9	.0	. 0	4.7	. 0	4	.0	.06	.27	.93	.85 #
10	. 0	.0	4.4	. 0	4	.0	.06	.27	.92	.84 #

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PİLE PXPΥ PZMX MY MZK K K IN-K IN-K IN-K 7.1 1 .0 -12.6 . 0 .0 . 0

2 3 4 5 6 7 8 9	7.3 2.7 7.5 7.6 14.8 14.7 2.7 14.5	.0 .0 .0 .0 .0 .0	-12.9 41.9 -13.6 -13.9 36.0 35.6 -16.1 35.0 34.6	.0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0	.0.0.0.0.0	FbI	8/11
LOAD CASI	E - 2							
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K		
1 2 3 4 5 6 7 8 9 10	7.1 7.2 2.9 7.4 7.5 14.7 14.6 2.9 14.4	.0.0.0.0.0.0.0.0.0.0	-11.7 -12.1 47.3 -12.7 -13.1 35.1 34.8 -21.4 34.1	.0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	.0.0.0.0.0.0.0.0		
LOAD CASI	E - 3							
TILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K		
1 2 3 4 5 6 7 8 9	9.8 9.9 2.9 10.1 10.2 15.6 15.5 2.9 15.3 15.2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	-20.2 -20.5 36.8 -21.0 -21.2 37.8 37.5 -17.4 37.0 36.7	.0.0.0.0.0.0.0.0.0	.0 .0 .0 .0 .0 .0	.0.0.0.0.0.0.0		
LOAD CASE	E - 4							
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K		
1 2 3 4 5 6 7 8 9	9.8 9.9 3.1 10.0 10.1 15.5 15.4 3.1 15.3	.0.0.0.0.0.0.0.0.0.0.0.0.0	-19.4 -19.6 42.1 -20.1 -20.4 36.9 36.7 -22.7 36.2 35.9	.0 .0 .0 .0 .0 .0	. 0 . 0 . 0 . 0 . 0 . 0 . 0	.0 .0 .0 .0 .0 .0 .0 .0		

LOAD CA	.SE - 5					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2 3 4 5 6 7 8 9	-7.3 -6.7 8 -5.3 -4.7 7.7 7.1 8 5.7 5.1	.0 .0 .0 .0 .0 .0 .0 .0 .0	19.7 17.7 1.4 13.6 11.5 26.4 24.3 43.0 20.2 18.2	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0
LOAD CA	SE - 6					•
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2 3 4 5 6 7 8 9	-8.0 -7.4 -1.4 -6.3 -5.8 8.7 8.1 -1.4 7.0 6.5	.0.0.0.0.0.0.0.0	19.6 17.9 -10.6 14.5 12.8 31.2 29.6 62.3 26.2 24.5	.0.0.0.0.0.0.0.0.0.0	.0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0
LOAD CAS	SE - 7					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2 3 4 5 6 7 8 9	-7.6 -7.0 .4 -5.6 -5.0 7.4 6.8 .4 5.4	.0.0.0.0.0.0.0	24.7 22.7 32.6 18.6 16.5 21.4 19.3 11.8 15.2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0
LOAD CAS	SE - 8					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2	-8.6 -8.0	.0	29.6 27.9	. 0	.0	.0

3 4 5 6 7 8 9	1.0 -6.9 -6.4 8.1 7.5 1.0 6.4 5.9	.0.0.0.0.0	51.8 24.5 22.8 21.2 19.6 1 16.2 14.5	.0 .0 .0 .0 .0	.0 .0 .0 .0 .0	.0.0.0.0.0.0
LOAD CA	SE - 9					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2 3 4 5 6 7 8 9	-6.3 -5.8 .2 -4.8 -4.3 5.0 4.5 .2 3.5 3.0	.0.0.0.0.0.0.0.0	20.0 18.4 24.7 15.4 13.8 14.6 13.1 8.6 10.0 8.5	.0.0.0.0.0.0.0.0	.0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0
LOAD CA	SE - 10					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2 3 4 5 6 7 8 9	-7.0 -6.6 .7 -5.7 -5.3 5.5 5.1 .7 4.3 3.9	.0.0.0.0.0.0.0.0	23.6 22.3 39.2 19.8 18.6 14.5 13.2 4 10.7 9.5	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0.0.0.0.0.0.0.0.0	. 0 . 0 . 0 . 0 . 0 . 0 . 0
LOAD CAS	SE - 11					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2 3 4 5 6 7 8 9	-4.4 -4.1 5 -3.3 -3.0 6.9 6.2 5 5.0	.0.0.0.0.0.0.0.0.0.0.0.0.0	11.9 10.8 .6 8.4 7.3 22.6 20.7 32.7 16.9 15.0	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

LOAD CA	SE - 12					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2 3 4 5 6 7 8 9	-4.9 -4.6 -1.0 -4.1 -3.8 7.6 7.0 -1.0 5.9 5.4	.0.0.0.0.0.0.0.0.0	11.8 10.9 -8.4 9.2 8.3 26.3 24.6 47.1 21.4	.0.0.0.0.0.0.0.0	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0
LOAD CAS	SE - 13					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2 3 4 5 6 7 8 9	-1.7 -1.6 3 -1.4 -1.3 -1.4 3 -1.6 -1.7	.0.0.0.0.0.0.0.0	4.0 3.7 -3.1 3.2 3.0 -3.0 -3.2 3.1 -3.7 -4.0	.0.0.0.0.0.0.0.0.0.0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
LOAD CAS	SE - 14					
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1 2 3 4 5 6 7 8 9 10	1.4 1.5 .0 1.7 1.8 1.8 1.7 .0	.0.0.0.0.0.0.0.0.0	-4.2 -4.5 -4.8 -5.0 -5.2 5.2 5.0 4.8 4.5	.0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0

FILL QUANTITY SPEADSHEETS

Reach 1 -- East Bank

Excavation and Embankment Quantities									
	TOTAL	TOTAL	TOTAL	TOTAL					
Station	Excavation	Excavation (VOL	Embankment	Embankment					
	(Area Ft^2)*	YD^3)*	(Area Ft^2)*	(VOL YD^3)*					
318+06.06									
318+07.06		0	23.48	0.4					
320+06.68		0	53.76	285.5					
322+06.56		0	67.49	448					
324+06.55		0	60.76	474.9					
326+06.49		0	61.96	454.3					
328+06.44		0	60.45	453.2					
330+06.38		0	72.54	492.4					
332+38.79		0	2.62	323.4					
332+65.		0	2.47	2.4					
332+88.		0	1.51	1					
333+11.		0	0	0.6					
333+34.		0	0						
333+57.		0	0						
334+06.32		0	0						
336+06.32		0	0						
338+06.32		0	87.64	324.					
340+06.32		0	42.89	483.4					
342+06.32		0	34.03	284.8					
344+06.32		ol	27.96	229.					
346+06.32		ol	16.66	165.					
348+06.32		0	34.47	189.					
350+06.32		0	31.95	24					
352+06.32		0	46.43	290					
354+06.32		o	36.15	305.8					
356+06.32		0	8.77	166.					
358+06.32		0	37	169.					
360+06.32	 	0	38	277.					
362+06.34		0	48.99	322.					
364+06.34		0	21.3	260.					
366+06.32		0	80.62	377.4					
368+06.34		0	96.72	656.8					
370+06.34		0	83.33	666.					
372+06.32		0	62.1	538.					
374+06.34		0	72.51	498.					
376+06.34		0	79.45	562.8					

377+60.01		0	76.1	442.65
378+06.34		0	72.78	127.73
380+06.34		0	67.54	519.7
382+06.34		0	58.92	468.37
384+06.37		0	94.08	566.75
386+06.34		0	164.95	959.23
388+06.34		0	160.66	1205.96
390+06.34		0	157.15	1177.07
392+06.34		0	143.95	1115.19
394+06.34		0	99.88	903.07
396+06.34		0	69.07	625.74
397+64.		0	66.49	395.78
397+88.		0	42.25	48.33
398+06.34		0	48.06	30.67
400+06.34		0	76.8	462.44
401+80.		0	115.39	618.07
402+06.34		0	6.23	59.32
404+06.34		0	21.46	102.56
406+06.34		0	10.64	118.89
406+11.		0	0	0.92
406+18.		0	16.86	2.19
406+25.		0	0	2.19
406+55.41		0	0	2:10
408+06.34		0	25.62	86.04
408+05.77		0	25.67	71.48
410+05.77		0	20.51	171.04
412+05.77		0	17.15	139.48
414+06.37		0	19.41	135.81
416+06.34		0	51.15	261.29
418+05.77		0	82.81	494.73
420+05.77		0	119.84	750.56
422+05.77		0	117.24	878.07
424+05.77		0	89.37	765.22
426+05.77		0	101.82	708.11
428+05.77		0	66.62	623.85
430+05.77		0	64.82	486.81
432+05.77		0	26.07	336.63
434+05.77	11	0	44.31	260.67
436+05.77	11	0	64.7	403.74
438+05.77		0	45.43	407.89
	- 		70.43	401.05
	-11			

į

Reach 1 -- West Bank

Excavation and Embankment Quantities									
Otation		TOTAL	TOTAL	<u> </u>	TOTAL	TOTAL			
Station		Excavation	Excavation		Embankment	Embankment			
4444.00.44		(Area Ft^2)*	(VOL YD^3)*		(Area Ft^2)*	(VOL YD^3)*			
1111+06.11									
1111+06.28	#		0		66.62	0.21			
1113+06.28	#	<u>-</u> -	0		58.57	463.67			
1115+06.28	#		0		83.49	526.15			
1117+06.28	#		0		69.38	566.19			
1119+11.81	#		0		52.85	465.22			
1121+34.47	#		0	_	33.9	357.7			
1123+11.81	#		0		65.27	325.68			
1125+11.81	#		0		81.63	544.07			
1125+71.11	#		0		49.78	144.31			
1126+08.61	#		0		55.92	73.4			
1127+11.81	#	······································	0		91.67	282.06			
1129+11.81	#		0		99.99	709.85			
1131+11.81	#	_	0		73.44	642.33			
1133+11.81	#		0		70.36	532.59			
1135+11.81	#		0		33.84	385.93			
1137+11.81	#		0		52.39	319.37			
1139+11.81	#		0		48.75	374.59			
1141+11.81	#		0		90.07	514.15			
1143+12.27	#		0		102.59	715.2			
1145+12.27	#		0		76.87	664.67			
1147+12.27	#		0		124.42	745.52			
1149+12.27	#		0		77.39	747.44			
1150+35.	#		0	·	43.03	273.69			
1150+53.5	#		0		0	14.74			
1150+65.	#		0		37.71	8.03			
1151+12.27	#		0		44.56	72.02			
1153+12.27	#		0		79.57	459.74			
1153+42.27	#		0		45.54	69.51			
1153+72.27	#		0	-	47.99	51.96			
1154+02.27	#		0	-	66.88	63.82			
1154+29.77	#		0		75.57	72.54			
1154+56.87	#		0		72.57	74.34			
1154+70.	#		0		56.51	31.39			
1154+92.5	#		0	·	0	23.55			
1155+12.27	#		Ö		60.92	22.3			
1157+12.27	#		0		136.25	730.26			

1159+12.27	#		0		94.28	853.81
1161+19.67	#		0		103.09	758.05
1163+12.27	#		0		110.5	761.8
1165+26.16	#		0		46	619.88
1167+12.27	#		0		125.04	589.49
1169+12.27	#		0		127.11	933.89
1171+12.27	#		0		59.92	692.7
1173+11.49	#		Ō		59.92	442.12
1174+15.	#		0		73.13	255.04
1174+33.6	#		0		66.33	48.04
1175+11.49	#		0		78.2	208.47
1177+11.49	#		0		58.12	504.89
1179+11.49	#		0		60.31	438.63
1181+11.49	#		0		95.19	575.93
1182+36.27	#		0		34.4	299.45
1183+11.49	#		0		58.13	128.89
1184+00.32	#		0		46.22	171.66
1185+11.49	#		0		140.33	384.05
1187+11.49	#		0		46.27	691.11
1189+23.32	#		0		47.12	366.35
1191+11.49	#		0		61	376.76
1193+11.49	#		0		67.78	476.96
1194+41.99	#		0		37.61	254.69
1195+11.49	#		0		33.75	91.84
1197+11.49	#		0		32.94	247
1199+11.49	#		0		24.7	213.48
1201+01.49	#		0		29.68	191.34
1203+46.23	#		0		53.58	377.35
1205+01.09	#		0		43.5	278.4
1207+11.49	#		0		23.45	260.86
1209+11.49	#		0		13.87	138.22
1210+36.33	#		0		25.83	91.78
1211+11.48	#		0		32.93	81.77
1213+11.48	#		0		16.24	182.11
1215+17.34	#	1.	0		30.82	179.4
1217+23.14	#		0		18.8	189.11
1219+28.94	#		0		26.85	173.98
1220+96.11	#		0		20.7	147.2
1221+48.23			0		18.14	37.49
1223+48.23		1	0		32.98	189.33
1225+48.23		L	0		36.8	258.44
1225+87.27		 	0		38.51	54.45
1227+52.26			0		35	224.6
1229+52.26			0		37.49	
	<u> </u>	I		L	310	

1230+43.21	#	0	41.24	132.6
TOTAL	Cut (C.Y.)	0	Fill (C.Y.)	26,910.08

.

, t = 1 to 1

Reach 2 -- East Bank

	Excavation	n and Embankment C	luantities	
Station	TOTAL Excavation	TOTAL Excavation (VOL	TOTAL Embankment	TOTAL Embankment
	(Area Ft^2)*	YD^3)*	(Area Ft^2)*	(VOL YD^3)*
438+06.34				
440+05.77		0	58.14	214.7
442+05.77		0	78.81	507.2
444+05.77		0	96.04	647.5
446+05.77		0	138.42	868.3
448+05.77		0	129.99	994.1
449+05.77		0	143.47	506.4
450+05.77		0	135.91	517.3
452+05.77		0	130.59	987.0
454+05.77		0	150.98	1042.8
456+05.77		0	127.3	1030.6
458+05.77		0	149.4	1024.8
460+05.77		0	175.26	1202.4
488+05.21		0	179.68	18400.6
490+05.21		0	168.04	1287.8
491+11.95		0	188.51	704.7
492+05.13		0	192.79	657.9
494+05.13		0	99.92	1084.1
496+04.2		0	126.19	833.5
496+06.21	Belle Chasse F	Dumping	0	4.
499+68.	Station No. 1		0	
499+68.17		0	137.44	1776.9
500+89.58		0	141.15	626.3
501+98.71		0	99.87	487.0
503+98.71		0	151.88	932.4
506+11.71		0	112.67	1043.
507+98.71		0	132.26	848.1
510+17.82		0	95.7	924.9
510+46.63		0	114.41	112.
511+98.63		0	143.03	724.6
513+98.63		0	117.43	964.6
OTAL	Cut (C.Y.)	0	Fill (C.Y.)	40,958.0

Reach 2 -- West Bank

	Excavation and Embankment Quantities					
	TOTAL	TOTAL	TOTAL	TOTAL		
Station	Excavation	Excavation	Embankment	Embankment		
	(Area Ft^2)*	(VOL YD^3)*	(Area Ft^2)*	(VOL YD^3)*		
1038+43.						
1038+43.05		0	117.43	0.11		
1040+42.4		0	159.19	1021.19		
1042+42.4		0	146.41	1131.85		
1044+42.4		0	115.28	969.22		
1045+89.96		0	102.02	593.79		
1046+23.94		0	118.22	138.59		
1046+42.4		0	168.05	97.86		
1046+42.4		0	169.23	0		
1047+51.94		0	152.85	653.35		
1047+89.94		0	104.4	181.03		
1048+42.4		0	91.69	190.5		
1049+21.83		0	84.35	258.94		
1049+45.91		0	95.73	80.3		
1050+42.4		0	73.25	301.94		
1051+61.48		0	15.89	196.57		
1052+94.08		0	49.64	160.91		
1053+61.41		0	51.96	126.68		
1055+61.41		0	20.68	269.04		
1055+73.09		0	18.23	8.42		
1055+97.09		0	90.85	48.48		
1057+18.99		0	45.68	308.2		
1058+88.77		0	2.78	152.36		
1060+83.17		0	30.89	121.21		
1062+57.67		0	33.49	208.04		
1062+77.58		0	0	12.35		
1062+97.67		0	34.05	12.67		
1064+22.85		0	23.17	132.64		
1064+72.06		0	4.92	25.6		
1066+41.16		0	32.14	116.05		
1081+06.44		0	195.56	6178.6		
1081+65.98		0	155.58	387.16		
1081+92.98		0	0	77.79		
1082+19.98		0	121.98	60.99		
1082+46.98		0	0	60.99		
1082+74.37		0	121.6	61.68		
1083+06.34		0	0	71.99		

TOTAL	Cut (C.Y.)	0	Fill (C.Y.)	24,408.73
1111+06.28		0	66.62	514.89
1109+06.28		0	72.4	556.7
1107+06.28		0	77.91	835.74
1105+06.28		0	147.74	959.85
1103+06.28		0	111.42	983.11
1101+06.28		0	154.02	980.57
1099+06.33		0	110.8	314.08
1097+53.26		0	0	82.43
1097+06.28		0	94.75	738.69
1094+65.94		0	71.22	293.53
1093+14.45		0	33.41	13.24
1093+06.33		0	54.64	237.91
1092+12.32		0	82.02	176.83
1091+31.08		0	35.52	422.98
1089+51.88		0	91.94	999.03
1087+06.44		0	127.86	952.81
1085+06.44		0	129.4	844.85
1083+38.41		0	142.11	84.4

Reach 3 -- East Bank

	Excavation	n and Embankment C	Quantities	
	TOTAL	TOTAL	TOTAL	TOTAL
Station	Excavation	Excavation (VOL		TOTAL
Glation	* I	1 ' 1	Embankment	Embankment
514+00.	(Area Ft^2)*	YD^3)*	(Area Ft^2)*	(VOL YD^3)*
515+98.73			170.50	
517+98.63		0	178.58	657.2
519+98.63	- 	0	141.28	1184.0
521+98.63	- - 	0	169.19	1149.8
	- - 	0	152.35	1190.8
523+98.63	- 	0	118.61	1003.5
525±98.63		0	96.21	795.6
527+98.63		0	106.45	750.5
529+98.63	<u> </u>	0	105.47	784.8
531+13.63		0	41.2	312.3
532+17.2	<u> </u>	0	121	311.0
533+98.47	 	0	90.96	711.5
535+98.47		0	55.51	542.4
537+98.47		0	36.1	339.
539+98.47		0	69.98	392.8
541+98.47		0	88.13	585.5
543+98.47		0	95.99	681.9
545+98.47		0	104.69	743.2
547+98.47		0	137.85	898.
549+98.47		0	136.84	1017.3
551+98.47		0	142.42	1034.
553+98.47		0	154.05	1098.0
555+98.47		0	160.84	1166.2
557+98.47		0	151.15	1155.5
559+98.47		0	160.64	1154.7
561+98.47		0	104.91	983.5
563+98.47		0	83.3	697.0
565+98.47		0	62.86	541.3
567+98.47		0	47.43	408.4
569+82.	77	0	69.3	396.7
570+11.97		0	0	38.4
570+36.97		0	43.63	20.
570+81.47		0	76.67	99.1
571+98.47		0	83.33	346.6
572+39.47		0	29.34	85.5
572+48.92		0	8.66	6.6

573+98.15		0	150.79	440.64
575+98.15		0	60.87	783.93
577+98.15		0	80.19	522.44
579+98.15		0	25.28	390.63
581+98.15		0	41.57	247.59
583+48.15		0	39.84	226.14
583+68.15		0	0	14.76
583+98.15		0	54.19	30.11
585+98.15		0	90.1	534.41
587+98.15		0	63.36	568.37
589+98.15		0	29.74	344.81
591+98.15		0	14.52	163.93
593+98.15		0	29.27	162.19
595+98.15		0	40.56	258.63
597+98.15		0	34.05	276.33
599+98.15		0	19.5	198.33
600+58.15		0	0	21.67
600+75.3		0	0	0
600+88.15		0	0	0
601+98.15		0	10.7	21.8
603+98.15		0	0	39.63
605+98.15		0	9.62	35.63
607+98.15		0	11.78	79.26
609+98.15		0	7.85	72.7
611+98.15		0	8.27	59.7
613+98.15		0	0	30.63
615+98.15		0	0	0
617+98.15		0	0	0
619+98.15		0	0	0
621+98.15		0	17.59	65.15
623+98.15		0	63.61	300.74
625+98.15		0	75.88	516.63
626+41.65		0	0	61.13
626+66.65		0	0	0
626+91.65		0	0	0
627+18.52		0	63.18	31.44
627+60.53	Belle Chasse Pump	ng	0	49.15
629+00.	Station No. 2		0	0
627+28.21		0	0	11.34
629+47.71		0	79.1	321.53
630+83.21		0	0	198.48
631+08.21		0	0	0
631+33.21		0	0	0

TOTAL	Cut (C.Y.)	0	Fill (C.Y.)	39,891.89
MANUAL TO THE PARTY OF THE PART				
651+97.71		0	163.77	1178.89
649+97.71		0	154.53	1122.93
647+97.71		0	148.66	1101.26
645+97.71		0	148.68	1072.15
643+97.71		0	140.8	969.33
641+97.71		0	120.92	853.59
639+97.71		0	109.55	865.63
637+97.71		0	124.17	900.26
635+97.71		0	118.9	804.33
633+97.71		0	98.27	577.04
631+97.71		0	57.53	65.99
631+58.21		0	32.69	15.13

. ..

Reach 3 -- West Bank

	Excavation and Embankment Quantities					
	TOTAL	TOTAL	TOTAL	TOTAL		
Station	Excavation	Excavation (VOL	Embankment	Embankment		
	(Area Ft^2)*	YD^3)*	(Area Ft^2)*	(VOL YD^3)*		
897+02.65						
897+09.		0	188.9	4 22.22		
899+09.		0	204.2	1 1456.11		
900+58.41		0	190.8	7 1093.13		
901+09.75		0	190.7	6 362.83		
903+09.75		0	131.6	8 1194.22		
905+09.75		0	126.7	2 957.04		
907+09.75		0	162.7	5 1072.11		
909+09.75		0	143.7	4 1135.15		
911+09.75		0	148.9	2 1083.93		
913+09.75		0	211.4	2 1334.59		
915+09.75		0	129.9	8 1264.44		
917+09.75		0	104.5	8 868.74		
919+09.75		0	85.1	7 702.78		
921+09.75		0	103.5	1 698.81		
923+09.75		0	129.6	7 863.63		
923+87.49		0	97.3	1 326.77		
924+63.		0	16.0	8 158.56		
925+38.22		0	48.7	2 90.26		
927+39.38	Planters Pump	ing		0 181.49		
932+46.79	Station			0		
950+43.4		0	4.4	5 2466.67		
952+43.4		0	13.4			
954+43.4		0	21.7	9 130.67		
956+43.4		0	40.6			
958+43.4		0	36.1	9 284.44		
960+43.4		0	21.5	9 214		
962+43.4		0	32.	4 199.96		
963+29.88		0	43.0	2 120.78		
964+43.41		0	33.2	160.35		
966+43.41		0	63.7	8 359.37		
968+43.41		0	112.4	1 652.56		
968+99.41		0	16.			
970+41.41		0	48.8	7 171.64		
971+52.78		0	18.1	6 138.24		
972+43.41		0	70.3	9 148.62		

974+90.91	1 0	05.47		
975+14.69	0	95.47	760.19	(
975+44.69	0	70.54	73.11	
977+42.9	0	63.39	74.41	
978+13.29	0	28.48	337.21	
978+42.5	0	0	37.12	
979+13.	0	36.25	19.61	
979+13.	0	110.19	191.19	
979+83.5	0	64	227.41	
981+95.	0	51.83	19.61	
982+20.06	0	53.64	395.24	
982+45.	0	19.47	33.93	
984+00,	0	30.28	22.98	
	0	46.97	221.74	
984+13.47 984+29.47	0	5.01	12.97	
984+29.47	0	76.96	24.29	
	0	71.54	49.56	
986+47.49	0	52.88	460.81	
988+47.49	0	86.39	515.81	
990+47.49	0	108.22	720.78	
990+93.82	0	85.76	166.43	
991+18.82	0	26.13	51.8	<i>y</i> .
991+43.82	0	71.9	45.38	(,
992+22.46	0	24.81	140.84	•
992+47.49	0	63.88	41.11	
993+29.69	0	90.39	234.83	
993+59.69	0	54.86	80.69	
993+89.69	0	114.25	93.95	
994+47.49	0	132.91	264.55	
996+47.49	0	100.44	864.26	
998+47.49	0	91.71	711.67	
1000+47.49	0	107.65	738.37	
1001+51.91	0	50.57	305.95	
1002+47.49	0	. 103.33	272.4	
1003+19.72	0	58.27	216.15	
1003+84.76	0	0	70.18	
1004+43.29	0	86.28	93.52	
1004+62.32	0	77.2	57.61	
1004+72.32	0	45.58	22.74	
1004+82.32	0	76.81	22.66	
1005+57.22	0	66.33	198.54	
1005+67.22	0	45.89	20.78	
1005+77.22	0	72.54	21.93	
1006+43.29	0	72.5	177.46	

1008+04.		0	58.94	391.18
1008+43.29		0	107.03	120.76
1010+43.29		0	110.63	806.15
1011+04.9		0	105	246.02
1012+43.29		0	120.84	578.78
1014+43.29		0	107.37	845.22
1016+60.78		0	41.95	601.4
1017+14.26		0	65.78	106.69
1017+24.26		0	59.79	23.25
1017+34.26		0	77.79	25.48
1018+43.29		0	109.09	377.32
1019+30.62		0	82.95	310.57
1019+50.62		0	42.67	46.53
1019+70.62		0	62.24	38.86
1020+24.36		0	61.14	122.79
1022+43.29		0	125.96	758.55
1022+58.93		0	104.42	66.72
1022+73.93		0	67.35	47.71
1022+88.93		0	95.83	45.33
1023+53.18		0	69.28	196.45
1024+43.29		0	40.53	183.24
1026+43.29		0	82.64	456.19
1027+46.8		0	49.58	253.45
1028+43.29		0	90.86	250.95
1028+52.37		0	89.38	30.31
1029+50.26		0	82.43	311.45
1030+43.29		0	139.29	381.97
1032+43.29		0	182.97	1193.56
1032+96.76		0	183.63	363
1033+06.76		0	169.4	65.38
1033+16.76		0	180.08	64.72
1034+32.72		0	174.09	760.55
1034+52.72		0	132.49	113.55
1034+72.72		0	174.08	113.54
1035+24.74		0	145.65	308.01
1036+62.05		0	195.77	868.16
TOTAL	Cut (C.Y.)	0	Fill (C.Y.)	40,930.80

Reach 4 -- East Bank

	Excavation and Embankment Quantities					
Station	TOTAL Excavation (Area Ft^2)*	TOTAL Excavation (VOL YD^3)*	TOTAL Embankment (Area Ft^2)*	TOTAL Embankment (VOL YD^3)*		
652+00.	- ` - ' -			(11111111111111111111111111111111111111		
653+97.71		0	138.69	507.79		
655+97.71		0	112.96	932.04		
657+97.91		0	136.14	1507.4		
659+97.71		0	136.98	1010.54		
661+97.71		0	117.54	942.67		
663+29.57		0	117.02	572.76		
664+00.		0	101.41	284.89		
666+00.		0	84.46	688.41		
668+00.		0	37.13	450.33		
670+00.		0	27.86	240.7		
672+00.		0	108.6	505.41		
672+81.52		0	120.88	346.43		
673+55.89		0	1.85	169.03		
674+00.		0	89.01	74.22		
676+00.		0	132.19	819.26		
678+00.		0	104.13	875.26		
680+00.		0	73.51	657.93		
682+00.		0	59.53	492.74		
684+00.		0	37.18	358.19		
686+00.		0	52.24	331.19		
686+48.74		0	73.13	113.16		
688+00.		0	67.58	394.14		
690+00.		0	35.85	383.07		
692+00.		0	64.45			
694+00.		0	85.25	554.44		
696+00.		0	71.39	580.15		
698+00.		0	66.89	512.15		
700+00.		0	98.51	612.59		
702+00.		0	97.03	724.22		
704+00.		0	141.88	884.85		
704+87.95		0	143.05	464.07		
706+00.		0	181.85	674.17		
708+00.		0	201.75	1420.74		
710+00.		0	218.69	1557.19		
712+00.		0	174.02	1454.48		

714+00.		0	182.07	1318.85
715+22.46		0	150.83	754.94
716+00.		0	133.51	408.29
718+00.		0	46.96	668.41
720+00.		0	125.68	639.41
721+08.91		0	158.92	574
722+00.		0	143.43	510.02
724+00.		0	163.94	1138.41
725+77.71		0	171.8	1104.9
726+32.91		0	196.66	376.65
728+00.		0	167.41	1126.53
730+00.		0	162.32	1221.22
732+00.		0	163.61	1207.15
734+00.		0	176.39	1259.26
734+94.21		0	130.41	535.25
735+31.12		0	130.93	178.63
735+54.67		0	67.24	86.42
736+00.		0	99.78	140.2
738+00.		0	124.09	829.15
740+00.		0	121.86	910.93
742+00.		0	148.32	1000.67
742+72.99		0	126.98	372.11
744+23.	NOS&WB Pumping		0	352.75
792+73.	Station No. 11		0	0
748+00.		0	149.28	2696.14
749+24.3		0	69.85	504.4
750+09.4		0	144	337.01
752+00.		0	105.63	881.1
752+55.		0	147.79	258.11
752+74.7		0	170.22	116.01
752+95.		0	164.47	125.82
753+49.		0	153.89	318.36
754+00.		0	146.6	283.8
754+28.3		0	24.98	89.92
755+11.68		0	0	38.57
756+00.		0	112.18	183.48
758+00.		0	103.31	798.11
760+00.		0	100.2	753.74
762+00.		0	87.48	695.11
764+00.		0	85.33	640.04
766+00.		0	106.15	709.19
766+52.97		0	118.36	220.23
768+00.		0	122.55	655.94

	1	1
0	0	256.29
	0	0 0

.

...

ter i

. .

Reach 4 -- West Bank

Excavation and Embankment Quantities				
	TOTAL	TOTAL	TOTAL	TOTAL
Station	Excavation	Excavation	Embankment	Embankment
	(Area Ft^2)*	(VOL YD^3)*	(Area Ft^2)*	(VOL YD^3)*
775+00.				
775+97.25		0	159.49	287.23
776+90.92		0	181.63	591.72
778+90.92		0	188.94	1372.48
780+90.92		0	204.21	1456.11
782+90.92		0	190.87	1463.26
784+90.92		0	190.76	1413.44
785+51.19		0	131.68	359.88
786+49.35		0	126.72	469.71
787+48.55		0	162.75	531.77
788+90.92		0	143.74	808.06
790+90.51		0	148.92	1081.7
792+90.11		0	211.42	1331.92
794+66.05		0	129.98	1112.33
796+21.27	1	0	104.58	674.23
798+21.27		0	85.17	702.78
799+07.69		0	103.51	301.96
800+95.43		0	129.67	810.69
802+95.43		0	97.31	840.67
804+95.43		0	16.08	419.96
805+37.23		0	48.72	50.16
805+62.31		0	4.45	24.69
805+86.89		0	13.49	8.17
806+95.43		0	21.79	70.91
808+95.43		0	40.61	231.11
810+95.43		0	36.19	284.44
812+95.43		0	21.59	214
814+95.43		0	32.4	199.96
816+95.43		0	43.02	279.33
818+95.43		0	33.25	282.48
820+02.07		0	63.78	191.62
821+86.23		0	112.41	600.87
823+70.39		0	16.4	439.29
824+96.92		0	48.87	152.94
826+96.92		0	18.16	248.26
828+96.92		0	70.39	327.96

829+87.87		95.47	279.35
830+96.93			\
832+96.93			
834+96.93			
836+56.28		- 	
838+10.31			
839+31.54			
840+55.78		 	
841+80.02			
842+96.49			227.48
844+12.96			157.69
845+24.28			
846+63.37			198.98
848+02.46			133.89
849+07.88		<u> </u>	
850+13.3			289.9
851+89.3			
853+77.24			484.71
855+00.84			445,44
856+24.45			
857+42.93			245.49
859+40.36			358.41
861+41.7			360.59
863+43.03			330.67
865+43.03			571.37
867+43.03	C C		537.96
869+43.04	C		626.36
869+76.36			152.51
869+94.36			77.78
870+81.1	C		
871+27.06	C		
871+67.82	C		
871+89.72	C		
873+10.72	C		362.1
874+63.63	NOS&WB Pumping	0	165
880+50.1	Station No. 13	0	0
882+49.46	C	0	1012.97
883+20.52	C	86.28	
883+42.82	C		
883+70.47	C	45.58	62.87
883+89.82	C		43.86
884+78.03	C	66.33	
885+86.23	C		· · · · · · · · · · · · · · · · · · ·

.-

TOTAL	Cut (C.Y.)	0	Fill (C.Y.)	36,266.68
037109.			100.94	1372.48
897+09.		o	188.94	1372.48
895+09.		0	181.63	1263.41
893+09.		0	159.49	809
891+09.		0	58.94	486.81
889+09.		0	72.5	537.19
887+09.		0	72.54	269.25