WEST BANK OF THE MISSISSIPPI RIVER IN THE VICINITY OF NEW ORLEANS, LA EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

DESIGN MEMORANDUM NO. 2 EAST AND WEST OF ALGIERS CANAL

IN TWO VOLUMES VOLUME 2

DEPARTMENT OF THE ARMY
NEW ORLEANS DISTRICT, CORPS OF ENGINEERS
NEW ORLEANS, LOUISISANA
JANUARY 1999

WEST BANK OF THE MISSISSIPPI RIVER IN THE VICINITY OF NEW ORLEANS, LOUISIANA
 EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT DESIGN MEMORANDUM NO. 2
 EAST AND WEST OF ALGIERS CANAL

TABLE OF CONTENTS
Paragraph Title Page
PROJECT AUTHORIZATION
1
Authority 123
Purpose and Scope 1
Other Pertinent Projects 1
a. Mississippi River Levees 1
b. Algiers Lock and Canal 2
c. Westwego to Harvey 2
Local Cooperation 2
Status of Local Cooperation 2
Project Document Investigation 2
a. General 2
b. Future investigations required 3
LOCATION OF PROJECT AND TRIBUTARY AREA7Project Location3
PROJECT PLAN8General3
HYDROLOGY AND HYDRAULICSGeneral4
Design Hurricane 4
11
Design Heights of Protected Structures 4
SGILS AND FOUNDATIONS INVESTIGATION AND DESIGNGeneral4

TABLE OF CONTENTS (CONT'D)

Paragraph Title Page
Field Exploration 5
Laboratory Tests 5
Description of Subsoil Conditions 5
a. Geology 5
b. Topography 5
c. Stratigraphy 6
d. Design Soil Parameters 6
Levee Analyses 6
a. Levee Stability 6
b. Settlement of Levees 7
17
Earth Ramp Analyses 8
a. Levee Stability 8
b. Settlement of Ramp Areas 8
I-Wall Analyses 9
a. Cantilever Analyses 9
b. Seepage 9
c. Minimum Penetration 9
19Floodgates/T-Walls9
a. Stability 9
b. Seepage 10
c. Allowable Pile Load Capacity 10
Pump Station 10
a. General 10
b. Additional Borings 10
c. Stability 10
d. Slope Stability and New T-Wall Analysis 11
e. Seepage Analyses 11
Pile Foundation 11
a. Allowable Pile Load capacity 11
b. Horizontal Support 11
c. Pile Group Effects 12
d. Pile Driving 12
e. Predrilling 12
f. Driving Stresses 12
g. Test Piles 12
h. Load Tests 12
i. Dynamic Pile Tests 12

TABLE OF CONTENTS (CONT'D)

Paragraph Title Page
DESCRIPTION OF PROPOSED STRUCTURES AND IMPROVEMENTSAlternative Levee Plans Considered13
ACCESS ROADS
25Access Roads13
RELOCATIONS
26 Relocations 14
RAMPS
27 Ramps 15
DESCRIPTION OF PROPOSED FLOODWALLS AND GATES
28
Floodwalls and Gates 16
a. Floodwalls 16 16
b. Gates 17
PUMP STATION FRONTAL PROTECTION29
General 17
Belle Chasse Pump Station No. 2 17
Planters Pump Station 18
Sewerage \& Water Board Pump Station No. 11 18
Sewerage \& Water Board Pump Station No. 13 18
Plaquemines Pump Station (Belle Chasse No. 1) 19

TABLE OF CONTENTS (CONT'D)

Paragraph Title Page
PUMP STATION BACK FLOW PROTECTION35
Belle Chasse Pump Station No. 2 19
Planters Pump Station 20
Sewerage \& Water Board Pump Station No. 11 22
Sewerage \& Water Board Pump Station No. 13 24
Plaquemines Pump Station (Belle Chasse No. 1) 26
STRUCTURAL DESIGN
Criteria for Structural Design 29
Basic Data 29
a. Water Elevation 29
b. Levee and Floodwall Net Grades 29
Design Methods 30
a. Reinforced Concrete 30
I-Type Floodwalls 30
a. General 30
b. Loading Cases 30
c. Joints 31
T-Type Floodwalls 31
a. General 31
b. Loading Cases 31
c. Joints 31
Swing Gates and Gate Monoliths 31
a. General 31
b. Loading Cases 32
Cathodic Protection and Corrosion Control 32
a. Cathodic Protection for Steel Sheet Piling 32
b. Corrosion Control 32
ENVIRONMENTAL EFFECTS
Environmental Assessment 33
a. General 33
b. Recreation 33
Mitigation 33
Hazardous, Toxic and Radioactive Wastes 33

TABLE OF CONTENTS (CONT'D)

Paragraph Title Page
Status of Environmental Compliance 34
a. National Environmental Policy Act 34
b. Clean Water Act 34
c. Coastal Zone Management Act 34
d. National Historic Preservation Act 34
REAL ESTATE REQUIREMENTS
51 General 34
OPERATION AND MAINTENANCE
52
Operation And Maintenance 35
a. General 35
b. Mitigation Feature 35
ESTIMATE OF INCREMENTAL COSTS
53 General 36
54 Schedule for Design and Construction 37
55
Funds Required by Fiscal Year 37
56
Recommendations 38
TABLES
No. Title PageConsolidation Settlement7
2 Utility Relocation Schedule 14
3 Ramp Schedule 15
4 Planters Pumping Station Minimum Seal Water 20
Elevation for Air Suppression
5Sewerage \& Water Board Pumping Station No. 1122Minimum Seal Water Elevations for Air Suppression

TABLE OF CONTENTS (CONT'D)

No. Title PageFunds Required by Fiscal Year38
Sewerage and Water Board Pumping Station No. 13 24 Minimum Seal Water Elevation for Air SuppressionPlaquemines Pumping Station Existing Pump26Information
Relevant Structural Design Data 29
Pertinent Stresses for Reinforced Concrete Design 30
Schedule for Design and Construction 37
PLATES
No. Title123

Project Location and Vicinity Map
East Levee Plan and Profile Sta. $318+07.16$ to Sta. $367+50.00$
East Levee Plan and Profile Sta. $367+50.00$ to Sta. $423+50.00$
East Levee Plan and Profile Sta. $423+50.00$ to Sta. $479+00.00$
East Levee Plan and Profile Sta. 479+00.00 to Sta. 544+00.00
East Levee Plan and Profile Sta. 544+00.00 to Sta. 599+00.00
East Levee Plan and Profile Sta. 599+00.00 to Sta. 655+50.00
East Levee Plan and Profile Sta. $655+50.00$ to Sta. $712+50.00$

East Levee Plan and Profile Sta. $769+16.36$ to Sta. $828+50.00$

TABLE OF CONTENTS (CONT’D)

No.

Title
West Levee Plan and Profile Sta. $828+50.00$ to Sta. $893+50.00$
West Levee Plan and Profile Sta. 893+50.00 to Sta. 955+00.00
West Levee Plan and Profile Sta. $955+00.00$ to Sta. $1018+50.00$
West Levee Plan and Profile Sta. $1018+50.00$ to Sta. $1071+00.00$
West Levee Plan and Profile Sta. $1071+00.00$ to Sta. $1125+50.00$
West Levee Plan and Profile Sta. $1125+50.00$ to Sta. $1181+50.00$
West Levee Plan and Profile Sta. $1181+50.00$ to Sta. $1230+43.21$
Belle Chasse Pump Station No. 2 Plan
Belle Chasse Pump Station No. 2 Frontal Protection Profile
Belle Chasse Pump Station No. 2 Section Thru Station
Belle Chasse Pump Station No. 2 Frontal Protection T-Wall Details
Plaquemines Pump Station Plan
Plaquemines Pump Station Plan
Plaquemines Pump Station Frontal Protection Profile
Plaquemines Pump Station Section Thru Original Station
Plaquemines Pump Station Section Thru Pump Station Addition
Plaquemines Pump Station T-Wall Details
Planters Pump Station Plan
Planters Pump Station Foundation Plan
Planters Pump Station Frontal Protection Profile

TABLE OF CONTENTS (CONT'D)

No. Title

Planters Pump Station Section Thru Original Pump Station
Planters Pump Station Section Thru Pump Station Addition
Planters Pump Station T-Wall Details

NOS\&WB No. 11 Pump Station Plan

NOS\&WB No. 11 Pump Station Foundation Plan
NOS\&WB Nc. 11 Pump Station Frontal Protection Profile

NOS\&WB No. 11 Pump Station Section Thru Original Station
NOS\&WB No. 11 Pump Station Section Thru Station Addition

NOS\&WB No. 11 Pump Station T-Wall Details
NOS\&WB No. 11 Pump Station Discharge Tube Details
NOS\&WB No. 13 Pump Station Plan

NOS\&WB No. 13 Pump Station Section Thru Original Station
NOS\&WB No. 13 Pump Station Section Thru Station Addition

Typical Levee Sections (Sheet 1 of 3)
Typical Levee Sections (Sheet 2 of 3)
Typical Levee Sections (Sheet 3 of 3)

Gates 1 thru 4 (Profile)
Gates 5, 6, $7 \& 10$ (Profile)

Gates 8, 9, $11 \& 12$ (Profile)

Gates 13, 14, 15 \& 16 (Profile)

TABLE OF CONTENTS (CONT’D)

No. Title51525354555657Soil Boring Location Plan
F-2 Subsoil Profile "A-A"
F-3 Subsoil Profile "A-A"
F-4 Subsoil Profile "B-B"
F-5 Subsoil Profile "B-B"
F-6 Design Soil Parameters Reaches 1 \& 2
F-7 Design Soil Parameters Reaches 3 \& 4

TABLE OF CONTENTS (CONT’D)

No.	Title
F-8	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 1 Westbank
F-9	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 1 Westbank
F-10	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 1 Eastbank
F-11	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 1 Eastbank
F-12	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 2 Westbank
F-13	Slope Stability Analysis of Raised Levee Toward Canal at Low Water
F-14	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 2 Eastbank
F-15	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 2 Eastbank
F-16	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 4 Westbank
F-18	Slope Stability Analysis of Raised Levee Due to Storm Water Level Reach 3 Westbank
	Reach 3 Eastbank
Flope Stability Analysis of Raised Levee Toward Canal at Low Water	
Feach Westbank	

TABLE OF CONTENTS (CONT'D)

No.	Title
F-21	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 4 Westbank
F-22	Slope Stability Analysis of Raised Levee Due to Storm Water Ievel Reach 4 Eastbank
F-23	Slope Stability Analysis of Raised Levee Toward Canal at Low Water Reach 4 Eastbank
F-24	Slope Stability Analysis of Ramp on One Side of Levee Reach 1
F-25	Slope Stability Analysis of Ramp on One Side of Levee Reach 2
F-26	Slope Stability Analysis of Ramp on One Side of Levee Reach 3
F-27	Slope Stability Analysis of Ramp on One Side of Levee Reach 4
F-28	Slope Stability Analysis of Ramp Toward Canal at Low Water Reach 1
F-29	Slope Stability Analysis of Ramp Toward Canal at Low Water Reach 2
F-30	Slope Stability Analysis of Ramp Toward Canal at Low Water Reach 3
F-31	Slope Stability Analysis of Ramp Toward Canal at Low Water Reach 4
F-32	Slope Stability Analysis and I-Wall Design - Reach 2 - Westbank
F-32a	Replacement I-wall Design at Discharge of Modified Belle Chasse Pump Station No. 2
F-33	I-Wall Design Near Floodgates - Reaches 1 \&2

TABLE OF CONTENTS (CONT'D)

No.	Title
F-34	I-Wall Design Near Floodgates - Reaches 3 \& 4
F-35	Floodgate/T-Wall Analysis - Reach 1
F-36	Floodgate/T-Wall Analysis - Reach 2
F-37	Floodgate/T-Wall Analysis - Reach 3
F-38	Floodgate/T-Wall Analysis - Reach 4
F-39	Slope Stability Analyses Belle Chasse Pump Station No. 2
F-40	Slope Stability Analyses of Units 1 Through 5 Planters Pump Station
F-41	Slope Stability Analyses of Units 6 Through 9 Planters Pump Station
F-42	Slope Stability Analyses Plaquemines Pump Station
F-43	Slope Stability Analyses Addition to Plaquemines Pump Station
F-44	Slope Stability Analyses N.O. S\&WB Pump No. 11 West
F-45	Slope Stability Analyses of N.O. S\&WB Station No. 11 East
F-46	Slope Stability Analyses of East Units 1 Though 3 N.O. S\&WB Pump Station No. 13
F-47	Slope Stability Analyses of East Units 4 Though 7 N.O. S\&WB Pump Station No. 13
F-48	Slope Stability/T-Wall Analyses Modified Belle Chasse Pump Station No. 2
F-49	Slope Stability/T-Wall Analyses Modified Units 1 Though 5 Planters Pump Station
F-50	Slope Stability/T-Wall Analyses Modified Units 6 Though 9 Planters Pump Station

TABLE OF CONTENTS (CONT'D)

No. TitleF-51 Slope Stability/T-Wall Analyses Modified Plaquemines PumpStationF-52 Slope Stability/T-Wall Analyses Modified Addition to PlaqueminesPump Station
F-53
F-54F-55F-56F-57F-58F-59
F-60F-61
F-62F-63
APPENDIX
VOLUME 1
A
Detailed Cost Estimate

TABLE OF CONTENTS (CONT'D)

VOLUME 2

F-I Geotechnical Boring Logs and Laboratory Data
F-II Geotechnical Computer Data
B
Design Calculations

WEST BANK OF THE MISSISSIPPI RIVER IN THE VICINITY OF NEW ORLEANS, LA
 EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT DESIGN MEMORANDUM NO. 2
 EAST AND WEST OF ALGIERS CANAL

APPENDIX F-I

GEOTECHNICAL BORING LOGS AND LABORATORY DATA

APPENDIX F-I

BORING LOGS AND LABORATORY TEST DATA

LEGEND AND NOTES FOR LOG OF BORING AND TEST RESULTS

PP	Pocket penetrometer resistance in tons per square foot			
TV	Torvane shear strength in tons per square foot			
SPT	Standard Penetration Test. Number of blows of a $140-\mathrm{lb}$. hammer dropped 30 inches required to drive 2 -in O.D., 1.4 -in. I.D. sampler a distance of one foot into the soil, after first seating it 6 inches			
SPLR	Type of Sampling	Shelby		
SYMBOL	$\begin{array}{lll} \text { Clay } & \text { Silt } & \text { Sano } \\ \square \square & \\| d & \because \because \end{array}$	Humus	Predominant type shown heavy; Modifying type shown light	

DENSITY Unit weight in pounds per cubic foot
USC Unified Soil Classification
TYPE UC Unconfined compression shear
OB Unconsolidated undrained triaxial compression shear on one specimen confined at the approximate overburden pressure
UU Unconsolidated undrained triaxial compression shear
CU Consolidated undrained triaxial compression shear
DS Direct shear
CON Consolidation
PD Particle size distribution
k Coefficient of permeability in centimeters per second
SP Swelling pressure in pounds per square foot
$\phi \quad$ Angle of internal friction in degrees
c Cohesion in pounds per square foot
Other laboratory test results reported on separate figure
Ground Water Measurements \quad Initial Final

GENERAL NOTES

(1) At the time the borings were made, ground water levels were measured below existing ground surface. These observations are shown on the boring logs. However, ground water levels may vary due to seasonal and other factors. If important to construction, the depth to ground water should be determined by those persons responsible for construction, immediately prior to beginning work.
(2) While the individual logs of borings are considered to be representative of subsurface conditions at their respective locations on the dates shown, it is not warranted that they are representative of subsurface conditions at other locations and times.

Ground Elev.: 9.69 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/15/96
Boring: ALGE1
Reter to "Logends \& Notos"

Comments: Coordinates: North 484688.370, East 3685189.805

Ground Elev.: 9.69
Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/15/96

[^0]

[^1]Ground Elev.: -0.73 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/14/96 Boring: ALGE2 Reter to ${ }^{\circ}$ Legends \& Notes"

Comments: Coordinates: North 488130.438, East 3689961.091

Ground Elev.: 9.07 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/08/96
Boring: ALGE3
Refor to "Legends \& Notes"

Comments: Coordinates: North 491737.652 , East 3694801.079

Comments: Coordinates: North 491737.652 , East 3694801.079

Ground Elev.: 0.17 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/12/96

Comments: Coordinates: North 493957.230, East 3697224.019

Comments: Coordinates: North 493957.230, East 3697224.019

Ground Elev.: 8.71

Comments: Coordinates: North 497996.807, East 3699266.828

Comments: Coordinates: North 497996.807, East 3699266.828

Ground Elev.: -2.12 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/12/96 Boring: ALGE6 Rofor to "Logends \& Notes-

Comments: Coordinates: North 501517.478, East 3701098.846

Ground Elev.: -2.12 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/12/96 Boring: ALGE6 ${ }^{\text { }}$ Rafer to "Logends \& Nores"

[^2]Ground Elev.: 7.79 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/06/96
Boring: ALGE7
Refor to "Legends \& Notes"

Comments: Coordinates: North 506135.743, East 3703397.032

Ground Elev.: 7.79 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/06/9์6

[^3]

Comments: Coordinates: North 511863.1, East 3706454.431 EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

Ground Elev.: 5.50 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/05/96
Boring: ALGE8
Refor to "Legends \& Notes"

Comments: Coordinates: North 511863.1, East 3706454.431

Ground Elev.: 7.25 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/06/96
Boring: ALGE9
Refor to "Legends \& Nores"

Comments: Coordinates: North 514667.790, East 3709519.893

Ground Elev.: 7.25 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/06/96
Boring: ALGE9
Refor to "Legends \& Notes"

Comments: Coordinates: North 514667.790, East 3709519.893

Ground Elev.: 7.69 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 2/29/96
Boring: ALGW1
Refar to "Legends \& Notes"

Comments: Coordinates: North 485906.337, East 3682390.777

[^4]Ground Elev.: 3.58 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 2/29 \& 3/01/96 Boring: ALGW2

Comments: Coordinates: North 485135.505, East 3684681.569

Ground Elev.: 3.58 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 2/29 \& 3/01/96 Boring: ALGW2 \quad Refer to "Legends \& Notes"

Comments: Coordinates: North 485135.505, East 3684681.569

Comments: Coordinates: North 489031.072, East 3690060.058

Ground Elev.: 8.495 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/01/96
Boring: ALGW3
Refer to "Legends \& Notes"

Comments: Coordinates: North 489031.072, East 3690060.058

Ground Elev.: 0.438 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/01/96
Boring: ALGW4
Refer to "Legends \& Notes"

Comments: Coordinates: North 491181.668 , East 3692925.745

Ground Elev.: 0.438 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/01/96
Boring: ALGW4
Refer to "Legends \& Notes"

[^5]Ground Elev.: 7.816 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/04/96. Boring: ALGW5 Refer to "Legends \& Notes"

Comments: Coordinates: North 493544.923, East 3696054.745

Comments: Coordinates: North 493544.923, East 3696054.745

Ground Elev.: 1.58 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/11/96 Boring: ALGW6 Refor to "Logends \& Notes"

Comments: Coordinates: North 500281.942, East 3699699.114

Ground Elev.: 1.58
Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/11/96
Boring: ALGW6
Refer to "Legends \& Notes

Comments: Coordinates: North 500281.942, East 3699699.114

Ground Elev.: 8.78 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/04/96

Comments: Coordinates: North 485135.505, East 3684681.569

Ground Elev.: 8.78 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/04/96

Comments: Coordinates: North 485135.505, East 3684681.569 JEFFERSON PARISH, LOUISIANA

Ground Elev.: 3.951 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/04/96

[^6] EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

3/04/96
Boring: ALGW8 Refor to ${ }^{-L o g e n d s}$ \& Notes ${ }^{-}$

Comments: Coordinates: North 509148.427, East 3704175.151

Ground Elev.: 6.009 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/05/96
Boring: ALGW9
Refor to "Legends \& Notes"

Comments: Coordinates: North 513359.703, East 3707077.608

Ground Elev.: 6.009 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/05/96

Boring: ALGW9
Rofer to "Legends \& Notes"

Comments: Coordinates: North 513359.703, East 3707077.608

Ground Elev.: 2.70 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/05/96 Boring: ALGW10 \quad Refer to ${ }^{\text {ELegends } \& \text { Notes" }}$

Comments: Coordinates: North 517774.112, East 3712102.544

Ground Elev.: 2.70 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/05/96
Boring: ALGW10
Refer to "Legends \& Notes"

Comments: Coordinates: North 517774.112, East 3712102.544

Ground Elev.: 9.75 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/19/96

Comments: Coordinates: North 483259.046, East 3683305.925 $5-\mathrm{in}$. diameter samples

Ground Elev.: 9.75 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/19/96

Comments: Coordinates: North 483259.046, East 3683305.925 5 -in. diameter samples

JEFFERSON PARISH, LOUISIANA

Ground Elev.: -2.65 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/20/96 Boring: ALGE-2U Refor to "Logends \& Notes"

Comments: Coordinates: North 486362.907, East 3687549.870 5 -in. diameter samples

Ground Elev:: -2.65 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/20/96

Comments: Coordinates: North 486362.907, East 3687549.870
5-in. diameter samples

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

Boring: ALGE-3U
Refer to "Legends \& Notes"
Ground Elev.: 9.469 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/18/96

Comments: Coordinates: North 489889.329, East 3692280.732
5 -in. diameter samples

Ground Elev.: 9.469 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/18/96 Boring: ALGE-3U Refer to "Legends \& Notes"

Comments: Coordinates: North 489889.329, East 3692280.732 5-in. diameter samples

Boring: ALGE-4U Refor to ${ }^{\circ}$ Legends \& Notes ${ }^{-}$

Comments: Coordinates: North 492367.653, East 3695724.177
5 -in. diameter samples

Ground Elev.: -1.90 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/17/96
Boring: ALGE-4U
Refor to "Legends \& Notes"

Comments: Coordinates: North 492367.653, East 3695724.177 5 -in. diameter samples

Ground Elev.: 7.61 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/18/96

Comments: Coordinates: North 496725.774, East 3698623.889 5 -in. diameter samples

Ground Elev.: 7.61 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/18/96
Boring: ALGE-5U Refor to "Logends \& Notes"

Comments: Coordinates: North 496725.774, East 3698623.889
$5-\mathrm{in}$. diameter samples

Ground Elev.: -2.08 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/15/96 Boring: ALGE-6U Rofer to "Legends \& Notes"

Comments: Coordinates: North 500124.973, East 3700396.794
5 -in. diameter samples

[^7]Ground Elev.: 9.230 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/12/96
Boring: ALGE-7U
Refer to "Legends \& Notes"

Comments: Coordinates: North 504278.169, East 3702451.616

Ground Elev.: 9.230 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/12/96
Boring: ALGE-7U
Refor to "Legends \& Notes"

[^8]-

Comments: Coordinates: North 508246.628, East 3704510.434 5 -in. diameter samples

Ground Elev.: -2.75 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/22/9́6
Boring: ALGE-8U ! Refer to "Logends \& Notes*

Comments: Coordinates: North 508246.628, East 3704510.434
$5-\mathrm{in}$. diameter samples

Boring: ALGE-9U Refor to "Lagends a Notes-
Ground Elev.: 6.06 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/20/96

Comments: Coordinates: North 512862.124, East 3707443.123
5-in. diameter samples

Ground Elev.: 6.06 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/20/96

Comments: Coordinates: North 512862.124, East 3707443.123
$5-\mathrm{in}$. diameter samples

Boring: ALGE-10U Refer to "Legends \& Notes-

Comments: Coordinates: North 515847.833, East 3710935.137
5 -in. diameter samples

Ground Elev.: 1.95 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/19/96
6
Boring: ALGE-10U Refor to "Legends \& Notes"

Comments: Coordinates: North 515847.833, East 3710935.137
5 -in. diameter samples

Ground Elev.: 9.03 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/06/96
Boring: ALGW-1U
Refer to "Legends \& Notes"

Comments: Coordinates: North 484210.581, East 3683302.379
5 -in. diameter samples

Ground Elev.: 9.03 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/06/96

[^9]Ground Elev.: 3.47 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/12/96

Comments: Coordinates: North 484210.581, East 3683302.379
5 -in. diameter samples

Ground Elev.: 3.47 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/12/96
Boring: ALGW-2U ,
Refor to "Logends \& Notes"

Comments: Coordinates: North 484210.581, East 3683302.379
$5-\mathrm{in}$. diameter samples

Ground Elev.: 9.58 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/08 \& 3/11/96 Boring: ALGW-3U
Refer to "Legends \& Notes"

Comments: Coordinates: North 490347.872, East 3691858.068
5 -in. diameter samples

[^10]Ground Elev.: -1.91 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/18/96
Boring: ALGW-4U
Refer to "Legends \& Notes"

Comments: Coordinates: North 492391.906, East 3694557.800 5-in. diameter samples

Ground Elev.: -1.91 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/18/96
Boring: ALGW-4U i Refor to "Legends a Notes*

Comments: Coordinates: North $\mathbf{4 9} \mathbf{9} 2391.906$, East 3694557.800
5 -in. diameter samples

EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT

Comments: Coordinates: North 495298.753, East 3697204.168 5-in. diameter samples

Ground Elev.: 7.06 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/16/96
Boring: ALGW-5U
Refor to "Legends \& Notes"

Comments: Coordinates: North 495298.753, East 3697204.168
5 -in. diameter samples

Ground Elev.: -1.18 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/11/96

Comments: Coordinates: North 502723.351, East 3700920.051
5 -in. diameter samples

Ground Elev.: -1.18 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/11/96
Boring: ALGW-6U , Refer to "Logends \& Notes ${ }^{-}$

Comments: Coordinates: North 502723.351, East 3700920.051 5-in. diameter samples

Comments: Coordinates: North 507430.878, East 3703361.531
5-in diameter samples

Ground Elev.: 6.37 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/12-15/96 Boring: ALGW-7U : Refer to ${ }^{\circ}$ Legends $\&$ Notas-

Comments: Coordinates: North 507430.878, East 3703361.531 5 -in diameter samples

Ground Elev.: -3.21 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/10/96

Comments: Coordinates: North 511549.059, East 3705397.981 5-in. diameter samples

Ground Elev.: -3.21 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 4/10/96'

Comments: Coordinates: North 511549.059, East 3705397.981 $5-\mathrm{in}$. diameter samples

Ground Elev.: 6.36 Datum: NGVD Gr. Water Depth: See Text Job No.: 14638 Date Drilled: 3/25/96
Boring: ALGW-9U Rofor to "Legends \& Notes"

Comments: Coordinates: North 515626.413, East 3709614.241
$5-\mathrm{in}$. diameter samples

Ground Elev.: 6.36 Datum: NGVD Gr. Water Depth: Sẹ́e Text Job No.: 14638 Date Drilled: 3/25/96 i Boring: ALGW-9U Refer to -

Comments: Coordinates: North 515626.413, East 3709614.241
5 -in. diameter samples

CONSOLIDATION TEST REPORT

Natural Saturation	Natural Moisture	$\begin{gathered} \text { Dry } \\ \text { Density } \\ \hline \end{gathered}$	LL	PI	Sp.Gr.	Precons. press.	C_{c}	e_{0}
98.1\%	48.0	72.9	71	49	2.720	1.11	0.43	1.3308
TEST RESULTS						MATERIAL DESCRIPTION		
Compression Index $=0.43$						M Gr CH3 w/ Ins, lyr ML \& Ins, lyr SP Class: CH		
Project No.: 13622 Project: Algiers Levees Location: Boring ALGW-2U, Sample 6-C Depth 22.0' Date: 7-18-96								
EUSTIS ENGINEERING COMPANY, INC.						DACW29-95-D-0012 Tested by RNE Fig. No. \qquad		

Natural Saturation	Natural Moisture	Dry Density	LL	PI	Sp.Gr.	Precons. press.	C_{c}	e_{0}
97.1 \%	69.8	57.7	88	62	2.750	0.55	0.76	1.9749
TEST RESULTS						MATERIAL DESCRIPTION		
Compression Index $=0.76$						So Gr CH4 w/ Ins, ars ML \& tr dec wd Class: CH		
Project No.: 13622 Project: Algiers Levees Location: Boring ALGW-5U, Sample 6-C Depth 21.3^{\prime} Date: 7-30-96								
						Remarks: Water table $=N / A$ Contract No. DACW29-95-D-0012		
CONSOLIDATION TEST REPORT EUSTIS ENGINEERING COMPANY, INC.						Tested by RNE Fig. No. \qquad		

CONSOLIDATION TEST REPORT

Natural Saturation	Natural Moisture	Dry Density	LL	PI	Sp.Gr.	Precons. press.	C_{c}	e_{0}
95.6 \%	34.7	85.1	36	13	2.700	2.85	0.20	0.9799
TEST RESULTS						MATERIAL DESCRIPTION		
Compression Index $=0.20$						So Gr CL4 w/ Ins, lyr ML \& CH3 Class: CL		
Project No.: 13622 Project: Algiers Levees Location: Boring ALGE-6U, Sample 5-B Depth 16.7^{\prime} Date: 8-23-96								
						Remarks: Water table = N A Contract No. DACW29-95-D-0012		
CONSOLIDATION TEST REPORT EUSTIS ENGINEERING COMPANY, INC.						DACW29-95 Tested by Fig. No.	RNE \qquad	

8 CONSOLIDATION TEST REPORT										
$\begin{array}{\|c\|} \text { SWELL } \\ 0 \end{array}$										
$\left\|\begin{array}{rr} \overline{-} & \text { CoMPression } \\ 0 & 4 \\ 0 & 4 \end{array}\right\|$										
8										
$\begin{array}{cc} \hdashline & 8 \\ & \\ 0 & \\ 0 & 12 \end{array}$										
$\left\lvert\, \begin{array}{ll} \stackrel{\rightharpoonup}{c} & \\ 0 & 20 \\ 0 & 20 \end{array}\right.$										
$\begin{array}{ll} \text { L } & \\ \text { L } & \\ \text { Q } & 24 \end{array}$										
28										
32										
0.120										
$\begin{array}{ll} \widehat{\lambda} \\ \underset{0}{0} & 0.090 \end{array}$										
 0.060 \square										
Natural Saturation	Natural Moisture	$\begin{gathered} \text { Dry } \\ \text { Density } \\ \hline \end{gathered}$	LL	PI		Sp.Gr.	Precons. press.	C_{c}		e_{0}
100.0\%	69.5	59.0	88	56		2.750	0.94	0.94		1.9117
TEST RESULTS										
Compression 1 ndex $=0.94$							M Gr CH 4 w/ Ins \& lyr ML Class:			
Project No.: 13622 Project: Algiers Levees Class: CH										
Project: Algiers Levees Location: Boring ALGE-8U, Sample 11-D Depth 38.8' Date: 8-23-96							Remarks: Water table $=$ N A Contract No.			
CONSOLIDATION TEST REPORT EUSTIS ENGINEERING COMPANY, INC.							DACW29-95 Tested b Fig. No.	$5-D-001$ y RNE	12	

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CL4 w/ Ins \& ars ML
$L L=33 \quad P L=19 \quad P I=14$
SPECIFIC GRAVITY $=2.67$
REMARKS:
CLIENT: U.S. Army Corps of Engineers
PROJECT: Algiers Levee
Contract No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGE-1u,.
Sample 3-C. Depth 6.0'
PROJ. NO.: 13622 DATE: 6-25-96
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Compony. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-1U, Sample 15-D, Depth 51.7'
File: UU-6802
Project No.: 13622
FIG. NO.:

FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-2U, Sample 4-C, Depth 9.9'
File: UU-6806
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-2U, Sample 5-D. Depth 14.8'
File: UU-6807
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-2U, Sample 16-D, Depth 53.8'
File: UU-6811
Project No.: 13622
FIG. NO.:

FIG. NO.:

SAMPLE TYPE: Undisturbed DESCRIPTION: M Gr CH3 w/ lyr \& Ins ML. ars org \& sif $L L=78 \quad P L=27 \quad P I=51$
SPECIFIC GRAVITY= 2.74
REMARKS:

CLIENT: U.S. Army Corps of Engineers
PROJECT: Algiers Levee
Controct No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGE-3U,
Sample 8-D. Depth 26.6'

PROJ. NO.: 13622
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-3U, Somple 17-B, Depth 48.7'
File: UU-6817 Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No.. DACW29-95-D-0012
Location: Boring ALGE-3U, Sample 19-D, Depth 57.1.
File: UU-6818 Project No.: 13622
FIG. NO.:

FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-4U, Sample 3-C. Depth 5.8'
File: UU-6822
Project No.: 13622
FIG. NO.:

FIG. NO.:

SAMPLE TYPE: Undisturbed
DESCRIPTION: So Gr CH4
w/ lyr \& Ins ML
$L L=90 \quad P L=26 \quad P I=64$
SPECIFIC GRAVITY= 2.74
REMARKS :

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee
Controct No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGE-4U,
Sample 10-D. Depth 34.8'

PROJ. NO.: 13622 DATE: 6-28-96
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-5U, Sample 7-D. Depth 22.9'
File: UU-6831
Project No.: 13622
FIG. NO.:
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-5U. Sample 13-C, Depth 43.9'
File: UU-6833
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-5U. Sample 21-B. Depth 74.7'
File: UU-6837
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-6U. Sample 3-C. Depth 9.1'
File: UU-6851 Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-6U, Sample 13-D. Depth 37.3'
File: UU-6853
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-7U, Sample 4-C. Depth 14.1'
File: UU-6943
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-7U, Sample 25-B. Depth 61.5'
File: UU-6945
Project No.: 13622
FIG. NO.:

SAMPLE TYPE: Undisturbed DESCRIPTION: St Gr CH4 w/ Ins \& ars ML
$L L=94 \quad P L=30 \quad P I=64$
SPECIFIC GRAVITY=2.72
REMARKS :

CLIENT: U.S. Army Corps of Engineers
PROJECT: Algiers Levee
Contract No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGE-7U,
Sample 27-C. Depth 71.1'
PROJ. NO.: 13622
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Company. Inc.

FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-8U, Sample 8-C. Depth 26.1'
File: UU-6950 Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-8U. Sample 13-D. Depth 46.2'
File: UU-6952
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Locotion: Boring ALGE-9U. Sample 15-D, Depth 58.8'
File: UU-7111 Project No.: 13622
FIG. NO.:

SAMPLE TYPE: Undisturbed
DESCRIPTION: So Gr CH4
w/ lyr \& Ins ML
$L L=84 \quad P L=25 \quad P I=59$
SPECIFIC GRAVITY $=2.74$
REMARKS:
CLIENT: U.S. Army Corps of Engineers
PROJECT: Algiers Levee
Contract No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGE-9U,
Somple 13-D. Depth 50.8'
PROJ. NO.: 13622 DATE: 7-24-96

TRIAXIAL SHEAR TEST REPORT
FIG. NO.:
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-9U, Sample 5-C. Depth 17.7'
File: UU-7107
Project No.: 13622
FIG. NO.:

CIient: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-9U, Sample 2-B, Depth 4.6'
File: UU-7106
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-8U, Sample 17-C. Depth 61.8.
File: UU-6954
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGE-10U, Sample 6-B, Depth 21.5'
File: UU-7115
Project No.: 13622
FIG. NO.:

FIG. NO.:

SPECIMEN NO.:	1	2	3
, WATER CONTENT. \%	53.7	52.5	53.3
S DRY DENSITY. pcf	67.2	68.2	67.6
H SATURATION, \%	95.2	95.5	95.4
H VOID RATIO	1.544	1.507	1.530
H $\begin{aligned} & \text { OIAMETER , in } \\ & \text { HEIGHT, in }\end{aligned}$	1.40	1.40	1.40
HEIGHT, in	3.01	2.99	3.00
WATER CONTENT. \%	59.4	55.9	57.9
n ORY DENSITY, pCf	65.1	67.6	66.1
L SATURATION. \%	100.0	100.0	100.0
$\vdash \mid$ VOID RATIO	1.627	1.532	1.586
『 $\begin{aligned} & \text { DIAMETER }{ }^{\text {¢ }} \text {, in } \\ & \text { HEIGHT, in }\end{aligned}$	1.40	1.40	1.40
HEIGHT, in	2.98	2.98	2.98
Strain rate, in/min	0.11550 .11550 .1134		
BACK PRESSURE, psf	0	0	0
CELL PRESSURE, psf	1008	2016	3024
FAILURE STRESS, psf	347	657	757
ULTIMATE STRESS, psf	250	522	593
σ_{1} FAILURE, psf	1355	2673	3781
σ_{3} FAILURE, psf	1008	2016	3024

CLIENT: U.S. Army Corps of Engineers
PROJECT: Algiers Levee
Controct No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGE-10U,
Sample 12-D. Depth 46.8'
PROJ. NO.: 13622
DATE: 7-25-96
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-1U, Sample 8-B. Depth 24.1'
File: UU-7184
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-1U, Sample 22-C, Depth 55.1'
File: UU-7185
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-1U, Sample 24-B, Depth 62.4'
File: UU-7186
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-2U, Sample 5-C. Depth 18.4'
File: UU-7189
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACw29-95-D-0012
Location: Boring ALGW-2U, Sample 9-C. Depth 34.4'
File: UU-7190 Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-2U, Sample 11-B. Depth 41.5'
File: UU-7191 Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-2U, Sample 13-C. Depth 49.9'
File: UU-7192
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-2U, Sample 15-D. Depth 58.8.
File: UU-7193
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-2U, Sample 17-C. Depth 66.1.
File: UU-7194 Project No.: 13622
FIG. NO.:

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4
w/ ins ML. sif
$\mathrm{LL}=100 . \quad \mathrm{PL}=32 \quad \mathrm{PI}=68$
SPECIFIC GRAVITY= 2.74
REMARKS :

CLIENT: U.S. Army Corps of Engineers
PROJECT: Algiers Levee
Contract No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGW-3U.
Sample 4-B. Depth 9.1'
PROJ. NO.: 13622 DATE: 7-31-96
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-3U, Sample 8-C. Depth 26.4'
File: UU-7197 Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Controct No. DACW29-95-D-0012
Location: Boring ALGW-3U, Sample 19-C. Depth 70.1'
File: UU-7201
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-0-0012
Location: Boring ALGW-4U, Sample 8-C, Depth 22.1'
File: UU-7232
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-4U, Sample 14-D. Depth 46.4'
File: UU-7262
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Controct No. DACW29-95-D-0012
Location: Boring ALGW-4U, Somple 16-D. Depth 54.4'
File: UU-7263
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-5U, Sample 3-B. Depth 9.4'
File: UU-7265
Project No.: 13622
FIG. NO.:

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CHOC
w/ Ins \& ars org
$L L=188 \quad P L=63 \quad P I=125$
SPECIFIC GRAVITY= 2.74
REMARKS:
CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee
Controct No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGW-5U.
Sample 7-D. Depth 27.2'
PROJ. NO.: 13622 DATE: 8-6-96
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Compony. Inc.

SAMPLE TYPE: Undisturbed
DESCRIPTION: So Gr CH4
w/ lyr. Ins \& ors ML
$L L=90 \quad P L=26 \quad P I=64$
SPECIFIC GRAVITY= 2.72
REMARKS:

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee
Controct No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGW-5U,
Sample 9-C. Depth 33.6'

PROJ. NO.: 13622 DATE: 8-6-96
TRIAXIAL SHEAR TEST REPORT
FIG. NO.:
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-5U. Somple 9-C. Depth 33.6'
File: UU-7268
Project No.: 13622
FIG. NO.:

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH 4
w/ lyr \& ins ML
LL= $92 \quad P L=31 \quad P I=61$
SPECIFIC GRAVITY $=2.74$
REMARKS:

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee
Contract No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGW-5U, Sample 11-D. Depth 42.8*

PROJ. NO.: 13622
DATE: 8-6-96
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-5U, Sample 13-D, Depth 50.2'
File: UU-7270
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-5U, Sample 15-D, Depth 58.1'
File: UU-7271
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-5U, Sample 18-C, Depth 69.9'
File: UU-7272
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-5U, Sample 19-D, Depth 74.8'
File: UU-7273 Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-6U, Sample 2-D. Depth 6.2'
File: UU-7274
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-6U, Sample 17-D. Depth 46.8'
File: UU-7276
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Controct No. DACW29-95-D-0012
Location: Boring ALGW-6U, Sample 19-D, Depth 54.8'
File: UU-7277
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Locotion: Boring ALGW-6U, Sample 21-D. Depth 62.6.
File: UU-7278
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-7U, Sample 8-C, Depth 29.7'
File: UU-7281
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Locotion: Boring ALGW-8U. Sample 4-C, Depth 14.4'
File: UU-7285
Project No.: 13622
FIG. NO.:
FIG. NO.:

SPECIMEN NO.:	1	2	3
WATER CONTENT, \%	76.1	74.7	75.3
\checkmark DRY DENSITY, pcf	56.3	56.5	56.1
H SATURATION. \%	102.3	100.8	100.6
H VOID RATIO	2.037	2.029	2.050
H DIAMETER, in	1.38	1.38	1.38
HEIGHT. in	2.98	2.98	2.98
- WATER CONTENT. \%	74.8	74.1	74.7
- DRY DENSITY, pcf	56.1	56.4	56.1
\mathfrak{w} SATURATION, \%	100.0	100.0	100.0
\downarrow VOID RATIO	2.051	2.032	2.047
\checkmark ¢ OIAMETER, in	1.38	1.38	1.38
HEIGHT, in	2.98	2.98	2.98
Strain rate. in/min BACK PRESSURE, psf CELL PRESSURE, psf FAILURE STRESS, psf ULTIMATE STRESS, psf σ_{1} FAILURE, psf σ_{3} FAILURE, psf	0.10040	. 10830	. 1026
	0	0	0
	1008	2016	3024
	627	540	537
	489	427	435
	1635	2556	3561
	1008	2016	3024

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH 4 w/ lyr \& Ins ML
$L L=97 \quad P L=28 \quad P I=69$
SPECIFIC GRAVITY= 2.74
REMARKS :
CLIENT: U.S. Army Corps of Engineers
PROJECT: Algiers Levee
Controct No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGW-8U. Sample 7-D. Depth 26.8'
PROJ. NO.: 13622 DATE: 8-8-96
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-8U. Sample 7-D, Depth 26.8'
File: UU-7286 Project No.: 13622
FIG. NO.:

SAMPLE TYPE: Undisturbed DESCRIPTION: So Gr CH4
w/ Ins \& ars ML
$L L=76 \quad P L=23 \quad P I=53$
SPECIFIC GRAVITY=2.72
REMARKS:

CLIENT: U.S. Army Corps of Engineers
PROJECT: Algiers Levee
Controct No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGW-8U,
Sample 9-D. Depth 34.8'
PROJ. NO.: 13622
DATE: 8-8-96
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-8U. Sample 15-B. Depth 57.4'
File: UU-7290 Project No.: 13622
FIG. NO.:

SAMPLE TYPE: Undisturbed
DESCRIPTION: M Gr CL5
w/ lyr \& lns CH, slf
$L L=38 \quad P L=17 \quad P I=21$
SPECIFIC GRAVITY= 2.7
REMARKS :

PROJECT: Algiers Levee
Controct No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGW-8U. Sample 20-C. Depth 73.8'

PROJ. NO.: 13622 DATE: 8-8-96

SAMPLE TYPE: Undisturbed
DESCRIPTION: So Br CHOA w/ lyr \& lns ML. rts
$L L=104 \quad P L=34 \quad P I=70$
SPECIFIC GRAVITY= 2.7
REMARKS :

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee

Controct No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGW-9U, Sample 2-C. Depth 5.8'

PROJ. NO.: 13622
DATE: 8-8-96
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-9U Sample 7-B, Depth 25.5'
File: UU-7295
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-9U. Somple 9-C. Depth 34. 1^{\prime}
File: UU-7296
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-9U, Sample 11-D, Depth 42.8'
File: UU-7297
Project No.: 13622
FIG. NO.:

SAMPLE TYPE: Undisturbed
DESCRIPTION: M Gr CH4
...w/ Ins ML
$L L=82 \quad P L=23 \quad P I=59$
SPECIFIC GRAVITY=2.74
REMARKS :

SPECIMEN NO.:	1	2	3
WATER CONTENT. \%	63.4	62.6	64.2
$\frac{1}{4}$ DRY DENSITY, pCf	63.2	63.5	62.5
- SATURATION. \%	101.8	101.2	101.2
$\underset{Z}{\mathrm{H}}$ VOID RATIO.	1.706	1.696	1.739
\% DIAMETER: in	1.38	1.38	1.38
HEIGHT, in	2.98	2.98	2.98
\rightarrow WATER CONTENT. \%	62.4	61.7	63.3
- DRY DENSITY, pcf	63.1	63.6	62.6
$\stackrel{\text { 山 S }}{ }$ SATURATION. \%	100.0	100.0	100.0
- VOID RATIO	1.710	1.689	1.735
$\stackrel{\downarrow}{\checkmark}$ DIAMETER. in	1.38	1.38	1.38
HEIGHT, in	2.98	2.98	2.98
Strain rate, in/min BACK PRESSURE, psf CELL PRESSURE, psf FAILURE STRESS, psf ULTIMATE STRESS, psf σ_{1} FAILURE, psf σ_{3} FAILURE, psf	0.1061	. 10140	. 1015
	0	0	0
	1008	2016	3024
	1146	1143	1083
	866	824	749
	2154	3159	4107
	1008	2016	3024

CLIENT: U.S. Army Corps of Engineers

PROJECT: Algiers Levee
Controct No. DACW29-95-D-0012
SAMPLE LOCATION: Boring ALGW-9U, Somple 15-D. Depth 48.8'

PROJ. NO.: 13622
TRIAXIAL SHEAR TEST REPORT
Eustis Engineering Company. Inc.

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-9U, Sample 15-D. Depth 48.8'
File: UU-7299
Project No.: 13622
FIG. NO.:

Client: U.S. Army Corps of Engineers
Project: Algiers Levee Contract No. DACW29-95-D-0012
Location: Boring ALGW-9U. Sample 22-C. Depth 77.9'
File: UU-7300
Project No.: 13622
FIG. NO.:

APPENDIX F-II

COMPUTER OUTPUT

WEST BANK OF THE MISSISSIPPI RIVER IN THE VICINITY OF NEW ORLEANS, LA
 EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT DESIGN MEMORANDUM NO. 2
 EAST AND WEST OF ALGIERS CANAL

APPENDIX F-II

GEOTECHNICAL COMPUTER OUTPUT

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS
DATE: 20-MAR-1998
TIME: 8.30.28
อ̀ēëëëëëëëëëëēëé a INPUT DATA a àëëëëëëęëëëëëë¥

I. - -HEADING:

'ALGIERS CANAL, EE14638
' REACH 4, I WALL, NEAR FLOOD GATE, WATER EL 11.5
II. --CONTROL

CANTILEVER WALL DESIGN
$\begin{array}{ll}\text { LEVEL } 1 & \text { FACTOR OF SAFETY FOR ACTIVE PRESSURES }=1.00 \\ \text { LEVEL } 1 & \text { FACTOR OF SAFETY FOR }\end{array}$
LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES $=1.00$
III.--WALL DATA

ELEVATION AT TOP OF WALL $=11.50(\mathrm{FT})$
IV. --SURFACE POINT DATA
IV.A--RIGHTSIDE

DIST. FROM ELEVATION
WALL (FT) (FT)
$.00 \quad 3.00$
30.00 .00
100.00 .00
IV.B-- LEFTSIDE

DIST. FROM ELEVATION WALL (FT) (FT) $.00 \quad 3.00$ 30.00 .00
100.00 .00
V.--SOIL LAYER DATA
V.A.--RIGHTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES $=$ DEFAULT

PROGRAM CWALSHT-DESIGN/ANALYSIS OE ANCHORED OR CANTILEVER SHEET PILE WALLSDATE: 20-MAR-1998TIME: 8.30.36
èëëëëēēēëëëëëëëēēēëëëëëẻẻëモa SOIL PRESSURES FOR aa CANTILEVER WALL DESIGN aàëëëëëëëëëëëëëëėëëëëëëēē
I.--HEADING
'ALGIERS CANAL, EE14638
'REACH 4,I WALL, NEAR FLOOD GATE, WATER EL 11.5
II.--SOIL PRESSURES
RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

March 20, 1998
Page 1-3
LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

$\begin{aligned} & \text { ELEV. } \\ & \text { (FT) } \end{aligned}$	$\begin{aligned} & \text { <-LEFTSIDE } \\ & \text { PASSIVE } \\ & \text { (PSF) } \end{aligned}$	PRESSURES-> ACTIVE (PSF)				PRESSURES->
			ACTIVE (PSF)	PASSIVE (PSF)	ACTIVE (PSF)	PASSIVE
11.50	. 00		(PSF) 000	(PSF) 000	(PSF) 0	(PSF)
10.50	. 00	. 00	62.400	62.400	. 00	. 00
9.50	. 00	. 00	124.800	124.800	. 00	. 00
8.50	. 00	. 00	187.200	187.200	. 00	. 00
7.50	. 00	. 00	249.600	249.600	. 00	. 00
6.50	. 00	. 00	312.000	312.000	. 00	. 00
5.50	. 00	. 00	374.400	374.400	. 00	. 00
4.50	. 00	. 00	436.800	436.800	. 00	. 00
3.50	. 00	. 00	499.200	499.200	. 00	. 00
$3.00+$. 00	. 00	530.400	530.400	. 00	. 00
$3.00-$	760.00	. 00	-229.600	1290.400	. 00	760.00
2.75	748.64	. 00	-202.636	1280.000	. 00	734.00
2.50	737.27	. 00	-175.673	1269.600	. 00	708.00
2.00	783.64	. 00	-190.836	1317.891	. 00	725.09
1.50	830.51	. 00	-206.510	1366.690	. 00	742.69
. 50	913.20	. 00	-226.796	1453.239	. 00	766.84
. 00	937.78	. 00	-220.178	1480.005	. 00	762.40
-. 50	959.92	. 00	-211.123	1504.820	. 00	756.02
-1. 50	1032.69	. 00	-221.491	1583.190	. 00	771.99
-2.50	1115.91	. 00	-242.309	1672.509	. 00	798.91
-- 50	1182.55	. 00	-246.549	1761.091	. 00	825.09
- 50	1218.96	. 00	-282.964	1787.273	. 00	851.27
-5.50	1239.53	. 00	-303.535	1813.455	00	877.45
-6.50	1259.62	. 00	-323.618	1839.636	. 00	903.64
-7.50	1279.95	. 00	-343.945	1865.818	. 00	929.82
-8.50	1300.27	. 00	-364.273	1892.000	. 00	956.00
-9.50	1320.60	. 00	-384.600	1918.182	00	982.18
-10.50	1340.93	. 00	-404.927	1944.364	. 00	1008.36
-11.50	1361.25	. 00	-425.255	1970.545	. 00	1034.55
-12.50	1381.58	. 00	-445.582	1996.727	. 00	1060.73
-13.50	1401.91	. 00	-465.909	2022.909	. 00	1086.91
-14.50	1422.24	. 00	-486.236	2049.091	. 00	1113.09
-15.50	1442.56	. 00	-506.564	2075.273	. 00	1139.27
-16.50	1462.89	. 00	-526.891	2101.455	. 00	1165.45
-17.50	1483.22	. 00	-547.218	2127.636	. 00	1191.64
-18.50	1503.55	. 00	-567.545	2153.818	. 00	1217.82
-19.50	1523.87	44.43	-587.873	2135.572	. 00	1244.00
-20.50	1544.20	162.67	-608.200	2043.513	. 00	1270.18
-21.50	1564.53	244.28	-628.527	1988.079	. 00	1296.36
-22.50	1584.85	261.34	-648.855	1997.202	. 00	1322.55
-23.50	1605.18	280.30	-669.182	2004.427	. 00	1348.73
-24.50	1625.51	299.70	-689.509	2011. 209	. 00	1374.91
-25.50	1645.84	319.10	-709.836	2017.991	. 00	1401.09
-26.50	1666.16	338.50	-730.164	2024.773	00	1427.27
-27.50	1686.49	357.90	-750.491	2031.555	. 00	1453.45

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLSDATE: 20-MAR-1998BY CLASSICAL METHODSTIME: 8.31 .51

- SUMMARY OF RESULTS FOR aa CANTILEVER WALL DESIGN aàëëëëëëëëëëẽëëëëëëëëëëëë¥
I. - -HEADING
'ALGIERS CANAL, EE14638' REACH 4, I WALL, NEAR FLOOD GATE, WATER EL 11.5
II. - -SUMMARY
RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
WALL BOTTOM ELEV. (FT) -17.26
PENETRATION (FT) 20.26
MAX. BEND. MOMENT (LB-FT) : 17856.
AT ELEVATION (FT) : -6.38
MAX. SCALED DEFL. (LB-IN3): $7.6853 E+09$
AT ELEVATION (FT) : 11.50(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OFELASTICITY IN PSI TIMES PILE MOMENT OF INERTIAIN IN**4 TO OBTAIN DEFLECTION IN INCHES.)
PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS TIME: 8.31.51

I.--HEADING

- ALGIERS CANAL, EE14638
'REACH 4,I WALL, NEAR FLOOD GATE, WATER EL 11.5
II.--RESULTS

	BENDING		SCALED	NET
ELEVATION	MOMENT	SHEAR	DEFLECTION	PRESSURE
(FT)	(LB-FT)	(LB)	(LB-IN3)	(PSF)
11.50	0 .	0 .	$7.6853 \mathrm{E}+09$. 00
10.50	10.	31.	$7.2329 \mathrm{E}+09$	62.40
9.50	83.	125	$6.7805 \mathrm{E}+09$	124.80
8.50	281.	281	$6.3282 \mathrm{E}+09$	187.20
7.50	666.	499.	$5.8765 \mathrm{E}+09$	249.60
6.50	1300.	780.	$5.4260 \mathrm{E}+09$	312.00
5.50	2246.	1123.	$4.9777 \mathrm{E}+09$	374.40
4.50	3567.	1529.	$4.5334 \mathrm{E}+09$	436.80
3.50	5325.	1997.	$4.0953 \mathrm{E}+09$	499.20
3.00	6387.	2254.	$3.8795 \mathrm{E}+09$	530.40
3.00	6387.	2254.	$3.8795 \mathrm{E}+09$	-229.60
2.75	6944.	2200.	$3.7726 \mathrm{E}+09$	-202.64
2.50	7488.	2153.	3.6665E+09	-175.67
2.00	8541.	2061.	$3.4567 \mathrm{E}+09$	-190.84
1.50	9548.	1962.	$3.2506 \mathrm{E}+09$	-206.51
. 50	11403.	1745.	$2.8511 \mathrm{E}+09$	-226.80
. 00	12247.	1634	$2.6586 \mathrm{E}+09$	-220.18
-. 50	13037.	1526	$2.4714 \mathrm{E}+09$	-211.12
-1.50	14455.	1309.	$2.1141 \mathrm{E}+09$	-221.49
-2.50	15651.	1077.	$1.7818 \mathrm{E}+09$	-242.31
-3.50	16606.	833.	$1.4765 \mathrm{E}+09$	-246.55
-4.50	17310.	568.	$1.1998 \mathrm{E}+09$	-282.96
-5.50	17733.	275.	$9.5303 \mathrm{E}+08$	-303.53
-6.50	17853.	-39.	7.3684E+08	-323.62
-7.50	17650.	-372.	$5.5146 \mathrm{E}+08$	-343.95
-8.50	17102.	-726.	$3.9653 \mathrm{E}+08$	-364.27
-9.50	16190.	-1101.	$2.7110 \mathrm{E}+08$	-384.60
-10.50	14893.	-1496.	$1.7359 \mathrm{E}+08$	-404.93
-11.50	13192.	-1911.	$1.0176 \mathrm{E}+08$	-425.25
-12.50	11065.	-2346.	$5.2659 \mathrm{E}+07$	-445.58
-13.50	8493.	-2802.	$2.2617 E+07$	-465.91
-13.73	7823.	-2912.	$1.7869 \mathrm{E}+07$	-470.67
-14.50	5511.	-3057.	7.1860E+06	91.88
-15.50	2623.	-2597.	$1.2916 \mathrm{E}+06$	826.67
-16.50	561.	-1403.	$4.8574 \mathrm{E}+04$	1561.45
-17.26	0 .	0.	$0.0000 \mathrm{E}+00$	2121.41

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF
ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)
III.--SOIL PRESSURES

ELEVATION
(FT)
11.50
10.50
9.50
< LEFTSIDE PRESSURE (PSF)> PASSIVE ACTIVE

0 .
0.
0.0 .

0 . 0.
0.
<RIGHTSIDE PRESSURE (PSF)> ACTIVE PASSIVE
0.

0 .
0 .

0 .
 0.
 0 .

8.50	0 .	0.	0.	
7.50	0.	0.	0.	0
6.50	0.	0.	0.	0
5.50	0.	0.	0.	0
4.50	0.	0.	0.	0
3.50	0.	0.	0.	0
$3.00+$	0.	0.	0.	0
$3.00-$	760.	0.	0.	0
2.75	749.	0.	0.	760.
2.50	737.	0.	0.	734.
2.00	784.	0.	0.	708
1.50	831.	0.	0.	725.
. 50	913.	0.	0.	743.
. 00	938.	0.	0.	767.
-. 50	960.	0.	0.	762.
-1.50	1033.	0.	0.	756.
-2.50	1116.	0.	0.	772.
-3.50	1183.	0.	0.	799.
-4.50	1219.	0.	0.	825.
-5.50	1240.	0.	0.	851.
-6.50	1260.	0.	0.	877.
-7.50	1280.	0	0.	904.
-8.50	1300.	0.	0.	930.
-9.50	1321.	0.	0.	956.
-10.50	1341.	0.	0.	982.
-11.50	1361.	0.	0.	1008.
-12.50	1382.	0.	0.	1035.
-13.50	1402 .	0.	0.	1061.
-13.73	1407.	0.	0.	1087.
-14.50	1422.	0.	0.	1093.
-15.50	1443.	0.	0.	1113.
16.50	1463.	0.	0.	1139.
17.26	1483.	0.	0.	1165.
18.50	1504.	0.	0.	1192.
	1504.	0.	0 .	1218.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS
 DATE: 20-MAR-1998

TIME: 8.28.39
èëëëëëëëēēēëëëē a INPUT DATA a

I. - HEADING:
'ALGIERS CANAL, EE14638
'REACH 3, I WALL, NEAR FLOOD GATE, WATER EL 11.5
II. --CONTROL

CANTILEVER WALL DESIGN
LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES $=1.00$
LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES $=1.00$
III. --WALL DATA

ELEVATION AT TOP OF WALL $=11.50(\mathrm{FT})$
IV. --SURFACE POINT DATA
IV.A--RIGHTSIDE

DIST. FROM ELEVATION
WALL (FT) (FT)
$.00 \quad 3.00$
30.00
100.00 .00

IV. B-- LEFTSIDE	
DIST. FROM	ELEVATION
WALL. (FT)	(FT)
.00	3.00
30.00	.00
100.00	.00

V.--SOIL LAYER DATA
V.A. - RIGHTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES $=$ DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES $=$ DEFAULT

		ANGLE OF		ANGLE OF		<-SAFETY->		
SAT.	MOIST	INTERNAL	COM-	WALL	ADM-	<--BOTTOM-->	<-FACTOR->	
WGHT.	WGHT.	FRICTION	ESION	FRICTION	ESION	ELEV. SLOPE ACT. PASS.		
(PCT)	(PCT)	(DEG)	(PSF)	(DEG)	(PSF)	(FT)	(FT/FT)	
102.00	102.00	.00	380.0	.00	.0	.00	.00	DEF DEF

LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

$\begin{aligned} & \text { ELEV. } \\ & \text { (FT) } \end{aligned}$	$\begin{aligned} & \text { <-LEFTSIDE } \\ & \text { PASSIVE } \\ & \text { (PSF) } \end{aligned}$	PRESSURES-> ACTIVE (PSF)	<---NET PRESSURES---->		<RIGHTSIDEACTIVE(PSF)	PRESSURES->PASSIVE(PSF)
			ACTIVE (PSF)	PASSIVE (PSF)		
11.50	. 00	. .00	(RSF).000			
10.50	. 00	. 00	62.400	62.400	. 00	. 00
9.50	. 00	. 00	124.800	124.800	. 00	. 00
8.50	. 00	. 00	187.200	187.200	. 00	. 00
7.50	. 00	. 00	249.600	249.600	. 00	. 00
6.50	. 00	. 00	312.000	312.000	. 00	. 00
5.50	. 00	. 00	374.400	374.400	. 00	. 00
4.50	. 00	. 00	436.800	436.800	. 00	. 00
3.50	. 00	. 00	499.200	499.200	. 00	. 00
$3.00+$. 00	. 00	530.400	530.400	. 00	. 00
$3.00-$	760.00	. 00	-229.600	1290.400	. 00	760.00
2.75	748.64	. 00	-202.636	1280.455	. 00	734.45
2.50	737.27	. 00	-175.673	1270.509	. 00	708.91
2.00	783.64	. 00	-190.836	1319.709	. 00	726.91
1.50	830.00	. 00	-206.000	1369.409	. 00	745.41
. 50	922.73	. 00	-236.327	1457.809	. 00	771.41
. 00	969.09	. 00	-251.491	1486.509	. 00	768.91
-. 50	1015.45	. 00	-266.655	1515.209	. 00	766.41
-1. 50	1108.43	. 00	-297.226	1603.359	. 00	792.16
-2.50	1200.91	. 00	-327.309	1702.509	. 00	828.91
$\rightarrow 50$	1277.55	. 00	-341.549	1800.909	. 00	864.91
- 30	1323.96	. 00	-387.964	1836.909	. 00	900.91
-5.50	1354.53	. 00	-418.535	1872.909	. 00	936.91
-6.50	1384.62	. 00	-448.618	1908.909	. 00	972.91
-7.50	1414.95	. 00	-478.945	1944.909	. 00	1008.91
-8.50	1445.27	. 00	-509.273	1980.909	. 00	1044.91
-9.50	1475.60	. 00	-539.600	2016.909	. 00	1080.91
-10.50	1505.93	. 00	-569.927	2052.909	. 00	1116.91
-11.50	1536.25	. 00	-600.255	2088.909	. 00	1152.91
12.50	1566.58	. 00	-630.582	2124.909	. 00	1188.91
13.50	1596.91	. 00	-660.909	2160.909	. 00	1224.91
-14.50	1627.24	. 00	-691.236	2196.909	. 00	1260.91
-15.50	1657.56	. 00	-721.564	2232.909	. 00	1296.91
-16.50	1687.89	25.32	-751.891	2243.593	. 00	1332.91
-17.50.	1718.22	140.79	-782.218	2164.118	. 00	1368.91
-18.50	1748.55	281.32	-812.545	2059.587	. 00	1404.91
-19.50	1778.87	342.05	-842.873	2034.862	. 00	1440.91
-20.50	1809.20	367.10	-873.200	2045.809	. 00	1476.91
-21. 50	1839.53	396.50	-903.527	2052.409	. 00	1512.91
-22.50	1869.85	425.90	-933.855	2059.009	. 00	1548.91
-23.50	1900.18	455.30	-964.182	2065.609	. 00	1584.91
-24.50	1930.51	484.70	-994.509	2072.209	. 00	1620.91
-25.50	1960.84	514.10	-1024.836	2078.809	. 00	1656.91
-26.50	1991.16	543.50	-1055.164	2085.409	. 00	1692.91
-27.50	2021.49	572.90	-1085.491	2092.009	. 00	1728.91

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEETBY CLASSICAL METHODS
DATE: 20-MAR-1998TIME: 8.28.57
 - SUMMARY OF RESULTS FOR a a CANTILEVER WALL DESIGN a

I. - -HEADING
'ALGIERS CANAL, EE14638
'REACH 3, I WALL, NEAR FLOOD GATE, WATER EL 11.5
II.--SUMMARY
RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
WALL BOTTOM ELEV. (FT) -14.58
PENETRATION (FT) 17.58
MAX. BEND. MOMENT (LB-FT) : 16584
AT ELEVATION (FT) -5.00
MAX. SCALED DEFL. (LB-IN3): $5.7319 \mathrm{E}+09$ AT ELEVATION (FT) : 11.50
(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OFELASTICITY IN PSI TIMES PILE MOMENT OF INERTIAIN IN**4 TO OBTAIN DEFLECTION IN INCHES.)
PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVERBY CLASSICAL METHODS
DATE: 20-MAR-1998
I. - - HEADING
'ALGIERS CANAL, EE14638
'REACH 3, I WALL, NEAR FLOOD GATE, WATER EL 11.5
II.--RESULTS

	BENDING		SCALED	NET
ELEVATION (FT)	MOMENT	SHEAR	DEFLECTION	PRESSURE
11.50		(LB)	(LB-IN3)	(PSF)
10.50	10.	0.	$5.7319 \mathrm{E}+09$. 00
9.50	83.	125.	5.3650E+09	62.40
8.50	281.	281.	4.6316E+09	124.80
7.50	666.	499.	$4.2655 \mathrm{E}+09$	187.20
6.50	1300.	780.	$3.9006 \mathrm{E}+09$	312.00
5.50	2246.	1123.	$3.5379 \mathrm{E}+09$	374.40
4.50	3567.	1529.	$3.1792 \mathrm{E}+09$	436.80
3.50	5325.	1997.	$2.8267 \mathrm{E}+09$	499.20
3.00	6387.	2254.	$2.6537 \mathrm{E}+09$	530.40
3.00	6387.	2254.	$2.6537 \mathrm{E}+09$	-229.60
2.75	6944.	2200.	$2.5683 \mathrm{E}+09$	-202.64
2.50	7488.	2153.	$2.4835 \mathrm{E}+09$	-175.67
2.00	8541.	2061.	$2.3165 \mathrm{E}+09$	-190.84
1.50	9548.	1962.	$2.1532 \mathrm{E}+09$	-206.00
. 50	11402.	1741.	$1.8394 \mathrm{E}+09$	-236.33
. 00	12242.	1619.	$1.6897 \mathrm{E}+09$	-251.49
-. 50	13019.	1489.	$1.5452 \mathrm{E}+09$	-266.65
-1.50	14370.	1207.	$1.2735 \mathrm{E}+09$	-297.23
-2.50	15424.	895.	$1.0266 \mathrm{E}+09$	-327.31
-3.50	16153.	561.	$8.0630 \mathrm{E}+08$	-341.55
-4.50	16535.	196.	$6.1386 \mathrm{E}+08$	-387.96
-5.50	16532.	-207.	$4.4993 \mathrm{E}+08$	-418.53
-6.50	16111.	-641.	$3.1451 \mathrm{E}+08$	-448.62
-7.50	15241.	-1105.	$2.0686 \mathrm{E}+08$	-478.95
-8.50	13891.	-1599.	$1.2549 \mathrm{E}+08$	-509.27
-9.50	12033.	-2123.	$6.8040 \mathrm{E}+07$	-539.60
-10.50	9635.	-2678.	$3.1308 \mathrm{E}+07$	-569.93
-10.95	8386.	-2935.	$2.0571 \mathrm{E}+07$	-583.42
-11.50	6690.	-3140.	$1.1144 \mathrm{E}+07$	-158.08
-12.50	3598.	-2915.	$2.5178 \mathrm{E}+06$	608.33
-13.50	1115.	-1924.	$1.9662 \mathrm{E}+05$	1374.74
-14.50	6.	-166.	$5.3487 \mathrm{E}+00$	2141.14
-14.58	0.	0 .	$0.0000 \mathrm{E}+00$	2199.66

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)
III.--SOIL PRESSURES

ELEVATION	< LEFTSIDE	PRESSURE (PSF) >	<RIGHTSIDE PRESSURE (PSF) >	
(FT)	PASSIVE	ACTIVE	ACTIVE	PASSIVE
11.50	0.	0.	0.	0.
10.50	0.	0.	0.	0.
9.50	0.	0.	0.	0.
8.50	0.	0.	0.	0.
7.50	0.	0.	0.	0.

6.50	0.	0.		
5.50	0.	0.	0.	0.
4.50	0.	0.	0	0
3.50	0.	0.		0.
$3.00+$	0.	0.	0.	0.
$3.00-$	760.	0.	0.	0.
2.75	749.	0.	0	760.
2.50	737.	0.	0	734.
2.00	784	0.	0.	709.
1.50	830.	0.	0.	727.
. 50	923.	0.	0	745.
. 00	969.	0.	0.	771.
-. 50	1015.	0	0.	769.
-1.50	1108.	0	0.	766.
-2.50	1201.	0.	0.	792.
-3.50	1278.	0.	0.	829.
-4.50	1324.	0.	0.	865.
-5.50	1355.	0.	0.	901.
-6.50	1385.	0.	0.	937.
-7.50	1415.	0.	0.	973.
-8.50	1445.	0 .	0.	1009.
-9.50	1476.	0.	0	1045.
-10.50	1506.	0.	0.	1081.
-10.95	1519.	0.	0.	1117.
-11.50	1536.	0.	0.	1133.
-12.50	1567.	0	0.	1153.
-13.50	1597.	0	0.	1189.
-14.50	1627.	0	0.	1225.
-14.58	1658.	0.	0.	1261.
-16.50	1688.	25.	0.	1297.
		25.	0.	1333.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS
DATE: 19-MAR-1998
TIME: 16.03.41

èëëëëëëëëëëëëė£
 a INPUT DATA \quad a àëëëëëëēēēēēëë¥

I. - -HEADING:

'ALGIERS CANAL, EE14638
' REACH 2,I WALL, NEAR FLOOD GATE, WATER EL 11.5
II. - CONTROL

CANTILEVER WALL DESIGN
LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES $=1.00$
LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES $=1.00$
III. --WALL DATA

ELEVATION AT TOP OF WALL $=11.50(\mathrm{FT})$
IV. --SURFACE POINT DATA
IV.A--RIGHTSIDE

DIST. FROM WALL (FT)

ELEVATION
(FT)
.00
3.00
30.00
.00
100.00
.00
IV.B-- LEFTSIDE

DIST. FROM
ELEVATION
WALL (FT)
(FT)
3.00
30.00
.00
100.00 .00
V. --SOIL LAYER DATA
V.A.--RIGHTSIDE LAYER DATA

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

VIII.--HORIZONTAL LOADS

 NONE[^11]'ALGIERS CANAL, EE14638
' REACH 2, I WALL, NEAR FLOOD GATE, WATER EL 11.5
II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
ELEV.
(FT)
11.50
10.50
9.50
8.50
7.50
6.50
5.50
4.50
3.50
$3.00+$
3.00
2.75
2.50
2.00
1.50
.50
.00
-.50
50
-2.50
-3.50
-4.50
-5.50
-6.50
-7.50
-8.50
-9.50
-10.50
-11.50
-12.00
-12.50
-13.50
-14.50
-15.50
-16.50
-17.50
-18.50
-19.50
-20.50
-21.50
-22.50
-23.50
-24.50
-1
 $\begin{array}{rr}.00 & .00 \\ .00 & .00 \\ .00 & .00 \\ .00 & .00 \\ .00 & .00 \\ .00 & .00 \\ .00 & .00 \\ .00 & .00 \\ .00 & .00 \\ .00 & .00 \\ 760.00 & .00 \\ 749.32 & .00 \\ 738.64 & .00 \\ 786.36 & .00 \\ 835.27 & .00 \\ 907.36 & .00 \\ 906.29 & .00 \\ 903.39 & .00\end{array}$ 1057.1 1129.03 1170.67 1196.47 1221.78 1247.33 1272.89 1298.44 1324.01 1349.53 1361.47 1371.83 - 217.04 $1390.92 \quad 238.87$ $1409.96 \quad 297.28$ $1429.02 \quad 377.44$ $1448.07 \quad 419.11$ $1467.13 \quad 434.15$ 1486.18452 .25 1505.24 1524.29 1543.35 1562.40 1581.45 1600.51 1619.56 1638.62 1657.67
<---NET PRESSURES---->

(SOIL PLUS WATER)	
ACTIVE	PASSIVE
(PSF)	(PSF)

<RIGHTSIDE	PRESSURES->
ACTIVE	PASSIVE
(PSF)	(PSF)

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

- SUMMARY OF RESULTS FOR a a CANTILEVER WALL DESIGN a

I.--HEADING

'ALGIERS CANAL, EE14638
'REACH 2,I WALL, NEAR FLOOD GATE, WATER EL 11.5
II.--SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
WALL BOTTOM ELEV. (FT) : -19.09
PENETRATION (FT) : 22.09
MAX. BEND. MOMENT (LB-FT) : 19214.
AT ELEVATION (FT) : -7.52

```
MAX. SCALED DEFL. (LB-IN3): 9.2776E+09 AT ELEVATION (FT) : 11.50
```

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

March 19, 1998
Page 1-5

a CANTILEVER WALL DESIGN a

I.--HEADING
'ALGIERS CANAL, EE14638
'REACH 2,I WALL, NEAR FLOOD GATE, WATER EL 11.5
II.--RESULTS

	BENDING		SCALED	NET
ELEVATION	MOMENT	SHEAR	DEFLECTION	PRESSURE
11.50	(LB-FT)	(LB)	(LB-IN3)	(PSF)
10.50	10.	0.	$9.2776 \mathrm{E}+09$. 00
9.50	83.	31.	$8.7586 \mathrm{E}+09$	62.40
7.50	666.		$7.7210 \mathrm{E}+09$	187.20
6.50	1300.		$7.2027 \mathrm{E}+09$	249.60
5.50	2246.	1123.	$6.6857 \mathrm{E}+09$	312.00
4.50	3567.	1123.	$6.1709 \mathrm{E}+09$	374.40
3.50	5325.		5.6601E+09	436.80
3.00	6387.	2254.	5.1555E+09	499.20
3.00	6387.	2254.	$4.9065 \mathrm{E}+09$	530.40
2.75	6944.	2200.	$4.7829 \mathrm{E}+09$	-229.60
2.50	7487.	2153.	$4.6602 \mathrm{E}+09$	-177.04
2.00	8541.	2060.	$4.4171 \mathrm{E}+09$	-193.56
1.50	9546.	1959.	$4.1778 \mathrm{E}+09$	-211.27
. 50	11397.	1743.	$3.7118 \mathrm{E}+09$	-220.96
. 00	12242.	1640.	$3.4860 \mathrm{E}+09$	-188.69
-. 50	13040.	1554.	$3.2655 \mathrm{E}+09$	-154.59
-1.50	14517.	1399.	$2.8418 \mathrm{E}+09$	-156.51
-2.50	15833.	1229.	$2.4431 \mathrm{E}+09$	-183.56
-3.50	16968.	1040.	$2.0717 \mathrm{E}+09$	-193.03
-4.50	17905.	827.	$1.7296 \mathrm{E}+09$	-234.67
-5.50	18610.	579.	$1.4184 \mathrm{E}+09$	-260.47
-6.50	19055.	306.	$1.1394 \mathrm{E}+09$	-285.78
-7.50	19214.	7.	$8.9321 \mathrm{E}+08$	-311.33
-8.50	19061.	-317.	$6.8020 \mathrm{E}+08$	-336.89
-9.50	18572.	-666.	$5.0008 \mathrm{E}+08$	-362.44
-10.50	17720.	-1042.	$3.5200 \mathrm{E}+08$	-388.01
-11.50	16480.	-1442.	$2.3448 \mathrm{E}+08$	-413.53
-12.00	15707.	-1652.	$1.8654 \mathrm{E}+08$	-425.47
-12.50	14827.	-1867.	$1.4538 \mathrm{E}+08$	-435.83
-13.50	12738.	-2313.	$8.1838 \mathrm{E}+07$	-454.92
-14.50	10195.	-2777.	$4.0244 \mathrm{E}+07$	-473.96
-14.51	10156.	-2784.	$3.9791 \mathrm{E}+07$	-474.23
-15.50	7256.	-3022.	$1.6205 \mathrm{E}+07$	-8.25
-16.50	4309.	-2794.	$4.7027 \mathrm{E}+06$	464.44
-17.50	1826.	-2093.	$7.1331 \mathrm{E}+05$	937.14
-18.50	281.	-919.	$1.4446 \mathrm{E}+04$	1409.83
-19.09	0 .	0.	$0.0000 \mathrm{E}+00$	1690.23

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

III.--SOIL	PRESSURES			
$\begin{aligned} & \text { ELEVATION } \\ & \text { (FT) } \end{aligned}$	$\begin{aligned} & \text { < LEFTSIDE } \\ & \text { PASSIVE } \end{aligned}$	PRESSURE (PSF) > ACTIVE	$<$ RIGHTSIDE	PRESSURE (PSF) >
11.50	0 .	ACTIVE		PASSIVE
10.50	0.	0.	0.	0.
9.50	0.	0.	0.	0.
8.50	0.	0.	0.	0.
7.50	0.	0.	0.	0.
6.50	0.	0.	0.	0.
5.50	0.	0.	0.	0.
4.50	0.	0.	0.	0.
3.50	0.	0.	0.	0.
$3.00+$	0.	0.	0.	0.
$3.00-$	760.	0.	0.	0.
2.75	749.	0.	0.	760.
2.50	739.	0.	0.	735.
2.00	786.	0.	0.	710.
1.50	835.	0.	0.	730.
. 50	907.	0.	0.	750.
. 00	906.	0.	0.	766.
-. 50	903.	0.	0.	736.
-1.50	968.	0.	0.	705.
-2.50	1057.	0.	0.	712.
-3.50	1129.	0.	0.	745.
-4.50	1171.	0.	0.	776.
-5.50	1196.	0.	0.	808.
-6.50	1222.	0.	0.	839.
-7.50	1247.	0.	0.	870.
-8.50	1273.	0.	0.	901.
-9.50	1298.	32.	0.	933.
-10.50	1324.	124.	0.	964.
-11.50	1350.	197.	0.	995.
-12.00	1361.	197.	0.	1026.
-12.50	1372.	217.	0.	1041.
-13.50	1391.	239.	0.	1054.
-14.50	1410.	297.	0.	1079.
-14.51	1410.	297.	0.	1104.
-15.50	1429.	377.	0.	1104.
-16.50	1448.	419.	0.	1128.
-17.50	1467.	434.	25.	1153.
-18.50	1486.	452.	25.	1178.
-19.09	1505.	470.	76.	1203.
-20.50	1524.	488.	136.	1227.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS

 BY CLASSICAL METHODSDATE: 19-MAR-1998
TIME: 13.45.33

èēëëēēēëëëëëēë£
 a INPUT DATA a
 àëëëëëëëēēēëë¥

I. --HEADING:

' ALGIERS CANAL, EE14638
' REACH 1, I WALL, NEAR FLOOD GATE, WATER EL 11.5
II. --CONTROL

CANTILEVER WALL DESIGN
LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES $=1.00$
LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES $=1.00$
III.--WALL DATA

ELEVATION AT TOP OF WALL $=11.50$ (FT)

IV.--SURFACE POINT DATA

IV.A--RIGHTSIDE

DIST. FROM	ELEVATION
WALL	
(FT)	(FT)
.00	3.00
30.00	.00
100.00	.00

IV.B-- LEFTSIDE

DIST. FROM ELEVATION WALL (FT) (FT) 3.00
30.00 .00
100.00 .00
V.--SOIL LAYER DATA

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
 DATE: 19-MAR-1998 BY CLASSICAL METHODS

 a SOIL PRESSURES FOR a a CANTILEVER WALL DESIGN a

I. - - HEADING
' ALGIERS CANAL, EE14638
' REACH 1,I WALL, NEAR FLOOD GATE, WATER EL 11.5
II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

ELEV. (FT)

 11.50 10.509.50
8.50
7.50
6.50
5.50
4.50
3.50
$3.00+$
$3.00-$
2.75 2.50 2.00 1.50 .50 .00
$-.50$
-1.50 -2 50

- , 0
-4.50
-5.50
-6. 50
-7.50 -8.50 -9.50 -10.50 -11.50 -12. 50 -13. 50 -14.50 -15.50 -16.50 -17.50 -18. 50 -19.50 -20.50 -21. 50 -22.50 -23. 50 -24.50 -25.50 -26.50 -27.50

$<-\sim$ NET PRESSURES--->>
(SOIL PLUS WATER) ACTIVE PASSIVE (PSF) (PSF)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
760.00
749.32
738.64
786.36
834.09
929.54
976.94
1023.74
1116.95
1209.66
1286.53
1333.17
1363.97
1394.28
1424.83
1455.39
1485.94
1516.50
1547.05
1577.60
1608.16
1638.71
1669.27
1699.82
1730.38
1760.93
1791.49
1822.04
1852.60
1883.15
1913.70
1944.26
1974.81
2005.37
2035.92

.000
62.400
.00
.00
.00
124.800
187.200
249.600
312.000
374.400
436.800
436.800
499.200
530.400
-229.600
-203.318
-177.036
1281.136
1322.436
.00
.00
.00
.00
-193.564
1474.119
.00
.00
.00
.00
1524.363
1573.997
.00
.00
.00
-336.059
-350.526
1869.886
1906.114
1978.568
$\begin{array}{r}.00 \\ .00 \\ .00 \\ \hline .59\end{array}$
(PSF)
.000
62.400
124.800
187.200
249.600
312.000
374.400
436.800
499.200
530.400
1290.400
1281.136
<RIGHTSIDE PRESSURES-> ACTIVE PASSIVE
(PSF)
(PSF)

.00	.00
.00	.00
.00	.00
.00	.00
.00	.00
.00	.00
.00	.00
.00	.00
.00	.00

1373.003
1672.636
1771.259
2014.795
2051.023
2087.250
2123.477
2159.705
2195.932
PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
DATE: 19-MAR-1998BY CLASSICAL METHODS
TIME: 13.45.53
 - SUMMARY OF RESULTS FOR a a CANTILEVER WALL DESIGN a

I. --HEADING
'ALGIERS CANAL, EE14638
' REACH 1, I WALL, NEAR FLOOD GATE, WATER EL 11.5

```
II.--SUMMARY
```

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
WALL BOTTOM ELEV. (FT) -14.32PENETRATION (FT) : 17.32
MAX. BEND. MOMENT (LB-FT) : 16409.

AT ELEVATION (FT) : -4.86
MAX. SCALED DEFL. (LB-IN3) $5.5605 E+09$
AT ELEVATION (FT) 11.50
(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OFELASTICITY IN PSI TIMES PILE MOMENT OF INERTIAIN IN**4 TO OBTAIN DEFLECTION IN INCHES.)
I. - -HEADING
'ALGIERS CANAL, EE14638
'REACH 1, I WALL, NEAR FLOOD GATE, WATER EL 11.5
II.--RESULTS

$\underset{\text { ELEVATION }}{\text { (FT) }}$	BENDING MOMENT (LB-FT)	SHEAR	SCALED DEFLECTION	$\begin{gathered} \text { NET } \\ \text { PRESSURE } \end{gathered}$
11.50		(LB)	(LB-IN3)	(PSF)
10.50	10.	0.	$5.5605 \mathrm{E}+09$	(PSF)
9.50	83.	+125.	5.2018E+09	62.40
8.50	281.	125.	$4.8431 \mathrm{E}+09$	124.80
7.50	666.	481.	$4.4845 \mathrm{E}+09$	187.20
6.50	1300.	789.	$4.1265 \mathrm{E}+09$	249.60
5.50	2246.	1123.	$3.7697 \mathrm{E}+09$	312.00
4.50	3567.	1123.	$3.4151 \mathrm{E}+09$	374.40
3.50	5325.	1529.	$3.0645 \mathrm{E}+09$	436.80
3.00	6387.	1997.	$2.7201 \mathrm{E}+09$	499.20
3.00	6387.	2254.	$2.5512 \mathrm{E}+09$	530.40
2.75	6944.	2254.	$2.5512 \mathrm{E}+09$	-229.60
2.50	7487.	2200.	$2.4677 \mathrm{E}+09$	-203.32
2.00	8541.	2153.	$2.3850 \mathrm{E}+09$	-177.04
1.50	9546.	2060.	$2.2221 E+09$	-193.56
. 50	11394.	1959.	$2.0628 \mathrm{E}+09$	-210.09
. 00	12230.	1732.	$1.7571 \mathrm{E}+09$	-243.14
-. 50	13000.	1607.	$1.6114 \mathrm{E}+09$	-259.34
-1.50	14330.	1473.	$1.4710 \mathrm{E}+09$	-274.94
-2.50	15355.	1183.	$1.2074 \mathrm{E}+09$	-305.75
-3.50	16047.	862.	$9.6842 \mathrm{E}+08$	-336.06
-4.50	16382.	519.	$7.5597 \mathrm{E}+08$	-350.53
-5.50	16323.	-145.	5.7120E+08	-397.17
-6.50	15837.	-268.	$4.1468 \mathrm{E}+08$	-427.97
-7.50	14891.	-711.	$2.8631 \mathrm{E}+08$	-458.28
-8.50	13457.	-1184.	$1.8523 \mathrm{E}+08$	-488.83
-9.50	11504.	-1689.	$1.0982 \mathrm{E}+08$	-519.39
-10.50	9001.	-2223.	$5.7589 \mathrm{E}+07$	-549.94
-10.78	8185.	-2788.	$2.5156 \mathrm{E}+07$	-580.50
-11.50	5968.	-2955.	$1.8975 \mathrm{E}+07$	-589.18
-12.50	2927.	-3170.	$8.1947 E+06$	-11.56
-13.50	682.	-2778.	$1.5451 \mathrm{E}+06$	795.38
-14.32	0.	-1579.	$6.8294 \mathrm{E}+04$	1602.32
		0.	$0.0000 \mathrm{E}+00$	2261.76

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)
III.--SOIL PRESSURES

ELEVATION
(FT)
11.50
10.50
9.50
8.50
7.50
6.50
< LEFTSIDE PRESSURE (PSF) >
ACTIVE

<RIGHTSIDE PRESSURE (PSF)> ACTIVE

0.	0.
0.	0.
0.	0.
0.	0.
0.	0.
0.	0.

5.50	0.	0.		
4.50	0.	0.	0.	0.
3.50	0.	0.	0	0
$3.00+$	0.	0.	0.	0
$3.00-$	760.	0.	0.	76
2.75	749.	0.	0.	760
2.50	739.	0.	0.	735
2.00	786.	0.	0.	710
1.50	834.	0.	0.	730
. 50	930.	0.	0.	749
. 00	977.	0.	0.	788
-. 50	1024.	0.	0.	807.
-1.50	1117.	0.	0.	825.
-2.50	1210.	0.	0.	861.
-3.50	1287.	0.	0.	898.
-4.50	1333.	0.	0.	934.
-5.50	1364.	0.	0.	970.
-6.50	1394.	0.	0.	1006.
-7.50	1425.	0.	0.	1043.
-8.50	1455.	0.	0.	1079.
-9.50	1486.	0.	0.	1115.
-10.50	1516.	0.	0.	1151.
-10.78	1525.	0.	0.	1187.
11.50	1547.	0.	0.	1198.
12.50	1578.	0.	0.	1224.
13.50	1608.	0.	0.	1260.
14.32	1639.	0.	0.	1296.
15.50	1669.	0.	0.	1332.
		2.	0.	1369.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 20-MAR-1998
TIME: 9.18.04

I. --HEADING:
'ALGIERS CANAL, EE14638
'REACH 2,I WALL, WEST SIDE, WATER EL 11.5
II. - - CONTROL

CANTILEVER WALL DESIGN
LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES $=1.00$
LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES $=1.00$
III. --WALL DATA

ELEVATION AT TOP OF WALL $=11.50(\mathrm{FT})$

IV. --SURFACE POINT DATA

IV.A--RIGHTSIDE DIST. FROM ELEVATION WALL (FT) (FT)
$.00 \quad 5.50$
3.00 5.50
$7.50 \quad 4.00$
$50.00 \quad 4.00$
IV.B-- LEFTSIDE DIST. FROM ELEVATION WALL (FT) (FT)
$.00 \quad 5.50$
$7.00 \quad 5.50$
$35.50-4.00$
$70.00-4.00$
V.--SOIL LAYER DATA

```
V.A.--RIGHTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT
```


[^12][^13]II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

	<-LEFTSIDE	PRESSURES->	$<--$ NET PRES (SOIL PLUS	SURES----> WATER)	<RIGHTSIDE	PRESSURES->
ELEV.	PASSIVE	ACTIVE	ACTIVE	PASSIVE	ACTIVE	PASSIVE
(FT)	(PSF)	(PSF)	(PSF)	(PSF)	(PSF)	(PSF)
11.50	. 00	. 00	. 000	. 000	. 00	. 00
10.50	. 00	. 00	62.400	62.400	. 00	. 00
9.50	. 00	. 00	124.800	124.800	. 00	. 00
8.50	. 00	. 00	187.200	187.200	. 00	. 00
7.50	. 00	. 00	249.600	249.600	. 00	. 00
6.50	. 00	. 00	312.000	312.000	. 00	. 00
$5.50+$. 00	. 00	374.400	374.400	. 00	. 00
$5.50-$	760.00	. 00	-385.600	1134.400	. 00	760.00
5.00	812.50	. 00	-406.900	1188.405	. 00	782.81
4.50	865.00	. 00	-428.200	1242.410	. 00	805.61
3.50	970.00	. 00	-470.800	1326.588	. 00	827.39
2.50	1075.00	. 00	-513.400	1351.654	. 00	790.05
1.50	1181.76	. 00	-557.762	1373.324	. 00	749.32
. 50	1262.81	. 00	-576.410	1423.958	. 00	737.56
. 00	1270.03	. 00	-552.426	1424.291	. 00	706.69
- 50	1260.32	15.07	-511.521	1405.771	. 00	672.04
, 0	1241.56	99.22	-430.360	1382.315	. 00	670.33
-2.50	1242.47	201.71	-368.871	1382.208	. 00	710.32
-3. 50	1294.14	298.55	-358.144	1463.459	. 00	826.01
-4.00	1323.68	339.31	-356.485	1535.657	. 00	907.77
-4.50	1336.10	364.86	-368.905	1554.858	. 00	952.51
-5.50	1345.25	400.79	-378.047	1549.856	. 00	983.45
-6.50	1354.00	432.52	-386.800	1553.234	. 00	1018.55
-7.50	1362.85	450.12	-395.650	1570.734	. 00	1053.65
-8.50	1371.70	453.50	-404.500	1602.453	. 00	1088.75
-9.50	1380.55	453.05	-413.350	1638.000	. 00	1123.85
-10.50	1389.41	453.16	-422.210	1673.000	. 00	1158.96
-11.50	1398.23	453.23	-426.296	1708.000	4.73	1194.03
-12.00	1401.82	452.45	-414.095	1725.500	20.53	1210.75
-12.50	1403.83	450.08	-392.361	1743.000	44.27	1225.88
-13.50	1406.21	443.71	-359.989	1778.000	79.02	1254.51
-14.50	1408.55	437.30	-335.459	1813.000	105.89	1283.10
-15.50	1410.90	430.90	-316.309	1848.000	127.39	1311.70
-16.50	1413.25	424.50	-302.928	1883.000	143.12	1340.30
-17.50	1415.60	418.10	-291.155	1918.000	157.24	1368.90
-18.50	1434.20	411.70	-295.300	1953.000	171.70	1397.50
-19.50	1462.80	405.30	-305.839	1988.000	189.76	1426.10
-20.50	1491.40	398.90	-309.500	2023.000	214.70	1454.70
-21.50	1520.00	389.16	-309.555	2061.337	243.24	1483.30
-22.50	1548.60	399.68	-309.500	2079.425	271.90	1511.90
-23.50	1577.20	531.65	-309.500	1976.050	300.50	1540.50
-: 50	1605.80	728.13	-309.500	1808.175	329.10	1569.10
-2,. 50	1634.40	796.69	-309.500	1768.212	357.70	1597.70

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS
DATE: 20-MAR-1998
TIME: 9.18.29
èēēēēēēēēēëëëëëëëëëëëëëëë
a SUMMARY OF RESULTS FOR a CANTILEVER WALL DESIGN a àēēēēēēēëëēëēēēēēēëëēēëëë¥
I. - -HEADING
'ALGIERS CANAL, EE14638
'REACH 2,I WALL, WEST SIDE, WATER EL 11.5
II.--SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
WALL BOTTOM ELEV. (FT) : -1.78
PENETRATION (FT) : 7.28
MAX. BEND. MOMENT (LB-FT) : 3739.
AT ELEVATION (FT) : 2.95
MAX. SCALED DEFL. (LB-IN3): 3.0345E+08
AT ELEVATION (FT) : 11.50
(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS
DATE: 20-MAR-1998
TIME: 9.18.29
I. - -HEADING
'ALGIERS CANAL, EE14638
' REACH 2,I WALL, WEST SIDE, WATER EL 11.5
II. - -RESULTS

	BENDING		SCALED	NET
ELEVATION	MOMENT	SHEAR	DEFLECTION	PRESSURE
(FT)	(LB-FT)	(LB)	(LB-IN3)	(PSF)
11.50	0.	0.	$3.0345 \mathrm{E}+08$. 00
10.50	10.	31.	$2.6643 \mathrm{E}+08$	62.40
9.50	83.	125	$2.2945 \mathrm{E}+08$	124.80
8.50	281.	281.	$1.9262 \mathrm{E}+08$	187.20
7.50	666.	499.	$1.5630 \mathrm{E}+08$	249.60
6.50	1300.	780.	$1.2118 \mathrm{E}+08$	312.00
5.50	2246.	1123.	$8.8338 \mathrm{E}+07$	374.40
5.50	2246.	1123.	$8.8338 \mathrm{E}+07$	-385.60
5.00	2759.	925.	$7.3265 \mathrm{E}+07$	-406.90
4.50	3170.	716.	$5.9380 \mathrm{E}+07$	-428.20
3.50	3665.	267.	$3.5838 \mathrm{E}+07$	-470.80
2.50	3689.	-225.	$1.8561 E+07$	-513.40
1.50	3200.	-761.	$7.5849 \mathrm{E}+06$	-557.76
. 91	2650.	-1095.	$3.7458 \mathrm{E}+06$	-568.81
. 50	2165.	-1266.	$2.0578 \mathrm{E}+06$	-273.37
. 00	1513.	-1312.	$8.1849 \mathrm{E}+05$	89.13
-. 50	883.	-1177.	$2.3364 \mathrm{E}+05$	451.62
-1.50	53.	-363.	$6.1430 \mathrm{E}+02$	1176.61
-1.78	0.	0.	$0.0000 \mathrm{E}+00$	1382.28

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)
III.--SOIL PRESSURES

ELEVATION (FT)
11.50 10.50
9.50 8.50 7.50 6.50 5.50+ 5.505.00 4.50 3.50 2.50 1.50
. 91
.50
.00
-. 50
-1.50
< LEFTSIDE PRESSURE (PSF) > PASSIVE ACTIVE 760 . 0 . 813 . 0 . 865 . 0 . 970 1075 1182. 1230. 1263. 1270 1260
1242.
0.

0 .
0 .
0.
0. 0 . 0 . 0 . 0.00760 .
<RIGHTSIDE PRESSURE (PSF) > ACTIVE

0 .
PASSIVE 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .

0 . 760 .
$0 . \quad 783$.
0.806 .

0 . 827.
0 . 790 .
0 . 749 .
0 . 742 .
0 . 738 .
0 . 707 .
15. 0 . 672 .
99.
670.

©L2WAOT	March 20, 1998	Page 1-6		
		1242.	202.	0.
	-1.78	1294.	299.	0.

WEST BANK OF THE MISSISSIPPI RIVER IN THE VICINITY OF NEW ORLEANS, LA
 EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT DESIGN MEMORANDUM NO. 2
 EAST AND WEST OF ALGIERS CANAL

APPENDIX B

DESIGN CALCULATIONS

PUMPING STATION FLOODWALL CALCULATIONS

$$
\begin{aligned}
& \text { BELLE GHAESE ND. } 2 \text { PUTPING STATION. } \\
& \text { - all t-jall to front or station } \\
& \text { - PASS DISCHAROE PIPES THEDJJH T-WA:- } \\
& \text { - EXIETINS LKCHAKGE EASUI L LUSED W/RIFAA? } \\
& \text { - TOF OF BASE SCAB @ EL-5.5 } \\
& \text { - Depth of base scab= } 2^{\circ}-6^{\prime \prime} \\
& \text { - HEM,HT OF STEM }=15^{\circ} \\
& \text { - TDE OF BASE SLAB I } 50 \text { 'fiom EviEting station } \\
& \text { - LEAGTL of WALL }=86^{\circ}
\end{aligned}
$$

EUSTIS ENGINEERING COMPANY, INC. \qquad
Geotechnical Engineers
Metairie, Louisiana \qquad
Date $11 / 26 / 57$ Job By TUS
\qquad
\qquad
Checked By \qquad
Us Army Corps of Eroheers
East. on Harvey canal Jefferson Parish, lan.
Allowable Pile Lond Capacities
T-Wall Foundation Belle Chase Pump station No:Z

Estimated Allowable single
Pile Lond. Capacity in

Note: 1) Top of pile at el -7.5 .
2) (apacity contribution to el -50 has been ignored.

U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA
 MODULUS OF HORIZONTAL SUBGRADE REACTION REACH 3

ELEVATION IN FEET NGVD	$\frac{K_{k} \times B}{D C}$
10 to 0	169
0 to -19	
-19 to -40	
-40 to -45	155
-45 to 50	167
-56 to -67	178

Where:
$\mathrm{K}_{\mathbf{L}} \quad=\quad$ Modulus of horizontal subgrade reaction (lbs/in.)
B $\quad=\quad$ Diameter of pile (inches)
C $=$ Reduction factor for cyclic loading
$\mathrm{C}=0.5$ for cyclic loading
$C=1.0$ for initial loading
D $=$ Reduction factor for effect of group action

D	PILE SPACING IN DIRECTION OF LOADING
1.0	8 B
0.85	7 B
0.7	6 B
0.55	5 B
0.40	4 B
0.25	3 B

T-wall loading cases:

LASE I: STATIC WATER PRESSURE TD SWC, ND WIND, impervious

$$
\text { SHEET PIE CUTOFF }(100 \% \text { FDENES) }
$$

UT
case in: static utter pressure to shul, no wind, pervious sheet PILE CUTOFF (100% FORCES)

CASE III: STATIC WATER PRESSURE TO SWL12; NO WIND, IMPERVIOUS SHEET PILE CUTOFF (75% FORCES)

CASE IV: STATIC WATER PRESSURE TO SINLI2; NO WIND, PERVIOUS SHEET PILE CUTOFF (15% FORCES)

CASE 区: WATER@ LOW WATER LEVEL, NO WINO (100% FORCES)

CASE II: WATER © LOW WATER LEVEL, WIND FROM P/S (75% FORCES)

	JN 3004	ALGIERS IANAL	AAH	$11-18-97$	4

T－WALL FORCE TABULATION

No．	DESCRIDTION	FORCES（KIPS）			LEvER ARM（C）			ROMENTS（FT，K）		
		F_{x}	Fy	F_{z}	\times	y	z	$M_{x \times}$	$M_{y y}$	M_{22}
I	Dea D Loads （a）STEM （b）BASE （c）$s w c$ （d）ミかったご （e）$(0,0,1)_{\text {att }}$			5.1 4.31 7.2 8.16 2.64	$\left\|\begin{array}{c} +2.75 \\ 0 \\ -2 . \\ -2^{\prime} \\ -2^{\prime} \end{array}\right\|$				（ $\begin{gathered}-14.02 \\ -0.0 \\ +14.4 \\ +16.32 \\ +5.28 .\end{gathered}$	
III	Water Loads （a）$s \omega L$ （1）（1．12）（17．5） buyancy： imp：$(1.12)(4)$ per：（ $(2)(1,12)(1,5)$	9.6		$\begin{aligned} & -4.48 \\ & -6.44 \end{aligned}$	$\left.\begin{gathered} -3.75 \\ -1.92 \end{gathered} \right\rvert\,$		-5.83		-57.13 -16.8 -12.36	
		12.19		$\begin{aligned} & \\ & -5.0 \\ & -7.19 \end{aligned}$	$\left\|\begin{array}{c} \\ -3.75 \\ -1.92 \end{array}\right\|$		－6．5		-79.24 18.75 -13.80	
		2.0		$\left\lvert\, \begin{aligned} & -2.04 \\ & -2.93 \end{aligned}\right.$	$\begin{gathered} -3.15 \\ -7.92 \end{gathered}$		$\|-2.7\|$		-5.34 -7.65 -5.62	
III	WIND （a）from P / S	－0．575					$\|-12.75\|$		＋7．91	
II		-4.6					0.0			
	$\begin{aligned} & \text { shubli, Pierense } \\ & \text { (frow Custis? } \end{aligned}$	$\begin{aligned} & 9.32 \\ & -3.24 \\ & \frac{-0.33}{5.15} \end{aligned}$						，	（ $\left\lvert\, \begin{aligned} & \text {＋246．98 } \\ & -151.68 \\ & -14.07 \\ & +81.25\end{aligned}\right.$	

-use soilconstant below r de. - $5011 \mathrm{CADD:}$

$$
\begin{aligned}
& \frac{K_{n} * B}{D C}=311 \\
& K_{n} \times B=E S \\
& C=1.0
\end{aligned}
$$

$$
D=\text { Reduction for growpration. }
$$

Pile Spacier : $^{\prime}$

$$
\begin{aligned}
& \frac{i+1}{14}=7.7 \\
& D=85+0.7(0.15) \\
& =0.96 \\
& \begin{aligned}
E S & =311(1.0 j(.96 \\
= & 298.56 \mathrm{Psi} \\
= & 0.298 \mathrm{ksi}
\end{aligned}
\end{aligned}
$$

PILE LAYOUT
P / S
Pros

1330 LOAD
1340 LOAD
1350 LOAD
1360 FON
1370
1380 FPL NLL

670 864
648 864
648
4
$\begin{array}{lll}-5853 & 0 & \\ -1869 & 0 & \\ -892 & 0 & \\ 6 & 7 & \text { BC2OUT }\end{array}$
CPGA - CASE PILE GROUP ANALYSIS PROGRAM
RUN DATE 12-11-97 RUN TIME 14:12:21
BELLE CHASSE NO. 2 FRONTAL PROTECTION T-WAL工
THERE ARE 47 PIIES AND $\quad 6$ LOAD CASES IN THIS RUN.
ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

PILE PROPERTIES AS INPUT

$\begin{gathered} \text { E } \\ .40300 \mathrm{~S} \\ .404 \end{gathered}$			$\begin{gathered} \text { A } \\ .19 N^{*} * 2 \end{gathered}$	C33 $20000 E+0$	
SE PILE PR	ERTIES APPI	TO THE FOLI	ING PILES		

SOIL DESCRIPTIONS AS INPUT
 $.29800 \mathrm{E}+00 \mathrm{~L} .83000 \mathrm{E}+02 \mathrm{O} .00000 \mathrm{E}+00$ THIS SOIL DESCRIPTION APPLIES TO THE FOLIOWING PILES -
ALL

PILE GEOMETRY AS INPUT AND/OR GENERATED

NUM	X	Y	Z	Z	BATTER	ANGLE	LENGTH
	FT		FT				

00
.00
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2:00

. 00	83.00 83.00
. 00	83.
. 00	83.00
. 00	83.00
. 00	83.00
. 00	83.00
-00	83.00
-00	83.00
. 00	83.00
. 00	83.00
. 00	83.00
. 00	83.00
. 00	83.00
. 00	83.00
. 00	83.00
. 00	83.00
- 00	83.00
. 00	83.00
. 00	83.00
. 00	83.00
. 00	83.00
. 00	83.00
180.00	83.00
180.00	83.00
180.00	83.00
180.00	
180.00	83.00
180.00	83.00
180.00	83.00
180.00	83.00
180.00	83.00
180.00	83.00
	83.00
180.00	
180.00	83
180.00	83.00
	901.00

APPLIED LOADS

LOAD	PX	$\underset{\mathrm{K}}{\mathrm{K}}$	PZ	$\underset{\mathrm{FT}-\mathrm{K}}{\mathrm{MX}}$	$\underset{\mathrm{FT}}{\mathrm{MX}}-\mathrm{K}$	$\mathrm{FTT}^{\mathrm{MZ}}$
1	1239.0	. 0	1040.0	. 0	-6325.0	. 0
$\frac{2}{3}$	1239.0	-0	8875.0	:0	-5944.0	- 0
4	1083.0	. 0	670:0	.0	-5853.0	-
5	588.0	- 0	864.0	- 0	-1869.0	. 0
6	389.0	. 0	648.0	. 0	-892.0	. 0

ORIGINAL PILE GROUP STIFFNESS MATRIX

. $15552 \mathrm{E}+05$.43894E-03		37659E+04	7	04
. $43894 \mathrm{E}-03$. $80333 \mathrm{E}+03$	-. $87787 \mathrm{E}-03$	-. $32919 \mathrm{E}-03$	1	03
-. $976515 \mathrm{E}+04$	-:877870E-03	. $5979398 \mathrm{E}+05$. $76337 \mathrm{E}+04$	-. $572533 \mathrm{E}+05$	- $\quad 376597 \mathrm{E}+04$
-. $10525 \mathrm{E}+07$	-. $44771 \mathrm{E}-01$	-. $57253 \mathrm{E}+05$. $38931 \mathrm{E}+06$. $10607 \mathrm{E}+09$. $19205 \mathrm{E}+06$
-. $19855 \mathrm{E}+04$. $76915 \mathrm{E}+03$. $37659 \mathrm{E}+04$	-.76471E+09	. $19205 \mathrm{E}+06$. $13856 \mathrm{E}+10$

PILE CAP DISPLACEMENTS

PILE FORCES IN LOCAL GEOMETRY
M1 \& M2 NOT AT PILE HEAD FOR PINNED PILES

* INDICATES PILL FAILURE
\# INDICATES CBF BASED ON MOMENTS DUE TO
b INDICATES BUCKLING CONTROLS

LOAD CASE - 1

pile	${ }^{\mathrm{F}} \mathrm{K}$	F_{K}	F_{K}	${ }_{\text {IN }}{ }^{\text {M1 }} \mathrm{K}$	IN ${ }^{\text {2 }}$-K	$\mathrm{IN}^{\text {M }}$-K	ALF		${ }_{\text {ASC }}$	
$\frac{1}{2}$:8	55.9	:0	-51.7	:\%	. 883			

W W		\＃－7
 	$\begin{aligned} & \mathrm{OH}_{n} \\ & \mathfrak{C N O N} \end{aligned}$	Tagagagagagagaganvon
 	岕	NNNNNNNNNNNNNNNNザザがな゙
monㄱํㄱN．	宸	Gagnagananagnagnannan 000000060060000 กกス
000000000000000000000000000000000	$\sum_{x=1}^{m}$	00000000000000000000
 		NNNNNNNNNATHAHNN $\infty \infty \infty \infty$
000000000000000000000000000000000	$\sum_{i=1}^{x}$	00000000000000000
 	m_{4}	
000000000000000000000000000000000	$\sigma^{N: x}$	000000000000000000
のaのananananananananananonananananan iiiliiliiiiiiii	$\begin{aligned} & 1 \\ & \text { 思药 } \\ & \text { 我 } \end{aligned}$	
 	$\begin{aligned} & \text { 念思 } \\ & \text { 品 } \end{aligned}$	

33	-. 9	. 0	-1.9	0	34.5	0	. 04	10	. 92	. 73
34	-.9 9	.0	-1.9	. 0	34.5	.0	. 04	-10	.92	$\bigcirc 73$
35	-. 9	. 0	-1.9	. 0	34.5	. 0	. 04	. 10	. 92	. 73
36	-. 9	. 0	-1.9	. 0	34.5	. 0	. 04	. 10	. 92	. 73
37	-. 9	. 0	-1.9	. 0	34.5	. 0	. 04	. 10	. 92	. 73
38	-. 9	. 0	-1.9	. 0	34.5	. 0	. 04	. 10	. 92	. 73
39	-. 9	. 0	-1.9	. 0	34.5	. 0	. 04	. 10	. 92	. 73
40	-. 9	. 0	-1.9	. 0	34.5	. 0	. 04	. 10	. 92	. 73
41	-. 9	. 0	-1.9	. 0	34.5	. 0	. 04	- 10	. 92	. 73
42	-. 9	- 0	-1.9	. 0	34.5	. 0	. 04	. 10	. 92	. 73
43	-. 9	-0	-1.9	-0	34.5	-0	. 04	- 10	-92	. 73
44	-. 9	:0	-1.9	. 0	34.5 34.5	. 0	. 04	. 10	.92	.73 .73
46	-. 9	. 0	-1.9	. 0	34.5	. 0	. 04	.10	.92	. 73
47	-. 9	. 0	-1.9	. 0	34.5	. 0	. 04	. 10	. 92	. 73

PILE FORCES IN GLOBAL GEOMETRY

$\begin{aligned} & 45 \\ & 46 \\ & 47 \end{aligned}$	$\begin{aligned} & 20.7 \\ & 20: 7 \\ & 20: 7 \end{aligned}$:0	$\begin{array}{r} -39.3 \\ -39.3 \\ -39.3 \end{array}$:08	:00	:080
LOAD	-					
PILE	P ${ }_{\text {K }}$	PY	${ }_{\mathrm{K}} \mathrm{P}$	$\mathrm{mXX}_{\text {IN-K }}$	${ }_{\text {IN }}^{\text {MY }}$ -	IN-K
	21.7	. 0	40.7	. 0	- 0	
${ }_{3}^{2}$	21.7 21	:0	40.7	:0	:0	:0
4	21:7	:0	40.7 40	:0	\%	:0
6	21.7	:0	40.7	:0	:0	:8
7	21:7	: 0	40.7	:0	: 0	:0
19	${ }_{21} 217$:0	40.7	:0	:0	:0
12	21.7	-0	40.7	:0	:0	:0
12	21.7	:0	$4{ }_{40}^{40} 7$:0	:0	:0
14	21.7	- 0	40.7	- 0	- 0	- 0
16	$21: 7$:0	40.7	:	:0	:
17	24:8	: 0	46.9	:0	:0	:0
$\frac{19}{29}$	24.8	-0	46.9	0	-8	:0
21	24:8	0	${ }_{46}^{46} 9$:	-	:0
23	24.8	:8	46.9	: 0	:0	:
24	24.8	- 0	46.9	- 0	. 0	-
26	24.8	:0	46.9	:0	:0	:0
28	24.8	:0	46.9	:0	:0	:
29	24.8	-0	46.9	:0	:0	:0
31	24.8	:0	46.9	:0	:0	:0
32	22.8	:	-42.9	\bigcirc	-0	. 0
34	22.8	:0	-42.8	:0	:0	:0
36	22.8	:0	-42:8	:0	:0	-
37	22.8	. 0	-42.8	. 0	. 0	:0
39	22.7	:0	-42:8	:0	:0	\bigcirc
40	22.7	. 0	-42.8	:0	-0	:0
42	${ }_{22} 2.7$:0	-42.8	:0	:0	:0
43 44	22.7	:	-42.7	:0	0	-0
45	22.7	. 0	-42.7	.0	:0	:0
47	22.7	:0	-42.7	:0	:0	:0

PILE	$\underset{\mathrm{K}}{\mathrm{PX}}$	$\begin{aligned} & \mathrm{PY} \\ & \mathrm{~K} \end{aligned}$	${ }_{\mathrm{K}}^{\mathrm{K}}$	$\mathrm{INX}_{\mathrm{N}}^{\mathrm{K}}$	$\stackrel{M Y}{\mathrm{MY}-\mathrm{K}}$	$\mathrm{INZ}_{\mathrm{N}}$
1	10.6	. 0	18.8	. 0	. 0	. 0
2	10.6	.0	18.8	:0	. 0	$: 0$
3 4	110.6	:0	18.8	:0	-0	-
5	10.6	:0	18.8	. 0	-0	-0
6	10.6	:0	18.8	:0	0	: 0
7	10.6	- 0	18.8	. 0	- 0	. 0
8	10.6	. 0	18.8	: 0	-0	-0
10	10.6	.0	18.8	:0	. 0	. 0
12	10.6	- 0	18.8	. 0	. 0	. 0
13	10.6	. 0	18.8	.0	. 0	. 0
14	10.6	-0	18.8	. 0	-0	-0
15	10.6	- 0	18.8	. 0	. 0	. 0
17	23.6	. 0	18.8 44.2	. 0	. 0	. 0
18	23.2	. 0	44.2	:0	. 0	.0
19	23.2	- 0	44.2	. 0	. 0	. 0
21	23.2	. 0	44.2	.0	- 0	-
22	23.2	-0	44.2	:0	:0	-0
23	23.2	. 0	44.2	:0	-0	0
25	23.2	. 0	44.2	-0	-0	8
26	23.2	. 0	44.2	. 0	. 0	. 0
28	23.2	-0	44.2	-0	- 0	0
29	23.2	. 0	44.2	:0	-0	0
30	23.2	. 0	44.2	. 0	. 0	0
31 32	23.2 4.4	:0	44.2	- 0	-0	- 0
33	4.4	. 0	-6.3	$: 0$	0	0
34	4.4	. 0	-6.3	.0	. 0	. 0
35 36 36	4.4	- 0	-6.3	. 0	-0	-0
37	4.4	. 0	-6.3	.0	. 0	-0
38	4.4	. 0	-6.3	-0	:0	. 0
39	4.4 4.4	-0	-6.3	. 0	$\bigcirc 0$	\bigcirc
41	4.4	.0	-6.3	. 0	0	- 0
42	4.4	. 0	-6.2	. 0	0	.0
43	4.4	- 0	-6.2	- 0	\bigcirc	\bigcirc
45	4.4	. 0	-6.2	-0	- 0	-
46	4.4	. 0	-6.2	:0	-0	0
47	4.4	. 0	-6.2	.0	.0	. 0
LOAD	6					
PILE	PX	$\mathrm{p}_{\mathrm{K}}^{\mathrm{Y}}$	${ }_{\mathrm{K}} \mathrm{L}$	$\operatorname{MX}_{\mathrm{M}-\mathrm{K}}$	$\mathrm{IN}^{\mathrm{MY}} \mathrm{K}$	$\mathrm{IN}^{\mathrm{MZ}} \mathrm{K}$
$\frac{1}{2}$	6.0	:0	10:0	. 0	- 0	- 0

0000000000000000000000000000000000000

0000000000000000000000000000000000000
000
0000000000000000000000000000000

| | ALGIERS CAN |
| :--- | :--- | :--- |
| PLAQUEMINES FUMP STATION | |
| Stability Analysis aySuIC $=9.5:$ | |

FAILYRE SURFAAE (4)(1) Rogures a Ver tiral Frezwore 5j 1435 psf.
Stability Analysis ufs uic $=9.5$:
base slal- Hacbress $=16^{\prime \prime}$

$$
\begin{aligned}
& \omega t=\left(1.5^{\prime}\right)(150-91)=90 \text { psf } \\
& \text { floorslab thicknoss }=1: 0^{\prime \prime} \\
& \omega t=(1.0)(150)=150 \mathrm{psf}
\end{aligned}
$$

Wall:
iftake basin frorst wacl:

$$
\begin{aligned}
& 2^{\prime} \times 15.75^{\prime} \text { roer } 3=.33 \\
& \text { wt }=(\therefore 2.15 .75 \% 32.32)(1150)=146 p s t \\
& \text { sIDE walls: } \\
& \text { 2@ 2'×23.25'inar 60. } \\
& \omega t=((2)(2)(23.25 i / 60)(150)=232.5 p s ? \\
& \text { tote wt }=90+150+146+2325=618.5 \text { prt }
\end{aligned}
$$

Presoure tote bake...by terier i.les:1435-618.5

$$
=816.5 \mathrm{psf}
$$

- CAN NOT VERIFY TENSION CONNECTORS IN PILES, \therefore Require new t-wall.

New T-WALL $\sim 54^{\prime}$ FROM ERONT EUCE OF BLDG.

I. STATIC WATER PRESSURE TO SWL, NO WIND, IMPERVIOUS SHEET
PILE CUTOFF (IO\% FORCES)

II: STATIC WATER PRESSURE TO SWL, NO WIND, PERVIOUS SHEET PILE CUTOFF (100% FORCES)

III: STATIC WATER PRESSURE TO SW x+2', NOWIND, ImPERVIOUS SHEET PILE CUTOFF (75% FORCES)

IV STATIC WATER PRESSURE To SWL + ${ }^{\prime}$, NO WIND, PERVIOUS SHEET PILE CUTOFF (75% FORCES)

IV WATER@ LOW WATER LEVEL, NO WIND (100% FORCES)

VII WATER@ LOW WATER LEVEL, WIND FROM PRS (75% FORCES)

L. VERTKCAL COMPONENT
of BATTER PLE
EMBEDMENT LENGTH.
$V=$ ESTMAATED ALLOWABLE single ple load CAPACITY OF A PILE ORIVEN VERTICALLY WITH EMBEDMENT LENGTH, L

8ATTER OF PRE EXPRESSED AS A RATIO OF VERTICAL DISTANCE TO ONE FOOT HORIZONTAL. DISTANCE.

H = HORIZONTAL RESISTANCE OF BATTER PLEE ESTMATED AS FOLLOWS:
$H=\frac{V}{8}$

A - ALLOWABLE AXIAL PLEE LOAD capactr of a swele QATTER PLE ESTMATED AS FOLLOWS:
$A=\sqrt{v^{2}\left(1+\frac{1}{0^{2}}\right)}$

NOTE: THE AXIAL LOAD RESISTANCE OF A VERTICAL PLE, V, E DEPENDENT ON THE TYPE OF LOADNG-TENSHON OR COMPRESSION. CAUTION SHOULO DE EXERCSED TO NSURE THAT THE CORRECT VERTICAL CAPACTY E USED.

- use 50° length of wall

Sheet1

1010 PLAOUEMINES FRONTAL PROTECTION T-WALI
1020 PROP 403032013201 196 20 ALU
1030 SOIL ES 0.212 LEN 75.50 ALL
1040 PIN ALI

1070 BATTER 2 ALL

1100
1105 1110
1115 1125
1125 1130 1135 11140 1146
1147 1147
1150
1155 1155 1160 1162 1162
1163
1164 1164
1165 1166 1167
1168 1168
1169 1170
1180 1180
1190 1200 1210 1220 1230
1240 1250
1260 1270 1300 1310 1320
1330 1330
1340
1350 1350 136 FOUT 1370
1380
380 FPL PLAAPLLOT
N
N
N
N
N

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE 02-11-98 RUN TIME 15:21:36

PLAQUEMINES FRONTAL PROTECTION T-WALL
THERE ARE 44 PILES AND 10 TOAD CASES IN THIS RUN.

PILE PROPERTIES AS INPUT

SOIL DESCRIPTIONS AS INPUT

ES

ESOIL	LENGTH	L	LU
K/IN**2	LI		
$.21200 \mathrm{ET}+00$	L	$.75500 \mathrm{E}+02$	$.00000 \mathrm{E}+00$

THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -
ALL

PILE GEOMETRY AS INPUT AND/OR GENERATED
NUM

FT	Y
FT	$F T$
6.00	-24.5
6.00	-21.0
6.00	-17.5
6.00	-14.0
6.00	-10.5

F2

BATTER ANGLE

FIXITY
1
2
3
4
5
6
6.00
6.00
6.00
-10.50
.00

2.00	.00	75.50
2.00	.00	75.50
2.00	.00	75.50
2.00	.00	75.50
2.00	.00	75.50

P
P
P
P
P
P
P

6.00	-3.50
6.00	
6.00	3.50
6.00	7.00
6.00	10.50
6.00	14.00
6.00	17.50
6.00	21.00
6.00	24.
2.00	-22.75
2.00	-19.25
2.00	-15.75
2.00	-12.25
2.00	-8.75
2.00	-5.25
2.00	1.7
2.00	5.25
2.00	8.75
2.00	15.75
2.00	19.25
2.00	22.75
-6.00	-24.50
-6.00	-21.00
-6.00	-14.00
-6.00	-10.50
-6.00	-7.00
-6.00	-3.50
-6.00	. 00
-6.00	3.50
-6.00	7.00
-6.00	10.50
-6.00	14.00
-6.00	21.00
-6.00	24.50

. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
. 00	2.00	. 00	75.50
-00	2.00	. 00	75.50
-00	2.00	- 00	75.50
.00	2.00	:00	75.50
. 00	2.00	00	75.50
. 00	2.00	180.00	75.50
-00	2.00	180.00	75.50
.00	2.00	180.00	75.50
. 00	2.00	180.00	75.50
. 00	2.00	180.00	75.50
. 00	2.00	180.00	75.50
-00	2.00	180.00	75.50
. 00	2.00	180.00	75.50
. 00	2.00	180.00	75.50
. 00	2.00	180.00	75.50
-00	2.00	180.00	75.50
:00	2.00	180.00	75.50
			22.00

APPLIED LOADS

$\begin{aligned} & \text { LOAD } \\ & \text { CASE } \end{aligned}$	PX	PY	PZ	$\stackrel{M X}{\mathrm{MT}-\mathrm{K}}$	$\stackrel{\mathrm{MY}}{ } \mathrm{F}^{\text {K }}$	$\underset{\mathrm{FT}}{ } \mathrm{M}-\mathrm{K}$
1	825.0	. 0	906.5	. 0	-7303.5	
2	825.0	. 0	765.0	.0	-6785.0	. 0
4	730.1	-0	705.8	- 0	-6780.8	:0
5	299.5	. 0	739.5	.0	- 63555.1	- 0
6	202.9	. 0	554.6	. 0	-1486.1	. 0

$15810 \mathrm{E}+05$.45384E-03	. $96904 \mathrm{E}+04$	01	07	-. 31250E-01
				0	-
		$46959 \mathrm{E}+06$			
5625E-01	E	0000E	27777E+09	00E+0	$50132 \mathrm{E}+$

PILE CAP DISPLACEMENTS

COAD	DX	DY	D2	RAD	RAD	RAD
	. 4175E-01					
$\frac{1}{2}$	- $6994 \mathrm{EF-01}$	$\begin{aligned} & =: 2626 \mathrm{E}-07 \\ & =3019 \mathrm{E}-07 \end{aligned}$	$\begin{array}{rl} .7766 E-02 \\ .2779 E & 02 \end{array}$	$\begin{array}{r} -2564 \mathrm{E}-12 \\ -2040 \mathrm{E}-13 \end{array}$	$\begin{array}{r} -5190 \mathrm{E}-04 \\ -1781 \mathrm{E}-03 \end{array}$. $17393 \mathrm{E}-11$
3 4	. $284152 \mathrm{E}-01$	-. $2723 \mathrm{E}-07$. $6016 \mathrm{E}-02$	-. 1257 E -12	-. $128972 \mathrm{E}-03$. $18298 \mathrm{E}-11$
5 6	-. $.13611 \mathrm{E}-01$. $4244 \mathrm{EE-08}$. $1266 \mathrm{E}-01$	-. $7367 \mathrm{E}-12$ F $128 \mathrm{E}-12$	-. $249815 \mathrm{E}-035$. $54699 \mathrm{E}-12$

PILE FORCES IN LOCAL GEOMETRY
M1 \& M2 NOT AT PILE HEAD FOR PINNED PILES
T IDicanis iti niuvi
\# INDICATES CBF BASED ON MOMENTS DUE TO
B INDICATES BUCKLING CONTROLS

LOAD	E -	1								
PILE	$\mathrm{F}_{\mathrm{K}}^{1}$	F2	F3	IN1 ${ }^{\text {M1 }}$	$\text { IN2 }-\mathrm{K}$	${ }_{\text {IN }}^{\text {M3 }}$ -	ALF	CBF	ASC	AST
1	. 4	. 0	50.5	. 0	-17.1		1.03	. 13	1.15	1.04
2	.$_{4}^{4}$. 0	50.5 50.5	. 0	-17.1	. 0	1.03	. 13	$\frac{1}{1.15}$	1.04
4 5	. 4	:0	50.5 50.5	:0	-17.1	:0		\bigcirc	$\frac{1}{1} .15$	12.04
	-		50.5	.	-17.1	. 0		. 13	1.15	1.04

	$\begin{aligned} & \text { 品 } 5 \\ & \hline \end{aligned}$	
00600000000600	菂	！！！！！！！！！！！！！！！
	風N	
$\omega \omega \omega$ $\infty \infty \infty \omega \infty \omega \infty \infty \infty \infty \infty \infty \infty \infty \infty$ 0ioioioioioioio	،	
000000000000000		
meverueverugurivio 	閧涢	
－000000000000000	葡花	
	芴	gigngagagagaigagagab06006060600600000000000
－iviciojicijoin	䍖	
$\stackrel{\mu}{\omega} \omega \omega$		
00000006000000 		\qquad \qquad \qquad \qquad \qquad

WNHOGONOUA WNHOOMNOURAWNH	$\begin{aligned} & \text { 留 } \\ & \text { 易 } \end{aligned}$	
	思羄	！！！！！！！！！！！！！！！
	2x $^{\omega}$	
$\omega \omega \omega \omega \omega \omega \omega \omega \vec{A}$ म goggaggangongagngagngan AかかかntrA000000000000000	xix	OOOOOOOOOOOOOOONNNNNNNNNNNNNND inNNNNNNNNNNNNNNNNNNNNNNNNNNNio
ジゴ心じ」 sisisisisioiooioioioioioio		
－00000000000000000000		
जNVNVNoioioioioioioio 	芴	जviviviviviviviooooooooo0000
धरणuvivivirn $\omega \omega \omega$	䍖	．
		$\infty \infty \infty$
0ioioioioion 	$\begin{aligned} & \text { 준 } \\ & H \end{aligned}$	invininininivivivioo0000000000
\＃		\＃

$\begin{aligned} & 42 \\ & 43 \\ & 44 \end{aligned}$	$\begin{aligned} & .2 \\ & : 2 \\ & \cdot 2 \end{aligned}$	$\begin{aligned} & 0 \\ & .0 \\ & .0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4: 3 \\ & 4.3 \end{aligned}$	$\begin{array}{r} 0 \\ : 0 \\ : 0 \end{array}$	$\begin{aligned} & -8.9 \\ & -8.9 \\ & -8.9 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} .09 \\ : 09 \\ .09 \end{array}$	$\begin{aligned} & .22 \\ & : 22 \\ & .22 \end{aligned}$	$\begin{array}{r} .90 \\ .90 \\ .90 \end{array}$.82 .82 .82
LOAD	CASE -	6								
PILE	$\mathrm{F}_{\mathrm{K}}^{1}$	F_{K}	$\mathrm{F} 3$	${ }_{\mathrm{I}}^{\mathrm{N} 1}-\mathrm{K}$	$\stackrel{\mathrm{M} 2}{\mathrm{~N}-\mathrm{K}}$	$\mathrm{IN}_{\mathrm{N}-\mathrm{K}}$	ALF	CBF	$\begin{aligned} & \text { ASC } \\ & \text { KSI } \end{aligned}$	AST
1	. 0	. 0	18.6	. 0	-1.5	. 0				
$\frac{1}{2}$:0	:0	18.6	.0	-1.5	. 0	. 38	. 19	.95	
3	. 0	. 0	18.6	. 0	-1.5	:0	- 38	-19	.95	$\bullet 91$
4	. 0	. 0	18.6	-0	-1.5	-0	- 38	-19	. 95	-91
6	. 0	:0	18.6	-0	- 1.5	. 0	. 38	. 19	-95	$\cdot 91$
7	. 0	. 0	18.6	. 0	-1.5	. 0	. 38	. 19	. 95	$\bullet 91$
8	\bigcirc	-0	18.6	-0	-1.5	. 0	-38	- 19	-95	$\cdot 91$
10	-0	. 0	18.6	-0	-1.5	. 0	- 38	-19	. 95	-91
12	- 0	. 0	18.6	. 0	-1.5	. 0	. 38	-19	. 95	$\bullet 91$
12	-0	. 0	18.6	- 0	-1.5	-0	- 38	-19	. 95	$\cdot 91$
14	-0	:0	18.6	:0	-1.5	. 0	- 38	-19	-95	$\cdot 91$
15	- 0	. 0	18.6	. 0	-1.5	. 0	. 38	. 19	-95	-91
17	. 0	:0	18.1	. 0	-1.6	-0	- 37	-19	-95	-91
18	. 0	:0	18.1	. 0	-1.6	:0	- 37	.19	. 95	. 91
19	- 0	- 0	18.1	. 0	-1.6	. 0	. 37	. 19	. 95	$\bigcirc 91$
21	. 0	:0	18.1	. 0	-1.6	- 0	- 37	- 19	- 95	-91
22	. 0	.0	18.1	. 0	-1.6	:0	. 37	.19	.95	:91
23	- 0	- 0	18.1	- 0	-1.6	. 0	- 37	-19	. 95	. 91
25	:0	.0	18.1	. 0	-1.6	-0	- 37	- 19	- 95	$\cdot 91$
26	. 0	. 0	18.1	. 0	-1.6	. 0	. 37	. 19	-95	.91
27	0	- 0	18.1	- 0	-1.6	. 0	. 37	. 19	. 95	.91
29	. 0	:0	18.1	. 0	-1.6	0	- 37	- 19	-95	. 91
30	-. 1	. 0	5.7	. 0	5.2	:0	. 12	. 22	.95	. 81
31	=-1	. 0	5.7	- 0	5.2	. 0	. 12	. 22	. 90	. 83
33	-. 1	. 0	5.7	: 0	5.2	0	. 12	-22	-90	-83
34	-. 1	. 0	5.7	. 0	5.2	. 0	-12	. 22	.90	-83
35	- 1	- 0	5.7	- 0	5.2	. 0	. 12	. 22	. 90	. 83
37	-. 1	. 0	5.7	:0	5.2	:0	. 12	-22	-90	-83
38	-. 1	. 0	5.7	. 0	5.2	. 0	-12	. 22	:90	-83
40	-. 1	. 0	5.7	- 0	5.2	. 0	- 12	. 22	. 90	-83
41	-. 1	. 0	5.7	0	5.2	.0	-12	-22	-90	. 83
42	-. 1	. 0	5.7	. 0	5.2	. 0	-12	. 22	.90	. 83
44	-. 1	. 0	5.7	. 0	5.2	-0	-12	- 22	-90	. 83

PILE FORCES IN GLOBAL GEOMETRY

pile	$\mathrm{p}_{\mathrm{K}} \mathrm{X}$	PY	${ }_{\mathrm{K}}{ }^{2}$	$\mathrm{MXX}_{\text {IN }}$	${ }_{\text {I }}^{\text {M }}$ - -K	${ }_{\text {I }}^{\text {M2 }} \mathrm{K}$
1	23.0	- 0	45.0	- 0	- 0	. 0
$\frac{2}{3}$	23.0	:\%	45.0	:\%	:0	:\%
4	23.0	-0	${ }^{45} 5$:0	:0	:0
6	$23: 0$:0	45.0	:0	:0	:
8	23:0	:0	45.0	0	-0	-
9	23.0	:0	45.0	:0	:0	:0
11	$23: 0$:0	45.0	:0	:0	:0
12	23: ${ }_{2}$:0	45.0	:0	:0	\%
14	23.0	-	45.0	:0	:	-
16	21:2	:8	45 41 1	-	-0	\%
17	21.2	. 0	41.5	.	:0	
19	21.2	:8	41.5	:0	:	0
21	${ }_{21}{ }^{21}: 2$	-	41.5	:0	-0	:
22	21.2	-0	41.5	:0	:	:
23	21.2	:0	41.5	:0	:0	:0
${ }_{25} 25$	21.2	-0	41.5	. 0	.0	-0
27	21.2	:0	41.5	:0	:0	:0
28 28	${ }_{21}{ }^{21} 2$:0	41.5	:0	:0	-0
30	12.2	:0	${ }^{-23} 3$	-0	:0	:0
32	12.2	:0	-23.3	:0	:	: 0
33 34	12	:0	-23.3	-	. 0	-0
35	12.2	. 0	-23.3	:0	:0	:0
37	12.2	:	-23.3	:0	:0	:0
38 39	${ }_{12} 12$	-	-23.3	-0	. 0	. 0
40	12.2	.0	-23.3	:0	:	:0
$\stackrel{4}{4}$	12.2	:8	-23.3	:0	:0	0
43 44	${ }_{12}^{12} 2$	-0	-23.3	:0	:0	:0
LOAD	2					
PILE	PX	${ }_{\mathrm{K}}^{\mathrm{K}}$	${ }^{\mathrm{p}} \mathrm{K}$	${ }_{\text {I }}^{\text {M }}$ - -K	${ }_{\text {I }}^{\text {M }}$ - -K	${ }_{\mathrm{I}} \mathrm{MZ}-\mathrm{K}$
$\frac{1}{2}$	18.2	:0	34.4	:0	:0	: 0

FEB 41998

, MS APRIL HURRY

\&...UM: EUSTIS ENGINEERING TOM STREMLAU
SUBJECT: PREL DATA

PLAQ PUMP STATION UNITS 1 AND 2
I HAVE ENCLOSED REANALYSIS OF P STATION FOR THE HIGHER STORM WATER LEVEL. I HAVE INCLUDED A MARKED UP COPY OF PREVIOUS PRESENTATION BUT INCLUDING IMPACT OF RAISED WATER LEVEL. ASSUME WILI NEED NEW FRONTAL PROTECTION. HAVE INCLUDED SLPOE STABILITY AND T WALL ANALYSIS WITH NEW WALL. ALSO PRESENT PREL PILE CAPACITY FOR PILES TO SUPPORT T WALL.

FILE $30 \% 4$
DISTRIBUTION
$\frac{\omega B}{1 A r} \xrightarrow{A H /}$
\qquad
\qquad
\qquad
Project \qquad By \qquad 745
Subject $\frac{\text { call }}{\text { Pom }}$ \qquad Checked By \qquad ask to

- Army Corps on Engineers
doublecheck capanties - of Harvey canal pRoject radome Protection
italic Load Capacities
tall Foundation
mine Pump Station Unit $1+2$

Note': 1) Top of pile at el -11.0
2) (anacity contribution to el $-44,0$ has been ignored,

PRELIMINARY

NOTE : 1) "P" IS REQUIRED VERTICAL PRESSURE ACHIEVE A PALCATE WEDGES TO SAFETY OF CALCULATED FACTOR OF STABILITY FAILURE.
2) SEEPAGE ANALYSIS BY HARR SAFETY OF 2 AGAINST FACTOR OF
IS CONSIDERED ACCEPTABI WHICH

Ceptable.
USED FOR THESE ANALYSES 2 SORE

STRATUM NO.	$\begin{aligned} & \text { SOIL } \\ & \text { TYPE } \\ & \hline \end{aligned}$	UNITWEIGHT IN PCF	FRICTION ANGLE DEGREES	COHESION - PSF	
				AVERage	BOTTOM
[1]	CLAY, SILTY CLAY. ORGANIC CLAY \& HUMUS	91.0	0	310	310
(2)	Clay	101.0	0	310	
3	Clay	101.0	0	343	380
4	Clay	101.0	0	409	442
5	CLay	101.0	0	475	507

PRELIMINARY
\qquad
SCALE

Revised SWL EI 9.5 SLope stability analyses PLAQUEMANE PUMP STATION
U. S. ARMY CORPS OF ENGINEERS HURAST OF HAREY CANAL JEFFERSON PARISH. LOUISIANA

Protected Side
FLOOD SIDE

LOAD COMBINATIONS.

1) D.L. \qquad
2) 50.1 + WATER
3) BUOY PERY
4) SOIL + NATER

-11.76	5.46	-30.052
+6.3		
14.08	19.53	142.03
+563.2	781.2	5.681 .2

-@ PROT.SIDE. UPTO EL 1.00 NO WIND
\qquad
1). $D L$.

-13.30
$-13 \cdot 30$

- PLAQUEMINES PUMP STA:

LOAD COMBINATIONS.

Addition to Plaquemintes Purap Stations

IEGEMD

』
\pm
4
4
4
$\$$
BATTER 2:1
日

4
PIIE NTMBER

DISFIAY OF FIJE IAYOTT
01-AFF-1998
16.57.1.25

EUSTIS ENGINEERING COMPANY, INC.

Project \qquad
Subject \qquad
By 745
Checked By \qquad
US Arma Coups om Enginears
Enst of Hargey Cumal Project
Hurviome Protion Project Hurricime Protaction
Jefferson Panish,
Allowable pik Load Capcoties PRELIMINARY
T-wall Foundation
Plaqueminu Promp Station Unit $1+2$
and Addition to Pmps Station

$$
\begin{aligned}
& \text { Pile } \\
& \text { Type } \\
& \text { 14-inssunte } \\
& \text { irecintipnestresad } \\
& \text { concontr }
\end{aligned}
$$

16-in-spunve Procist, Pqustressel concinte

File Limated Allowable Single Factar of sopity $=2,0$
compressith Iension

Note: 1) Dredze lovel between El-10.0 and -13.0.
2) (agacity contribution to el -44,0 hasbeen ignoved.
3) Soil navametions below EI -80 have been assumed. Soil boring most be perf ormed to confirm soil conditions selow this lend fot finat design।

EUSTIS ENGINEERING COMPANY, INC.
\qquad

Project \qquad By \qquad $\pi 45$

Subject \qquad Checked By \qquad

- US Arm Corps om Engineers East of Harycy Canal Project Hurricion Protection Project Jefferson Pains, ca,
Allowable Pile Load Capacities
T-wall Foundation
Plaquenime Pump Station $U_{\text {nit }} 1 \neq 2$
and Addition to Pop staci.

Note: 1) Dredge loved between El-100and -15.0.
2) (opacity contribution to el $-44,0$ has been ignored.

ELEVATION IN FEET	$\frac{K_{h} \times B}{D C}$
10 to 0	
0 to -30	
-30 to -40	
-40 to -50	169
-50 to -60	138
-60 to -68	152

Where: $\quad K_{k}=$ Modulus of horizontal subgrade reaction (lbs/in.)
$B \quad=$ Diameter of pile (inches)
$\mathrm{C}=$ Reduction factor for cyclic loading
$C=0.5$ for cyclic loading
$\mathrm{C}=1.0$ for initial loading
D $=$ Reduction factor for effect of group action

D	PILE SPACING IN DIRECTION OF LOADING
1.0	8 B
0.85	7 B
0.7	6 B
0.55	5 B
0.40	4 B
0.25	3 B

U: IFILEVFFSIWOS
Last Moditied: 04-01-98 at 16:09:40

```
1OO ADDITION TO FLAOUEMINES FUMF}\mathrm{ SIATION-
150 T WALL ANALLYSIS
200 FROF 4074 5461 5461 256 2 O ALL
300 SOIL ES O.OSS LEN 7S O ALL
320 FIN ALL
410 DLS S 84 60 985 294 188 2%41 1760 H 16 HLL
430 ASC S 256 38S . 813 .755 1.75 O ALL
44O EAT 21 1 2 3 4 5 6 7
441 EAT 2 S 9 10 11 12 13 14
442 EAT 2
44.3 BAT 2 22 23 24 25 26 27 24
```



```
455 ANG 90 15 10 17 18 17 20 21 22 28 24 25 26 27 28
460 FILE 1 -18.0 -7.0 0 8 -18.0 -3.0 0
4S5 FILE 15 -13.0 3.0 0 22 -18.0 7.0 0
470 FOW X }716\mathrm{ & AT }6.
480 FOW }\times788\mathrm{ S AT 5.0
495 FOW X }7\mathrm{ 15 O AT b.O
490 FOW X }722\mathrm{ O Al 0.O
50% LOA 1 O 56S.2 781.2 50S1.2 0 0
5 1 0 ~ L O A ~ 2 ~ O ~ 5 o 3 . 2 ~ 7 8 1 . 2 ~ \$ 4 8 5 . 6 ~ O ~ O ~
520 LOA 3 0 520.2 481.7 6400.5 0 o
540 LOA 4 0 520.2 431.7 7012.5 0 0
5EO LOA 5 0 -170.4 722.4 934.0 0 0
560 LOA b o -170.4 722.4 1402 0 0
570 LGA 7 O-147.2 722.4 189 0 0
580 LOA 8 0 -171.2 722.4 481.6 0 0
&10 FOU 1 2 3 4 5 6 7 FFSSTWSO
G20 FFG ALL
GSO FFL FFSTWDS
```

```
O: \FILE\FFSTWSO
04/01
Last Modified: 04-01-98 at 16:08:18
```



```
ADDITIUN TO FLAQUEMINES FUMF STATION
I WALL ANAL.y'SIS
THEFE ARE 28 FILES AND
                        8 LOAD CASES IN THIS FIUN.
alL FILE COGFDINATES AFE CONTAINED WITHIN A EOX
```



```
FILE FFOFEFFIES AS INFUT
\begin{tabular}{|c|c|c|c|c|c|}
\hline E & 11 & 12 & \(\stackrel{\text { H }}{ }\) & C.3 & HSE \\
\hline 1S 1 & IN**4 & 1N** 4 & 1N**2 & & \\
\hline . \(40740 E+04\) & . \(54610 E+04\) & . \(54610 \mathrm{E}+04\) & . 25600E+0. & \(.20000 E+01\) & \(.00000 E+00\) \\
\hline
\end{tabular}
```

AL.L

SOIL DESCFIFTIONS AS INFUT
$\left.\begin{array}{cccc}\text { ES } & \text { ESOIL } & \text { LENGTH } & \text { L } \\ & 6 / I N * 2 & & \text { FT } \\ & .35000 E-O 1 & L & .75000 E+02\end{array}\right] .00000 E+00$

THIS SOIL DESCRIFTION AFFLIES TG THE FOLLOWING FILES ALL

PILE GEOMETFY AS INFUT AND，OF GENEFAATED

NUM	$\begin{array}{r} \dot{x} \\ \mathrm{~F} \end{array}$	$\begin{array}{r} \gamma \\ \mathrm{FI} \end{array}$	$\begin{array}{r} \pi \\ F i \end{array}$	EATTEF	ANGLE	$\begin{aligned} & \text { LENGTH } \\ & \text { FI } \end{aligned}$	FIXITY
1	-18.00	-7.00	． 00	2.00	270.00	75.00	F
2	－12．00	-7.00	．00	2.00	270.00	75.00	F．
3	－0．00	-7.60	． 00	2.00	270.00	75.00	F＇
4	． 00	-7.00	． 00	2.00	270.00	75.00	F．
5	0.00	-7.00	． 00	2.00	270.00	75.00	F
6	12.00	-7.00	． 00	2.00	270.00	75.00	F
7	18.00	-7.00	． 00	2.00	270.00	75.00	F
8	-18.00	-3.00	． 00	2.00	270.00	75.00	F
9	-12.00	－5．00	． 00	2.00	270.00	75.00	F．
10	-6.00	－3．00	.00	2.00	270.00	75.00	F．
11	． 00	-3.00	－0	2.00	270.00	75.00	F
12	5.00	-5.00	． 00	2.00	270.00	75.00	F
13	12.00	－3．00	.00	2.00	270.00	75.00	F
14	15.00	-3.00	． 00	2.00	270.00	75.00	F
15	-18.00	$\pm .00$	． 00	2.00	90.00	75.00	F
15	－12．00	3.00	． 00	2.00	90.00	75.00	F
17	－0．00	3.00	．00	2.00	90.00	75.00	F
18	.00	3.00	． 00	2.00	90.00	75.00	F＇
19	E．00	$\therefore .00$.0	2.00	90.00	75.00	F
20	12.00	S． 00	． 00	2.00	90.00	75.00	F
21	18.00	3.00	． 00	2.00	90.00	75.00	F＇
22	-18.00	7.00	． 00	2.00	50.00	75.00	F－
23	-12.00	7.00	． 00	2.00	90.00	75.00	F
24	－5．00	7.00	.00	2.00	90.00	75.00	F
25	． 0	7.00	． 00	2.00	90.00	75.00	F＇
20	0.00	7.00	． 00	2.00	50.00	75.00	F
27	12.00	7.00	.00	2.00	90.00	75.00	F＇
28	18.00	7.00	.00	2.00	50.00	75.09	F

AFFLIED LOADS

LOAD	$F X$	F＇Y	FZ	MX	Mr	MZ
CASE	K	K	K	FT－K	FT－K゙	FT－E
1	． 0	563.2	781．2	5681.2	． 0	． 0
2	． 0	56.2	731.2	0435.6	． 0	． 0
3	．0	520.2	431.7	6400．5	． 0	0
4	． 0	520.2	431.7	7012．5	－0	． 0
5	． 0	－170．4	722.4	934.0	． 0	． 0
－	－0	-170.4	722.4	1402.0	． 0	． 0

7	0	-147.2	722.4	189.0	.0	.0
8	0	-191.2	722.4	481.6	.0	0

OFIEINAL FILE GFOUF STIFFNESS MATFIX

. $1100 \mathrm{EE}+0 \mathrm{~S}$	-. $3044 \mathrm{E}-03$	-. 411 GJE-OS	-. 43252E-01	. OOOOOE OO	-. 45776 CO
-. S6044E-0.5	- 1 SUS7E+05	. $1220 / E-03$. $15548 \mathrm{E}+07$. $15025 E-01$	$15625 E-01$
-. $41185 E-05$. 12207E-03	. $51937 \mathrm{E}+05$	-. $62500 \mathrm{E}-01$. $31250 \mathrm{E}-01$	15625E-01
-.43252E-01	$.15548 E+07$	-. 625OOE-01	. $21689 \mathrm{E}+09$. $40000 \mathrm{E}+01$	$00000 \mathrm{E}+00$
-.93132E-09	$15625 E-01$. OOOOOE +00	. $40000 \mathrm{E}+01$	$.10770 E+10$. 40000E+01
-- 21862E-OE	. $15025 E-01$. $15625 \mathrm{E}-\mathrm{O}$. OOOOOE+OO	-. 40000E+01	. 27141E+09

LOAD	CASE	1.	NUMEER	OF	FAILUFES =	O.	SUHEEEF	GF:	FILES	IN	TENSION	
LOAD	CASE	2.	NUNEEF	OF	FAILUFES =	0.	NUMEEF:	OF	FILES	IN	TENSION	$=$
LGAD	CASE	3	NUMEER	OF	FAILUFES =	0.	NUHEEF	OF	FILES	IN	TENSION	$=$
LOAD	CASE	4.	NUMEEF:	OF-	FAILURES =	0	NUMEEF:	OF	FILES	IN	TENSICN	$=$
LGAD	CASE	5.	NLMEEF:	OF	FAILURES $=$	0.	NUMEEF:	GF	FILES	IN	TENSION	$=$
LOAD	CASE	6.	NUITEEF	OF	FAILURES	0	Numerefi	OF	FILES	IN	TENSICN	$=$
LOAD	CASE	7.	NIMEEF	OF	FAILUFES =	0.	NUMEEF	OF	FILES	IN	TENSION	$=$
LOAD	CASE	8.	NUNEEF	QF-	FAILURES =	0.	NUMEEF:	OF	FILES	IN	TENSION	$=$

FILE CAF DISFLACEMENTS

LGAD
CASE

$$
D Z
$$

IN
1
2
3
4
5

$$
\begin{array}{ccc}
1 & .1976 \mathrm{E}-06 & .3877 \mathrm{E}-01 \\
2 & .1985 \mathrm{E}-06 & .4989 \mathrm{E}-02 \\
\boxed{4} & .1631 \mathrm{E}-06 & -.1583 \mathrm{E}-01 \\
5 & .16 .8 \mathrm{E}-06 & -.432 \mathrm{E}-01 \\
5 & .1261 \mathrm{E}-07 & -.1305 \mathrm{E}+00 \\
6 & .1320 \mathrm{E}-07 & -.1515 \mathrm{E}+00 \\
7 & .1721 \mathrm{E}-07 & -.8510 \mathrm{E}-01 \\
8 & .7092 \mathrm{E}-0 \mathrm{E} & -.1211 \mathrm{E}+00
\end{array}
$$

FiX
FIAD

FiY
Fiz
RAD
FAD

$$
.1504 E-01
$$

$$
.3637 E-04
$$

$$
-.697 S E-12
$$

$$
-.3098 E-11
$$

$$
.1504 E-01
$$

$$
.320 E E-05
$$

$$
-.1262 E-11
$$

$$
-115 \mathrm{EE}-11
$$

$$
.4676 E-0.3
$$

$$
.8812 \mathrm{E}-02
$$

$$
-1507 E-11
$$

$$
.4325 E-12
$$

$$
.5979 E-0 \mathrm{E}
$$

$$
--1965 E-11
$$

$$
.2010 E-11
$$

$$
.1 .571 E-01
$$

$$
.1 \Xi 91 \mathrm{E}-01
$$

$$
.9875 E-03
$$

$$
-.1774 \mathrm{E}-11
$$

$$
.6714 \mathrm{E}-11
$$

$.1591 E-01$
-1164E-02
$-.2124 E-11$

$$
7
$$

. $7921 \mathrm{E}-11$

$$
8
$$

-1 $191 E-01$
$.8748 \mathrm{E}-0 \mathrm{~S}$
$-.1566 E-11$
. $6171 E-11$

Fille forces in local geometfy

```
Mi \& MZ NOT AT FILE HEAD FOR FINNED FILES
* indicates file failufe
\# INDICATES CEF HASED ON MOFENTS DUE TO
                    (FZ*EMIN) FOF CONCFETE FILES
E INDICATES EUCKLING CONTFULS
```

LDAD CASE - 1

FILE	$F 1$	$F 2$	$F:$	$\begin{gathered} \text { M1 } \\ \text { IN-K. } \end{gathered}$	$\begin{gathered} \mathrm{MZ} \\ \mathrm{IN}-\mathrm{K} \end{gathered}$	$\begin{gathered} M E \\ \text { IN-K: } \end{gathered}$	AL.F	CEF	$\begin{aligned} & \mathrm{ASC} \\ & \mathrm{KSI} \end{aligned}$	$\begin{aligned} & A S T \\ & \text { KSI } \end{aligned}$
1	-2	- 0	-15.3	- 0	11.4	.0	. 26	. 10	. 91	. 74
2	$-.2$. 0	-15.	. 0	11.4	. 0	. 20	. 16	. 91	. 34
5	-. 2	. 0	-15.3	. 0	11.4	- 0	. 26	. 16	. 91	. 74
4	-. 2	. 0	-15.3	. 0	11.4	-0	. 26	-10	. 91	. 74
5	-2	. 0	-15.3	. 0	11. 4	.0	. 26	. 16	. 71	. 74
-	$-.2$. 0	-15.3	. 0	11.4	- 0	. 20	. 16	.91	. 74
7	-. 2	. 0	-15.3	. 0	11.4	. 0	. 26	. 10	. 91	. 74
8	-. 2	. 0	-11.7	. 0	11.0	. 0	. 20	. 13	. 9%	. 75
7	-2	. 0	-11.7	. 0	11.0	. 0	. 20	-13	. 93	. 75
10	-. 2	. 0	-11.7	. 0	11.8	. 0	. 20	. 13	. 98	. 75
11	$-.2$. 0	-11.7	. 0	11.5	. 0	. 20	. 1.5	. 93	. 75
12	$-.2$. 0	-11.7	.0	11.0	. 0	. 20	-15	. 98	. 75
13	-. 2	-0)	-11.7	. 0	11.0	-	. 20	. 13	. 78	. 75
14	$\cdots .2$. 0	-11.7	. 0	11.0	. 0	. 20	. 18	. 93	. 75
15	. 1	. 0	74.1	. 0	-7.8	-0	. 88	. 15	1.26	1.07
10	. 1	. 0	74.1	. 0	-7.8	- 0	. 88	. 15	1.25	1.09
17	. 1	. 0	74.1	. 0	-7.8	-0	. 88	. 15	1.26	1.0%
13	. 1	. 0	74.1	- 0	-7.8	. 0	. 88	. 15	1.26	1.07
17	. 1	. 0	74.1	. 0	-7.8	. 0	. 85	. 15	1.26	1.09
20	. 1	- 0	74.1	-0	-7.8	. 0	. 88	. 15	1.25	1.0%
21	. 1	. 0	74.1	. 0	-7.8	. 0	. 88	. 15	1.26	1.07
22	. 1	. 0	77.7	. 0	-7.6	. 0	. 93	.17	1.27	1.11
23	. 1	. 0	77.7	. 0	-7.6	. 0	. 93	. 17	1.27	1.11
24	- 1	. 0	77.7	. 0	-7.6	. 0	- $9 \pm$. 17	1.27	1.11
25	. 1	. 0	77.7	. 0	-7.6	. 0	. 93	. 17	1.27	1.11
26	. 1	. 0	77.7	. 0	-7.6	. 0	. 9.	. 17	1.27	1.11
27	. 1	-0	77.7	. 0	-7.0	. 0	. 73	.17	1.27	1.1i
28	. 1	. 0	77.7	. 0	-7.5	. 0	. 93	. 17	1.27	1.11

LOAD CASE - 2

File	F_{k}	Fs	$F 2$	$\begin{gathered} M 1 \\ I N-K \end{gathered}$	$\begin{gathered} M Z \\ M N-t: \end{gathered}$	$\begin{aligned} & M \because \\ & M N-K \end{aligned}$	ALF	CEF	$\begin{aligned} & \mathrm{ASC} \\ & \mathrm{KSI} \end{aligned}$	$\begin{aligned} & \mathrm{HSI} \\ & \mathrm{r} .8 \mathrm{I} \end{aligned}$
1	. 0	. 0	-29.8	. 0	-. 2	. 0	. 50	. 27	. 84	. 70
2	. 0	. 0	-29.8	. 0	-. 2	. 0	. 50	. 27	. 84	.70
3	. 0	. 0	-29.8	. 0	-. 2	. 0	. 50	. 27	. 84	.70
4	. 0	. 0	-29.8	. 0	-. 2	. 0	. 50	. 27	. 84	.70
5	. 0	. 0	-29.8	. 0	$-.2$. 0	. 50	. 27	. 84	.70
0	. 0	. 0	-29.8	. 0	-. 2	. 0	. 50	. 27	. 84	.70
7	. 0	. 0	-29.8	. 0	-. 2	. 0	. 50	. 27	. 84	.70
8	. 0	. 0	2.1	. 0	1.7	. 0	. 03	. 24	. 97	. 82
9	. 0	. 0	2.1	. 0	1.7	. 0	. 03	. 24	. 97	. 82
10	.0	. 0	2.1	. 0	1.7	. 0	. 03	. 24	. 97	. 82
11	. 0	. 0	2.1	. 0	1.7	. 0	. 05	. 24	. 97	. 82
12	. 0	. 0	2.1	. 0	1.7	. 0	. 03	. 24	. 97	. 82
13	. 0	. 0	2.1	. 0	1.7	0	. 03	. 24	. 97	. 82
1.4	. 0	- 0	2.1	. 0	1.7	.0	. 03	. 24	. 97	. 82
15	. 0	. 0	00.8	. 0	2.1	.0	. 72	. 14	1.19	1.05
16	. 0	. 0	60.8	. 0	2.1	. 0	. 72	.14	1.19	1.05
17	. 0	. 0	60.3	.0)	2.1	. 0	. 72	. 14	1.19	1.05
18	. 0	. 0	60.3	. 0	2.1	. 0	. 72	. 14	1.19	1.05
19	. 0	. 0	60.3	. 0	2.1	. 0	. 72	. 14	1.17	1.05
20	. 0	.0	60. 3	. 0	2.1	. 0	. 72	.14	1.19	1.05
21	.0	. 0	60.3	. 0	2.1	. 0	. 72	. 14	1.19	1.ns
22	$-.1$. 0	92.1	.0	4.1	. 0	1.10	. 25	1.32	1;
23	$\cdots \cdot 1$. 0	92.1	. 0	4.1	. 0	1.10	. 25	1.32	1.17
24	$\cdots .1$.0	92.1	. 0	4.1	. 0	1.10	. 25	1.82	1.17
25	-. 1	.0	92.1	. 0	4.1	. 0	1.10	. 25	1.32	1.17
26	--. 1	. 0	92.1	. 0	4.1	.0	1.10	. 25	$1 . .32$	1.17
27	$\cdots 1$. 0	92.1	. 0	4.1	. 0	1.10	. 25	1.32	1.17
29	-. 1	. 0	92.1	. 0	4.1	. 0	1.10	. 25	1.82	1.17

LGAD CASE - S

F.1LE	$F 1$	$F 2$	$F S$	$\begin{gathered} M 1 \\ I N-K \end{gathered}$	$\begin{gathered} M 2 \\ I N-K \end{gathered}$	$\begin{gathered} M S \\ I N-K \end{gathered}$	ALF	CEF	$\begin{aligned} & \mathrm{ASC} \\ & \mathrm{KSI} \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \mathrm{KSI} \end{aligned}$
1	. 1	. 0	-47.8	. 0	-5.0	. 0	.80	. 45	. 78	. 51
z	. 1	. 0	-47.8	. 0	-8.0	. 0	. 80	. 45	. 78	. 61
\pm	- 1	. 0	-47.8	.0	-8.0	. 0	. 80	. 45	. 78	. 61
4	- 1	. 0	-47.8	.0	-8.0	. 0	. 80	. 45	. 78	. 61
5	- 1	. 0	-47.8	. 0	-8.0	. 0	. 80	. 45	. 78	. 61
-	- 1	.0	-47.8	. 0	-8.0	. 9	.80	. 45	. 78	. 61
7	- 1	. 0	-47.8	. 0	-8.0	.0	. 80	. 45	. 78	. 61
8	- 1	.0	-1. 3	. 0	-5.1	. 0	. 02	. 02	. 96	. 80
9	-1	- 0	-1. 3	.0	-5. 1	. 0	. 02	. 02	. 96	. 80
10	- 1	. 0	-1.	. 0	-5.1	- 0	. 02	. 02	. 96	. 80
11	- 1	. 0	-1.5	. 0	-5. 1	- 0	. 02	.02	. 76	. 80
12	- 1	. O	-1.3	. 0	-5.1	- 0	. 02	. 02	. 56	. 80

18	- 1	. 0	-1.3	. 0	-5. 1
14	- 1	. 0	-1.3	-0	-5. 1
15	-. 1	. 0	$\bigcirc 5$. 0	$7 . \%$
10	$-.1$. 0	25. 7	. 0	7.2
17	-- 1	. 0	ES. 7	- 0	7.
18	$-.1$. 0	85.7	. 0	7.2
19	$-.1$. 0	35.7	. 0	7.2
20	-. 1	. 0	35.7	. 0	7.2
21	-. 1	. 0	55.7	. 0	7.2
22	-. 1	. 0	82.2	-0	10.1
23	-. 1	. 0	82.2	. 0	10.1
24	-. 1	. 0	82.2	. 0	10.1
25	-. 1	. 0	82.2	- 0	10.1
26	-. 1	. 0	82.2	. 0	10.1
27	-. 1	. 0	82.2	. 0	10.1
28	-. 1	. 0	82.2	. 0	10.1

.0	.02	.02	.96	.80
.0	.02	.02	.96	.80
.6	.43	.19	1.11	.94
.0	.48	.19	1.11	.94
.6	.43	.19	1.11	.94
.0	.43	.19	1.11	.94
.0	.43	.19	1.11	.94
.0	.4.	.19	1.11	.74
.0	.48	.19	1.11	.94
.0	.98	.19	1.29	1.12
.0	.98	.19	1.29	1.12
.0	.98	.19	1.29	1.12
.0	.98	.19	1.29	1.12
.0	.98	.19	1.29	1.12
.0	.98	.19	1.29	1.12
.0	.98	.19	1.29	1.12

LUAO゙ EASE - 4

FILE	$F 1$	$F 2$	FS	$\begin{gathered} \text { M1 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} M 2 \\ N-K \end{gathered}$	$\begin{gathered} M E \\ \text { IN-K } \end{gathered}$	ALF	CEF	$A S C$ KSI	AST F゙SI
1	. 2	. 0	-57.5	. 0	-17.4	. 0	. 99	. 57	. 75	. 56
2	- 2	. 0	-59.5	. 0	-17.4	.0	. 99	. 57	. 75	. 56
$\underset{\square}{\square}$. 2	- 0	-59.5	- 0	-17.4	- 0	. 97	. 57	. 75	. 50
4	. 2	-	-57.5	. 0	-17.4	- 0	. 97	. 57	. 75	. 56
5	. 2	. 0	-54.5	. 0	-17.4	0	. 79	. 57	. 75	. 56
0	. 2	-0	-57.5	. 0	-17.4	0	. 98	. 57	. 75	. 50
7	- 2	-0	-58.5	. 0	-17.4	. 0	. 99	. 57	. 75	. 56
8	- 2	. 0	10.0	- 0	-1 $\mathrm{S}_{\text {- }} 1$. 0	. 12	. 2S	1.61	. 83
9	- 2	. 0	10.0	.0)	-13.1	. 0	. 12	. 2S	1.01	. 83
10	. 2	. 0	10.0	. 0	-13.1	. 0	. 12	-23	1.01	.83
11	- 2	. 0	10.0	. 0	-13. 1	. 0	. 12	. 23	1.01	. 8.8
12	-2	. 0	10.0	- 0	--13.1	- 0	. 12	. 23	1.01	. 88
1.3	. 2	. 0	10.0	. 0	-13.1	-0	.12	. 25	1.01	.83
14	. 2	. 0	10.0	. 0	-13. 1	. 0	. 12	. 25	1.01	. 8.8
15	- 2	. 0	24.5	. 0	15.2	. 0	. 29	. 21	1.07	. 89
16	- - 2	. 0	24.5	. 0	15.2	. 0	. 29	. 21	1.07	. 89
17	-. 2	. 0	24. 5	. 0	15.2	. 0	. 29	. 21	1.07	. 89
18	--2	. 0	24.5	.0	15.2	. 0	. 29	-21	1.07	. 89
19	- . 2	. 0	24.5	. 0	15.2	. 0	. 29	.21	1.07	. 87
20	-. 2	. 0	24.5	. 0	15.2	. 0	. 29	. 21	1.97	. 89
$\check{\sim}$	-. 2	. 0	24.5	. 0	15.2	. 0	. 29	. 21	1.07	. 89
22	- . 3	. 0	93.7	. 0	19.5	. 0	1.12	. 20	1.35	1.15
23	-. 3	. 0	93.7	. 0	19.5	. 0	1.12	. 26	1.35	1.15
24	-. 3	. 0	9.5 .7	. 0	19.5	. 0	1.12	. 26	1.35	1.15
25	-. 3	. 0	9 B 7	. 0	19.5	. 0	1.12	. 26	1.35	1.15
26	-3	. 0	93.9	. 0	19.5	. 0	1.12	. 26	1. 3.5	1.15
27	- . ${ }^{\text {S }}$. 0	73.7	. 0	19.5	- 0	1.12	. 26	1.35	1.15

$28 \quad-3 \quad .0 \quad 98.9$
.017 .5
.01 .12
.20
1.35
$1.1!$

LOAD CASE－－ت

FILE	F1	F 2	$F \geq$	M1	ML	MS	ALF	CEF	ASC	HST
	K	K	k	1N－t	IN－N．	IN－			rsi	トSI
1	． 0	． 0	-7.8	． 0	－41． 7	－0	． 13	． 14	． 99	． 72
2	－¢	． 0	-7.8	． 0	－41．9	． 0	． 13	． 14	． 84	． 72
\pm	－ 0	． 0	－7．8	． 0	－－41．9	． 0	． 13	． 14	． 99	． 72
4	． 6	． 0	-7.8	． 0	－41．9	． 0	－ 1.	． 14	． 99	． 72
5	－ 0	． 0	－7．8	－0	－41．7	． 0	． 13	． 14	． 97	． 72
6	． 6	． O	-7.8	.0	－－41． 7	． 0	． 13	． 14	． 98	． 72
7	． 6	.0	-7.8	． 0	－41．7	．0	． 13	． 14	． 79	． 72
8	－5	． 0	90.4	－0	－35．5	． 0	1.08	． 24	1.30	1.11
9	． 5	． 0	90.4	． 0	－3E． 9	． 0	1.08	． 24	1．30	1.11
19	－ 5	． 0	90.4	． 0	-3.9	． 0	1.98	． 24	1．36	1.11
11	－ 5	． 0	90.4	． 0	－35．${ }^{\text {\％}}$	． 0	1.08	． 24	1．S	1.11
12	． 5	． 0	70.4	． 0	－35．9	． 0	1.08	． 24	1． 5	1.11
13	． 5	． 0	90． 4	． 0	－－55．9	－0	1.08	． 24	1． 56	1． 11
14	． 5	． 0	90.4	． 0	-35.9	． 0	1.08	． 24	1．86	1．11
15	－． 5	． 0	-2.8	． 0	35．5	． 0	．든	．	． 88	． 6.3
10	－． 5	．0	-2.8	． 0	37.5	． 0	． 55	． 5	． 85	． 2 S
17	－． 5	－0	－3．8	． 9	39.5	－0	． 55	． 36	． 88	
18	－－ 5	． 0	－ 2.8	． 0	39.5	． 0	． 55	． 3	． 8	－ 5
17	－． 5	．0	－32．5	．O	59．5	.0	－55	－	． 85	． 6.
20	－－5	． O	－ 2.8	． 0	59.5	． 0	－55	． 3	． 89	－ 5
21	$-.5$	－ 0	－32．8	.0	39.5	.0	． 55	． 36	． 88	． 63
22	－． 6	． 0	85.5	． 0	45.5	． 0	． 78	． 14	1．28	1.00
25	－． 6	． 0	6 65． 5	． 0	45.5	.0	． 78	． 14	1.28	1.00
24	－．	－ 0	65.5	． 0	45．5	－ 0	． 78	． 14	1.28	1.00
25	－． 0	．0	05.5	． 0	45.5	． 0	． 78	.14	1．28	1.00
26	－． 0	． 0	65.5	.0	45.5	． 0	． 78	． 14	1．28	1.90
27	－．-	． 0	65．5	． 0	45．5．	.0	． 78	． 14	1.28	1.00
28	－．	． 0	65.5	． 0	45.5	． 0	． 78	.14	1.28	1.00

LGAD CASE－ 0

F．ILE	$F 1$	$F 2$	$F s$	$\begin{gathered} M 1 \\ I N-E \end{gathered}$	$\begin{gathered} N 2 \\ I N-K \end{gathered}$	$\begin{gathered} \mathrm{MB} \\ I N-K \end{gathered}$	ALF	EEF	$\begin{aligned} & A S C \\ & K S I \end{aligned}$	$\begin{aligned} & A S T \\ & K S I \end{aligned}$
1	． 7	－0	-16.9	． 0	-49.2	． 0	． 28	．23	． 96	． 68
2	． 7	． 0	－16． 8	． 0	－49．2	． 0	． 28	．ご	． 96	． 68
\pm	． 7	． 0	－16．8	． 0	－45．2	． 0	． 28	．23	． 96	． 68
4	． 7	－ 0	-16.8	． 0	－49．2	． 0	． 29	．23	． 96	． 68
5	． 7	－ 0	-16.8	． 0	－47．2	． 0	． 28	． 23	． 90	． 68
6	． 7	． 0	－16．8	． 0	－49．2	． 0	． 28	． 2 z	．75	． 68
7	． 7	． 0	－16．8	． 0	-49.2	． 0	． 28	．23	． 70	． 68

5	- 6	. 0	9\%.0
7	-6	.0)	99.0
10	. 6	. 0	99.0
11	- 0	. 0	99.0
12	-6	.0	98.0
13	- 6	-0	$9 \% .0$
14	- \dagger	. 0	$7 \% .0$
15	-. 0	. 0	-41.4
1 s	-. 6	. 0	-41.4
17	-. 0	. 0	--41.4
18	-. 6	- 0	-41.4
19	-. 6	. 0	-41.4
20	-. t	. 0	-41.4
21	-. 0	. O	-41.4
22	-. 7	. 0	74.4
2	$-.7$. 0	74.4
24	-. 7	. 0	74.4
25	$-.7$. 0	74.4
20	--. 7	. 0	74.4
27	-. 7	. 0	74.4
28	$-.7$. 0	74.4

.0	-42.1
.0	-42.1
.0	-42.1
.0	-42.1
.0	-42.1
.0	-42.1
.0	-42.1
.0	45.0
.0	45.0
.0	45.0
.0	45.0
.0	45.6
.0	45.6
.0	45.6
.0	52.7
.0	52.7
.0	52.7
.0	52.7
.0	5.7
.0	5.7
.0	52.7

7

FILE	Fi	$F 2$	$\begin{array}{r} \mathrm{F} \mathrm{~S} \\ \mathrm{t} \end{array}$	$\begin{aligned} & \mathrm{H1} \\ & 1 N-氏 6 \end{aligned}$	$\underset{1 N-1:}{N 2}$	$\begin{gathered} M B \\ 1 N-K \end{gathered}$	Ali	CEF	$\begin{aligned} & A S C \\ & K S I \end{aligned}$	$\begin{aligned} & \mathrm{AST} \\ & \mathrm{KSSI} \end{aligned}$
1	. 4	. 0	テ.0	. 0	-2e. 5	-	. 11	. 25	1.08	. 81
2	. 4	. 0	9.9	. 0	-26.5	. 0	.11	. 25	1.08	. 81
\checkmark	. 4	. 0	7.9	. 0	-20.5	-0	. 11	. 25	1.05	. 81
4	. 4	. 0	7.0	. 0	-2¢.	-	. 11	. 25	1.03	. 81
5	. 4	. 0	9.6	. 0	-20.5	.9	. 11	. 25	1.03	. 81
-	. 4	. 0	9.0	. 0	-20.5	. 0	. 11	. 25	1.0E	. 81
7	. 4	. 0	9.0	. 0	-2t. ㄷ․	. 0	. 11	. 25	1.05	. 81
B	. 3	. 0	70.7	. 0	-2<.7	. 0	. 84	. 13	1.20	1.05
7	. 3	. 0	70.7	. 0	-22.7	. 9	. 84	. 13	1.26	1.0s
10	-	-0	70.7	. 0	-22.7	. 0	. 84	. 13	1.26	1.05
11	. 3	. 0	70.7	. 0	-22.7	- 0	. 84	. 13	1.26	1.06
12	- \because	. 0	70.7	. 0	-22.7	. 0	. 84	$\cdot 13$	1.26	1.06
13	.	. 0	70.7	. 0	-22.7	. 0	. 84	. 13	1.26	1. 06
14	. 3	. 0	70.7	. 0	-22.7	- 0	. 84	. 13	1.26	1.06
15	-. 4	. 0	-1З.1	. 0	25.2	- 0	- 22	. 16	. 94	. 72
10	-. 4	. 0	-13.1	.0	26.2	. 0	. 22	. 16	. 94	. 72
17	-. 4	. 0	-13.1	0	26.2	. 0	. 22	. 16	. 94	. 72
15	-. 4	. 0	-13.1	-0	2 Sc 2	. 0	. 22	. 16	. 94	. 72
1	-. 4	- 0	-13.1	. 0	20.2	- 0	. 2	. 16	. 94	. 72
20	-. 4	. 0	$-1 \because-1$. 0	26.2	- 0	. 22	. 10	. 84	. 72
21	$-.4$	-0	-13.1	. 0	20.2	. 0	. 22	. 16	. 94	. 72
22	$-.4$. 0	48.7	. 0	30.0	- 0	. 58	. 16	1.19	. 96

29	.- .4	-0	49.7
24	-.4	-0	48.7
25	-.4	-0	48.7
26	-.4	.0	48.7
27	--.4	-0	48.7
28	--.4	.0	48.7

.0	30.0
.0	30.0
.0	30.0
.0	3.0
.0	30.0
.0	30.0

.0	.58	.16	1.19	.76
.0	.58	.15	1.19	.96
.0	.58	.16	1.19	.96
.0	.55	.16	1.19	.96
.0	.58	.10	1.19	.96
.0	.58	.16	1.19	.96

LOAD CASE－－ 8

FILE	F_{1}	$F 2$	$F 3$	$\begin{gathered} M 1 \\ I N-K \end{gathered}$	$\begin{gathered} M 2 \\ M N-K \end{gathered}$	$\begin{aligned} & M S \\ & M-K \end{aligned}$	ALF	CEF	$\begin{aligned} & \mathrm{ASC} \\ & \mathrm{KSI} \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \mathrm{KSSI} \end{aligned}$
1	． 5	－0	-1.5	． 0	－33．6	． 0	.02	.07	1.01	． 75
玉	． 5	－ 0	－1．5	． 0	－88．0	． 0	． 02	． 07	1.01	． 75
\checkmark	． 5	． 0	-1.5	.0	－ 88.6	． 0	－02	． 07	1.01	． 75
4	． 5	． 0	－1．5	． 0	－38．5	． 0	． 02	.07	1.01	． 75
E	． 5	． 0	－1．5	． 0	－5日． 6	． 0	． 02	． 07	1.01	． 75
5	． 5	4	－1．5	． 0	－38．0	． 0	． O	． 07	1.01	． 75
7	．단	． 0	－1． 5	． 0	－35．	－0	． 02	． 07	1.01	． 75
8	． 5	． 0	87.6	． 0	－x． 1	． 0	1.04	． 22	1． 3.5	1．11
9	． 5	． 0	87．	－ 0	－S． 1	． 0	1.04	． 22	1．35	1.11
10	． 5	． 0	87.4	． 0	－S． 1	－ 0	1.04	．22	1．35	1．11
11	． 5	－0	87．6	． O	－ぶ． 1	． 0	1.04	． 22	1．35	1．${ }^{1} 1$
12	－ 5	．O	87.6	． 0	－SE． 1	－0	1.04	． 22	1.35	
13	． 5	－0）	87．0	． 0	－3．1	． 0	1.04	． 22	1． 5.5	1.11
14	－5	． 0	87． 0	． 0	－3．1	． 0	1.04	． 22	1.35	1.11
15	－－． 5	． 0	－29．9	． 0	36.6	． 0	． 50	． 3	． 89	． 54
16	－－5	.0	-29.9	． 0	－	． 0	． 50	． 35	． 89	． 64
17	$-.5$	． 0	－29．7	.0	36.0	－ 0	． 50	．	． 89	． 64
18	$-.5$	． 0	-29.9	－ 0	S．5．	．	． 50	． 3	． 89	． 64
1%	\cdots	． 0	－29．7	． 0	S6．	． 0	． 50	． 3	． 59	． 64
20	$-.5$	． 0	-27.9	． 0	35.5	． 0	． 50	． 3	． 89	． 64
21	－． 5	． 0	-27.9	． 0	So． 6	． 0	． 50	． 33	． 89	． 64
22	－． 0	－ 0	59.1	． 0	42.1	－0	.70	.15	1.25	． 98
2.3	－． 6	－0）	59.1	． 0	42.1	． 0	.70	． 15	1.25	． 98
24	－． 0	． 0	55.1	． 0	42.1	． 0	.70	． 15	1.25	． 98
$2{ }^{25}$	－． 0	． 0	$55^{5} 1$	． 0	42.1	.0	.70	． 15	1．25	． 98
20	－6	－ 0	59.1	． 0	42.1	． 0	． 70	． 15	1.25	． 98
28	$-.0$	－ 0	59.1	．0）	42.1	． 0	． 70	． 15	1．25	． 98
28	$-.6$	． 9	57.1	.0	42.1	． 0	． 70	． 15	1．25	． 78

file forces in global geometriy

12	.	$-.9$	1.9	0	. 0	. 0
1.5	.0	$-.8$	1.9	. 0	. 0	0
14	. 0	-. 9	1.9	- 0	. 0	. 0
15	-0	26. 9	53.9	. 0	. 0	. 0
16	-0	26.9	53.4	. 0	. 0	. 0
17	. 0	26.7	E5. 9	- 0	. 0	. 0
18	. 0	26.9	5. 9	- 0	. 0	- 0
17	. 0	20.5	5.9	- ${ }^{3}$. 0	. 0
20	. 0	26.9	53.9	-0	. 0	. 0
21	. 0	26.9	5.5	- ${ }^{1}$	-0	. 0
22	. 0	41.1	82.4	-i)	. 0	. 0
25	. 0	41.1	82.4	. 0	. 0	. 0
24	. 0	41.1	82.4	.0	.0	. 0
25	. 0	41.1	82.4	-0	. 0	. 0
20	. 6	41.1	82. 4	. 0	. 0	. 0
27	.0)	41.1	82.4	. 0	.0	. 0
28	.0	41.1	82.4	- -1	. 0	- 0
LOAD CASE	3					
FILE	F-X	FY	F Z	$M X$	MY	MZ
	k	K	K	IN-F,	IN-K	IN-K
1	. 0	21.3	-42.8	. 0	-0	. 0
2	- 0	21.	-42. 5	- 0	. 0	. 0
\cdots	. 0	21.3	-42.8	-	. 0	. 0
4	- 0	21.8	-42.5	-1)	.0	-0
5	. 0	21.3	-42. 8	0	-0)	. 0
6	-0	21.3	-42.8	. 0	. 0	.0
7	. 0	21.	-42.8	. 0	. 0	.0
8	-0	. 5	-1.2	-0	- 0	-0
9	. 0	. 5	-1.2	. 0	. 0	. 0
10	. 0	. 5	-1.2	- 0	- 0	.0
11	. 0	. 5	-1.2	. 0	- 0	. 0
12	. 0	. 5	-1.2	- 0	. 0	. 0
13	. 0	. 5	-1.2	. 0	.0	-0
14	. 0	. 5	-1.2	. 0	. 0	. 0
15	. 0	15.8	2.0	. 0	-0	. 0
16	.0	15.9	- 0	. 0	-0	- 0
17	. 0	15.9	S20	-0	.0	. 0
18	. 0	15.9	\%20	. 0	. 0	.0
19	. 0	15.9	22.0	. 0	- 0	. 0
2 O	. 0	15.9	32.0	. 0	- 0	. 6
21	. 0	15.9	32.0	.0	-0)	. 0
2	. 0	30.7	78.0	. 0	- 0	. 0
23	. 0	30.7	73.6	. 0	. 0	. 0
24	. 0	S5.7	73.6	. 0	. 0	. 0
2 단	. 0	צ6. 7	78.6	. 0	.0	-0
26	. 0	-6.7	7 - 6	. 0	- 0	. 0

27	． 0	36.7	75.6
28	． 0	86.7	73.6

LOAD LASE－ 4

FILE	$\begin{aligned} & F X \\ & F \end{aligned}$	$\begin{aligned} & F Y \\ & K \end{aligned}$	$\begin{aligned} & \text { F:Z } \\ & k: \end{aligned}$	$\begin{gathered} M x \\ M-k: \end{gathered}$	$\begin{gathered} M Y \\ I N-E: \end{gathered}$	$\begin{gathered} M Z \\ I N-K \end{gathered}$
1	． 0	26.4	－5．	． 0	． 0	． 0
2	． 0	26.4	-55.3	－0	． 0	－0
3	． 0	26.4	－5\％	． 0	． 0	． 0
4	． 0	26.4	－53．3	－0）	． 0	． 0
5	． 0	26.4	－5is．	． 0	． 0	． 0
\pm	－ 0	26.4	－5．	． 0	． 0	． 0
7	－0	26.4	－ES．	． 0	． 0	－0
G	． 0	－4．6	8.8	． 0	． 0	－ 0
9	． 0	－4．0	3.8	． 0	． 0	－0
10	． 0	－4．0	9.8	－ 0	． 0	． 0
11	－0	－4．t	8.8	－ 0	－ 0	． 0
12	． 0	－4．6	9.8	－0	． 0	． 0
13	－0	－4．6	8.8	－ 0	． 0	－0
14	． 0	－4．6	8.8	． 0	－ 0	－0
15	． 0	10.8	22.0	． 0	． 0	． 0
1%	． 0	10.8	22.0	． 0	． 0	－ 0
17	． 0	10.8	22.0	－ 0	－ 0	． 0
15	． 0	10.8	22.0	． 0	． 0	． 0
17	.0	10.8	22.0	． 0	． 0	－ 0
20	． 0	10.8	22.0	． 0	． 0	． 0
21	． 0	10.5	22.0	． 0	－0	－0
22	－0	41.8	84.1	． 0	． 0	－0
$2 \times$	． 0	41.8	84.1	． 0	－0	－ 0
24	． 0	41.8	84.1	． 0	． 0	－ 0
25	－0	41.8	84.1	． 0	． 0	－0
26	－0	41.8	54．1	． 0	． 0	． 0
27	． 0	41.8	34.1	.0	． 0	－ 0
28	． 0	41.8	84.1	． 0	－ 0	－ 0

LOAD CASE－ 5
FILE
$F X$
F

Fr
$F Z$
Mx
IN－k
MY
NZ
IN－ド
IN－ド

1	-0
2	-0
\ddot{B}	-0
4	.0
5	-0
6	.0

7	. 0	30	- \% - -	. 0	- 0	. 0
8	. 0	-40.7	80.7	. 0	. 0	0
7	. 0	-40.9	80.7	. 0	- 0	. 0
16	.0	-40.9	80.7	- 0	. 0	. 0
11	-0	-40.9	80.7	-0	- 0	. 0
12	. 0	-40.9	80.7	. 0	. 0	. 0
13	. 0	-40.9	80.7	-0	. 0	. 0
14	. 0	-40.9	80. 7	-0	-0	. 0
15	- 0	-15.1	-24.1	. 0	. 0	0
10	-0	-15.1	-29.1	- 0	. 0	. 0
17	. 0	-15.1	-29.1	. 0	-0	-0
18	. 0	-15.1	-27.1	-0	. 0	. 0
19	. 0	-15.1	-27.1	- 0	. 0	. 0
20	. 0	-15. 1	-29. 1	. 0	. 0	. 0
21	- 0	-15.1	-24.1	. 0	. 0	. 0
22	. 0	28.7	58.5	. 0	. 0	. 0
23	. 0	28.7	58.8	. 0	. 0	. 0
24	. 0	28.7	58.8	- 0	. 0	. 0
25	. 0	28.7	58.8	. 0	. 0	. 0
26	. 0	28.7	58.8	- 0	. 0	. 0
27	. 0	28.7	58.8	-0	. 0	. 0
23	. 0	28.7	58.8	- 0	. 0	. 0

LOAD CASE - E
FFILE
$F x$
F
F'Y
F:
Fz
k
Hx
My
1N-E
ML
1N-K

.0	-0	-0
0	-0	-0
-0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	.0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	.0	-0

$04 / 01$ Fage: \&

. 0
.0
. 0
. 0
.0
-
.0
.0

- 0
.0
.0
. O
.0
.0
.0

22	.0	32.0
23	0	32.6
24	-0	32.0
25	-0	32.0
20	-0	32.6
27	.0	52.6
28	0	32.6

60.9	.0
66.9	-0
60.9	.0
06.9	.0
60.7	.0
60.9	-0
66.9	-0

-0
-0
-0
-0
-0
-0
.0
.0
.0
.0
-0
.0
.0
.0
LOAD CASE - 7

FILE

1
2
3
4
5
6
8
7
10
11
12
14
15
16
18
17
20
21 －

2
23
24
25
26
27
28
$\begin{array}{ll}F X & F Y \\ K & K\end{array}$

.0	-4.3
.0	-4.3
0	-4.3
.0	-4.3
.0	-4.3
.0	-4.3
.0	-4.3
.0	-31.9
.0	-31.9
.0	-1.9
.0	-31.9
.0	-31.9
.0	-51.9
.0	-81.9
.0	-6.2
.0	-0.2
.0	-6.2
.0	-6.2
.0	-6.2
.0	-6.2
.0	-5.2
.0	21.4
.0	21.4
.0	21.4
.0	21.4
.0	21.4
.0	21.4
.0	21.4

8

LUAD LASE－E

PILE

F＇X

K 0

FY
F
.2
$F 2$
1
-1.5

Hx
IN－K

MY
$\mathrm{IN}-\mathrm{K}$

MZ
IN－K
.0
.0
.0
.0
.0
.0
． 0
． 0
.0
－ 0
.0
－ 0
． 0
.0
.0
－ 0
.0
.0
－ 0
.0
． 0
－ 0
.0

MZ
INード

2	. 0	. 2	-1.5	. 0	. 0	0
\pm	. 0	. 2	-1. 5	0	. 0	- 0
4	- 0	. 2	-1.5	- 0	-0	. 0
5	- 0	. 2	-1. 5	. 0	. 0	. 0
\bigcirc	. 0	. 2	-1.5	. 0	.0	. 0
7	-0	. 2	-1.5	. 0	. 0	. 0
8	- 0	-39.6	79.1	.0	. 0	. 0
7	. 0	-37.6	78.1	. 0	. 0	. 0
10	- 0	-39.6	78.1	. 0	. 0	-0
11	. 0	-59. 6	78.1	. 0	. 0	.0
12	-0	-39.6	78.1	. 0	. 0	. 0
13	-0	-39.6	78.1	. 0	.0	. 0
14	- 0	-39.6	78.1	. 0	. 0	-0
15	-0	-13.8	-26.5	. 0	-0	. 0
16	-0		-26.5	. 0	. 0	. 0
1%	- 0	-13.8	-26. ㄷ	. 0	. 0	. 0
18	-0	-13.8	-26.5	. 0	. 0	. 0
17	0	-13.8	-20.5	.0	. 0	-0
20	-0	-13.8	-20.5	. 0	.0	. 0
21	- 0	-13.8	-20.5	. 0	.0	. 0
22	. 0	25.9	$5 \bigcirc 1$. 0	. 0	. 0
23	. 1	25.7	53.1	. 0	.0	. 0
24	-0	25.9	$5 \bigcirc 1$. 0	.0	- 0
25	-0	25.9	5.5	. 0	- 0	. 0
26	- 0	25.9	5. 1	.	. 0	. 0
27	-0	25. 9		. 0	. 0	. 0
2¢	- 0	25.9	5.3	.0	. 0	. 0

Planters - station additions
STABILITY ANALYSIS FOR SOC $=9.5$ NGUD:

- FDr failure surface (B) (2), vertical Pressure Reg d= 1520 pi f sols the bess $=2.6^{\prime \prime}$

$$
\omega t=(2.5)(150-117)=82.5 p 6 f
$$

machinery floor $=3^{\prime}$

$$
\begin{aligned}
& \omega t=(3)(150)-450 \text { ps } f \\
& \text { to tad wt }=82.5+450=532.5 \quad \text { N.G }
\end{aligned}
$$

-piles do not have tension connectors,
\therefore Trial is Regild
Location: 45 (ty

- at edges, existing discharay basin slab

T-Whel Loading cases:

Case I: static water pressure to sue, no wink impervious sheet pile cut off (100% form)

Case I: $\begin{aligned} & \text { Static water pressure to sue, nowird, pervious sleet pile cunt of } \\ &(100 \% \text { forces) }\end{aligned}$
Case III: $\begin{aligned} & \text { Static water pressure to sc }+2 \text {, now..d, impervious: sheet p. le } \\ & (75 \% \text { for } w)\end{aligned}$
Cite Case IV: Static water pressure to swx+2', nowind, pervious sheet pile (75% forces)

Case I : water at low waterlovel, no wind, (100% forces)
Case III. Water at low water level, wind from. flood side (75%)

ESTMATED FROM ALLOWABLE VERTICAL LOAD CAPACTY

L - VERTICAL COMPONENT OF BATTER PLE EMBEDMENT LENGTH.

$$
v=
$$

ESTMATED ALLOWABLE SNGLE PRE LOAD CAPACITY OF A PLLE DRIVEN VERTICALLY WITH EMBEDMENT LENGTH, L.

B:
BATTER OF PLLE EXPRESSED AS A RATIO OF VERTICAL DISTANCE TO ONE FOOT HORIZONTAL. DISTANCE.

H = HORIZONTAL RESISTANCE OF BATTER PRE ESTMATED AS FOLLOWS:

$$
H=\frac{V}{B}
$$

A = ALLOWAOLE AXLAL PLEE LOAD CAPACITY OF A SMVLE QATTER PLE ESTMATED AS FOLLOWS:

$$
\begin{aligned}
& \hat{A}=\sqrt{\left.(72)^{2} / 1.25\right)}=80^{k} \\
& =\sqrt{\left(54^{2}(1.25)\right.}=60^{k}
\end{aligned}
$$

$A=\sqrt{v^{2}\left(1+\frac{1}{e^{2}}\right)}$

> NOTE: THE AXIAL LOAD RESISTANCE OF A VERTICAL PLE, V, IS DEPEADENT ON THE TYPE OF LOADNG-TENSYON OF COMPRESSION CAUTHON SHOULD DE EXERCHED TO ASURE THAT THE CORRECT VERTKCAL CAPACITY E USED.

PRELIMINARY

> U.S ARMY CORPS OF ENGINEERS
> EAST OF HARVEY CANAL
> HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

REACH 3

ALLOWABLE PILE LOAD CAPACITIES SQUARE PRECAST, PRESTRESSED CONCRETE PILES TOP OF PILE AND DREDGE DEPTH AT EL -10.5

SIZE	PILE TIP ELEVATION IN FEET NGVD	ALLOWABLE PILE LOAD CAPACITY IN TONS FACTOR OF SAFETY ≈ 2	
		COMPRESSION	TENSION
12-In. Square	$\begin{aligned} & -39 \\ & -49 \\ & -59 \\ & -69 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \\ & 23 \\ & 30 \end{aligned}$	$\begin{gathered} 9 \\ 12 \\ 16 \\ 22 \end{gathered}$
14-In. Square	$\begin{aligned} & -39 \\ & -49 \\ & -59 \\ & -69 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 27 \\ & 36 \end{aligned}$	$\begin{aligned} & 11 \\ & 15 \\ & 20 \\ & 27 \end{aligned}$
16-In. Square	$\begin{aligned} & -39 \\ & -49 \\ & -59 \\ & -69 \end{aligned}$	$\begin{aligned} & 17 \\ & 23 \\ & 31 \\ & 41 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \\ & 23 \\ & 30 \end{aligned}$

These allowable pile load capacities are suitable for piles supporting new T-wall at Units 1 through 5 of Planters Pump Station.

PRELIMINARY

 PROP 4030 32013201196220 ALL
 SOIL ES 0.046 LEN 630 ALI
1030 SOIL ES

1110

1114

1124 1130
1131 113 11133 1134 1141 1142
1143

1724 1144 1150 1152 \begin{tabular}{l}
1153

1154

\hline

 1160 1161 1162 1163

1170

1180

\hline
\end{tabular} 1210 1220 1240 1250 1260 1280 1290

1300
ANGLE $180-24.3750^{24}$
PILE $26-20.6250$

PILEE	3	6	-16.875
PILE	6	-13.125	0

$\begin{array}{lllll}\text { PILLE } & 6 & 6 & -5.325 & 0 \\ 7 & 6 & -1.875 & 0\end{array}$
PILE $76{ }^{-1} 1.8755^{2}$

PILE $106{ }^{10} 6.37500$
$\begin{array}{llll}\text { PILE } & 11 & 6 & 13.125 \\ \text { PIIE } & 12 & 6 & 16.875\end{array}$
$\begin{array}{lllll}\mathrm{PI} \text { LEE } & 12 & 6 & 16.875 & 0 \\ \mathrm{PILE} & 13 & 6 & 20.625 & 0\end{array}$

PIIE	13	6	20.625
ILEE	14	6	$24: 375$

PILE $15{ }^{2}-240^{375}$
PIIE $16{ }^{1} 22^{2}-15: 0^{\circ} 0$
PIIE $1720^{-7.5}$
PILE 18200°
$\begin{array}{lllll}\text { PIILE } & 19 & 2 & 7.5 & 0\end{array}$

PILLE	19	2	7.5
PILE	20		
PILE	21	2	15.50

PILE	23	-6	-22.5	0
PIIEE	24	-6	-13	0
13.5	0			

$\begin{array}{lllll}\text { PIILE } & 24 & -6 & -13 & 0 \\ \text { PIUE } & 25 & -6 & -9 & 0 \\ \text { PIIE } & 26 & -6 & -4.50\end{array}$
$\begin{array}{lllll}\text { PILE } & 27 & -6 & 0 & 0 \\ \text { PIILE } & 29 & -6 & 4.5 & 0 \\ -6 & 9 & 0\end{array}$

PILE	29	-6	4.5

PILE	30	-6	13.5	0
PILLE	31	-6	18	0
PILE	32	-6	21	0

LOAD $22^{842: 4} 0$
LOAD $37^{749: 84} 0 \quad 781.5600-7921.160$
LOAD $4749.840 \quad 659: 3600-7469: 280$
LOAD $5280.800833 .0400-3442.40$
LOAD ${ }^{6} 2232: 960_{5} 625.040^{-3442 \cdot 4.12} 0$
$\begin{array}{llll}\mathrm{FOUT} \\ \mathrm{FFO} \\ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 7 \\ \text { PPSOUT1 }\end{array}$
FPL PPSOUT2

```
*******************************
* CORPS PROGRAM # X0080 *
* VERSION NUMBER # 86/09/02-A *
PLANTERS PUMP STATION FRONTAL PROTECTION TWALL
THERE ARE 32 PILES AND ( }3\mathrm{ LOAD CASES IN THIS RUN.
ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX 
```



```
PILE PROPERTIES AS INPUT
```



```
THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -
    ALL
SOIL DESCRIPTIONS AS INPUT
ES
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { ESOIL } \\
& \mathrm{K} / \text { IN }
\end{aligned}
\] & LENGTH & \(\underset{\mathrm{F} T}{ }\) & LT \\
\hline . \(46000 \mathrm{E}-01\) & L & \(.63000 \mathrm{E}+02\) & . \(00000 \mathrm{E}+00\) \\
\hline
\end{tabular}
THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -
ALL
```



```
PILE GEOMETRY AS INPUT AND/OR GENERATED
NUM
1
2
3
4
5
6
\begin{tabular}{lr}
X & \multicolumn{1}{c}{\(\boldsymbol{Y}\)} \\
FT & FT \\
6.00 & -24.38 \\
6.00 & -20.63 \\
6.00 & -16.88 \\
6.00 & -13.13 \\
6.00 & -9.38 \\
6.00 & -5.63
\end{tabular}
FT BATTER ANGL
```



```
FIXITY
\(.00 \quad 2.00 \quad .00 \quad 63.0\)
\(P\)
\(P\)
\(P\)
\(P\)
\(P\)
\(P\)
\(P\)
```


APPLIED LOADS

$\begin{aligned} & \text { LOAD } \\ & \text { CASE } \end{aligned}$	PX	PY	$\begin{array}{r} \mathrm{PZ} \\ \mathrm{~K} \end{array}$	$\stackrel{\text { MX }}{\text { FT }}$	$\stackrel{M Y}{\text { FTM }}$	$\stackrel{\mathrm{MZ}}{\mathrm{FT}-\mathrm{K}}$
1	842.4	. 0	1006.2	. 0	-8679.3	. 0
2	842.4	. 0	856.4	. 0	-8132.8	. 0
3	749.8	. 0	781.6	. 0	-7921.2	. 0
4	749.8	. 0	659.4	. 0	-7469.3	. 0
5	280.8	. 0	833.0	. 0	-3442.4	. 0
6	233.0	. 0	625.0	. 0	-3006.1	. 0

ORIGINAL PILE GROUP STIFFNESS MATRIX

PILE CAP DISPLACEMENTS

$\begin{aligned} & \text { LOAD } \\ & \text { CASE } \end{aligned}$	$\frac{\mathrm{DX}}{\mathrm{IN}}$	$\begin{aligned} & \text { DY } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \mathrm{DZ} \\ & \mathrm{IN} \end{aligned}$	$\begin{array}{r} \mathrm{RX} \\ \mathrm{RAD} \end{array}$	$\begin{gathered} \text { RY } \\ \text { RAD } \end{gathered}$	$\begin{array}{r} \mathrm{RZ} \\ \mathrm{RAD} \end{array}$
	. 2380E-01	-. $1094 \mathrm{E}-06$. 1201E-01	-. 1993E-11	-. 2567E-03	-. 1810E-11
2	-7284E-01	-. $1315 \mathrm{E}-06$.6037E-02	. $1125 \mathrm{E}-11$.1157E-03	.1297E-10
3	. $1369 \mathrm{E}-01$	-. $1162 \mathrm{E}-06$.8878E-02	-. $1930 \mathrm{E}-11$	-. $2992 \mathrm{E}-03$	-.3420E-11
4	. $5415 \mathrm{E}-01$	-. $1342 \mathrm{E}-06$. $3978 \mathrm{E}-02$. $6380 \mathrm{E}-12$. $8127 \mathrm{E}-05$.8767E-11
5	-. $6218 \mathrm{E}-01$. $4105 \mathrm{E}-07$.1818E-01	-. $5783 \mathrm{E}-11$	-. $5893 \mathrm{E}-03$	-.2266E-10
6	-. $5864 \mathrm{E}-01$.2305E-07	.1420E-01	-. $5041 \mathrm{E}-11$	-.5513E-03	-. $2064 \mathrm{E}-10$

PILE FORCES IN LOCAL GEOMETRY
M1 \& M2 NOT AT PILE HEAD FOR PINNED PILES

* INDICATES PILE FAILURE
\# INDICATES CBF BASED ON MOMENTS DUE TO
B INDICATES BUCKIING CONTROLS

PIIE	$\mathrm{F}_{\frac{1}{K}}$	$\mathrm{F}_{\mathrm{K}}^{2}$	F3	$\stackrel{\mathrm{MI}}{\mathrm{IN}-\mathrm{K}}$	$\mathrm{IN}_{\mathrm{N}}^{\mathrm{M}} \mathrm{~K}$	$\text { IN3 }_{\mathrm{M}}^{\mathrm{M}} \mathrm{~K}$	ALF	CBF	$\begin{aligned} & \text { ASC } \\ & \text { KSI } \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \text { KSI } \end{aligned}$
1	. 0	. 0	79.2	. 0	-1.9	. 0	. 99	. 37	1.26	1.22
2	. 0	.0	79.2	.0	-1.9	.0	.99	. 37	1.26	1. 22
3	. 0	. 0	79.2	. 0	-1.9	. 0	.99	. 37	1.26	1. 22
4	. 0	. 0	79.2	. 0	-1.9	. 0	. 99	. 37	1.26	1.22
5	. 0	. 0	79.2	.0	-1.9	. 0	.99	-37	1.26	1.22
6	. 0	. 0	79.2	. 0	-1.9	. 0	. 99	. 37	1.26	1.22
7	. 0	. 0	79.2	. 0	-1.9	. 0	. 99	. 37	1.26	1.22
8	. 0	. 0	79.2	. 0	-1.9	. 0	. 99	. 37	1.26	1.22
9	- 0	. 0	79.2	- 0	-1.9	. 0	-99	. 37	1. 26	1.22
10	- 0	. 0	79.2	- 0	-1.9	-0	-99	- 37	1. 26	1. 22
11	. 0	- 0	79.2	- 0	-1.9	- 0	. 99	. 37	1.26	1.22
12	. 0	. 0	79.2	. 0	-1.9	. 0	.99 .99	. 37	1. 26	1. 22
14	. 0	. 0	79.2	. 0	-1.9	. 0	. 99	. 37	1.26	1.22
15	. 1	. 0	56.2	. 0	-3.3	.0	.70	. 18	1.15	1.10
16	. 1	. 0	56.2	. 0	-3.3	. 0	.70	. 18	1.15	1.10
17	.1	. 0	56.2	. 0	-3.3	. 0	.70	-18	1.15	1.10

	$\begin{aligned} & \text { 暍 } \\ & \text { 荡 } \end{aligned}$	
	次摂	
リNVVVのにのanganangana 	$\underbrace{\text { rax }}$	
	$\begin{aligned} & \text { 葡葆 } \end{aligned}$	O00000000000000000000000000
	篗	
O000000000000000000	$\begin{aligned} & \text { H3 } \\ & \substack{13 \\ 4} \end{aligned}$	
NNNNNNトトトトトトトートトトトトロト 	昆	
	噣	
	$\begin{aligned} & \text { 第㖃 } \end{aligned}$	gaggaggaggooogoonninninninninni
 	资置	－••••••••

$\begin{aligned} & 21 \\ & 22 \end{aligned}$	$\begin{array}{r} .2 \\ -.2 \end{array}$.0 .0	57.7 -42.1	.0 .0	-11.6	. 0	.72 .70	. 19	1.18	1.08 \#
23	-. 2	.0	-42.1	.0	12.5	.0	.70	. 54	. 67	. 57
24	-. 2	.0	-42.1	.0	12.5	. 0	.70	. 54	. 67	. 57
25	-. 2	. 0	-42.1	. 0	12.5	.0	.70	. 54	. 67	57
26	-. 2	. 0	-42.1	. 0	12.5	. 0	.70	. 54	.67	. 57
27	-. 2	.0	-42.1	. 0	12.5	.0	.70	. 54	. 67	. 57
28	-. 2	. 0	-42.1	. 0	12.5	. 0	.70	. 54	.67	57
29	-. 2	. 0	-42.1	. 0	12.5	. 0	.70	. 54	.67	. 57
30	-. 2	. 0	-42.1	. 0	12.5	- 0	.70	. 54	.67	. 57
31	-. 2	- 0	-42.1	. 0	12.5	. 0	. 70	. 54	. 67	. 57
32	-. 2	. 0	-42.1	. 0	12.5	$\bigcirc 0$.70	. 54	.67	- 57
LOAD	CASE -	5								
PILE	$\mathrm{F}_{\mathrm{K}}^{1}$	$\begin{array}{r} \mathrm{F} 2 \\ \mathrm{~K} \end{array}$	$\begin{gathered} \mathrm{F} 3 \\ \mathrm{~K} \end{gathered}$	$\mathrm{IN}_{\mathrm{N}}^{\mathrm{M}}-\mathrm{K}$	$\mathrm{IN}_{\mathrm{N}-\mathrm{K}}^{\mathrm{M}}$	$\mathrm{IN}^{\mathrm{M}}-\mathrm{K}$	ALF	CBF	$\begin{aligned} & \text { ASC } \\ & \text { KSI } \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \text { KSI } \end{aligned}$
	-. 3	. 0	55.2	. 0						
2	-.3	.0	55.2	. 0	20.5 20.5	. 0	. 69	. 17	1.18 1.18	1.05 \#
3	-. 3	- 0	55.2	. 0	20.5	.0	. 69	-17	1.18	1.05 \#
4	-. 3	. 0	55.2	. 0	20.5	. 0	. 69	. 17	1.18	1.05 \#
5	-. 3	. 0	55.2	. 0	20.5	.0	. 69	. 17	1.18	1.05 \#
6	-. 3	. 0	55.2	. 0	20.5	. 0	. 69	. 17	1.18	1.05 \#
7	-. 3	. 0	55.2	.0	20.5	. 0	. 69	. 17	1.18	1.05 \#
8	-. 3	- 0	55.2	- 0	20.5	- 0	. 69	.17	1.18	1.05 \#
9	-. 3	- 0	55.2	- 0	20.5	.0	. 69	. 17	1.18	1.05 \#
10	-.3 -3	- 0	55.2	- 0	20.5	. 0	. 69	-17	1.18	1.05 \#
11	-.3 -.3	. 0	55.2	. 0	20.5	. 0	. 69	. 17	1.18	1.05 \#
13	-. 3 -.3	-0	55.2	. 0	20.5 20.5	. 0	. 69	. 17	1.18	1.05 1.05
14	-. 3	. 0	55.2	. 0	20.5	. 0	. 69	. 17	1.18	1.05 \#
15	-. 3	. 0	$2 \cdot 3$. 0	17.4	.0	. 03	. 25	. .91	1.79
16	-. 3	. 0	2.3	- 0	17.4	.0	. 03	.25	.91	. 79
17	-. 3	. 0	$2 \cdot 3$. 0	17.4	.0	. 03	. 25	.91	. 79
18	-. 3 -.3	. 0	2.3	. 0	17.4	. 0	. 03	. 25	. 91	. 79
20	=.3	. 0	2.3 2.3	. 0	17.4	- 0	. 03	. 25	- 91	. 79
21	-. 3	.0	2.3	. 0	17.4	. 0	. 03	. 25	. 91	. 79
22	- 3	. 0	12.8	.0	-16.5	.0	. 16	. 20	. 96	. 85 \#
23	. 3	. 0	12.8	. 0	-16.5	.0	.16	. 20	. 96	.85 \#
24	. 3	. 0	12.8	. 0	-16.5	. 0	. 16	. 20	. 96	.85 \#
25	- 3	. 0	12.8	. 0	-16.5	.0	.16	.20	. 96	.85
26	- 3	- 0	12.8	. 0	-16.5	. 0	. 16	. 20	. 96	.85
27	- 3	. 0	12.8	. 0	-16.5	. 0	. 16	. 20	. 96	.85 \#
28	- 3	- 0	12.8	. 0	-16.5	. 0	-16	- 20	. 96	.85 \#
30	- 3	. 0	12.8	. 0	-16.5	. 0	- 16	- 20	. 96	. 85 \#
31	. 3	. 0	12.8	. 0	-16.5	-0	. 16	. 20	. 96	. 85 \#
32	. 3	.0	12.8	. 0	-16.5	-0	.16	. 20	. 96	
LOAD	CASE -	6								
PIIE	$\mathrm{F}_{\mathrm{K}}^{1}$	$\underset{\mathrm{K}}{\mathrm{~F}}$	$\begin{gathered} \mathrm{F} 3 \\ \mathrm{~K} \end{gathered}$	$\stackrel{\mathrm{M1}}{\mathrm{IN}-\mathrm{K}}$	$\stackrel{M 2}{\mathrm{M}-\mathrm{K}}$	$\stackrel{\text { M3 }}{\text { IN-K }}$	ALF	CBF	$\begin{aligned} & \text { ASC } \\ & \text { KSI } \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \text { KSI } \end{aligned}$
$\frac{1}{2}$	$\cdots=.3$. .0	45.9 45.9	. 0	19.0	- 0	. 57	. 13	$\frac{1}{1.13} 13$	$\begin{aligned} & 1.01 ~ \# \\ & 1.01 ~ \# \end{aligned}$

$\infty \infty \infty \infty \infty \infty \times \infty \times \infty$
NANNNNNNNNN $m \infty 0000000 \omega \omega$
ఉん
(\#\#

PILE FORCES IN GLOBAL GEOMETRY

PILE	$\frac{\mathrm{pX}}{\mathrm{~K}}$	PY	$\underset{\mathrm{K}}{\mathrm{~K} Z}$	$\stackrel{M X}{\mathrm{MX}}$	M ${ }_{\text {M }}$	$\mathrm{IN}_{\mathrm{M}} \mathrm{~K}$
1	35.5	. 0	70.9	. 0	. 0	. 0
2	35.5 35.5	:0	70.9	. 0	-0	:0
4	35.5	. 0	70.9	. 0	0	. 0
5	35.5	. 0	70.9	-0	-0	:0
6	35.5 35.5	- 0	70.9	- 0	- 0	- 0
8	35.5	0	70.9	-0	- 0	-0
9	35.5	\bigcirc	70.9	$: 0$.0	-0
10	35.5	- 0	70.9	- 0	. 0	\bigcirc
12	35.5	. 0	70.9	-0	-0	-0
13	35.5	. 0	70.9	-0	. 0	:0
14	35.5 25.2	. 0	70.9	-0	-0	- 0
16	25.2	:0	50.2	. 0	-0	. 0
17	25.2	-0	50.2	: 0	0	:0

111111111111111111NNNNNNNNNN Нん

Protected siot

FLOOD SIDE.

LOAD COMBINATIONS.

- clockwise + Anticlock

From
PILE

SOI ES
AN ALL

$\begin{array}{lllllllllll}\text { OLS } 5 & 72 & 54 & 600 & 223 & 133 & 1510 & 1167 & \mathrm{H} & 14 \\ \text { AK }\end{array}$

440 BAT 2.0 ALL
450 ANG $270 \quad 1$ To 5
455 ANG $90 \quad 6$ TO 20
460 AL $1 .-17.5-4.5 \quad 0.0$
461 PLL 6 -1.7.5 $1.0 \quad 0.0$
463 PIL $11 \begin{array}{lllll} & -17.5 & -4.5 & 0.0\end{array}$
465 Row $\times 61500$
480 low $x 574$ C 8.75
485 Row $x 6125$ @ 7.0

$\begin{array}{llllllllll}510 & \text { LAA } & 2 & 0 & 427.6 & 462.8 & 3411.2 & 0 & 0\end{array}$

600 FOU 1 F97.5 $353.1 \quad 3563 \quad 0 \quad 0$
610 PFO 3456 TWALLPOI
1620 PFO ALL
FPL N

PRELIMINARY

> U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

REACH 3
ALLOWABLE PILE LOAD CAPACITIES SQUARE PRECAST, PRESTRESSED CONCRETE PILES TOP OF PILE AND DREDGE DEPTH AT EL - 10.5

SIZE	PILE TIP ELEVATION IN FEET NGVD	ALLOWABLE PILE LOAD CAPACITY IN TONS FACTOR OF SAFETY ≈ 2	
		COMPRESSION	TENSION
12-In. Square	-39	12	9
	-49	16	12
	-59	23	16
	-69	30	22
14-In. Square	-39	15	11.
	-49	20	15°
	-59	27	20
	-69	36	27
16-In. Square	-39	17	
	-49	23	16
	-59	31	23
	-69	41	30

These allowable pile load capacities are suitable for piles supporting new T-wall at Units 1 through 5 of Planters Pump Station.

PRELIminary

U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA

MODULUS OF HORIZONTAL SUBGRADE REACTION REACH 3

ELEVATION IN FEET	$\frac{K_{h} x B}{D C}$
10 to 0	169
0 to -19	155
-19 to -40	
-40 to -45	167
-45 to -50	
-56 to -67	178
	222

Where: $\quad K_{H}=\quad$ Modulus of horizontal subgrade reaction (lbs/in. ${ }^{\text { }}$)
$B \quad=\quad$ Diameter of pile (inches)
C $=$ Reduction factor for cyclic loading
$C=0.5$ for cyclic loadin $\mathrm{C}=1.0$ for initial loading

D $=$ Reduction factor for effect of group action

D	PILE SPACING IN DIRECTION OF LOADING
1.0	8 B
0.85	7 B
0.7	6 B
0.55	5 B
0.40	4 B
0.25	3 B

T-WhL COADNG CASES:
iese I: static water fressure to sixs, no wink, imperviou: shect p.ie cut off (100% form)

Gse 1: Static water prosise to sax, nowiri, persises slact pule : int iff
ixue III: Static waterpessure to sixct2; now.id, impervou: slect $p \cdot 12$
Eix:: Case IV: Static cater pressure to swx $+2^{\prime}$, noinind, pervious shect pile (75% for e)

Case I: water at low waterlovil, no wind, (100% forcas)
Case VII. Wober at low water lewel, wiä̀ fron. flood sile (75%)

Notcsin) Anatysis nedizate no anbitañed force bemeith the bast of the
afactor of sint at EET=9,0 to manistain stability with respect to
if a fuccor at snty ot 1,28. A small unbilances lond is indlicated

4) Twall pressurve must be arreef by a battes pilc found ation.

1) Rench 3 so, 1 paramextens were west for thes analyses. The
tocition of Stratimm 3 is based on. Boritug ALGive 7 .

Stor Stibitity and T Wall Amalyseo units 6 thronf 9
Plenteno pump Station:
US Army corps of Enginerno
Eas Ej Hiarvev Cornal
Hecrricone Fiotection prei at
J. ificson Faino 2 , ion

WO FLATHEFF FUMF STATION T WALL

SOO SUIL ES O． 959 LEN 60 O ALL
E2O FIN ALL
410 DL 5 S 7254 6OO 22813215101160 H 14 ALL
430 ASC S $1 \% 0457.916 .850$ 1．75 O ALL
44）EAT a ALL
450 ANG $270123 \quad 45$

460 FILE 1 －17．5－4．5 0 －$-17.51 .0011-18.04 .50$
465 FOW x 5 14 AT 3.75
480 FOW $x 564$ AT 5.75
－4ES FOW $\times 1011$ G AT 4.0
GOO LOA 1 O $427.6527 .2 \times 594.40$ O
510 LOA $20427.6441 .0 \quad 3479.0$ O 0
520 LOA 30.897 .5407 .7348500
SSO LUA 4 O 397.5 §57．2 3614.400
540 LUA 5077.2450 .421500
ESO LOA 5077.2406 .4 .1300
560 LOA 7 0 100.4 456． 4 －12 0 O
570 LOA 8 a $46456.4-211.200$

02 FFO ALL
6.0 FF L N

```
*******************************
* COFF'S FFUGFifMM # xOO80 * LFGA - CASE FILE GFUUF ANALYSIS FFGGFAM
* VEFSIUN NUMEEF # 86/09/0G-A * FUUN DATE OS-SO-9G FUN TIME 11:2%:5%
**********************************
FLANTEFSO FUMF STATION T WALL
THEFE AFE 2O FILES AND 
ALL FI:E COQFDINATES AFE CONTAINED WITHIN A EOX
```



```
1HESE FILE FRUFEFTIES AFFGY IU IHE FULLUWTNG FILES ALL
```



```
FILE FFGFEFTIES AS INFUT
```

```
FILE FFGFEFTIES AS INFUT
```

SGIL DESCFIFTIONS AS INFUT
$E S$

ESOIL	LENETH	L	LU
E, $1 \mathrm{~N} * 2$		FT	FT
- SPOU0E-01	L	- buOOE+O2	. OOOOE+OO

THIS SOLL OESCFIFTION AFFLIES TO THE FQLLOWING FILES HLL
ν
j

num	x	γ	2	EATTEF	ANGLE	LENGTH	FIXIT
	FI	FT	Fi			FI	
1	-17.50	-4.50	. 00	2.0	270.00	60.00)	F.
2	-8.75	-4.50	. 0	2.00	270.00	00.00	F.
\square	. O0)	-4.50	.00	2.00	270.90	80.00	F
4	E.7	-4.50	. 00	2.00	270.00	00.00	F
5	17.50	-4.50	. 00	2.00	270.00	80.00	F.
0	-17.50	1.00	. 0	2.00	90.00	60.00	F.
7	-6.75	1.00	- Oi)	2.00	90.00	60.00	F
a	. 00	1.00	-00	2.00	90.00	60.00	F
9	8.75	1.00	. 00	2.00	90.00	60.00	F
10	17.50	1.00	-00)	2.00	90.00	60.00	F
11	-18.00	4.50	- 0)	2.00	90.00	60.00	$F \cdot$
12	-14.00	4.50	- 00	2.00	90.00	60.00	F
13	-10.00	4.50	. 0	2.00	90.00	60.00	F
14	-6.00	4.50	- 0	2.00	70.00	00.00	F
15	-2.00	4.50	- 0	2.00	80.00	60.60	F
10	2.0)	4.50	- 00	2.00	90.00	60.00	$F \cdot$
17	6.00	4.50	. OG	2.00	90.00	60.00	F
18	10.00	4. EOO	- 0)	2.00	70.00	60.00	F'
17	14.00	4.50	-00	2.00	90.00	60.00	F
20	19.00	4.50	-0	2.00	70.00	0.00	F

AFFLIED LOADE

LCAD	F'X	FY	Fz	ma	My	Mi
LASE	\therefore	8	ド	FT-k	FT-F.	FT-K
1	. 0	427.0	527.2	3694.4	- 0	-
$\stackrel{\square}{2}$	- 0	427.6	441.6	-479.6	-0	-0
$\underset{\sim}{3}$	- 0	377.5	407.7	34850	.	. 0
4	-0	577. 5	-®7.2	3614.4	- 0	. 0
5	. 0	7\% 7	456.4	219.0	-	-0
0	. 0	77.2	406. 4	518.0	- 0	-0
7	. 0	100.4	456. 4	-12.0	- 0	0
3	-0	45.0	456.4	-21. 2	. 0	- 0

UFIGINAL FILE GRGUF STIFFNESS MATFIX
$.74585 E+02-.31678 E-03-.52794 E-0 \Xi \quad-.26082 E-01 \quad .18524 E-08 \quad-12300 E+04$

－． $1678 \mathrm{E}-\mathrm{E}$	．89319E＋04	． $8857 \mathrm{SE}+04$	． 770 S9E＋00	． $625006-01$	
－．Eぐけ4E－03	． $88573 \mathrm{E}+04$	． $55504 \mathrm{E}+05$	． $58582 \mathrm{E}+00$	－ $125006+00$	こちOE－01
－．2003EE－01	． $77059 \mathrm{E}+0$	． $58582 E+00$	． $79825 E+08$	－60000E＋61	OOOE＋ 01
． $481 \mathrm{SE} \mathrm{E}-\mathrm{O}$	． $48875 \mathrm{E}-\mathrm{O}$	． 98750001	． $600 \mathrm{OCE}+01$	． $7886 E+0 \%$	
－－1280力E＋O4	． $15625 E-61$	－．15G2SE－01	.1 OOE＋01	－－ $103 \mathrm{SE}+09$	． $18.5 \mathrm{SE}+0{ }_{7}$

LOAD	CASE	1.	NUMEEF	UF－	FAILUFES $=$	0.	NUMEEF：	UF	FILES	IN	TENSION	$=$	5.
LOAD	CASE	2．	NLIEEEF	CiF：	FAILUFES＝	0.	NUMGEFi	UF	FHLES	IN	TENSION	$=$	5.
LGAD	UnSE	3.	NLMEEF：	OF	FAILUFES＝	0.	NUMMEEFi	OF	FILES	IN	TENSION	$=$	5.
LOAD	Case	4.	NUMEER	OF	FALLUFES＝	0.	NUMEEF	OF	FILES	IN	TENSIUN	$=$	10.
LUAD	CASE	5.	NUMEEF：	OF	FAILUFES＝	0.	NUMEEF	OF	FILES	IN	TENSICN	$=$	9
LOAD	CHSE	5.	NUMEEFS	OF：	FAILUFES $=$	0.	NUPIEER	OF	FILES	IN	TENSION	$=$	\because
LOAD	LHSE	7.	NUMEEF：	CFF	FAILUFES＝	0.	NUMEEF：	OF	FILES	IN	TENSION	$=$	\％．
LUAD	Case	E．	NLHEEF：	OF	FAILUFES＝	0 ）	Numberi of	OF	FILES	IN	TENSION	$=$	0.

FILE CAF DISFLACEMENTS

LOAB						
CASE	DX	DY	DZ	FX	Fiy	
	IN	IN	1 N	FiAD	FiGD	FAFD
1	－216OE－OE	－．2SO7E－01	．868SE－02	． $725 E-08$	－． $7019 \mathrm{BE}-11$	
2	－2OS2E－00	．6098E－O2	．उS12E－O2	． $442 \mathrm{FE-6马}$	－．60フSE－11	
3	．1919E－0t	－．1392E－01	． $4657 \mathrm{E}-02$	－S2SSE－OS	－． $6274 \mathrm{E}-11$	． $6.302 \mathrm{CO}-11$
4	．1847E－0゙	－．2S19E－01	． $027 \mathrm{E}-02$	． 77 OOE－0S	－． $6080 \mathrm{E}-11$	－． $6.600 \mathrm{OE}-11$
5	． $7716 \mathrm{E}-07$	． $704 \mathrm{E}-62$	．1332E－01	－． $1.41 \mathrm{EF}-\mathrm{O}$	－．8213E－12	－ $10 \mathrm{OFE}-11$
6	． $7197 \mathrm{E}-07$	． $1708 \mathrm{E}-02$	． $1196 \mathrm{E}-\mathrm{O1}$	－．S712E－04	－．1007E－11	－ 74.45
7	． $302 \mathrm{sE}-07$	－．1078E－01	．1399E－01	． $945 \mathrm{~L} E-04$	－． 175 SE －11	－ 5 －SEE－12
『	． $5517 \mathrm{E}-07$	． 2095 －01	． $1 \pm 14 E-01$	－S42E－0\％	． 10 EE -12	－ 1689 CaE －11

File forces in lacal geometry

M1 \＆ME NOT AT FILE HEGD FOF FINNED FILES
＊indicates file failufe
\＃INDICATES LEF BASED ON MOMENTS DUE TO （FS＊EMIN）FOR CONCFETE FILES

LOAD CASE - 1

FILE	$\mathrm{F} 1$	F	$F S$	$\begin{gathered} \mathrm{M1} \\ {[\mathrm{~N}-\mathrm{K}} \end{gathered}$	$\begin{gathered} \mathrm{H}_{2} \\ \mathrm{~N}-\mathrm{K} \end{gathered}$	$\begin{gathered} \mathrm{HE} \\ \text { IN-F: } \end{gathered}$	ALF	CEF	$\begin{aligned} & A \mathrm{C} \\ & \mathrm{ASt} \end{aligned}$	$\begin{aligned} & \mathrm{HEl} \\ & \mathrm{KSl} \end{aligned}$
1	. 1	. 0	-37.	-0	-7.9	. 0	. 69	. 47	. 6	. 61
$\underline{2}$. 1	. 0	-7\%	. 0	-7.7	. $)$. 69	. 47	. 68	. 61
-	. 1	. 0	-37. 3	. 0	-7.7	- $)$. 69	. 47	. 68	. .61
4	. 1	. 0	-37.	. 0	-7.9	. 0	. 69	. 47	. 68	. 61
5	. 1	. 0	-37. 5	- 0	-7.9	. 0	. 69	. 47	. 68	. 61
\%	-. 1	. 0	11.5	-0	5.5	. 0	-15	. 20	. 98	. 86 \#
7	-- 1	. 0	11.5	. 0	0.5	-0)	. 16	. 20	. 9.8	. 8.86
5	$-.1$. 0	11.5	. 0	5. 5	-0	. 16	. 20	. 93	. 86 \#
'7	$-.1$	-0	11.5	. 0	6.5	. 0	. 15	. 20	. 98	. 86 \#
19	$-.1$. 0	11.5	. 0	-. 5	-1)	. 10	. 20	. 9.3	. 86 \#
11	--2	. 6	71.7	. 0	9.6	. 0	1.00	.81	1.24	1.16 \#
12	\cdots	. 0	\%1.7	. 0	7.5	. 0	1.00	.	1.24	1.1出
15	-. 2	. 0	71.7	. 0	7.6	. 0	1.00	. 1	1.24	1.16 \#
14	-2	. 0	71.7	. 0	7.5	.0	1.00	- 1	1.24	1.16 \#
15	-. 2	.0	71.7	. 0	9.0	. 0	1.00	-	1. 24	1.10 \#
10	-. -	. 0	71.7	. 0	7.6	. 0	1.00	.31	1. 24	1.16 \#
17	-. -2	. 0	71.7	.0	7.6	. 0	1.00	. 1	1.24	1.16 \#
18	-- +	. 0	71.7	- \%)	9.6	- 0	1.00	$\cdots 1$	1.24	1.15 \#
19	-. 2	. 0	71.7	- 0	7.0	. 0	1.00	. 51	1. 24	1.16 \#
20	--	0	71.7	-	$\%$	- 0	1.00	.81	1. 24	1.16 \#

LOAD CAEE - 2

FILE	$F I$	$F 2$	F	$\begin{gathered} \text { M1 } \\ \text { IN-K } \end{gathered}$	$\begin{aligned} & \mathrm{Hz} \\ & 1 \mathrm{H}-\mathrm{C} \end{aligned}$	$\begin{gathered} 1 \mathrm{~s} \\ 1+\mathrm{N}-\mathrm{E} \end{gathered}$	ALF	CBF	$\begin{aligned} & \mathrm{ASC} \\ & \mathrm{KSI} \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \text { ESS } \end{aligned}$
1	-i)	. 0	-40.	0	-. 8	- 0	.86	. 5	. 62	. 59
2	-	. 0	-46.	. 0	-. 0^{8}	. 0	. 86	. 50	- 02	. 58
$\underset{ }{3}$. 0	-0	-40.3	.0	-. 8	. 0	. 8 d	. 5	. 0.2	. 58
4	. 0	. 0	-45.3	- 0	-. 3	. 0	. 80	. 56	- E-	- 58
5	- 0	. 0	-40.3	-0	$-.8$	-0	. 86	. Eio	. 62	. 58
t	- 0	. 0	23.8	- 0	-.	. 0	- 3	. 18	. 75	. 94 \#
7	-0	. 0	23.8	. 0	-. 3	-0	- 3	. 13	. 78	. 74 \#
8	. 0	. 0	23.8	. 0	$-.$.	- 0	. S	. 18	. 98	. 94 \#
9	. 0	-0	23.8	-0	-.	0	. S	.18	. 78	. 74 \#
10	. 0	- 0	2.8	- 0	-- .	. 0	- S	. 19	. 7	. 94 \#
11	. 0	- 0	-0.	- 0	1.0	0	. 84	. 22	1.17	1.12 \#
12	-	. 0	60.6	- 0	1.6	- 0)	. 84	. 22	1.17	$1.12 \#$
13	. 0	. 0	-0. 0	. 0	1.5	. 0	. 84	. 22	1.17	1.12 \#
14	. 0	- 0	60. 0	.0	1.0	. 0	. 84	. 2 L	1.1%	1.12 \#

.0	.84	.22	1.17	1.12
.0	-84	.22	1.17	1.12
.0	-84	.22	1.17	1.12
-0	-84	.22	1.17	1.12
.0	.84	.22	1.17	1.12
.0	.84	.22	1.17	1.12

LOAD CABE - \because

FILE	F1	$F z$	$\begin{gathered} \mathrm{F} \\ \mathrm{~F} \end{gathered}$	$\underset{\text { MN }}{\text { M }}$	$\underset{M 2}{\mathrm{M}-\mathrm{K}}$	$\begin{gathered} M B \\ 1 N-K \end{gathered}$	ALF	CEF	$\begin{aligned} & \text { ASC } \\ & \mathrm{KSI} \end{aligned}$	$\begin{aligned} & A 51 \\ & K S 1 \end{aligned}$
1	. 1	-0	-4.E. 7	. 0	--5. 3	. 0	. 81	. 54	- 5	
$\underline{\square}$. 1	- 0	-43.7	-0	-5.8	- 0	.81	. 54	-65	- 58
3	. 1	- 0	-4.3.7	. 0	-5. 8	-0	-81	- 54	-65	. 58
4	. 1	. 0	$-4.3 .7$	-0	-5.8	-0	.81	- 54	-65	- 58
5	. 1	. 0	-43.7	. 0	-5.8	-0	. 81	- 54	-65	- 58
-	-. 1	. 0	10.3	-0	4.1	0	.81 .14	. 54	. 65	- 56
7	-. 1	. 0	10.3	-0	4.1	\therefore	.14 .14	. 21	-92	- 60
8	-. 1	. 0	10.3	. 0	4.1	0	14 .14	. 21	- 72	- 86
9	- -1	- 0	10.	-0	4.1	-0	. 14	.21 .21	. 78	-85
10	-. 1	. 0	10.3	- 0	4.1	. 0	.14	-21	.72 .92	- 66
11	-. 1	- 0	02.3	-0	6.8	-0	. 80	- 21	.72 1.19	.86 1.12
12	$\cdots-1$. 0	$\bigcirc 2.8$	-9	5.8	0	.86	- 2.3	1.19	1.12 1.12
1.3	--. 1	-0	E2. 3	- 0	6.8	-	-88	. 23	1.19	1.12
14	$-.1$. 0	勺\%	. 0	5.8	. 0	-86	- 23	1.15	
15	$\cdots .1$	-0)	O2.	- 0	6.8	-	. 80	-23	1.17	1.12
16	-. 1	. 0	62.8	- 0	6.8	- 0	. 8 -	- 23	1.19	1.12
17	-. 1	0	62.	-	6.8	-	. E	-28	1.17	1.12
13	-. 1	- 0	-2.	-0	6.8	. 0	. 80	-2\%	1.19	1.12
19	-. 1	-0	-2,	. 0	0.8	-0	. 86	-28	1.19	1.12
20	\cdots	. 0	S®	- 0	0.8	. 0	. 8.	- -	1.19	1.12

LUAD CASE - 4

File	Fi	$F 2$	$\begin{gathered} \mathrm{Fs} \\ \mathrm{E} \end{gathered}$	$\begin{gathered} M 1 \\ 1 N-K \end{gathered}$	$\begin{gathered} \mathrm{H2} \\ \mathrm{~N}-\mathrm{E}: \end{gathered}$	$\begin{gathered} M B \\ I N-E: \end{gathered}$	ALF	CEF	$\begin{aligned} & \mathrm{ASC} \\ & \mathrm{KSI} \end{aligned}$	$\begin{aligned} & H S T \\ & \mathrm{ESI} \end{aligned}$
1	. 1	- 0	-51.3	. 0	-9. 1	0	90	c5		
2	. 1	. 0	-51.3	. 0	-7.1	. 0	. 96	-65	-61	- 5\%
\pm	. 1	. 0	-51.8	. 0	-9.1	-0	- 90	-65	-61	- 5
4	. 1	. 0	-5.5.8	. 0	-9.1	-0	. 70	-85	- 61	-
5	. 1	. 9	- 51.8	. 0	-9.1	. 0	. 96	-85	- 61	- 5
0	$\cdots .1$. 0	- -	. 0	6.7	. 0	. 01	-0\%	. 81	-
7	-. 1	. 0	\cdots	.0	6.4	0	. 01	-02	-87	-80
8	-. 1	. 0	-. 5	. 0	6.4	-	. 01			
7	-. 1	.0	-. 0	.0	6.4	-0	. 01	-02	-87	. 80
10	$-.1$. 0	- -6	. 0	©. 4	. 0	. -1	-02	.87	.80 .80

11	－． 2	．${ }^{\text {a }}$	5×5
12	． 2	． 0	0.8
1.3	2	． 0	688
14	\checkmark	－	$6 \pm .8$
15	． 2	． 0	68
10	－． 2	－ 0	6．3．8
17	－－2	． 0	5.8
18	－．2	． 0	63．8
19	－． 2	． 0	68.8
20	－． 2	－ 0	68.8

.0	7.8
.6	4.8
.0	9.8
.0	9.8
.0	9.8
0	9.8
.0	9.8
.0	9.8
.0	9.8
.0	9.8

$$
\begin{aligned}
& 4.8 \\
& 4.8 \\
& 9.8 \\
& 9.8 \\
& 9.8 \\
& 9.8 \\
& 4.8 \\
& 9.8 \\
& 9.8 \\
& 9.8
\end{aligned}
$$

.0	.89	.25	1.20	1.12	\ddagger
.0	.89	.25	1.20	1.12	\ddagger
.0	.87	.25	1.20	1.12	1
.0	.89	.25	1.20	1.12	\neq
.0	.89	.25	1.20	1.12	\ddagger
.0	.87	.25	1.20	1.12	\ddagger
.0	.89	.25	1.20	1.12	\ddagger
.0	.89	.25	1.20	1.12	\ddagger
.0	.89	.25	1.20	1.12	\ddagger
.0	.89	.25	1.20	1.12	\ddagger

LOAD CASE－ 5

FILE	F 1	F2	Fs
	R	E	k
1	－． 1	． 0	36． 8
z	－． 1	． 0	$\checkmark 8$
3	－． 1	．	S． 8
4	－． 1	． 0	S． 8
5	－． 1	． 0	3． 8
5	． 0	． 0	30.2
7	－0	－$)$	30.2
8	－0	－	30.2
\％	－0	－	30.2
10	． 0	． 0	30.8
11	． 0	． 0	17.0
12	－ 0	． 0	$1 \% 6$
15	－ 0	． 0	17.0
14	－ 0	． 0	17.0
15	． 0	． 0	1\％．0
16	－1	． 0	19.6
17	－ 0	． 0	19.0
19	－0	． 0	19.0
19	－ 0	． 0	19.0
20	－ 0	． 0	1%

M1	Hz
1N－	IN－E：
－ 0	S
． 0	\pm－
0	3.8
－0	Sos
． 0	S．
－0	－． 2
． 0	－ 2
0	－． 2
－0	－． 2
． 0	\cdots
0	－． 8
． 0	$-.3$
－ 0	－． 5
． 0	－．${ }^{-8}$
． 0	－． 8
－ 0	－． 8
． 0	－． 8
－ 0	$-.8$
． 0	－． 3
． 0	\cdots

ME	ALF	CEF	ASC	AST
1N－だ			KSI	KSI
．0	． 47	． 15	1.04	． 95 \＃
－0	． 47	． 15	1.04	． 98 \＃
－$)$	． 47	． 15	1.04	． 98
－ 0	． 47	． 15	1.04	． 78 \＃
． 0	． 47	.15	1.04	． 79 \＃
． 0	． 42	． 16	1.01	． 97 \＃
． 0	． 42	． 15	1.01	． 77 \＃
－0	－42	． 15	1.01	． 97 \＃
． O	． 42	． 10	1.01	． 97 \＃
－0	． 42	． 15	1.01	． 97 \＃
－ 0	． 26	.17	－ 7 돈	． 71 \＃
－ 0	． 26	． 18	． 75	． 91 \＃
－ 0	． 26	.17	． 75	． 71 析
． 0	－ 26	． 19	． 95	． 71 \＃
－0	． 26	.19	． 95	． 71 \＃
－0	． 26	.17	－ 95	． 71 \＃
． O	． 26	． 17	． 95	． 71 告
－ 0	． 26	.19	． 75	． 71 \＃
－0	． 26	.19	． 75	． 91 \＃
－ 0	． 26	.19	． 95	． 71 \＃

LOMA LASE－$\quad 0$

FMLE	FI	$F 2$	FE	$\begin{gathered} M 1 \\ I N-K \end{gathered}$	$\begin{gathered} M 2 \\ I N-K \end{gathered}$	$\begin{gathered} M E \\ 1 N-E \end{gathered}$	ALF	CEF	$\begin{aligned} & \mathrm{ASC} \\ & \mathrm{KSI} \end{aligned}$	$\begin{aligned} & \text { ASI } \\ & \mathrm{KSI} \end{aligned}$
1	． 0	． 0	28.2	． 0	1.9	.0	． 39	． 17	1.00	． 76 \＃
2	．O	． 0	2 ．2	． 9	1.9	． 0	． 39	． 17	1.00	． 96 \＃
\triangle	－ 0	． 0	28．2	． 0	1.7	－0	－39	．17	1.0	． 76 \＃
4	－ 0	－ 0	29．	． 0	1.7	． 0	． 39	． 17	1.00	． 96 \＃
5	－	－ 0	28.2	． 0	1.9	． 0	． 39	.17	1．00	． 90 \＃
0	． 0	． 0	24.1	． 0	． 8	． 0	． 8	.18	． 78	． 94 \＃

7	0	． 0	24.1	． 0	． a	． 0				44
8	－ 0	－ 0	24.1	－9）	． 8	－	－	－18	． 98	－ 44
9	－ 0	． 0	24.1	0	． 8	－	－	－ 18	－ 78	． 94
10	－ 0	－ 0	24.1	－0）	． 8	－	－	－ 18	． 98	－ 44
11	． 0	－0	19.8	． 0	． 8	－i	－33	－19	． 98	． 74
12	－ 0	－0	1\％．	． 0	－6	－0	．27	． 19	． 98	． 91
13	－ 0	－0	19．	． 0	－－	－0	－27	－19	－ 90	． 81
14	－0	－ 0	19．3	． 0	． 0	． 0	． 27	． 19	－ 90	． 91
15	－ 0	． 0	19.3	． 0	－ 0	． 0	－27	． 19	－ 96	.91 .91
10	.6	－0	17.3	－ 0	．	． 0	－27	．19	－75	.71 .91
17	． 0	． 0	17.3	－ 0	－ 0	0	． 27	－19	－ 90	． 91
19	． 0	－ 0	17．	．$)$	－ 0			－19	－ 96	． 91
19	． 0	－0	17.8	． 0	－0	－0	． 27	－ 19	． 96	－ 71
20	． 0	． 0	19.8	． 0	． 0	－0	． 27	． 19	． 90	． 91

LDAD LASE－

FILE	$F 1$	$F 2$	$F: 5$	$\begin{gathered} M 1 \\ I N-k: \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ \mathrm{M}-\mathrm{c} \end{gathered}$	$\begin{gathered} \text { HE } \\ \text { N-K } \end{gathered}$	ALF	CEF	$\begin{aligned} & \text { ASC } \\ & \mathrm{KSI} \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \text { ESI } \end{aligned}$
1	． 0	－0	28.3	0	-1.3					
$\underline{\square}$	－ 0	－ 0	2 Ba	． 0	-1.3	－0	－ 89	.17	1.00	.96
3	－	． 0	2S．	－0	－1．3	－0	－ 59	.17	1.00	． 96
4	－ 0	． 0	28．	－ 0	－1．-3	－ 0	－ 89	． 17	1.00	． 96
5	． 0	． 0	29.8	－0	－1．	－0	-88 -8	－17	1.00	． 76
θ	－． 1	． 0	17.3	． 0	－－	－9	－ 27	． 17	1.00	\bullet
\％	－． 1	． 0	1\％．3	． 0	\cdots	－0	－27	－19	． 90	－ 71
4	－． 1	－	1%	－	$\because 8$	－0	－27	－19	． 90	－ 91
\checkmark	$-.1$	． 0	1\％．	． 0	－88	－0	． 27	． 19	． 96	． 71
10	$\cdots .1$	． 0	17.8	0	$\bigcirc 8$	－0	－ 27	－ 19	－ 76	． 71
11	－． 1	． 0	2\％．2	－0	4.2	－0	－ 27	． 17	． 96	.81
12	－． 1	． 0	二7．	． 0	4.2	－0	－-8	． 17	1.00	－ 75
1.3	－． 1	－0	27．2	－0	4.2	． 0	－ 8	． 17	1.00	． 75
14	－． 1	． 0	27．2	0	4.2	0	－	． 17	1.00	－ 75
15	$-.1$	－0	27.2	－0	4.2	－ 0	－ 38	． 17	1.00	－ 75
10	－． 1	－0	－7．2	－0	4.2	－ 0	－ 88	． 17	1.00	． 75
17	－． 1	－ 0	二\％．	． 0	4.2	－ 0	－-8	－17	1.00	－ 75
1 E	-1.	． 0	こ\％．2	． 0	4.2	－	－ 38		1.00	． 95
17	－－． 1	． 0	27．2	－ 0	4.2	－	－ 8	． 17	1.00	－ 75
20	－． 1	． 0	2\％．2	． 0	4．2	－0	－-88	． 17	1.00	－95

LUAB LASE－E

File	$F 1$	$F=$	18	$\begin{gathered} M 1 \\ M-K \end{gathered}$	$\begin{aligned} & \mathrm{MO} \\ & \text { IN-E } \end{aligned}$	$\begin{gathered} \text { ME } \\ 1 \sqrt{1}-16 \end{gathered}$	ALLF	CEF	$\begin{aligned} & \mathrm{ASE} \\ & \mathrm{KSI} \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \mathrm{KS} \end{aligned}$
1	－－． 1	－0	41.1	－0）						
2	－－． 1	． 0	41.1	． 0	7.5	－0	.57 .57	.14 .14	1.08 1.08	$\begin{aligned} & 1.01 \\ & 1.01 \end{aligned}$

3	-. 1	. 0	41.1	. 0	7.5	. 0	. 57	. 14	1.09	1.01
4	$-.1$	-0	41.1	- 6	7 ¢	. 0	. 57	. 14	1.08	1.01
5	-. 1	. 0	41.1	-0	7.5	0	. 57	. 14	1.08	1.11
\bigcirc	. 1	.0	88.9	-0	-8. 4	-0	. 54	.14	1.00	1.61
7	. 1	- 0	38.7	. 0	-5. 4	- 0	. 54	. 14	1.00	1. 11
8	. 1	-0	$\triangle 8.9$	- 0	-3.4	- 0	. 54	. 14	1.05	1.01
9	. 1	. 0	38.7	- 0	-3. 4	. 0	. 54	. 14	1.00	1.01
10	- 1	. 0	58.7	- 0	-3. 4	- 0	. 54	. 14	1.00	1.11
11	. 1	. 0	11.1	-0	-4.8	-0	. 15	. 20	. 92	. 86
12	. 1	-0)	11.1	- 0	-4.8	-0	.15	. 20	. 92	. 36
13	. 1	- O	11.1	- 0	-4.8	- 0	. 15	. 20	. 92	. 86
14	- 1	- 0	11.1	. 0	-4.8	0	. 15	. 20	.92	. 86
15	- 1	-0	11.1	-0	-4.8	. 0	. 15	.20	. 92	. 86
10	. 1	-i	11.1	. 0	-4.8	. 0	. 15	- 20	. 92	. 86
17	- 1	- 0	11.1	. 0	-4. 5	. 0	. 15	. 20	. 92	. 96
18	. 1	-0	11.1	. 0	-4.8	- 0	- 15	. 20	. 92	. 8 S
19	. 1	. 0	11.1	- 0	-4.8	. 0	. 15	- 20	. 92	. 86
2	. 1	- 0	11.1	. 0	-4.3	. 0	. 15	. 2	. 92	. 36

File foffces in global gegmetfiy
LOAD CASE - 1

FILE

1	- 0	10.0
2	. 0	16.6
\square	- 0	16.0
4	- 0	16. 6
5	- -1	16.0
\checkmark	. 0	5.1
7	- 0	E. 1
¢	. 0	5.1
7	-0	5.1
10	- 0	5.1
11	. 0	$\bigcirc 1.9$
12	. 0	31.9
13	- 0	31.9
14	. 0	31.7
15	. 0	1.9
10	- 0	31.5
17	. 0	51.9
15	- 0	31.8
17		-1. 9

Fiz
K
3.4
-5.4
-3.4
-5.4
10.4
10.4
10.4
10.4
10.4
64.2
54.2
64.2
54.2
64.2
64.2
64.2
64.2
54.2

MX
IN-E
.0

-0	-0
-0	-0
-0	-0
-0	-0
-0	-0
.0	-0
-0	-0
-0	-0
-0	-0
-0	-0
-0	-0
-0	-0
-0	-0
-0	-0
-0	-0
-0	-0
-0	-0

LOAD LASE - B
FILE FX FY

1	-0
2	-0
5	0
4	-0
5	-0
6	-0
7	-0
6	-0
7	-0
10	-0
11	-0
12	-0
13	-0
14	4

12	-0	8.5
18	-0	8.5
14	-0	8.5
15	-0	8.5
10	-0	8.5
11	-0	8.5
18	-0	8.5
17	-0	8.5
20	8.5	

> 17.0
> 17.0
> 17.0
> 17.0
> 17.0
> 17.0
> 17.0
> 17.0
> 17.0
-0
-0
-0
0
.0
.0
.0
-0
.0
\because
－ 6
0
.0
.0
．
0
－
-0
.0
－0
－0
.0
LQAD EASE－

FILE

$F X$	$F Y$
$F:$	F

FZ
MX
IN－T
Mr
MZ
IN－K

.0	-0	-0
-0	-0	-0
-0	-0	-0
-0	-0	-0
-0	-0	-0
-0	-0	-0
-0	-0	-0
-0	0	-0
-0	-0	-0
-0	-0	-0
-0	-0	-0
-0	-0	-0
-0	-0	-0
-0	-0	-0
.0	-0	-0
-0	-0	-0
-0	-0	-0
.0	-0	-0
-0	-0	
.0	0	-0

LEAD CHSE－$\quad 7$
File

FX	FY
F	K

FZ
た
$25_{1} 3$

0
0
0
0
0
-0
-0
-0
-0
-0
0
-0
-0
-0
0
-0
-0
-0
-0
.0
.0

$$
\begin{array}{rr}
.0 & -12.7 \\
.0 & -12.7 \\
.0 & -12.7 \\
.0 & -12.7 \\
.0 & -12.7 \\
.0 & 8.6 \\
.0 & 8.6
\end{array}
$$

Mx
Mr
1NーK
Mz
IN－E

$$
\begin{aligned}
& 25.3 \\
& 25.3 \\
& 25.3 \\
& 25.3 \\
& 17.3 \\
& 17.3
\end{aligned}
$$

.0	-0	-0
-0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	-0
.0	-0	

8	－0	8.6	17．3	． 0	． 0	－0
9	． 0	8.6	17．3	． 0	． 0	． 0
10	． 0	8.6	1／．	． 0	． 0	－0
11	． 0	12．1	24.3	0	． 0	． 0
12	－ 0	12．1	$24 . \therefore$	． 0	． 0	－0
1.	－	12．1	24.8	． 0	． 0	． 0
14	0	1\％．1	24.3	． 0	． 0	． 0
15	． 0	12．1	24.3	． 0	． 0	． 0
10	0	12．1	24.3	－ 0	． 0	0
1%	－9	12.1	24． 3	． 0	． 0	0
18	． 0	12．1	24.3	． 0	． 0	． 0
19	0	12.1	24.3	． 0	． 0	－0
20	． 0	12．1	24.3	． 0	． 0	． 0

LEAD CASE－B

FILE

$F \cdot X$	$F Y$
\therefore	F

$$
\begin{aligned}
& F Z \\
& E
\end{aligned}
$$

$M X$
$M-E$
Mr
INE
$m z$
1トート

30.3	． 0	． 0	． 0
S¢．	． 0	－0	． 0
36．8	． 0	． 0	． 0
36.8	． 0	． 0	． 0
St．θ	－ 0	． 0	． 0
34．	． 0	． 0	． 0
74．8	． 0	． 0	．0
4． 8	． 0	－0	－
34.8	． 0	． 0	． 0
34.8	－ 0	－ 0	－ 0
7.8	． 0	． 0	．O
9.8	． 0	． 0	． 0
9.8	． 0	－ 0	－0
7.9	． 0	－0	．
7.8	． 0	． 0	． 0
7.8	． 0	－ 0	． 0
7.8	－ 0	． 9	． 0
7.0	． 0	－i）	－0
9.5	． 0	． 0	． 0
\％．9	． 0	． 0	． 0

S $\{\omega$ O $\# 13$ ONITS 1.3 STABILITY ANALYSIS

$$
s \omega e=9.5
$$

-FAILURE suriface (B) 4 - Req d Prensure $=1211 p s f$

$$
\omega t=663 \text { psf }
$$

remaining pressure $=1211-663=548$ pif
area: 1043.34

$$
\text { to tal load }=(1043.34)(548) / 1000=572^{k}
$$

$$
\begin{aligned}
& \# \text { Piles }=86 \\
& \text { load/pile }=572 / 84=6.6^{\mathrm{k} / \mathrm{p} .1 \mathrm{e}} \\
& \text { allowable: } 26^{k} \quad \text { ok }
\end{aligned}
$$

FAllURE SURFACE (Q), resd presoure $=1008$

$$
\begin{aligned}
& w t=6: 5 \\
& \text { remaming at }=1008-663=395 \text { ps } f \\
& \text { area }=1513_{s} f \\
& \text { total load }=(345)(1513) / 1000=522^{\mathrm{k}} \\
& \text { \#piles }=119 \\
& \text { load/p.le }=522 / 119=4.4^{\mathrm{k} \quad \text { ok }}
\end{aligned}
$$

-station is stable, no Twall reg.d

Sewerage \& Water Board \# /1 original station
failure surface (A)(1):
READ PRESSURE $=1668$ pSf

BASE SCAB THICKNESS: 22°

$$
\omega t=(150 \mathrm{pcf}-92 p \mathrm{f})(22 / 12)=106.33 \mathrm{ps} f
$$

($92 p$ ct: ωt. soil used by Eustis in stainlity analyuc)

$$
\begin{aligned}
& \text { FLOOR SLAB THICKNESS }=8^{\prime \prime} \\
& \omega^{t}=(150)(8 / 12)=100 \mathrm{pSf} \\
& \text { WALLS: } 2 \text { WALLS }=14^{\prime \prime} \text { THICK } \times 21.25^{\prime} \\
& \omega t=\left(\frac{14}{12}\right)(21.25)(150)(2)=7437.5 \mathrm{p} / \mathrm{f} / 66.08=112.5 \mathrm{pSf} \\
& \text { TOTAL }=106.33+100+112.5=318.83 \mathrm{ps} f
\end{aligned}
$$

Pressure to be taker by tension piles $=1668-317=1349 p=f$
\# piles in passive wedge area $\begin{aligned} & \left(13^{\prime} \text { width) }\right. \\ = & 66\end{aligned}$
Total load... passive worse area $=(1349 p s)\left(13^{\prime}\right)(71-) / 1000$

$$
=1245 \mathrm{k}
$$

Ave reside tension loo ser pile $=1245 / 66=18.9 \mathrm{k} /$ pile
\rightarrow Available tension par pile below el. $-21=22^{k} /$ pile

$$
22>18.9 \quad 0 k
$$

- Station is stable at SPH Levels, no T-wall is NEEDED.
- MODIFY Existing FLOODWALL TO EL. 9.5

SEWERAGE \& WATERBOARD \#\| (cont.)
NEW STATION:

$$
\begin{aligned}
& \text { FOR FAILURE SURFACE BC): } \\
& \text { REQUIRED PRESSURE }=942 \text { pSf } \\
& \text { BASE SCAB THICKNESS }=2^{\prime} \cdot 0^{\prime \prime} \\
& \omega t=(150-92)(2)=116 \text { pSf } \\
& \text { FLOOR SCAB THICKNESS }=1: 0^{\circ} \\
& \omega T=150 \text { PSf }
\end{aligned}
$$

TOTAL $\omega t=266$ psf

Pressure to be taken by tension pits $=842-266=676$ psf

Passive wedge area is $21^{\prime} \times 60.5^{\prime}=1270.55^{\prime}$

$$
\begin{aligned}
& \text { Total thload in passive wedge }=676(1270.5) / 1000=859 \mathrm{~K} \\
& \text { \#piles }=85+\frac{1}{2}(12)=91
\end{aligned}
$$

Total tension reg per pile $=859 / 91=9.4 \mathrm{~K}$ -below el-40.

- Tension capacity (by Eustis) = 18^{k}

$$
18>9.4 \text { ok. }
$$

-Station is stable for failure surface (B)(2) - No trace NEEDED.

- Tension correctors ? - call NY Associates - 885-0500

MR. LOGAN \rightarrow-THERE ARE NO TENSION CONNECTORS FOR PILES NY Assoc. $11-11-97$ under the base scab

FAILURE SURFACE (C) - Red Presume $=699$ psf Total $\omega t=266$ ps f
Pressure to be taken by tension piles $=699.266=433$ psf
Passive wedge area $=30^{\prime} \times 60.5^{\prime}=1815$ of

Total tension load in passive wedge area $=433(1815) / 1000=786^{\mathrm{K}}$
\#PILES $=1(12)+12(8)+8(2)=118$

Req d tension per pile $=786 / 118=6.6 \mathrm{~K} /$ pile
below failure surfau el. -50

$$
\begin{gathered}
\text { Tension capacity }(\text { bu v Eustis })=14^{\mathrm{k}} \\
14>6.6 \mathrm{ok}
\end{gathered}
$$

Failure Surface (DG: Req d pressure $=300$ ps f total $\omega t=266 \mathrm{p} f$

Pisisure to be taken by tension piles $=300-266=34$ ps f
Passive wedge area $=40^{\prime} \times 60.5^{\prime}=2420 \mathrm{sf}$
Total tension load on passive wedge $=34(2420) / 1000=82^{k}$

$$
\text { \#piles }=9(8)+8+i(12)=86
$$

Req tension per pile $=82 / 86=1 \mathrm{k} / \mathrm{pile}$

- below failure surface el -60

I. STATIC WATER PRESSURE TO SWL, NO WIND, IMPERVIOUS SHEET
PILE CUTOFF (100\%O FORCES)

II: STATIC WATER PRESSURE TO SOL, NO WIND, PERVIOUS SHEET PILE CUTOFF (100% FORCES)

III: STATIC WATER PRESSURE TO SEM +2', NOWIND, IMPERVIOUS SHEET
PIE CUTOFF (75% FORCES) PULE CUTOFF (75% FORCES)

IV STATIC WATER PRESSURE TO SOL + ', NO WIND, DERVISH: SHEET
PILE CUTOFF (7SO/F FORGES) PILE CUTOFF (750% FORGES)

II WATER @ LOW WATER LEVEL, NO WIND (100% FORCES)

VI WATER@ LOW WATER LEVEL, WIND FROM PTS (75% FORCES)

ALGERE AANAL $S E W B+11=A S T$
T.WAL FORCE TABYLATION
base
SWC Swct 2^{\prime} Luc P / s

WATER LOADS SwL
$i(1.31)(21)$ Exoyan:y:
impervious: (1.31)(5.0) pervious: (t$)(1.315(14)$ $5 \omega c+2^{\prime}:$
$(1.44)(23)$ Enoryanci:: $\cdots=0,100=$ $1.44)(5)$
pervous
$(i)(1.44)(14)$

$$
\begin{gathered}
L \omega L: \\
1(.72)(115) \\
\text { Buoyancy: } \\
\text { imperr.0us: } \\
(.72)(5) \\
\text { pervous } \\
(2)(.72)(14)
\end{gathered}
$$

WATER ON P/S:
(i) 0.63) (10.0 .0

MIND ON P/S

$$
(.52)(10.5)
$$

| \mid ALGERS こANAL

Pile capacity Lfrom Eustis:
14"円, PILE 7,P -69 NGGU.D. TTOP OF PILEE - II. 5 $\left.\begin{array}{l}\text { COMP: } 3 \text { Z RONS } \\ \text { TENS: } 24 \text { TONS }\end{array}\right\}$ VERTICAL EAIAC:TY

VERTICAL LETMGT: $=$ 69-115:57.5'

$$
\begin{gathered}
\text { BATTER: } 2 V: 1 H \\
\text { OVERALL LENGTH }=\sqrt{(57.5)^{2}+\left(\frac{57.5}{2}\right)^{2}}: 64^{\prime}
\end{gathered}
$$

OUERAM SAPACITY. COMP: $\sqrt{(32)^{2}+\left(\frac{3 I}{2}\right)^{2}}=35.8^{\top}=71.6^{K}$

$$
\text { TENS: } \sqrt{(24)^{j}+(i 2)^{2}}=26.8^{\top}=53.6^{k}
$$


```
100 S&WB #11 EAST T-WALI
200 PROP 4074 3201 3201 196 2.0 0.0 ALI
300 SOIL ES O.066 LEN 64 0 ALL
320 PIN ALJ
400 DLS S 72 54 600 223 133 1510 1167 H 14 AL工
420 ASC S 196 457 0.816 0.856 1.75 0.0 ALL
450
455 ANG 180 16 17 18 18
460 PILE I I1 5.5 1.5 -18 -180
470 PII,E 16-5.5 -180
475 ROW Y 10 1 1 9 AT 4.0
480
500 LOAD 1 424.4 0 652.8 0 -4348.4 0
```



```
520
```



```
550 LOAD 6 14. 1 0 408.9 0 -5 552.9.90
600 FOUT 1 2 3 & 5 6 7 SWBIIEO
610 PFO ALI
```

```
******************************** CM CPGA - CASE PILE GROUP ANALYSIS PROGRAM
```



```
S&WB #11 EAST T-WALL
THERE ARE 20 PILES AND ( }2\mathrm{ LOAD CASES IN THIS RUN.
ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX
```



```
*******************************************************************************
PILE PROPERTIES AS INPUT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\stackrel{E}{K}{ }_{S}^{S} I \\
.4070 \mathrm{O}+04
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{T} 1 \\
. \frac{\mathrm{T}}{\mathrm{~N} * * 4} \\
\hline 2010 \mathrm{E}+04
\end{gathered}
\] & \[
\begin{gathered}
\text { I2 } \\
\text { IN } N * 4 \\
32010 \mathrm{E}+04
\end{gathered}
\] & \[
\frac{A}{I N * * 2}
\] & C33 & B66 \\
\hline SE PILE PR & RTIES APPI & TO THE FOL & NG PILES & & \\
\hline ALL & & & & & \\
\hline
\end{tabular}
SOIL DESCRIPTIONS AS INPUT
```



```
        .66000E-01 L .64000E+02 .00000E+00
THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -
    ALL
PILE GEOMETRY AS INPUT AND/OR GENERATED
\begin{tabular}{lccccccc} 
NUM & X & Y & Z & BATTER & ANGLE & LENGTH & FIXITY \\
& FT & FT & FT & & & \\
1 & 5.50 & -18.00 & -00 & 2.00 & .00 & 64.00 & P \\
2 & 5.50 & -14.00 & 000 & 2.00 & 000 & 64.00 & P \\
3 & 5.50 & -10.00 & 000 & 2.00 & 000 & 64.00 & P \\
4 & 5.50 & -6.00 & 000 & 2.00 & 000 & 64.00 & P \\
5 & 5.50 & -2.00 & 000 & 2.00 & 000 & 64.00 & P \\
6 & 5.50 & 2.00 & .00 & 2.00 & 000 & 64.00 & P
\end{tabular}
```

7	5.50	6.00	. 00	2.00	. 00	64.00	
8	5.50	10.00	.00	2.00	. 00	64.00	$\stackrel{p}{p}$
9	5.50	14.00	.00	2.00	.00	64.00	p
10	5.50	18.00	.00	2.00	.00	64.00	P
11	1.50	-18.00	. 00	2.00	.00	64.00	P
12	1.50	-9.00	. 00	2.00	.00	64.00	P
13	1.50	. 00	. 00	2.00	.00	64.00	P
14	1.50	9.00	. 00	2.00	.00	64.00	P
15	1.50	18.00	.00	2.00	.00	64.00	P
16	-5.50	-18.00	.00	2.00	180.00	64.00	P
17	-5.50	-9.00	.00	2.00	180.00	64.00	P
18	-5.50	. 00	.00	2.00	180.00	64.00	p
19	-5.50	9.00	. 00	2.00	180.00	64.00	p
20	-5.50	18.00	.00	2.00	180.00	64.00	P

APPLIED LOADS

$\begin{aligned} & \text { LOAD } \\ & \text { CASE } \end{aligned}$	$\begin{gathered} \mathrm{PX} \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} \mathrm{PY} \\ \mathrm{~K} \end{gathered}$	$\underset{\mathrm{K}}{\mathrm{PZ}}$	$\stackrel{M X}{\mathrm{FT}-\mathrm{K}}$	$\stackrel{\text { MY }}{\mathrm{FT}}-\mathrm{K}$	$\stackrel{M Z}{\mathrm{FT}-\mathrm{K}}$
1	424.4	. 0	652.8		-4348.4	0
2	424.4	. 0	548.0	. 0	-4348.4	. 0
3	402.4	- 0	505.8	. 0	-4189.8	0
4	402.4	- 0	419.4	. 0	-3922.5	. 0
5	39.6	- 0	545.2	-0	-1106.4	. 0
6	14.1	. 0	408.9	. 0	-552.9	.0

ORIGINAL PILE GROUP STIFFNESS MATRIX

PİLE CAP DISPLACEMENTS

$\begin{aligned} & \text { LOAD } \\ & \text { CASE } \end{aligned}$	$\begin{aligned} & \text { DX } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \text { DY } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \text { DZ } \\ & \text { IN } \end{aligned}$	$\begin{gathered} \mathrm{RX} \\ \mathrm{RAD} \end{gathered}$	$\begin{array}{r} \text { RY } \\ \text { RAD } \end{array}$	$\underset{\text { RAD }}{R Z}$
1	-. $2627 \mathrm{E}-01$	-. $4038 \mathrm{E}-07$.1369E-01	-. $4916 \mathrm{E}-12$		
2	$\text { - } 1419 \mathrm{E}-01$	$\text { -. } 5907 \mathrm{E}-07$	$.7166 \mathrm{E}-02$	$\begin{array}{r} .4916 E-12 \\ .6528 E-12 \end{array}$	$\begin{array}{r} =.5934 \mathrm{E}-03 \\ -.2742 \mathrm{E}-03 \end{array}$	-. $23128 \mathrm{E}-11$
3	$-.2021 \mathrm{E}-01$	$\text { -. } 6036 \mathrm{E}-07$	$.8458 \mathrm{E}-02$	-. $2850 \mathrm{E}-12$	-. $5604 \mathrm{E}-03$	-.9478E-12
4	-1313E-0I	-.7577E-07	- $3079 \mathrm{E}-02$. $6581 \mathrm{E}-12$		-1030E-11
5	$\text { -. } 1148 \mathrm{E}+00$. $8622 \mathrm{E}-07$. $2660 \mathrm{E}-01$	-. $3315 \mathrm{E}-11$	-. $8747 \mathrm{E}-03$	-. $8718 \mathrm{E}-11$
6	-. $7649 \mathrm{E}-01$. $7129 \mathrm{E}-07$.1979E-01	-.2247E-11	-. $5502 \mathrm{E}-03$	-. $6383 \mathrm{E}-11$

PILE FORCES IN LOCAL GEOMETRY
M1 \& M2 NOT AT PILE HEAD FOR PINNED PILES
\# INDICATES
\# INDICATES CBFE FASED OE MENENTS MOME TO
B INDICATES (FUCKITNG FOR CONCRETE PILES

∞ NのルかんNゅ 10000000				
00000000	次界		愌 ${ }^{\omega}$	
geverefereit かかかかかかかか Aかかかかかかか	x＇心	ifow ex evivivivivivivivivi	，x $x^{\text {ch }}$	inivivivivivivininninnini
000000	$\underset{\substack{\sum_{X}^{\prime} \\ \hline \\ \hline}}{ }$	$\bigcirc 0000000000000000$		
$\begin{aligned} & 1 \\ & \hline \end{aligned} \cdot$		！！！！！ 		NNNNNŃŃNŃN゙，！！！！！！
－0000000		$\bigcirc 0000000000000000$	$\underset{y_{X}^{\prime}}{y_{3}^{\prime}}$	
	芴		芴	
Yupicuivivis	吅		䍖	
品	䈌	OOOOOGOGGOUNNNNNNNNNN	䘽荗	．．．．．．
		anana．．． ！－－ NNNNN	算䍚	aiagaiobobiiciciilici

15	-. 5	. 0	-15.9	. 0	24.4	0	29	25		68
16	. 4	.0	40.4	.0	-22.6	.0	. 29	. 25	. 83	. 68
17	. 4	. 0	40.4	.0	-22.6	. 0	. 56	$\cdot 14$	1.11	-97
18	. 4	. 0	40.4	. 0	-22.6	.0	. 56	$\cdot 14$	1.11	-97
19	. 4	. 0	40.4	. 0	-22.6	.0	. 56	.14	1.11	-97
20	. 4	.0	40.4	.0	-22.6	.0	. 56	. 14	1.11	-97

PILE FORCES IN GIOBAL GEOMETRY

> U.S ARMY CORPS OF ENGINEERS EAST OF HARVEY CANAL HURRICANE PROTECTION PROJECT JEFFERSON PARISH, LOUISIANA Proposed T Wull
> stwB P. Stut, on il East
> ALLOWABLE PILE LOAD CAPACITIES SQUARE PRECAST, PRESTRESSED CONCRETE PILES TOP OF PILE AT EL -10

SIZE	PILE TIP ELEVATION IN FEET NGVD	ALLOWABLE PILE LOAD CAPACITY IN TONS	
		COMPRESSION	TENSION
12-In. Square	-39	1216	912
	-49	1620	1216
	-59	2126	1620
	-69	2732	2024
	-39	1419	1014
	-49	1924	1418
	-59	2530	1823
	-69	3237	2428

Protected side

FLOODSIDE

MEMO

Tn: DEI

TENTION: MS APRIL HURRY
$ヶ$ ROM : EUSTIS ENGINEERING

TOM STREMLAU

SUBJECT: PREL INFO OF MODIFIED S \&WB STATION 11 WEST
ALGIERS CANAL PROJECT
I HAVE ENCLOSED PREL PENCILED COPIES OF SLOPE STABILITY AND T WALL ANALYSES FOR A MODIFIED P STATION 11 WEST WITH A NEW T WALL 63' FROM FACE OF PUMP HOUSE.
ALSO I INCLUDED PILE CAPACITY INFO FOR PILES SUPPORTING NEW T WALL.

\qquad

Modified $S+W B$ station 11 west

Note: 1) Capacity contribution to E(-47 has been ignored. 2) Reach 4 soil parameters have been nod for this analysis, Howerce, soil paranction below E1-80 have been as sired, soil bring must be perlman to confirm, soil cord ion beloud this level fou final
$\frac{5+1+c+1}{1+1}$

© PRELIMINARY

stration $N_{0} \text {. }$	Soil type	$\begin{aligned} & u_{n i n}+ \\ & \text { weinnt } \\ & \text { PcF } \end{aligned}$	Fridion Coheoion ρ sf			$\begin{aligned} & \text { Safety } p_{0} \\ & \text { Fration } \\ & \text { Anish } \end{aligned}$	corar $=$ Cones.	$\frac{1,3}{\text { on } P \text { S }}$
	$\bigcirc{ }^{-10}$	- W	0	-35	3	0	264	265
	c							
	Cle					O	308	308
				48	5	0	369	431
	Clar	101,0	0	630	io	0	485	538
FWhG Anatysis Sumination of Frves Using Fácloved Shear Strenaths								
Failme Surface		$\begin{aligned} & R \\ & s i n n \\ & s i f y \\ & \hline \end{aligned}$						fths vatent sure
		561				lbs H		
		¢4 43	48932			38		
		823	62307	65		2455		

\qquad

PUMPING STATION MECHANICAL CALCULATIONS

Calculations - Belle Chasse 2 Pumping Station

1) Priming Horsepower Available

Assumptions: - Future - 10.00 pump start up

- $115,000 \mathrm{gpm}$ flow rate to prime tube
- 70% Efficiency at Priming

Priming Head

$$
\begin{aligned}
& \text { STATiC }=E L .-10.00 \text { to } t 15.50 \text { (topog pipe) }=25.50 \\
& \text { Velocity Head }=\mathrm{V}^{\mathrm{v}} / \mathrm{zg}=(256 / 28.27)^{2} / 2.32 .2=9.06 / 64.4=1.28
\end{aligned}
$$

$$
\begin{aligned}
& 26.88^{\prime}
\end{aligned}
$$

Horsepower Req'd at Priming

$$
\text { H.P. }=\frac{115,000(26.88)}{(3960)(.70)(1)}=11 / 5.2 \text { h.p. }
$$

Available priming horsepower $=1280 \mathrm{~h} . \mathrm{p}$.
Additional head loss due to extended $7 z i n c h$ pipe

$$
H_{f}=\left(\frac{36}{100}\right) \cdot 2083\left(\frac{100}{140}\right)^{1.86}\left(\frac{180,000}{72^{4.8666}}\right)=0.218 \mathrm{ft} .
$$

Horse power demand due to additional friction

$$
\text { HP. }=\frac{(180000 \mathrm{gpm})(0.218 \mathrm{ft})}{(3960) \cdot(0.75)(1)}=13.21 \text { horsepower }
$$

Calculations Planters Pumping Station
Head and Horsepower requirements

1) 72 inch (310 cfs) pumps - station addition
a) Pipe friction - 64 ft . Tube extension

$$
\Delta H_{f}=\frac{64 \mathrm{ft}}{100}(.2083)\left(\frac{100}{140}\right)^{1.86}\left(\frac{[(310)(448.8)]^{1.86}}{84^{4.866}}\right)=0.114 \mathrm{ft}
$$

b) horse power

$$
H_{p}=\frac{(310)(448.8)(0.114 \mathrm{ft})}{3960(.78)(1)}=5.13 \mathrm{h.p}
$$

2) 7zinch (290cfs) pumps - original station
a) Pipe friction - : 64 ft Tube extension

$$
\Delta H_{f}=\frac{64}{100}(.2083)\left(\frac{100}{140}\right)^{1.86}\left(\frac{[(290)(448.8)]^{1.86}}{78.4 .866}\right)=0.144 \mathrm{ft} .
$$

b) horse power

$$
H_{p}=\frac{(290)(448.8)(0.144 \mathrm{ft})}{3960(.81)(1)}=5.84 \text { h.p. }
$$

(3) Uh inch (50 cfs) vertical pump
a) Pipe friction -64 ft tube extension

$$
\Delta H_{f}=\ldots \frac{64}{100}(.2083)\left(\frac{100}{140}\right)^{1.86}\left(\frac{(50)(448.8)]}{364.866}\right)=0.236 f t
$$

b) horsepower

$$
H_{p}=\frac{(50)(448.8)\left(0.236^{1}\right)}{3960(.75)(1)}=1.78 \text { h.p. }
$$

New Orleans Sewerage '́ water Board STA. \# 11 Calculations on 100 "ward Propeller Pumps

Scope - Replace steel Conical Discharge tube w/ Flaring Concrete discharge- Determine head loss change and affect on pump operation

Method - Cakulate total head loss attributed to the pump by the existing mitenar elbow and cone. Cakulate the total head losses that would be attributed to the pump when using the flared concrete discharge. By taking the difference in these arrangements we can add these losses to the operating. point on the curve and determine flow changes as well as new horsepower denar

i1) upleg of tsiphón $105^{\prime \prime} \phi$ Discharge to $3.5^{\prime} \times 20^{\prime}$

use $L=$ length $=45^{\circ}$

$$
h_{f}=\left(\frac{Q / 65.07}{\left.(123.83)(2.389)^{2 / 3}\right) z} \cdot 45 \Rightarrow h_{f}=\underline{2.1]^{2} \times 10^{-7} \cdot 0^{2} i^{2}}\right.
$$

12) Downleg of Siption - $3.5^{\prime} \times 20^{\prime}$ to $6^{\prime} \times 20^{\prime}$

$$
\begin{aligned}
& h_{f}=\left[\frac{(Q / 95 j)}{\left.(123.83)(3: 1.71)^{2 / 3}\right]^{2} \cdot 26}\right. \\
& h f=4,0 \times 10^{-8} Q^{2}
\end{aligned}
$$

3) Siphon Crown Elbow

$$
\begin{aligned}
& h_{f}=0.25 \sqrt{\Delta / 90^{\circ}}\left(V^{2} / 2 g\right) \\
& \text { where } \Delta=45^{\circ} \& V=Q / A=(Q / 70) \\
& \left.h_{f}=0.25 \sqrt{45 / 90}(Q / 70)^{2} / 2.32 .2\right) \\
& h_{f}=5.60 \times 10^{-7} Q^{2}
\end{aligned}
$$

4.

$$
\begin{aligned}
& \text { Exit } 10 \mathrm{SS} \\
& h_{f}=\frac{V^{2}}{2 g}=\frac{(Q / A)^{2}}{2 g}=\frac{(Q / 120)^{2}}{2.32 .2} \\
&=1.078 \times 10^{-6} Q^{2}
\end{aligned}
$$

Total losses in new concrete discharge $=$

$$
\begin{aligned}
H_{f}= & 2.17 \times 10^{-7} Q^{2}+4.0 \times 10^{-8} Q^{2}+5.6 \times 10^{-7} Q^{2} \\
& +1.678 \times 10^{-8} Q^{2} \\
H_{\text {TOTAL }}= & 8.28 \times 10^{-7} Q^{2} \text { or } 0.052 \mathrm{ft} \text { © } 250 \mathrm{cfs}
\end{aligned}
$$

3) Exit Loss

$$
\begin{aligned}
K & =1.0 \quad \text { Area }=\pi / 4(L \times \omega)=\pi / 4 \times 17 \times 12=160.22 \\
A & =160.22 \mathrm{ft}^{2} \\
V & =Q / A=Q^{2} / 160.22 \\
H_{f} & =1.0\left[Q^{2} / \mathrm{A}^{2} / 2.32 .2\right]=1.0\left[\frac{Q^{2} / 160.22^{2}}{64.4}\right] \\
H_{f} & =6.05 \times 10^{-7} Q^{2} \\
H_{\text {TOTAL }} & =5.54 \times 10^{-7} Q^{2}+1.16 \times 10^{-6} Q^{2}+6.05 \times 10^{-7} Q^{2} \\
& =2.319 \times 10^{-6} Q^{2} \text { or } 0.45 \mathrm{ft} .250 \mathrm{cfs}
\end{aligned}
$$

Difference in head losses between new system and existing discharge.

$$
\begin{aligned}
\therefore \Delta H_{f} & =H_{f} \text { proposed }-H_{f} \text { existing } \\
& =8.28 \times 10^{-7} Q^{2}-2.319 \times 10^{-6} Q^{2} \\
& =-1.491 \times 10^{-6} Q^{2}
\end{aligned}
$$

Therefore the discharge system proposed will actually reduce the friction losses in the total pump system. In terms of feet of friction losses which equates to feet of additional pool to pool head available, it is as follows

$$
\Delta H_{f} 250 \mathrm{cfs}=1.491 \times 10^{-6}\left(250^{2}\right)=0.093 \mathrm{ft}
$$

Calculations P.S. \# 13 Vertical Pumps

1) Estimated Priming Horsepower $7 Z^{\prime \prime} \varnothing$ pumps STATIC ELS 10.00 to EL. 1.88 (top of pipe) $=2288$ Velocity Head $\left.v^{2} / 2 g \underline{[} \frac{200 / 28.27}{2.32 \cdot 2}\right]^{2} 1.2001 .86 \quad 0,78$ $\begin{aligned} \text { Frictional Head } 128 / 100[.2083]\left[\frac{100}{140}\right]^{1.86} \\ 2\end{aligned}\left[\frac{90,0001.86}{72^{4} 8646}\right]=0.20$

$$
\text { Priming Horse power }=\frac{(23.86)\left(90,0000^{\circ} p m\right)}{(3960)(.72)(1)}=753 \mathrm{~h} . \mathrm{p} .
$$

2) - Additional head loss due to extended discharge (ya")

$$
H_{f}=40^{\prime} / 100[.2083][100 / 140]^{1.86}\left[\frac{(250.448 .8)^{1.86}}{(72)^{4.866}}\right]=0.100 \mathrm{ft}
$$

3) Horsepower due to extended pipe (72 ")

$$
H . P .=\frac{(0.100)(112,200 \mathrm{gpm})}{(3960)(.76)(1)}=3.76 \text { H.P. }
$$

Calculations: Plaquemines Pump STA (NO.1)
132 " Worthington Pumps
scope: Replace Existing Concrete discharge tubes with Flaring Steel Discharge - Determine Differential Head loss between each system

1) Losses in Existing Concrete Discharge

A) Upleg of siphon ($132^{\prime \prime} \phi$ to $12.5^{\prime} \times 13.5^{\prime}$)

$$
\begin{aligned}
& h_{f}=L\left(V / C R^{2 / 3}\right)^{2} \quad C=1.486 / n \quad n=0.012 \quad C=123.83 \\
& R=\omega D / \omega+2 D \text { or } R=r / 2 \\
& \begin{array}{lrrr}
& \frac{132^{\prime \prime \phi} \phi}{95.03 \mathrm{ft}^{2}} & \frac{12.5^{\circ} \times 13.5^{\prime}}{168.75} & \text { Avg. } \\
\text { Area } & 95 & 131.89 \\
R & \ddots .27 & 3.51 \\
V_{\text {900cts }} & 9.47 \mathrm{fps} & 5.33 & 7.40
\end{array} \\
& \text { Length }=15^{\prime \prime}
\end{aligned}
$$

$$
h_{f}=\left(\frac{Q / 131.89^{2}}{(123.83) 7.40^{2 / 3}}\right)^{2} \times 15^{1} \quad h_{f}=4.0 \times 10^{-9} Q^{2}
$$

b) Downleg of Siphon 12.5×13.5 to $16.5 \times 16.5^{\prime}$

| | 12.5×13.5
 Area | $\frac{16.5 \times 16.5}{272.25}$ |
| :--- | ---: | :--- |\quad| Avg |
| :--- |
| R |

c) Siphon Crown Elbow

$$
\begin{array}{ll}
\text { Siphon Crown Elbow } & \\
h f=0.25 \sqrt{\Delta / 90} V V^{2} / 2 g & \text { where } \Delta=115^{\circ} \quad V=Q / A=Q / 142.5 \\
h f=0.25 \sqrt{115 / 90}(Q / 162.5)^{\frac{2}{2}} / 64.4=1.66 \times 10^{-7} Q^{2}
\end{array}
$$

d) Exit Loss

$$
\begin{aligned}
& 16.5 \mathrm{ft} \times 16.5 \mathrm{ft}=272.25 \mathrm{ft}^{2} \\
& \mathrm{hF}=\mathrm{V}^{2} / 2 \mathrm{~g}=(Q / \mathrm{A})^{2} / \mathrm{Zg}=(Q / 272.25)^{2} / 64.4 \\
& h f=2.09 \times 10^{-7} Q^{2}
\end{aligned}
$$

Total Friction losses in Existing Concrete Tubes

$$
\begin{aligned}
& H_{f}=4.0 \times 10^{-9} Q^{2}+5.0 \times 10^{-9} Q^{2}+1.66 \times 10^{-7} Q^{2}+2.09 \times 10^{-7} Q^{2} \\
& H_{f_{\text {TOTAL }}}=\frac{3.84 \times 10^{-7} Q^{2}}{}
\end{aligned}
$$

Belle Chase $\# 1$

12 Foot Diameter Original Wood Horizontal Pumps

Scope- Replace Steel Conical Discharge Tube with Flared steel Cone including offsets to achieve the minimum 9.50 NGVD Flood protection

Method - Cakulate the head loss in the existing steel cone to be replaced. Calculate the losses in the replacement discharge arrangement By taking the difference in headlosses for the two arrangements we can determine what additional head is place on the pump. Since the existing engines are already overloaded at higher pool to pool heads, whatever additional head would only decrease this available pool to pool operating envelope.

Existing Cone

1) 35° Mitered Joint use $K=0.129$

$$
\begin{aligned}
H_{f} & =K \frac{v^{2}}{2 g} \quad V=Q / A \\
& =(.129)\left(Q^{2} / A^{2} / 2.32 .2\right) \Rightarrow A=\frac{12.16^{2} \pi}{4}=116.26 \mathrm{FH}^{2} \\
& =(.129)\left(Q^{2} / 116.262 / 64.4\right) \\
& =1.48 \times 10^{-7} Q^{2}
\end{aligned}
$$

2) Loss thru Cone

$$
\begin{array}{ll}
H_{f}=K\left[1-\left(D_{1} / D_{2}\right)^{2}\right]^{2} \mathrm{~V} / 2 \mathrm{~g} & A=116.26 \\
H_{f}=0.50\left[1-(12.17 / 15.50)^{2}\right]^{2} \frac{Q^{2} / 116.262}{64.4} & \text { From } H I \text { III } \mathrm{B}-6 \\
H_{4}=0.50
\end{array}
$$

3) Exit Loss

$$
\text { Area }=\pi / 4(L \times \omega)=(\pi / 4)(20.5 \times 16.5)=265.66 \mathrm{ft}^{2}
$$

$H_{f}=K \frac{V^{2}}{2 g}$ where $K=1,0$ and $V=Q / A_{1}$

$$
=(1.0)\left(\frac{Q^{2} / A^{2}}{2 g}\right)=1.0\left(\frac{Q^{2} / 265.66^{2}}{64.4}\right)
$$

$$
=2.20 \times 10^{-7} \mathrm{Q}^{2}
$$

$$
\begin{aligned}
H_{\text {TOTAL }} & =1.48 \times 10^{-7} Q^{2}+8.4 \times 10^{-8} Q^{2}+2.20 \times 10^{-7} Q^{2} \\
& =4.52 \times 10^{-7} Q^{2}
\end{aligned}
$$

1) Mitered losses $146^{\prime \prime}$ ID. Pipe
a) 2- $30^{\circ} 3$ piece miters

$$
\begin{aligned}
& k=0.112 \\
& k=0.129
\end{aligned}
$$

b) 1-35 1 piece miter

Total mitered losses $=K \frac{V^{2}}{2 g} \quad K=(2)(0.112)+(1)(0.129)$

$$
\begin{array}{ll}
V=Q / A \\
A=\pi\left(12.17^{2} / 4\right)
\end{array} \quad \begin{aligned}
& K=0.353 \\
& H_{f}= \\
& H_{f}= \\
& \\
& \\
& \\
&
\end{aligned}
$$

2) Straight Pipe $12^{\prime}-z^{\prime \prime} \varnothing \times 20^{\prime \prime} \because$ Long.
$V=Q / A \quad E=0,0002 \quad A=\pi \cdot \frac{12,11^{2}}{4}=114,26 \cdot K / D=1000016$ NR $=\frac{V D}{V}$ where $V=6.88 \mathrm{ft} / \mathrm{se} \quad D=12.17 \quad V=0.80001217$
NRA $=\frac{12.17)}{} / 00001217=6.88 \times 10^{6} \quad 2$
From Fig III A-3 $f=0.0096$

$$
\begin{aligned}
H_{f} & =f(L / D)\left(V^{2} / 2 g\right) \text { where } V=Q / A \\
& =(0.0096)(20 / 12.17)\left(Q^{2} / 116.26^{2} / 64.4\right. \\
& =1.80 \times 10^{-8} Q^{2}
\end{aligned}
$$

3) Cone

$$
\begin{aligned}
h_{f} & =K\left(1-\left(D_{1} / D_{2}\right)^{2}\right)^{2} V^{2} / 2 g \\
& \Rightarrow K=0.30 \quad A=116.26 \\
h_{f} & =0.30\left(1-(12.17 / 17.62)^{2}\right)^{2} \frac{Q^{2} / 116.262}{64.2} \\
& =9.40 \times 10^{-8} Q^{2}
\end{aligned}
$$

4) Exit Loss

$$
\begin{aligned}
\text { Area } & =\frac{\pi}{4}(L \times \omega)=\frac{\pi}{4}(24.52 \times 17.13) \quad \text { and } V=Q / A \\
A & =354.73 \\
H_{f} & =K(V / 2 g) \quad \text { where } K=1.0 \quad \\
& =1.0\left(\frac{Q 2 / 356.73^{2}}{2 \cdot 32.2}\right) \\
H_{f} & =1.22 \times 10^{-7} Q^{2}
\end{aligned}
$$

Total Losses in 12 ft Wood Pump Replacement Discharge

$$
\begin{aligned}
H_{f} \text { TOTAL } & =4.06 \times 10^{-7} Q^{2}+1.80 \times 10^{-8} Q^{2}+9.40 \times 10^{-8} Q^{2} \\
& +1.22 \times 10^{-7} Q^{2} \\
= & 6.40 \times 10^{-7} Q^{2}
\end{aligned}
$$

Therefore the difference in head losses between the two systems are:

$$
\begin{aligned}
\Delta H_{f \text { total }} & =H_{f} \text { proposed }-H_{f} \text { existing } \\
& =6.40 \times 10^{-7} Q^{2}-4.52 \times 10^{-7} Q^{2} \\
& =1.88 \times 10^{-7} Q^{2}
\end{aligned}
$$

Therefore at its nom:al flow rate of 800 cFS

$$
H_{f_{\text {additional }}} 1.88 \times 10^{-7}(800)^{2}=0.120 \mathrm{ft} .
$$

Additional Horse power due to additional friction loss

$$
\text { H.P. }=\frac{(800)(448.8)(0.12)}{(3960)(.68)}=16.0 \text { h.p. }
$$

Plaquemines Pump station (NO.1)
2) Replacement Discharge Cone - 132 " \varnothing Pumps

A) Expansion $132^{\prime \prime} \phi$ to $146^{" \phi}$

$$
\begin{aligned}
& A_{132^{\prime \prime}}=95.03 \mathrm{ft}^{2} \quad \begin{array}{l}
A_{14 L^{\prime \prime}}=116.26 \mathrm{ft}^{2} \\
H_{f}=\frac{\left(V_{1}-V_{2}\right)^{2}}{2 g}=\frac{\left(Q / A_{1}-Q / A_{2}\right)^{2}}{2 g}=Q^{2}\left(\frac{1}{A_{1}}-\frac{1}{A_{2}}\right)^{2} \\
H_{f}=\frac{Q^{2}(1 / 95.03-1 / 116.26)^{2}}{2.32 .2}=5.7 \times 10^{-8} Q^{2}
\end{array}
\end{aligned}
$$

B) Mitered Losses $146^{\prime \prime} \varnothing$ Pipe
a) 2-36 3 piece Miters

$$
K=0.112
$$

b) 1-35 1 piece Miter

$$
K=0.129
$$

Total Mitered losses $=K v^{2} / 2 g \Rightarrow K(z)(0.112)+(1)(0.129)=0.353$

$$
\begin{aligned}
& H_{F}=0.353 Q^{2} / A^{2} / 64.4=0.353 \frac{Q^{2} / 11 L_{1} 26^{2}}{64.4} \\
& H_{f}=4.06 \times 10^{-7} Q^{2}
\end{aligned}
$$

c) Straight Pipe $146^{\prime \prime} \phi \times 20^{\prime \prime}$ long $V=Q / A \quad E=0.0002 \quad A=\frac{\pi(12.17)^{2}}{4}=116.26 \quad E / \pi .000016$ NRE $=V D / v$ where $V=6.88 \mathrm{fPs} \quad D=12.17 \quad V=.00001217$ $N R E=(6.88)(12.17) /(.00001217)=6.88 \times 10^{6}$
From HI. Fig III A-3 $f=0.0096$

$$
\begin{aligned}
H_{f} & =F(L / D)\left(V^{2} / 2 g\right) \text { where } V=Q / A \\
& =(0.0096)(20 / 12.17)\left(Q^{2} / 116.26^{2} / 64.4\right. \\
& =1.80 \times 10^{-8} Q^{2}
\end{aligned}
$$

d) Cone

$$
\begin{aligned}
h_{f} & =K\left(1-\left(D_{i} / D_{2}\right)^{2}\right)^{2} v^{2} / 2 g \\
K & =0.30 \quad A=116.26 \\
h_{f} & =0.30\left(1-(12.17 / 17.62)^{2}\right)^{2}\left(\frac{Q^{2} / 116.26^{2}}{64.4}\right) \\
h_{f} & =9.40 \times 10^{-8} Q^{2}
\end{aligned}
$$

e) Exit Loss - Cone

$$
\begin{aligned}
\text { Area } & =\pi / 4(L \times \omega)=\frac{\pi}{4}(26.52 \times 17.13) \\
& =356.73 \mathrm{ft}^{2} \\
H_{f} & =K\left(V^{2} / 2 g\right) \quad K=1.0 \quad V=Q / A \\
& =1.0\left(Q^{2} / \mathrm{A}^{2} / 64.4\right)=\frac{Q^{2} / 356.73^{2}}{64.4} \\
& =1.22 \times 10^{-7} Q^{2}
\end{aligned}
$$

Total Losses $=5.7 \times 10^{-8} Q^{2}+4.06 \times 10^{-7} Q^{2}+1.80 \times 10^{-8} Q^{2}$

$$
\begin{aligned}
& +9.4 \times 10^{-8} Q^{2}+1.22 \times 10^{-7} Q^{2} \\
= & 6.97 \times 10^{-7} Q^{2}
\end{aligned}
$$

Therefore the difference in head losses between the proposed discharge tube and that of the existing is as follows

$$
\begin{aligned}
\Delta H_{f} & =H_{f \text { proposed }}-H_{f \text { Existing }} \\
& =6.97 \times 10^{-7} Q^{2}-3.84 \times 10^{-7} Q^{2} \\
& =3.13 \times 10^{-7} Q^{2}
\end{aligned}
$$

At the nominal flow rate of 900 Cfs , the additional head seen by the pump is:

$$
H_{f 900}=3.13 \times 10^{-7}(900)^{2}=0.253 \mathrm{ft} .
$$

Additional Horsepower Required

$$
\text { H.P. }=\frac{(900 \mathrm{cfs})(448.8)(0.253 \mathrm{ft})}{(3960)(0.68)}=37.95 \mathrm{H} . \mathrm{P} .
$$

SECTION IV

PUMPING EQUIPMENT MODIFICATIONS AND OPERATION

The purpose of this Phase I Report is to provide methods of rehabilitating the existing pumping equipment and to propose additional pump priming capacity to accelerate the start up procedure. These proposals will enhance the overall drainage resulting in quicker response during pump priming, enhance the flow rate of the oldest pumping equipment such that full rated capacity can be obtained at all operating water levels, and return the old equipment to new condition thereby extending their productive life by perhaps another 10 to 15 years. Consideration is also being given to adding pump capacity to the plant in an effort to compensate for increased runoff. Twenty years have passed since the newest pumps were installed, normal development, land subsidence, lowering of water tables, all contribute to usual gradual increase in station capacity demands. It should be noted that we have considered replacement of the two 1953 diesel engines with new engines of the same horsepower but the initial cost would be excessive (approximately $\$ 900,000$) and we believe that the existing engines can be rebuilt to give at least 10 to 15 years additional service.

We have obtained copies of the original "Horsepower Performance Test" for the Baldwin-Hamilton engines and these tests define the original engine horsepower for both engines. During these "tests" the engine demand for these original pumping conditions were established and

$$
\text { IV - } 1
$$

the throttle control blocked at a point ten percent (10\%) above the required horsepower. This information was given by Mr. Rentschler of Baldwin-Hamilton. See letter dated August 3, 1983 (Appendix). The purpose of this setting was to guarantee against engine overload if for some reason the pump propeller was jammed by debris.

These engines, in the proposed rehabilitation process, will have their speed-horsepower control recalibrated to meet the present operating conditions.

During a heavy rainstorm this spring the oldest equipment was placed into operation and after several hours of pumping at full capacity the engine speed deteriorated. Flow capacity was reduced by approximately thirty-five (35%) percent by this speed reduction. It is the general opinion of Mr. Rentschler, and this office, that this speed change was caused by the need for engine overhaul and the locked in throttle setting. After engine work is completed and the required adjustments made we can expect design pump speed during operation at normal hydraulic head conditions.

We have directed most of our study toward the oldest pumps and engines since their need for performance improvement is the most apparent. We plan also to recommend that all existing engines and pumps be inspected for damage or wear which may reduce their capacity. This will require that pump inspection ports be opened and pump propellers,

$$
\text { IV }-2
$$

> diffusers, along with other internals subject to wear or damage be thoroughly checked. These individual pieces should be compared to the manufacturer's drawings or operational manuals to insure conformity.

The newest four diesel engines will also be inspected along with tabulating their approximate hours of operation. This information will then be studied to establish a predictable preventative maintenance program or rehabilitate the equipment if this need is indicated.

Since this pumping station is the total and only means of providing drainage for the Belle Chasse area it is the recommendation of this report that all equipment be returned to top efficiency condition. Only with the plant in first class operating condition can adequate and reliable drainage be provided for the drainage district.

Operational requirements have resulted in increases in the power demand for pumping with the original 144 inch drainage pumps. These changes, which have taken place in steps since the early years of this station's operation have steadily increased the differential pressure against which the engines must perform. This fact is the primary reason for the need to rehabilitate the equipment and increase the power capabilities of the existing diesel engines.

The original pumping station drawings indicate suction basin design high water elevation as EL - 4.0 Ft. and low water elevation as EL - 6.0 IV. - 3

Ft. the outfall basin water elevation is indicated as EL +4.0. Ft.

The National Geodetic departments charged with maintaining vertical datum control have adjusted the reference bench marks in this entire area in recent years. We have not yet run a level loop to the Plaquemines Pumping Station but we estimate this elevation correction as 1.3 Ft. downward. As listed in an earlier section the original design water levels when corrected are:

$$
\begin{aligned}
& \text { Suction Basin High Water Level....................EL -5.3 Ft. } \\
& \text { Suction Basin Low Water Level......................EL -7. } 3 \text { Ft. } \\
& \text { Discharge Basin High Water Level................EL +2.7 Ft. }
\end{aligned}
$$

The water levels listed in Mr. Olano's April 18, 1983 (See Appendix) letter are assumed to be recorded in accordance with the new corrected elevations. We feel that his datum for water levels is relatively up to date because the drainage system has several automatic recording water level gages and these must have been corrected recently. We will work with corrected current water levels as:

$$
\text { IV - } 4
$$

Suction Basin High Water (Pumps Put Into Operation)..........EL - 8.0 Ft. Suction Basin Low Water (Pumps Shutdown) EL - 9.0 Ft.

Initially these pumps were operating with a total pool to pool differential of 8.0 Ft . (-5.3 Ft . to +2.7 Ft.$)$ and a maximum of 10.0 Ft . (-7.3 Ft. to +2.7 Ft.) Presently they should be operating under normal drainage situations with a total pool to pool differential of 10.7 Ft . (-8.0 Ft. to +2.7 Ft.) and a maximum differential under normal drainage of 11.7 Ft . (-9.0 Ft . to +2.7 Ft). This differential head increase is expanded by the possibility of "Hurricane Tide" discharge basin level. In the event of a Hurricane Tide the outfall elevation is predicted to reach EL. +6.0 Ft. Under these conditions the suction basin water level would be higher than the normal -8.0 Ft . elevation possibly -6.0. Even with minimal "overbank storage" the pool to pool pumping head would equal or exceed 10.0 Ft .

Under the normal drainage conditions the additional pool to pool differential of 1.7 Ft . (say two feet) represents twenty-five percent of the original pool to pool. The expected differential under hurricane conditions could increase the power demand further. From a horsepower demand viewpoint this is an increase equal to the existing available reserve power.

Presently these pumps "should be" operating at these higher heads; because of other considerations the station operators have devised the

$$
\text { IV - } 5
$$

methods mentioned in the previous sections to circumvent this higher demand on the equipment. On those occasions when flooding rains required the use of all equipment the pump's diesel engine drives were unable to maintain full pump speed. When these engines are rehabilitated and produce the necessary horsepower under these circumstances the pumps will be capable of producing design pumping capacity at all regular operating conditions.

The following tabulation of pump capacity; pool to pool water levels, and required horsepower was taken from pump curves for 12 Ft . Wood Screw Pump -61.56" pitch at 97 R.P.M. (Engine Speed 625 R.P.M.):

The "Engine Manual" and "Rating Curves for Baldwin Series 600 Engines" lists various rated horsepower for these engines. This information was used to predict the future usefulness of these pump drives. Horsepower ratings are generally a function of the engine design fatures; permissible B.M.E.P. levels, combined with the manufacturer's desire for a long life product. The Baldwin engine curves at 140 B.M.E.P. lists 1315 as its maximum horsepower rating. The engine manual

$$
\text { IV - } 6
$$

lists 1200 H.P. under the heading "H.P. for traction". Since. these engines were originally used in diesel locomotive applications this traction H.P. is 10% derating of the 140 B.M.E.P. rating. The derating is a conservative approach because of the long operational hours at high horsepower demand that locomotive service requires.

We propose to have the engine throttle and governor reset to provide for 10% increase in horsepower above the 1315 listed. Increasing these settings will provide adequate power at all pumping situations including the highest hydraulic head condition and still will be, we feel, within the engines capabilities.

This increase of 10% would mean that the engine rated B.M.E.P. is increase from 140 which is listed to 154 B.M.E.P. Since drainage pumping equipment seldom is called upon to operate a \dot{t} maximum horsepower for extended time periods we are not concerned that using the higher rated B.H.P. (Brake Horsepower) will accelerate engine wear. After the engines have been totally rehabilitated we feel that this ten percent overload caused from pumping at 11.7 Ft . pool to pool could be handled without equipment damage.
B.M.E.P. which stands for Brake Mean Effective Pressure is a measure of performance of a diesel engine. It is a difficult term to appreciate since it has only a theoretical existence. It is stated as being the average (or mean) effective pressure inside the cylinder
during the power stroke which would produce power equal to the engine horsepower. This average pressure times the piston area will develop the force necessary to produce power. The higher the B.M.E.P. the higher the demands on the engine components and the lower the B.M.E.P. the lower the demands on the engines. Naturally the engine power pressures are higher at the top of the stroke and lower at the end giving an average pressure to produce the required power.

The engine application at this station does not require that this equipment run at the Higher B.M.E.P. situation on a regular basis. Only when the suction level reaches elevation -9.0 and the discharge basin level at elevation +2.7 or under hurricane tide and high water suction levels will the power demand be a maximum. In short it is our opinion that these engines can safely be expected to perform satisfactorily at all of the water level situations mentioned in this report.

The engine rehabilitation contemplated for this application is extensive but can be accomplished at the site. In order for these two engines to be rebuilt to "as new" capabilities all of the areas where age or normal wear could be expected to reduce the horsepower must be replaced. Since they are presently in running condition without evidence of misalignment or broken components we feel that the exchange of existing major components for factory rebuilt components is the most economical method to propose. The general listing illustrate the extent of these replacement parts.
a. Replace cylinder heads with factory exchange rebuilt units.
b. Replace with new all cylinder liners.
c. Inspect crankshaft for wear; if necessary regrind all journal areas.
d. Install all new main bearings.
e. Install new bearings on all engine drive train components. (Camshaft, camshaft drive, water pump drive, etc.)
f. Replace turbocharger assembly with factory reconditioned unit.
g. Replace all six fuel injectors with factory reconditioned units.
h. Replace engine governor with factory reconditioned unit.
i. Replace water pump with factory reconditioned unit.
j. Replace lubricating oil pump with new unit.
k. Replace fuel oil transfer pump, recondition strainer and fuel filters. Inspect entire fuel transfer system for leaks or obstructions.

1. Inspect and recondition engine starting system.

After the engines are disassembled some additional areas of repair may come to light. Since the direction of this program is to return these engines to "new" condition we are recommending complete rebuilding to factory tolerances instead of repairing the obvious damage only. When complete they are expected to deyelop their design B.H.P. and with the modifications mentioned to accept the ten percent extra occasional demand.

When the engines begin developing their rated horsepower on a regular basis the rejected heat from the jacket water system must be transferred thru the heat exchanges to waste. The existing atmospheric (open) heat exchangers presently in use have been trouble free to this time but an increase in horsepower demand must be accompanied by some increase in heat transfer capacity. This can be accomplished by adding water flow thru the basin. The mechanics of these alterations should not be extremely costly and will be detailed when final planning is accomplished.

The attached bar graph illustrates the estimated time scheduling which will be necessary to accomplish the rehabilitation with a minimum of equipment "out of service" at one time. The "inspection" which can be done without disassembly is shown separately from the more involved "condition survey". Inspection of the original pumping station engines will be completed first. As the necessary rehabilitation is being done and the involved equipment "out of service" these speed reduction drives and horizontal pumps will be completely surveyed. All information from this survey will be studied and recommendations made for whatever corrective measures appear to be required.

All rehabilitation work on the original station equipment will be complete before the newer units are scheduled for any inspection or survey of condition.

The cost of this engine, cooling system and related rehabilitation are estimated (for budget purposes) to be approximately $\$ 150,000.00$ for each unit. It is our opinion from conversations with persons who are knowledgeable about these pumps and engines that this rehabilitation will return the equipment to its original capabilities.

The work outlined in this report for the original pumping station equipment and through inspection of the newer equipment units will serve to expand the pumping station ability from its present strained capacity to its original 3800 C.F.S.

Sections II and III of this report outline the hydraulic operation of this drainage district and give an insight into its history and design. These sections are perhaps a tribute to the Operations Department who manipulate the water levels to avoid flooding during heavy rains. The manipulation of water levels enhances the pumping capacity, it does not however replace capacity. It is our opinion that the existing pumps could be more quickly brought into operation if additional vacuum pump capacity were added to the present system.

The existing vacuum pump system consists of two Nash liquid seal pumps driven by diesel engines for servicing all four horizontal drainage pumps. The vacuum priming piping is interconnected by a manifold at the pumps which makes it possible to use both vacuum pumps for priming each drainage pump. This is the most efficient use of the existing
equipment but the drainage pumps can only be put into service by a series start-up; one after the other. The priming time for all four pumps under these conditions is very long and can be a burden to the system if rapid runoff is the initial situation.

It is our recommendation that two new vacuum pumps be added to serve primarily the 1963 addition pumps. The existing priming equipment would remain where it is to serve the renovated system. The new and existing piping. would, of course, be interconnected to guarantee continuity in case of equipment failure. These two new vacuum priming pumps with their related piping and accessories would cost approximately $\$ 60,000.00$ for each installation. (Total Cost $\$ 120,000$.)

We feel that these two new Vacuum Priming pumps would prove to be a most valuable addition to the overall pumping station operation. It does not add to the existing drainage pump capacity but it provides the means whereby the existing pumps can be brought into service quickly when the need is imminent.

The attached "Time Schedule" bar graph for the recommended work illustrates the estimated time required for each phase of the project. The fact that several phases of this renovation are being accomplished at one time is apparent from this type graph. Each individual project has a time period for "Inspection", "Design", "Specifications", and "Bidding". These separated divisions of each project make it possible
to monitor the work as it progresses which with renovation is very important.

The Phase II section of the Repart to be submitted subsequent to this Phase I Report will deal with what further improvements might be recommended at the Plaquemines Pumping Station. Sọme of these considerations would include long term pumping requirements with additional pumping capacity, repowering the existing pumps for the higher pool to pool heads, methods to improve trash screen cleaning procedures and other general recommendations for the "long term".

The Phase I recommendations should be thought of as "short term" (less than 20 years) improvements to maximize the pumping capability of the existing Plaquemines Pumping Station until the end of the 20 th century.

As a result of our study of the existing condition of the pumping equipment in the original (1953) portion of the Plaquemines Pumping Station we have reached the following conclusion:
1.) Main diesel engine in the 1953 portion of the station are no longer adequate for developing full capacity of the two 144" diameter horizontal pumps.
2.) Priming time for all four (4) horizontal pumps can be shortened by installing two (2) additional priming pumps which will improve the pumping capability of the station.
3.) There is a reliable source of new or reconditioned parts for the engines driving the $144^{\prime \prime}$ diameter horizontal pumps (1953).
4.) There are a sufficient number of machine shops in the general area who could make the necessary replacements at the site. 5.) Replacement of the major engine components of the 1953 engines is preferable to random repair of parts that are obviously worn out on these engines.
6.) Replacement of 1953 diesel engines with new engines of equivalent horsepower is not cost effective at this time.
7.) At some future date replacement of the 1953 engines with higher horsepower with matching reduction gears may be warranted due to higher
pool to pool requirements resulting from lowering of suction side water levels.
8.) Rebuilding the existing engines for the 1953 horizontal pumps should extend the life of these engines by 10 to 15 years at which time they probably should be totally replaced as outlined in conclusion No.7.
9.) Lowering suction bells on 1953 horizontal pumps would not be cost effective at this time. When the 1953 engines are replaced with new larger engines, lowering the bells would be required and cost effective. 10.) Additional pumping capacity of at least 500 c.f.s. would be desirable at this time however the Phase II Report will define more clearly the need for additional capacity at the Plaquemines Pumping Station. 11.) At present the 1963 pumping equipment appears to be functioning properly however a complete inspection of this equipment could reveal areas needing preventative maintenance.
12.) The water cooling system for the 1953 engines may be insufficient after the engines are rebuilt and operated at higher speeds.

SECTION VI

RECOMMENDATIONS AND COST ESTIMATE

Based on the conclusions outlined in Section V the following recommendations can be made:
1.) Inspect all existing mechanical equipment in the entire station as outlined below:

INSPECTION OF EXISTING EQUIPMENT
a. Inspect Original Station Diesel Engines for repair requirements.
b. Condition Survey of Vacuum Priming Equipment and System.
c. Condition Survey of Original Station Drainage Pumps.
d. Condition Survey of Original Station Speed Reduction Gear Drives.
e. Condition Survey of Original Station Pump Suction and Discharge Piping.
f. Condition Survey of Suction Basin Trash Screens.
g. Condition Survey of Emergency Generator and Electrical system.
h. Condition Survey of Newer Station Addition Diesel Engines.
i. Condition Survey of Newer Station Addition Drainage Pumps.
j. Condition Survey of Newer Station Addition Speed Reduction Gear Drives.
2.) Rebuild, at the site, the two (2) main diesel engines that drive the 1953-144" horizontal pumps.
3.) Rebuild or repair any other equipment components including trash screens that may need replacement or adjustment.
4.) Modify and expand station engine cooling system.
5.) Install two (2) vacuum pumps and piping system for 1963 portion of the station. Existing vacuum pumps would be interconnected with new vacuum pumps but would be basically dedicated to 1953 pumps.

CONSTRUCTION COST ESTIMATE

Item

1. Rebuild Original Station Diesel Engines

* New Engines (Not Recommended)

2. Modify Original Station Engine Cooling System
3. Purchase and Install Two New Vacuum Pumps and Associated Piping System
4. Inspection and Condition Survey by Equipment Representative or equivalent
5. Engineering Inspection, Design and Specification
ESTIMATED TOTAL COST FOR REHABILITATION

Cost

\$ 300,000.00
(\$900,000.00)
$\$ 40,000.00$
$\$ 120,000.00$
$\$ 20,000.00$
$\$ 60,000.00$
$\$ 540,000.00$

The Time Schedule in Section IV shows graphically the time estimated for each separate division of the work from "Inspection" thru "Test". The final five months are devoted to a condition survey of the 1960 addition equipment. It is apparent from this schedule that eighteen months will be required for the project. This is a minimum time estimate and is dependent upon each phase moving in a positive direction quickly and as predicted. The time schedule therefore is an

$$
\text { VI - } 2
$$

optimistic approach to upgrading the pumping station. The schedule does not list all inspection work to be included, only those areas we feel must be renovated are shown.

The Pumping Station is the only means of providing drainage for the Belle Chasse area. The work proposed will return the pumping equipment to i ts original capacity of 3800 C.F.S. Unless additional pumping capacity is added to the system we will only have that which existed in 1963. Phase II of this report will address the problem of run-off increases, future development, and related necessary drainage system improvements.

NAME PLATE DATA FOR PUMPING STATION EQUIPMENT

Horizontal Propeller Pump No. 1Order No. RR-335 (Installed 1955) Unit No. 1Capacity 800 CFS Static Head 8 Ft. RPM - 97Built By:
Hardie-Tynes Manufacturing Company Birmingham, Alabama
Westinghouse Horizontal Pedestal Gear for Pump No. 1
Serial No. 112214
Ratio 6.429:1.0 Size 50 Type LMR
Style PH-13629-1 Service Factor 1.25
Pinion Speed . 625 RPM
Catalog Rating H.P. 1500
Service Rating H.P. 1200
Diesel Engine No. 1
Model 606A Rated BHP 1200 . 625 RPM
Serial No. $7031 \quad 12-3 / 4^{\prime \prime}$ Bore X $15 \frac{1}{2} "$ stroke
Build 7th Month 1952
Baldwin Lima Hamilton Corporatio
Philadelphia, Pennsylvania
Horizontal Propeller Pump No. 2
Order No. RR-335 (Installed 1955) Unit No. 2
Capacity 800 CFS Static Head 8 Ft . RPMBuilt By:
Hardie-Tynes Manufacturing Company Birmingham, Alabama
Westinghouse Horizontal Pedestal Gear for Pump No. 2
Serial No. 112215
Ratio 6.429:1.0 Size 50 Type LMR
Style PH-13629-1 Service Factor 1.25
Pinion Speed : 625 RPM
Catalog Rating H.P. 1500
Service Rating H.P. 1200
Diesel Engine No. 2
Model 606A Rated BHP 1200
625 RPM
625 RPM
Serial No. 7032 12-3/4" Bore X 15누" strake
Built 7th Month 1952
Baldwin Lima Hamilton Corporation
Philadelphia, Pennsylvania

Vertical Pump - Pump No. 3
Fairbanks Morse Pump Company
Contract No. - DA-16-047-ENG-1774
Serial No. 794401 Built 7th Month 1953
Size 546310 Pump
150 CFS at 8 Ft. Hd. 248 RPM
Pomona Works - Pomona, California
Right Angle Gear For Pump No. 3
Universal Gear Corporation
Model PRV-25 Ratio 2.9:1
Serial No. 42113-1
Diesel Engine No، 3
Fairbanks Morse Engine Company
Model 31A64
H.P. $=240 \quad$ RPM -720

Serial No. 960807

Baldwin-Hamilton
 an
 Company

BALDWIN-HAMILTON COMPANY
One Country View Road
Malvern. PA 19355
Phone 215-647-9900
Telex 83-1395

August 3, 1983

Prescott Follett \& Associates Inc.
Consulting Engineers
822 Baronne Street
New Orleans, LA 70113
ATTN: Mr. James A.Tocho
RE: Plaquemines Pumping Station
Diesel Engines
Serial Numbers 7031 \& 7032

Dear Sir:
With reference to your July 11 letter describing the operation of subject diesel engines, a review of the application would indicate that we should give more thought to the matter before making a definite decision regarding the future for these engines.

The engine manual that was published for these units shows the pumps to be rated at 800 C.F.S. With an 8 Ft .head. Your letter states this is now a 10 Ft . head and you anticipate a 3 Ft . change in water level differential which will increase the total dynamic head and the horsepower demand.

We made a review of the engine block-test record and note that the engines were tested for 1220 HP at 100% load and 1340 HP at 110% load. These values would place the engine load within normal demands at present but will not allow for future load demands which you anticipate will go to 1500 HP . We do not recommend operating these engines at 1500 HP .

You mentioned that during a flooding rain this past spring that the engines were not maintaining their governed speed of 625 RPM. This could be an indication of engine overloading and not necessarily an indication of the need for overhaul. We note that at 110% load, or 1340 HP , the rack millimeter is 30 mm on engine 7031 and 29 mm on engine 7032. It is normal practice to operate the engine at 110% load when on the test block and then take note of the mm reading on the No. 1 pump rack, add one mm and install a stop collar on the pump rack in the rear of the pump. This prevents loading the engine beyond 1340 HP . If the load demand should exceed 1340 HP , the fuel delivery will be restricted and the engine speed will drop off with any further increase in the loading. We should mention al so that the \#l pump may have been changed at some time and the stop collar applied at a lower setting. The pump control 1 inkage must be free to allow the pump rack to open-up to 30 mm or whatever the maximum load demands.

When on the test block, the engines are connected to a generator. The load on the engine can then be set accurately to any desired value by adjusting the field for the desired output. When connected directly to the pump drive it is difficult to determine the actual horsepower demand. It would need to be calculated on the basis of the pump design data. We are sending herewith, copies of the test figures taken when the engines were checked out on the test block. By taking note of the fuel pump millimeter reading and the exhaust temperature of the engine, a comparison can be made against the test record and a close approximation of the horsepower can be determined.

We hope you will find the actual pump demand within the load capabilities of the engine so that we can count on keeping the units in service.

Regarding your request for a list of "parts for complete overhaul"; you will find herewith a complete engine parts list. In each area we indicated with an "X" those parts that most likely need to be replaced due to normal wear or deterioration.

In order to make a realistic recommendation on overhaul requirements, it would be necessary to have specific information on the conditions of major engine components. Inasmuch as this information is not usually available until the engine is disassembled, cleaned and inspected it would appear that serious consideration be given toward a major overhaul, especially if total accumulated running time has exceeded 20,000 hours. In order that you will have some idea of what is involved, we are enclosing eight sheets of form 01 which we would use for the initial inspection process (make extra copies for your file). We would then use this information to itemize the parts and material requirements. The approximate time required to tear-down an engine would be 300 man hours. The approximate time required to reassemble an engine would be 700 man hours.

We no longer have shop facilities to perform the work, however we have rebuilt a number of Baldwin engines at a shop in South Carolina. Obviously even a major overhaul would cost much less than new engines.

This information, although not resolving any problems, will give you a good enough view of the overall picture and enable you to arrive at the correct solution. please do not hesitate to contact Mr. Matt Gray as questions arise.

Very truly yours,

HAR:par
Enclosures

Henry A. Rentschler
President

CC: Matt Gray - Baldwin-Hamiltọ (Malvern)

FLOODGATE CALCULATIONS

DEAD LOADS:
($1-10^{\prime \prime}$ Ko00 wazs' Eittien Sioc)

$$
\left(8.5^{\prime} \times 1.8333^{\prime} \times 4.5^{\prime}\right)(150 p c t)=10,519^{\#}=10.52^{k}
$$

($2^{\prime}-6^{\prime \prime}$ PiLASTEXS Eftive SioE)

$$
\left(2.5^{\prime} \times 2.5^{\prime} \times 9.25^{\prime}\right)(150, p \not t)=8,672^{*}=8.67^{k}
$$

(MONOLTH : BASE)

$$
\left(8^{\prime} \times 40^{\prime} \times 2.5^{\prime}\right)(150 \mathrm{pot})=120,000^{*}=120^{\mathrm{K}}
$$

(KIOOD GATE)

$$
\begin{aligned}
& \left(2 \times 28.5^{\prime} \times 62^{\# /} / \mathrm{FT}\right)+\left[\left(\frac{0.3125^{\prime \prime}}{12^{11 / 1}} \times 27.167^{\prime} \times 8.5^{\prime}\right)+\left(6 \times 7.333^{\prime} \times 0.3333^{\prime \prime} \times \frac{0.375^{\prime \prime}}{12^{\prime \prime}}\right)\right. \\
& +\left(2 \times 7.9167^{\prime} \times 1.9792^{\prime} \times \frac{0.5^{\prime \prime} / 11}{12^{\prime}}\right)+\left(6 \times 7.9167^{\prime} \times 0.5^{\prime} \times \frac{0.5^{\prime \prime \prime}}{10^{\prime \prime}}\right) \\
& +\left(4 \times 7.9167^{\prime} \times 2^{\prime} \times \frac{0.377^{\prime \prime}}{12^{\prime \prime \prime}}\right)+\left(28.5^{\prime} \times 0.5^{\prime} \times 0.5^{\prime \prime \prime}\right) \\
& \left.+\left(2 \times 29.5^{1} \times \frac{0.4418}{141{1121 / 1^{2}}^{2}}\right)\right](440 \mathrm{pct})=5,646^{\#}=5.65^{\circ}
\end{aligned}
$$

Horizonthl reacton on Hintes

$$
\left(5.65^{k} \times \frac{28.5^{\prime}}{2}\right) / 7.5833^{\prime}=10.62^{k} \quad \begin{aligned}
& \text { TENSION on Top } \\
& \text { ComPRESAN ON Bortan }
\end{aligned}
$$

vericar Reaction on huges

$$
=2.825^{k} \text { on Top i Botran }
$$

Gate Reactions

$$
\begin{aligned}
& \text { Top }=R \times 1.545^{\prime} / 7.5833^{\prime}=0.2037 R \\
& \text { Boitom }=R-0.2037 R=0.7963 R
\end{aligned}
$$

$$
\text { ToTA TOP REACTON }=\left(27.167^{\prime}\right)(0.2037)\left(1.32^{k}\right)=7.31^{K}
$$

$$
\text { Torti Botion RZACTION }=\left(27.167^{\prime}\right)(0.7263)\left(1.32^{k}\right)=28.56^{K}
$$

Live Loras Arout ORIEN:

$$
\begin{aligned}
\Sigma F_{x} & =\left(40^{\prime}\right)\left(0.21^{k}+2.53^{k}-0.41^{k}\right)=93.2^{k} \\
\Sigma F_{y} & =\theta \\
\sum F_{z} & =\left(40^{\prime}\right)\left(1.62^{k}-2.25^{k}-0.62^{k}\right)=-50^{k} \\
\Sigma M_{x} & =\theta \\
\Sigma M_{y} & =\left(-0.21^{k} \times 0.8333^{\prime}-2.53^{k} \times 3^{\prime}+1.62^{k} \times 2^{\prime}-2.25^{k} \times 2^{\prime}+0.62^{k} \times 2^{\prime}+0.41^{k} \times 0.8333^{\prime}\right)\left(40^{\prime}\right. \\
& =-297.73 \mathrm{Fr.k} \\
\Sigma M_{z} & =\theta
\end{aligned}
$$

Totar Loans Acout origin

$$
\begin{aligned}
& \sum F_{x}=\theta+93.2^{k}=93.2^{k} \\
& \Sigma F_{y}=\theta+\theta=0 \\
& \Sigma F_{z}=164.03^{k}-50^{k}=114.03^{k} \\
& \Sigma M_{x}=59.09 \mathrm{Fr} \cdot \mathrm{~K}+\theta=59.09 \mathrm{Fr} \cdot \mathrm{~K} \\
& \Sigma M_{y}=-42.85 \mathrm{~F} \cdot \mathrm{~K}-297.73 \mathrm{Fr} \cdot \mathrm{~K}=-340.58 \mathrm{Fr} . \mathrm{K} \\
& \Sigma M_{z}=\theta+\theta=0
\end{aligned}
$$

 NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL

Job No.	Designed By:	Date:		
9551-01	R. Chopin	4/29/9B		Page of

LOAD CASE II:

Live Loris About origin:

$$
\begin{aligned}
& \sum F_{x}=\left(40^{\circ}\right)\left(0.21^{k}+2.53^{k}-0.41^{k}\right)=93.2^{k} \\
& \sum F_{y}=\theta! \\
& \Sigma F_{z}=\left(40^{\prime}\right)\left(1.62^{k}-1.62^{k}-1.25^{k}\right)=-50^{k} \\
& \sum M_{x}=\underline{0} \\
& \begin{aligned}
\Sigma M_{7} & =\left(40^{\prime}\right)\left(-0.21^{k} \times 0.8333^{\prime}-2.53^{k} \times 3^{\prime}+1.62^{k} \times 2^{\prime}-1.62^{k} \times 1.3333^{\prime}+1.25^{\kappa} \times 0+0.1^{k} \times 0.8333^{\prime}\right) \\
& =-253.730 . k
\end{aligned} \\
& =-253.73 \mathrm{Fr} \mathrm{~K} \\
& \Sigma M_{z}=0
\end{aligned}
$$

TOTAL LOADS ABOUT ORIGIN

$$
\begin{aligned}
& \sum F_{x}=\theta+93.2^{k}=93.2^{k} \\
& \sum F_{y}=0+\theta=\theta \\
& \Sigma F_{z}=164.03^{k}-50^{k}=114.03^{k} \\
& \sum M_{x}=59.09 \mathrm{Fr} \cdot \mathrm{~K}+\theta=59.09 \mathrm{Fr.k} \\
& \sum M_{y}=-42.85 \mathrm{Fr} \cdot \mathrm{~K}-253.73 \mathrm{Fr} \cdot \mathrm{~K}=-296.58 \mathrm{Fr.k} \\
& \Sigma M_{z}=\theta+\theta=\theta
\end{aligned}
$$

\because Job No.
Puce:DELicil
9551-01
Designed By: Date: R.CHopin $4 / 29 / 98$
Checked By; $\quad \begin{array}{lc}\text { Page } & 7 \\ \text { of } & 18\end{array}$

LOAD CASE MI I

LoADS SHown PER LiNEAR Poos
 OF MONOLITH:

East of Harvey fam

Floodgates

LOAD CASE III:
Live LImos About origin:

$$
\begin{aligned}
\Sigma F_{x} & =\left(400^{\prime}\right)\left(0.21^{k}+3.78^{k}-0.41^{k}\right)=143.2^{k} \\
\sum F_{y} & =\theta \\
\Sigma F_{z} & =\left(40^{\prime}\right)\left(2.12^{k}-2.75^{k}-0.62^{k}\right)=-50^{\kappa} \\
\Sigma M_{x} & =\theta \\
\Sigma M_{y} & =\left(40^{\prime}\right)\left(-0.21^{k} \times 0.8333^{\prime}-3.78^{k} \times 3.67^{\prime}+2.12^{k} \times 2^{\prime}-2.75^{k} \times 2^{\prime}+0.62^{k} \times 2^{\prime}+0.41^{k} \times 0.8333^{\prime}\right) \\
& =-549.044 \mathrm{Fr.K} \\
\Sigma M_{z} & =0
\end{aligned}
$$

TOTAL LOADS ABOUT ORIGIN (75% FORCES USED)

$$
\begin{aligned}
& \sum F_{x}=\left(0+143.2^{k}\right)(0.75)=\left(107.4^{k}\right. \\
& \sum F_{y}=\theta+0=\theta \\
& \sum F_{z}=\left(164.03^{k}-50^{k}\right)(0.75)=85.52^{k} \\
& \Sigma M_{x}=(59.09 \text { Fr }+\theta)(0.75)=44.32 \text { Fr } \\
& \sum M_{y}=(-42.85 \text { FT.K }-549.04 \text { rr.k })(0.75)=-443.92 \text { Fr.K } \\
& \Sigma M_{z}=\theta+\theta=0
\end{aligned}
$$

LOAD CASE IV:
Live Loans about origin:

$$
\begin{aligned}
& \sum F_{x}=\left(40^{\prime}\right)\left(0.21^{k}+3.78^{k}-0.41^{\kappa}\right)=143.2^{k} \\
& \sum F_{y}=\frac{\theta}{\vdots} \\
& \sum F_{z}=\left(40^{\prime}\right)\left(2.12^{k}-2.12^{k}-1.25^{k}\right)=-50^{k} \\
& \sum M_{x}=0 \\
& \sum M_{y}=\left(40^{\prime}\right)\left(-0.21^{k} \times 0.8333^{\prime}-3.28^{k} \times 3.67^{\prime}+2.12^{k} \times 2^{\prime}-2.12^{k} \times 1.3333^{\prime}+1.25^{k} \times \theta+0.41^{k} \times 0.8333^{\prime}\right) \\
& \\
& =-491.70 \times 6 . k \\
& \sum M_{z}=0
\end{aligned}
$$

TOTAL LOADS ABOUT ORIGN (75% FORCES USED)

$$
\begin{aligned}
& \sum F_{x}=\left(0+143.2^{k}\right)(0.75)=107.4^{k} \\
& \sum F_{y}=\theta+\theta=0 \\
& \sum F_{z}=\left(164.03^{k}-50^{k}\right)(0.75)=85.52^{k} \\
& \sum M_{x}=(59.09 \mathrm{Fr.k}+\theta)(0.75)=44.32 \mathrm{Fr.k} \\
& \sum M_{y}=(-42.85 \mathrm{FT} . \mathrm{K}-491.7057 . \mathrm{K})(0.75)=-400.91 \mathrm{FT} . \mathrm{K} \\
& \Sigma M_{z}=\theta+\theta=0
\end{aligned}
$$

Live Lortos Abour oxicin:: (ONE truck Towaress Hice sioe of Gare dielit)

$$
\begin{aligned}
& \sum F_{x}=\frac{\theta}{1} \\
& \sum F_{y}=\theta \\
& \sum F_{z}=\frac{32^{k}}{1} \\
& \sum M_{x}=16^{k} \times 11^{\prime}+16^{k} \times 5^{\prime}=256 F \cdot k \\
& \sum M_{y}=-32^{k} \times 4^{\prime}=-128 F \cdot k \\
& \sum M_{z}=\theta
\end{aligned}
$$

ToTAL Lontos About orizw:

$$
\begin{aligned}
& \Sigma F_{x}=\theta+\theta=0 \\
& \Sigma F_{y}=\theta+\theta=\theta \\
& \Sigma F_{z}=164.03^{k}+32^{k}=196.03^{k} \\
& \Sigma M_{x}=101.94 \mathrm{~F} \cdot K+256 \mathrm{~F} \cdot \mathrm{~K}=(357.94 \mathrm{~F} \cdot \mathrm{~K} \\
& \Sigma M_{y}=-42.85 \mathrm{~F} \cdot \mathrm{~K}-128 \mathrm{~F} \cdot \mathrm{~K}=-170.85 \mathrm{Fr} \cdot \mathrm{~K} \\
& \Sigma M_{z}=\theta+\theta=\theta
\end{aligned}
$$

LOAD CASE DT: GATE OPEN, No WIND, 2-Trucks on Pronecteo sioe fince of base slab.

Live LoAtos ABout ORIGin:

$$
\begin{aligned}
& \sum F_{x}=\underline{\theta} \\
& \sum F_{y}=\underline{\theta} \\
& \sum F_{z}=32^{k}+32^{k}=64^{k} \\
& \sum M_{x}=16^{k} \times 11^{\prime}+16^{k} \times 5^{\prime}+16^{k} \times 1^{\prime}-16^{k} \times 5^{\prime}=192 \text { Fr.k } \\
& \sum M_{y}=-64^{k} \times 4^{\prime}=-256 F \cdot k \\
& \sum M_{z}=\underline{\theta}
\end{aligned}
$$

Tortar LOAOS ABour RRIG,N:

$$
\begin{aligned}
& \sum F_{x}=\theta \\
& \sum F_{Y}=0 \\
& \sum F_{z}=164.03^{k}+64^{K}=228.03^{k} \\
& \sum M_{x}=101.94 \mathrm{Fr} \cdot \mathrm{~K}+192 \mathrm{Fr} \cdot \mathrm{~K}=293.94 \mathrm{~F} \cdot \mathrm{~K} \\
& \Sigma M_{y}=-42.85 \mathrm{Fr} \cdot \mathrm{~K}-256 \mathrm{~F} \cdot \mathrm{~K}=-298.85 \mathrm{~F} \cdot \mathrm{~K} \\
& \Sigma M_{z}=0
\end{aligned}
$$

 of base 'slab.

Live Loans About origan:

$$
\begin{aligned}
& \sum F_{x}=\underline{\theta} \\
& \sum F_{y}=\underline{\theta} \\
& \sum F_{z}=\underline{64^{K}} \\
& \sum M_{x}=\underline{192 \mathrm{Fr} \cdot \mathrm{~K}} \\
& \sum M_{y}=64^{k} \times 4^{\prime}=256 \mathrm{~F} \cdot \mathrm{~K} \\
& \sum M_{z}=0
\end{aligned}
$$

Torte LoADS About ORIGI:

$$
\begin{aligned}
& \sum F_{x}=0 \\
& \sum F_{y}=0 \\
& \sum F_{z}=228.03 \mathrm{k} \\
& \sum M_{x}=293.94 \mathrm{~F} \cdot \mathrm{~K} \\
& \sum M_{y}=-42.85 \mathrm{~F} \cdot \mathrm{~K}+2.56 \pi \cdot k=213.15 \mathrm{Fr} \cdot \mathrm{~K} \\
& \sum M_{z}=0
\end{aligned}
$$

BURK-KLEINPETER, INC.

 EDge of base Slab,
TOTAL LOADS ABOUT ORIGIN (75% FREES USED)

$$
\begin{aligned}
& \Sigma F_{x}=\left(\theta-5.95^{k}\right)(0.75)=\left(-4.46^{k}\right. \\
& \Sigma F_{y}=\theta+\theta=\theta \\
& \Sigma F_{z}=\left(196.03^{k}+\theta\right)(0.75)=\left(147.02^{k}\right. \\
& \Sigma M_{x}=(357.94 \mathrm{Fr.k}+\theta)(0.75)=268.46 \text { F.K } \\
& \Sigma M_{y}=(85.15 \mathrm{Fr} . \mathrm{K}+40.16 \text { Fr.K })(0.75)=193.98 \mathrm{Fr.k} \\
& \Sigma M_{z}=\theta+\theta=0
\end{aligned}
$$

LOAD CASE X: GATE OPE, wino from Plereore Sion, 2-trucis on Foo Sion EDGE OF BASE SLAB.

TOMB LOADS ABOUT ORIGIN (75% FORCES USED)

$$
\begin{aligned}
& \sum F_{x}=-4.46^{k} \\
& \sum F_{y}=(0 \\
& \sum F_{z}=\left(228.03^{k}+D\right)(0.75)=171.0 z^{k} \\
& \Sigma M_{x}=(293.94 \mathrm{Fr} \cdot \mathrm{k}+\theta)(0.75)=1220.46 \mathrm{r} . \mathrm{K} \\
& \sum M_{y}=(213.15 \mathrm{Fr} . \mathrm{K}+40.16 \mathrm{r} \cdot \mathrm{~K})(0.75)=189.98 \mathrm{Fr} \cdot \mathrm{~K} \\
& \Sigma M_{z}=0
\end{aligned}
$$

BURK-KLEINPETER, INC.
ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL

Job No.	Designed By:	Date:		
$9551-01$	R. CHopin	$4 / 29 / 98$		Checked By:

LOAO CASE XI: Gate open, wino from hoo Sion, Truck on Patecreo Sion bede of base saab.

TOTAL LOMOS About ORIEIN (75% FORCES USED)

$$
\begin{aligned}
& \sum F_{x}=\left(0+8.75^{k}\right)(0.75)=6.56^{k} \\
& \sum F_{y}=(0) \\
& \sum F_{z}=\left(196.03^{k}+0\right)(0.75)=147.02^{k} \\
& \sum M_{x}=(357.94 \pi \cdot k+\sigma)(0.75)=(268.46 \mathrm{~F} . \mathrm{k} \\
& \sum M_{y}=(-170.85 \pi \cdot k-59.06 \mathrm{~F} \cdot \mathrm{k})(0.75)=-172.43 \mathrm{Fr.k} \\
& \sum M_{z}=(0-33.18 \mathrm{~F} \cdot \mathrm{k})(0.75)=-24.89 \mathrm{Fr.k}
\end{aligned}
$$

LOAO CASE XII: FATE OLEN, Wino fem food SloE, 2-Trucks on PRotecono Sloe Edge of base scab.

TOTAL LOADS ABOUT ORIGIN (75% FRCAS USED)

$$
\begin{aligned}
& \sum F_{x}=6.56^{2} \\
& \sum F_{7}=0 \\
& \sum F_{z}=\left(228.03^{k}+\dot{0}\right)(0.75)=\left(171.02^{k}\right. \\
& \Sigma M_{x}=(293.94 \pi \cdot k+\theta)(0.75)=(220.46 \text { r. . } \\
& \Sigma M_{y}=(-298.85 \text { fr.K }-59.06 \text { f.K })(0.75)=-268.43 \mathrm{FT} . \mathrm{K} \\
& \Sigma M_{z}=(0-33.18 \mathrm{~F} \cdot \mathrm{k})(0.75)=-24.89 \mathrm{~F} . \mathrm{K}
\end{aligned}
$$

 NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL

Roodgates
Date;

Checked By: $|$| P |
| :--- | of $18 a$

LOAD CASE XIII: GATE CLOSED, Wind From Protection SloE
Wino Loaning About orion:

$$
\begin{aligned}
& \sum F_{x}=(-50 p s t)\left(8.5^{\prime}\right)\left(40^{\prime}\right)=-17^{k} \\
& \sum F_{y}=\theta \\
& \sum F_{z}=\theta \\
& \sum M_{x}=\theta \\
& \sum M_{y}=17^{k} \times 6.75^{\prime}=114.75 \mathrm{~F} \cdot k \\
& \sum M_{z}=\theta
\end{aligned}
$$

Torah LOAOS About oRIGin (75% FORCES USES)

$$
\begin{aligned}
& \sum F_{x}=\left(-17^{k}+\theta\right)(0.75)=\left(-12.75^{k}\right. \\
& \sum F_{y}=\theta+\theta=\theta \\
& \sum F_{z}=\theta+\theta=\theta \\
& \sum M_{x}=(\theta+59.095 \cdot k)(0.75)=(44.32 \mathrm{Fr.6} \\
& \sum M_{y}=(114.75 \mathrm{~F} \cdot \mathrm{~K}-42.85 \mathrm{~F} \cdot \mathrm{~K})(0.75)=(53.93 \mathrm{Fr.k} \\
& \sum M_{z}=\theta+\theta=\theta
\end{aligned}
$$

LOAO CASE XTV: GATE CLOSED, WiNO From ron SiDE
Total LImos About ORIGN (75% Feces USES)

$$
\begin{aligned}
& \sum F_{x}=\left(17^{k}+\theta\right)(0.75)=12.75^{k} \\
& \sum F_{y}=\theta+\theta=\theta \\
& \sum F_{z}=\theta+\theta=\theta \\
& \sum M_{x}=(\theta+59.09 \text { fink })(0.75)=(44.32 \mathrm{FH.K} \\
& \sum M_{y}=(-114.75 \text { FinK }-42.85 \mathrm{Fr} . \mathrm{K})(0.75)=(-118.2 \mathrm{Fr.K} \\
& \sum M_{b}=\theta+\theta=\theta
\end{aligned}
$$

Preastacs.

BASE Thans. T7E 12 ". .C. Tor odor.

$$
0.26 .9-4
$$

BURK-KLEINPETER, INC.
EAST OF Atrever FDM

Flood Gates Concrete DESIGN
Date: / Checked By:

Job No. new orleans, la baton rouge, la tuscaloosa, al

WALL DESIGN:
By Inspection Conto. Case III wive Govern.

$$
\begin{aligned}
& M=\left(2,254^{4} / \mathrm{Fr}\right)\left(2.8333^{\circ}\right)=6,386 \mathrm{Fr} \cdot \mathrm{~F} \\
& V=2,254 / \rho \\
& m_{u}=(1.7)(1.3)(6,386 \mathrm{~F} \cdot \mathrm{~F} / \mathrm{F})=14,113 \mathrm{Fr.F} / \mathrm{F} \\
& V_{v}=(1.7)(1.3)(2,254 / \mathrm{m})=4,981 \% / \pi .
\end{aligned}
$$

Flexure Design:

$$
\begin{aligned}
& \rho_{\text {min }}=200 / 60,000=0.0033 \\
& \dot{S}_{b}=\left(\frac{0.85 \beta_{1} f_{c}^{\prime}}{f_{8}}\right)\left(\frac{87,000}{87,000+f_{8}}\right) \quad \beta_{1}=0.85 \quad \text { For } f_{c}^{\prime}=8,000 \text { ai, }^{\circ} \\
& \mathcal{S}_{b}=\left(\frac{(0.85)(0.85)(8,000)}{60,000}\right)\left(\frac{87,000}{87,000+60,000}\right)=0.0265
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {mAX PERM, THE }}=0.375 \times 0.0285=0.0107
\end{aligned}
$$

$$
\begin{aligned}
& R_{n}=\frac{M_{v}}{\phi b d^{2}}=\frac{(17,113 \mathrm{~F} \#)(12 \%)}{(0.9)(12 ")\left(18.56^{\prime \prime}\right)^{2}}=45.52 \\
& \rho=\frac{0.85 f_{c}^{\prime}}{f_{g}}\left(1-\sqrt{1-\frac{2 R_{n}}{0.85 \epsilon_{c}^{\prime}}}\right)=0.0003<S_{m=1}=0.0033 \\
& \text { USE } 1 / 3 \text { increase } \rho=1.33 \times 0.0008=0.0011
\end{aligned}
$$

TEMPERATVAE D SHRINKAGE REMFARCEnEN:

$$
\begin{aligned}
& A_{\text {remp }}=0.0028^{\prime \prime} \times 22^{\prime \prime \prime} \times 8.5^{\prime} \times 12^{\prime \prime}=6.283 \mathrm{me}
\end{aligned}
$$

$$
\begin{aligned}
& \text { USE II - } 5 \text { baRS EIF. }
\end{aligned}
$$

Pilaster Design: $\quad\left(2^{1}-6^{\prime \prime} \times 2^{\prime}-6^{\prime \prime} \quad\right.$ Pulasters $)$
Gate ReActods: $\quad \begin{aligned} & \text { Top }=R \times 1.2083^{\prime} / 7.5833^{\prime}= \\ & \text { Botom: }=R-0.2912 R\end{aligned}=0.2912 R$
total gate peacions on Pinstens

$$
\begin{aligned}
& \text { Top }=(0.2912)\left(2,254^{\#} / \mathrm{Fr}\right)\left(27.167^{\prime} / 2\right)=8,915.7^{\#} \\
& \text { Botton }=(0.7088)(2,254 \% / \mathrm{Fr})\left(27.167^{\prime} / 2\right)=21,701.5^{\#}
\end{aligned}
$$

EAST of HARUEY FOM

BURK-KLEINPETER, INC.
ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS new orleans, la baton rouge, la tuscaloosa, al

Nob No.				Designed By:
$9551-01$	R. Chafe:	Checked By:	Page $/ 4 / 9 B$	

$$
V=8,915.7^{*}+21,701.5^{*}=30,617^{*}
$$

$$
\begin{aligned}
& M_{v}=(1.7)(1.3)(86,747 \pi)=\frac{191,711 \pi}{67,664^{*}} \\
& V_{v}=(1.7)(1.3)\left(30,617^{*}\right)=
\end{aligned}
$$

$$
d=\underset{\text { Conk }}{\left.30^{\prime \prime}-3^{\prime \prime}-(1)_{8 B E S}\right)(1 / 2)}=26.5^{\prime \prime}
$$

$$
R_{n}=\frac{M_{v}}{\phi b d^{2}}=\frac{(191,711 \% \cdot H)(12 \%)}{(0.9)\left(30^{\circ}\right)\left(26.5^{\circ}\right)^{2}}=121,33
$$

$$
S=0.0021<\rho_{\text {in }}=0.0033
$$

USE $1 / 3$ INCREASE $\quad 1.33 \times 0.0021=0.0028$

$$
\begin{array}{r}
A_{S_{\text {CEO } 0}}=(0.0028)\left(30^{\prime \prime}\right)\left(26.5^{\prime \prime}\right)=2.23 \mathrm{~N}^{2} \\
3-8 \text { E.F. }
\end{array}
$$

Check Shear at base of Pilaster:

$$
\begin{aligned}
& V_{v}= 67,664^{*} \\
& \phi V_{c}=(0.85)(2) \sqrt{6000}\left(30^{\prime \prime}\right)\left(26.5^{\prime \prime}\right)=85,476^{*}>67,664^{\#} \text { O.K. } \\
& \quad \text { USE } \# 4 \text { TIES } P 12^{\prime \prime} \text { OC. ARSON \#B VERTiCAL BARS }
\end{aligned}
$$

EAST OF HACLEY FOM

BURK-KLEINPETER, INC.
ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS
NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL

Job No.	Designed By:	Date:	Checked By:	Page	6
$955 /-01$	R.CHopm	$\mathrm{s} / \mathrm{s} / 98$			of

TRANSNERGE FEXURE DESIUN:

$$
\begin{aligned}
& M_{\nu}=(1.7)(1.3)(47.703 \text { F.K })=106 . \text { F.K (Posinut momer) } \\
& m_{V}=(1.7)(1.3)(-42.6276 \text { Fik) }=-95 \text { FT.K (NeGATivs Manear) } \\
& d_{\text {pos }}=30^{\prime \prime}-9^{\prime \prime}-1 / 2^{\prime \prime}=20.5^{\prime \prime} \\
& d_{\text {NEC }}=30^{\prime \prime}-3^{\prime \prime}-1 / 2^{\prime \prime}=26.5^{\prime \prime} \\
& f_{\text {fos. }}=\frac{(106 \text { F1.k })\left(12^{\prime \prime}\right)(1,000 \% / k)}{(0.9)\left(105^{\prime \prime}\right)\left(20.5^{\prime \prime}\right)^{2}}=32.03 \\
& R_{n_{\text {NEG }}}=\frac{(95 \text { FT.K })\left(12^{* /}\right)(1,000 * / K)}{(0.9)\left(105^{* 1}\right)\left(26.5^{\prime}\right)^{2}}=17.18 \\
& S_{\text {POS }}=0.0005<\rho_{\text {miN }}=0.0033 \text { uSE } 1.33 \times 0.0005=0.0007 \\
& A_{\text {sos. }}=(0.0007)\left(105^{\prime \prime}\right)\left(20.5^{\prime \prime}\right)=1.54 \mathrm{~m}^{2} \text {. } \\
& P_{\text {NEG }}=0.0003 \text { USE } 1.33 \times 0.0003=0.0004 \\
& A_{S_{N E C}}=(0.000 t)\left(105^{\prime \prime}\right)\left(26.5^{\prime \prime}\right)=1.12 \mathrm{NN}^{2}
\end{aligned}
$$

$$
\begin{gathered}
A_{S_{\text {TEMP }}}=\left(0.0028 \times 30^{\prime \prime} \times 105^{\prime \prime}\right) / 2=4.41 \mathrm{Nn}^{2} \leftarrow \text { Gorerns } \\
\text { USE \#7e } 12^{\prime \prime} \text { 0.C. TOP + BATTON }
\end{gathered}
$$

Longituont Frexure Desian:
(GATE OPEN WITH • TRUCKS CROSSINE)

$$
\begin{aligned}
& M_{\text {max }} \text { cos. truck } \\
& M_{\text {max }}=16.5 \text { frok track } \\
& \\
& V_{\text {max tevek }}=-24.5 \text { F.K } \\
&
\end{aligned}
$$

EAST OF A HANEY FDA

BURK-KLEINPETER, INC.
ENGINEERS, ARCHITECTS, PLANNERS, ENVIRONMENTAL SCIENTISTS NEW ORLEANS, LA BATON ROUGE, LA TUSCALOOSA, AL

Fooncates
Concrete aton
Job No.
.
9551-01
R.chafin

Checked By:
Page 7 of
$M_{u_{\text {post. }}}=(1.7)(1.3)\left[3 \mathrm{k} / \mathrm{Tr} \times\left(8.75^{1}\right)^{2} / 10+16.5 \mathrm{FT} . \mathrm{K}\right]=87.2 \mathrm{~F} . \mathrm{K}$
$M_{\text {NE I }}=(1.7)(1.3)\left[3 \mathrm{k} / \mathrm{H} \times\left(8.75^{\prime}\right)^{2} / 10+24.54 . K\right]=105 \mathrm{~F} . \mathrm{K}$
$R_{1 / 15}=\frac{(87.2 F . k)\left(12^{\prime \prime}\right)(1,000 \% / k)}{(0.9)\left(96^{\prime \prime}\right)\left(20.5^{\prime \prime}\right)^{2}}=28.82$

$$
R_{\text {neE }}=\frac{(105 \mathrm{Fr.k})\left(12^{\prime \prime}\right)(1,000 \% / \mathrm{K})}{(0.9)\left(96^{\circ \prime}\right)\left(26.5^{\prime \prime}\right)^{2}}=20.77
$$

$$
\begin{gathered}
S_{\text {POS }}=0.000 S \text { USE } 1.33 \times 0.0005=0.0007 \\
A_{\text {sos }}=(0.0007)\left(96^{\circ}\right)\left(20.5^{\prime \prime}\right)=1.38 \mathrm{~N}^{2}
\end{gathered}
$$

$$
P_{N E}=0.0003 \text { USE } 1.35 \times 0.0003=0.0005
$$

$$
A_{S_{N E C}}=(0.0005)\left(96^{\prime \prime}\right)\left(26.5^{\prime \prime}\right)=1.281 N^{2}
$$

$$
A_{5 \operatorname{sim}_{\operatorname{Tof} \text { +Bor }}}=\left(0.0028 \times 96^{\prime \prime} \times 30^{\prime \prime}\right) / 2=4.03 \mathrm{~N}^{2}
$$

USE 9-47 BARS Tor 4 BosTon

CHEEK BASE FIR TORSION
Max. Torsion at face of Pie Supports
Torsion PER For of WALL

$$
\begin{aligned}
& (55.885 \pi . K+52.286 \mathrm{FrK}) / 8.75^{\prime}=12.37 \mathrm{Fr} . \mathrm{K} / \mathrm{FT} \\
& T_{u}=(1.7)(1.3)(12.37 \mathrm{~F} . \mathrm{k} / \mathrm{Fr})\left(6.375^{\prime}\right)=119.6 \mathrm{~F} . \mathrm{K}
\end{aligned}
$$

Torsional STRENGTH of Concrete

$$
\begin{aligned}
\phi T_{C} & =\phi\left(0.5 \sqrt{C_{C}} \varepsilon x^{2} y\right) \quad \text { WHERE } \phi=0.85 \\
& =(0.85)(0.5) \sqrt{4,000}\left(96^{\prime \prime}\right)^{2}\left(30^{\circ \prime}\right)=7,431,605 \mathrm{NTENGTH} \\
& =619 \mathrm{FH} \quad 7113.6 \mathrm{FT.K}
\end{aligned}
$$

1000 FG2 5/1/1998 BKI 9551 FLOODGATE MONOLITH -
1005 CONCRETE PILES 14 INCH (2 PILE / 8 FT. BASE 8.75 FT. SPACING) 70^{\prime} Ples
1010 PIN ALL
${ }^{1}$ P20 BIJ 29.53229 .5321901 .200000038
130 BIJ 29.53229 .5321798 .4000000124 TO 7910
¢040 TENSION 1.0 ALL
1050 DLS S 70.054 .0736 .0210 .7173 .01548 .71123 .5 H 1438
1060 DLS S 73.856 .9736 .0210 .7173 .01548 .71123 .5 H 14124 TO 7910
1070 ASC S $196457.30 .8220 .901 \quad 1.750 .00$ ALL
1080 PMAXMOM 30.8530 .85 ALL
1090 BATTER 3.0124 TO 7910
1100 ANGLE 1801 TO 5
1110 ANGLE 06 TO 10
1120 PILE 1 -2.50 17.50 $0.0062 .5017 .50 \quad 0.00$
1130 ROW Y 514 AT -8.7500
1140 ROW Y 564 AT -8.7500
1150 LOAD $1 \quad 93.20 \quad 0.00 \quad 114.03 \quad 59.09-340.58 \quad 0.00$
1160 LOAD $2 \quad 93.20 \quad 0.00 \quad 114.03 \quad 59.09-296.58 \quad 0.00$
1170 LOAD $3 \quad 107.40 \quad 0.00 \quad 85.52 \quad 44.32-443.92 \quad 0.00$
1180 LOAD $4 \quad 107.40 \quad 0.00 \quad 85.52 \quad 44.32-400.91 \quad 0.00$
1190 LOAD $5 \quad 0.00 \quad 0.00 \quad 196.03 \quad 357.94-170.85 \quad 0.00$
1200 LOAD $6 \quad 0.00 \quad 0.00 \quad 228.03 \quad 293.94-298.8500 .00$
1210 LOAD $7 \quad 0.00 \quad 0.00 \quad 196.03 \quad 357.94 \quad 85.15 \quad 0.00$
1220 LOAD $8 \quad 0.00 \quad 0.00 \quad 228.03 \quad 293.94 \quad 213.15 \quad 0.00$
1230 LOAD $9 \quad-4.46 \quad 0.00 \quad 147.02 \quad 268.46 \quad 93.98 \quad 0.00$
1240 LOAD $10 \quad-4.46 \quad 0.00 \quad 171.02 \quad 220.46 \quad 189.98 \quad 0.00$
1250 LOAD $11 \quad 6.56 \quad 0.00147 .02 \quad 268.46$-172.43 -24.89
1260 LOAD $12 \quad 6.56 \quad 0.00171 .02 \quad 220.46-268.43-24.89$
1261 LOAD $13-12.75 \quad 0.00 \quad 0.00 \quad 44.32 \quad 53.93 \quad 0.00$
1262 LOAD $14 \quad 12.75 \quad 0.00 \quad 0.00 \quad 44.32-118.20 \quad 0.00$
$\bigcirc 70$ TOUT I 23457
$\angle 80$ FOUT 1234567 OFG2
1290 PSO 1
1300 PFO ALL
1310 FPL PFG2

* CORPS PROGRAM \# X0080 * PGA - CASE PILE GROUP ANALYSIS PROGRAM
* VERSION NUMBER \# 90/11/30 * RUN DATE 98/05/01 RUN TIME 10.16.36

FG2 5/1/1998 BKI 9551 FLOODGATE MONOLITH CONCRETE PILES 14 INCH (2 PILE / 8 FT. BASE 8. 75 FT. SPACING)

```
THERE ARE 10 PILES AND
    14 LOAD CASES IN THIS RUN.
```

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

PILE STIFFNESSES AS INPUT

$.29532 \mathrm{E}+02$	$.00000 \mathrm{E}+00$				
$.00000 \mathrm{E}+00$	$.29532 \mathrm{E}+02$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$
$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.19012 \mathrm{E}+04$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$
$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$
$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$
$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$

THIS MATRIX APPLIES TO THE FOLLOWING PILES -
38

$.29532 \mathrm{E}+02$	$.00000 \mathrm{E}+00$				
$.00000 \mathrm{E}+00$	$.29532 \mathrm{E}+02$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$
$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.17984 \mathrm{E}+04$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$
$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$
$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$
$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$

THIS MATRIX APPLIES TO THE FOLLOWING PILES -
$\begin{array}{llllllll}1 & 2 & 4 & 5 & 6 & 7 & 9 & 10\end{array}$

PILE GEOMETRY AS INPUT AND/OR GENERATED

NOM	X FT	Y FT	Z FT	BATTER	ANGLE	LENGTH	FIXITY
					FT		
1	-2.50	17.50	.00	3.00	180.00		P
2	-2.50	8.75	.00	3.00	180.00	P	

180.00	P
180.00	P
180.00	P
.00	P

APPLIED LOADS

ORIGINAL PILE GROUP STIFFNESS MATRIX

$.17104 \mathrm{E}+04$	$.61856 \mathrm{E}-04$	$.84128 \mathrm{E}-11$	$.00000 \mathrm{E}+00$	$-.12736 \mathrm{E}+06$	$-.18557 \mathrm{E}-02$
$.61856 \mathrm{E}-04$	$.29532 \mathrm{E}+03$	$-.18557 \mathrm{E}-03$	$-.17347 \mathrm{E}-17$	$-.55670 \mathrm{E}-02$	$-.16280 \mathrm{E}-09$
$.81855 \mathrm{E}-11$	$-.18557 \mathrm{E}-03$	$.16775 \mathrm{E}+05$	$.00000 \mathrm{E}+00$	$.14552 \mathrm{E}-10$	$.55670 \mathrm{E}-02$
$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.00000 \mathrm{E}+00$	$.35754 \mathrm{E}+09$	$.00000 \mathrm{E}+00$	$-.22352 \mathrm{E}-06$
$-.12736 \mathrm{E}+06$	$-.55670 \mathrm{E}-02$	$.14552 \mathrm{E}-10$	$.00000 \mathrm{E}+00$	$.15097 \mathrm{E}+08$	$.16701 \mathrm{E}+00$
$-.18557 \mathrm{E}-02$	$-.16189 \mathrm{E}-09$	$.55670 \mathrm{E}-02$	$-.23097 \mathrm{E}-06$	$.16701 \mathrm{E}+00$	$.45781 \mathrm{E}+08$

LOAD CASE 1. NUMBER OF FAILURES $=$ 0. NUMBER OF PILES IN TENSION $=5$.
LOAD CASE 2. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 5.
LOAD CASE 3. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION $=5$.
LOAD CASE 4. NUMBER OF FAILURES $=$. \quad NUMBER OF PILES IN TENSION $=5$.
LOAD CASE 5. NUMBER OF FAILURES $=$ 0. NUMBER OF PILES IN TENSION $=0$.
LOAD CASE 6. NUMBER OF FAILURES $=0$. NUMBER OF PILES IN TENSION $=1$.
OAD CASE 7. NUMBER OF FAILURES $=0$. NUMBER OF PILES IN TENSION $=0$.
LOAD CASE 8. NUMBER OF FAILURES = 0. NUMBER OF PILES IN TENSION = 1.

PILE CAP DISPLACEMENTS

PILE FORCES IN LOCAL GEOMETRY
MI \& M2 NOT AT PILE HEAD FOR PINNED PILES * INDICATES PILE FAILURE
\# INDICATES CBF BASED ON MOMENTS DUE TO
(F3*EMIN) FOR CONCRETE PILES
B INDICATES BUCKLING CONTROLS

LOAD CASE - 1

PILE	FI	F 2	F 3	M 1	M 2	M 3	ALE	CB	ASS	ASP
	K	K	K	$\mathrm{IN}-\mathrm{K}$	$\mathrm{IN}-\mathrm{K}$	$\mathrm{IN}-\mathrm{K}$			KSI	KSI

6	2.7	.0	38.8
7	2.7	.0	38.5
8	2.7	.0	-16.1
9	2.7	.0	37.7
10	2.7	.0	37.4

.0	-82.1
.0	-82.2
.0	-84.1
.0	-82.3
.0	-82.4

.0	.53	.25	1.28	.84
.0	.52	.25	1.28	.84
.0	.30	.41	1.00	.56
.0	.51	.26	1.27	.83
.0	.51	.26	1.27	.83

LOAD CASE - 2

LOAD CASE - 3

LOAD CASE - 4

PILE	$\begin{array}{r} \mathrm{F} 1 \\ \mathrm{~K} \end{array}$	$\begin{array}{r} \mathrm{F} 2 \\ \mathrm{~K} \end{array}$	F3K	$\begin{gathered} \text { M1 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M2 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M3 } \\ \text { IN-K } \end{gathered}$	ALF	CBF	Fber 5/1		
									ASC	AST	
									KSI	KSI	
1	. 7	. 0	21.0	. 0	-22.6	. 0	. 28	. 24	1.06		
2	. 7	. 0	18.9	. 0	-22.9	. 0	. 26	. 24	1.05		
3	. 8	. 0	1.4	. 0	-24.8	. 0	. 02	. 31	. .96	7	
4	. 8	. 0	14.6	. 0	-23.7	. 0	. 20	. 25	1.03	. 84	
5	. 8	. 0	12.4	. 0	-24.0	. 0	. 17	. 26	1.02	. 83	
6	-1.0	. 0	27.5	. 0	30.8	. 0	. 37	. 22	1.11	. 89	\#
7	-1.0	. 0	25.3	. 0	30.4	. 0	. 34	. 23	1.10	. 88	\#
8	-. 8	. 0	43.0	. 0	24.8	. 0	. 61	. 20	1.17	. 99	\#
9	-1.0	. 0	21.0	. 0	29.7	. 0	. 28	. 24	1.07	. 86	,
10	-. 9	. 0	18.9	. 0	29.3	. 0	. 26	. 24	1.06	. 85	

LOAD CASE - 6

PILE	$\begin{gathered} \mathrm{F} 1 \\ \mathrm{~K} \end{gathered}$	$\begin{array}{r} \mathrm{F} 2 \\ \mathrm{~K} \end{array}$	$\begin{array}{r} \text { F3 } \\ \mathrm{K} \end{array}$	$\begin{gathered} \text { M1 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M2 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M3 } \\ \text { IN-K } \end{gathered}$	ALF	CBF	$\begin{aligned} & \text { ASC } \\ & \text { KSI } \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \text { KSI } \end{aligned}$
1	1.4	. 0	21.1	. 0	-42.1	. 0	. 29	. 26	1.10	
2	1.4	. 0	19.3	. 0	-42.4	. 0	. 29	. 26	1.10 1.09	. 84
3	1.4	. 0	-10.6	. 0	-43.3	. 0	. 20	. 24	1.09	. 83
4	1.4	. 0	15.8	. 0	-43.0	. 0	. 21	. 28	1.08	. 81
5	1.4	. 0	14.0	. 0	-43.3	. 0	. 19	. 29	1.07	. 81
6	-1.7	. 0	32.4	. 0	51.1	. 0	. 44	. 23	1.18	. 88
7	-1.6	. 0	30.6	. 0	50.8	. 0	. 41	. 23	1.18 1.17	. 88
8	-1.4	. 0	62.3	. 0	43.3	. 0	. 89	. 16	1.17	1.87
9	-1.6	. 0	27.1	. 0	50.3	. 0	. 37	. 16	1.31	1.04
10	-1.6	. 0	25.3	. 0	50.0	. 0	. 34	. 25	1.15	.85 .84

LOAD CASE - 7

PILE	$\begin{array}{r} \mathrm{F} 1 \\ \mathrm{~K} \end{array}$	$\begin{array}{r} \mathrm{F} 2 \\ \mathrm{~K} \end{array}$	$\begin{gathered} \text { F3 } \\ \text { K } \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M2 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M3 } \\ \text { IN-K } \end{gathered}$	ALF	CBF	$\begin{aligned} & \text { ASC } \\ & \text { KSI } \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \text { KSI } \end{aligned}$
1	-. 6	. 0	25.9	. 0	17.4	. 0	. 35	. 23	1.07	
2	-. 6	. 0	23.7	. 0	17.0	. 0	. 32	. 23	1.06	. 91 \#
3	-. 4	. 0	32.6	. 0	12.3	. 0	. 47	. 21	1.09	. 96
4	-. 5	. 0	19.4	. 0	16.3	. 0	. 26	. 24	1.04	. 89 \#
5	-. 5	. 0	17.2	. 0	15.9	. 0	. 23	. 24	1.04	. 88 \#
6	. 3	. 0	22.6	. 0	-9.2	. 0	. 31	. 23	1.04	. 92 \#
7	. 3	. 0	20.5	. 0	-9.6	. 0	. 28	. 24	1.03	. 91 \#
8	. 4	. 0	11.8	. 0	-12.3	. 0	. 17	. 25	1.99	. 86 \#
9	. 3	. 0	16.2	. 0	-10.3	. 0	. 22	. 24	1.01	. 88 \#
10	. 3	. 0	14.0	. 0	-10.6	. 0	. 19	. 25	1.00	. 887

LOAD CASE - 8

PILE	$\begin{array}{r} \mathrm{F} 1 \\ \mathrm{~K} \end{array}$	$\begin{array}{r} \mathrm{F} 2 \\ \mathrm{~K} \end{array}$	$\begin{gathered} \text { F3 } \\ \text { K } \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M2 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M3 } \\ \text { IN-K } \end{gathered}$	ALF	CBF	$\begin{aligned} & \text { ASC } \\ & \text { KSI } \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \text { KSI } \end{aligned}$
1	-1.2	. 0	30.8	. 0	37.8	. 0	. 42	. 22	1.14	
2	-1.2	. 0	29.0	. 0	37.5	. 0	. 39	. 22	1.13	. 99 \#
3	-1.0	. 0	51.8	. 0	30.9	. 0	. 74	. 18	1.23	1.02
4	-1.2	. 0	25.5	. 0	36.9	. 0	.34 .34	. 23	1.11	1.0
5	-1.2	. 0	23.7	. 0	36.6	. 0	. 32	$\cdot 24$	1.11	
6	. 9	. 0	22.7	. 0	-28.7	. 0	. 31	. 23	1.08	. 87

LOAD CASE - 11

OAD CASE - 12

PILE F1 F2 F3 M1
M2
M3 ALF CBF ASC AST

	K	K	K	IN-K	IN-K	IN-K		$F 62 / 11$		
									KSI	KSI
1	. 9	. 0	12.8	-. 2	-27.7	. 0	. 17	. 27	1.03	83
2	. 9	. 0	11.8	-. 2	-28.5	- 0	. 16	. 27	1.03	. 83
3	1.0	. 0	-8.4	.2 -.2	-29.5	. 0	. 16	- 27	1.02	. 8
4	1.0	. 0	10.0	-. 2	-30.1	. 0	. 14	. 28	1. .92	- 81
5	1. 0	. 0	9.0	-. 2	-30.9	. 0	. 12	. 29	1.02	. 81
6	-1.1	. 0	27.3	-. 2	34.4	. 0	. 37	. 22	1. 1.12	.80
7	-1.1	- 0	25.6	-. 2	34.8	. 0	. 35	. 23	1.12	. 89 \#
8	-1.0	. 0	47.1	-. 2	29.5	. 0	. 67	. 19	1.21	1.08 \#
9	-1. 2	. 0	22.2	-. 2	35.5	. 0	. 30	. 24	1.09	$1.0)^{\text {\# }}$
10	-1.2	. 0	20.4	-. 2	35.9	. 0	. 28	. 25	1.08	. 85

LOAD CASE - 13

PILE	$\begin{array}{r} \text { F1 } \\ \mathrm{K} \end{array}$	$\mathrm{F} 2$	$\begin{array}{r} \text { F3 } \\ \text { K } \end{array}$	$\begin{gathered} \text { M1 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M2 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M3 } \\ \text { IN-K } \end{gathered}$	ALF	CBF	$\begin{aligned} & \text { ASC } \\ & \text { KSI } \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \text { KSI } \end{aligned}$
1	. 3	. 0	4.3	. 0	-10.3	. 0	. 06	27	95	82
2	. 3	. 0	4.0	. 0	-10.3	. 0	. 05	. 28	-95	. 82
3	- 3	. 0	-3.1	. 0	-10.4	. 0	. 06	. 06	. 94	. 82
4	. 3	. 0	3.5	. 0	-10.4	. 0	. 05	. 28	. 94	. 82
5	. 3	. 0	3.2	. 0	-10.5	. 0	. 04	. 28	. 94	. 82
6	-. 3	. 0	-3.2	. 0	10.5	. 0	. 06	. 28	.94 .91	.82 .78
7	-. 3	. 0	-3.5	. 0	10.4	. 0	. .06	. 07	. 91	. 78
8	-. 3	. 0	3.1	. 0	10.4	. 0	. .04	. 28	. 94	. 81
9	-. 3	. 0	-4.0	. 0	10.3	. 0	. 07	. 08	. 90	. 78
10	-. 3	. 0	-4.3	. 0	10.3	. 0	. 08	. 08	. 90	. 78

LOAD CASE - 14

PILE	$\begin{array}{r} \mathrm{F} 1 \\ \mathrm{~K} \end{array}$	$\begin{array}{r} \mathrm{F} 2 \\ \mathrm{~K} \end{array}$	$\begin{array}{r} \text { F3 } \\ \text { K } \end{array}$	$\begin{gathered} \text { M1 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M2 } \\ \text { IN-K } \end{gathered}$	$\begin{gathered} \text { M3 } \\ \text { IN-K } \end{gathered}$	ALF	CBF	$\begin{aligned} & \text { ASC } \\ & \text { KS I } \end{aligned}$	$\begin{aligned} & \text { AST } \\ & \text { KSI } \end{aligned}$
1	. 0	. 0	-4.4	. 0	. 4	0	08	06		
2	. 0	. 0	-4.7	. 0	. 4	. 0	.08 .08	. .06	.88 .88	.80 .80
3	. 0	. 0	-4.8	. 0	1.1	. 0	. 09	. .06	. 88	. 80
4	. 0	. 0	-5.2	. 0	. 3	. 0	. 09	. 07	. 87	. 79
5	. 0	. 0	-5.5	. 0	. 3	. 0	. 10	. 07	. 87	. 79
6	. 0	. 0	5.5	. 0	-. 3	. 0	. 07	. 26	. 93	. 85 \#
7	. 0	. 0	5.2	. 0	-. 3	. 0	. 07	. 26	. 93	. 85 \#
8	. 0	. 0	4.8	. 0	-1.1	. 0	. 07	. 27	. 93	. 84 \#
9	. 0	. 0	4.7	. 0	-. 4	. 0	. 06	. 27	. .93	. 85 \#
10	. 0	. 0	4.4	. 0	-. 4	. 0	.06	. 27	. .92	. 84 \#

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX	PY	PZ	MX	MY	MZ
	K	K	K	$I N-K$	$I N-K$	IN-K
1	7.1	.0	-12.6	.0	.0	.0

LOAD CASE - 5

LOAD CASE - 7

LOAD CASE - 12

LOAD CASE - 13

FILL QUANTITY SPEADSHEETS

Reach 1 -- East Bank
Excavation and Embankment Quantities

377+60.01			0		76.1	442.65
378+06.34			0		72.78	127.73
380+06.34			0		67.54	519.7
382+06.34			0		58.92	468.37
384+06.37			0		94.08	566.75
386+06.34			0		164.95	959.23
388+06.34			0		160.66	1205.96
$390+06.34$			0		157.15	1177.07
$392+06.34$			0		143.95	1115.19
394+06.34			0		99.88	903.07
396+06.34			0		69.07	625.74
397+64.			0		66.49	395.78
397+88.			0		42.25	48.33
398+06.34			0		48.06	30.67
400+06.34			0		76.8	462.44
401+80.			0		115.39	618.07
402+06.34			0		6.23	59.32
404+06.34			0		21.46	102.56
406+06.34			0		10.64	118.89
406+11.			0		0	0.92
406+18.			0		16.86	2.19
406+25.			0		0	2.19
406+55.41			0		0	0
408+06.34			0		25.62	86.04
408+05.77			0		25.67	71.48
410+05.77			0		20.51	171.04
412+05.77			0		17.15	139.48
414+06.37			0		19.41	135.81
416+06.34			0		51.15	261.29
418+05.77			0		82.81	494.73
$420+05.77$			0		119.84	750.56
422+05.77			0		117.24	878.07
424+05.77			0		89.37	765.22
426+05.77			0		101.82	708.11
428+05.77			0		66.62	623.85
430+05.77			0		64.82	486.81
432+05.77			0		26.07	336.63
434+05.77			0		44.31	260.67
436+05.77			0		64.7	403.74
438+05.77			0		45.43	407.89

TOTAL	Cut (C.Y.)							0	Fill (C.Y.)	$26,889.00$

Reach 1 -- West Bank

Excavation and Embankment Quantities

Station		TOTAL Excavation (Area $\left.F t^{\wedge} 2\right)^{*}$	TOTAL Excavation (VOL YD^3)*	TOTAL Embankment (Area Ft^2)*	
1111+06.11					
1111+06.28	\#		0	66.62	0.21
1113+06.28	\#		0	58.57	463.67
1115+06.28	\#		0	83.49	526.15
1117+06.28	\#		0	69.38	566.19
1119+11.81	\#		0	52.85	465.22
$1121+34.47$	\#		0	33.9	357.7
1123+11.81	\#		0	65.27	325.68
1125+11.81	\#		0	81.63	544.07
1125+71.11	\#		0	49.78	144.31
1126+08.61	\#		0	55.92	73.4
1127+11.81	\#		0	91.67	282.06
1129+11.81	\#		0	99.99	709.85
$1131+11.81$	\#		0	73.44	642.33
1133+11.81	\#		0	70.36	532.59
1135+11.81	\#		0	33.84	385.93
$1137+11.81$	\#		0	52.39	319.37
$1139+11.81$	\#		0	48.75	374.59
$1141+11.81$	\#		0	90.07	514.15
$1143+12.27$	\#		0	102.59	715.2
$1145+12.27$	\#		0	76.87	664.67
1147+12.27	\#		0	124.42	745.52
$1149+12.27$	\#		0	77.39	747.44
1150+35.	\#		0	43.03	273.69
$1150+53.5$	\#		0	0	14.74
1150+65.	\#		0	37.71	8.03
1151+12.27	\#		0	44.56	72.02
1153+12.27	\#		0	79.57	459.74
$1153+42.27$	\#		0	45.54	69.51
$1153+72.27$	\#		0	47.99	51.96
1154+02.27	\#		0	66.88	63.82
$1154+29.77$	\#		0	75.57	72.54
1154+56.87	\#		0	72.57	74.34
1154+70.	\#		0	56.51	31.39
1154+92.5	\#		0	0	23.55
1155+12.27	\#		0	60.92	22.3
$1157+12.27$	\#		0	136.25	730.26

| $1230+43.21$ | | $\#$ | 0 | 41.24 | 132.6 |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| TOTAL | Cut (C.Y.) | 0 | Fill (C.Y.) | $26,910.08$ | |

Reach 2 -- East Bank

Excavation and Embankment Quantities				
Station	TOTAL Excavation (Area Ft^2)*	TOTAL Excavation (VOL $\left.Y D^{\wedge} 3\right)^{*}$	TOTAL Embankment (Area Ft^2)*	
438+06.34				
440+05.77		0	58.14	214.72
442+05.77		0	78.81	507.22
444+05.77		0	96.04	647.59
446+05.77		0	138.42	868.37
448+05.77		0	129.99	994.11
449+05.77		0	143.47	506.41
450+05.77		0	135.91	517.37
452+05.77		0	130.59	987.04
454+05.77		0	150.98	1042.85
456+05.77		0	127.3	1030.67
458+05.77		0	149.4	1024.81
460+05.77		0	175.26	1202.44
488+05.21		0	179.68	18400.62
490+05.21		0	168.04	1287.85
491+11.95		0	188.51	704.78
492+05.13		0	192.79	657.95
494+05.13		0	99.92	1084.11
496+04.2		0	126.19	833.55
496+06.21	Belle Chasse P	umping	0	4.7
499+68.	Station No. 1		0	0
499+68.17		0	137.44	1776.92
500+89.58		0	141.15	626.36
501+98.71		0	99.87	487.08
503+98.71		0	151.88	932.41
506+11.71		0	112.67	1043.5
507+98.71		0	132.26	848.18
510+17.82		0	95.7	924.97
$510+46.63$		0	114.41	112.1
$511+98.63$		0	143.03	724.65
513+98.63		0	117.43	964.67
TOTAL	Cut (C.Y.)	0	Fill (C.Y.)	40,958.00

Reach 2 .- West Bank

Reach 3 -- East Bank

Excavation and Embankment Quantities

Station	TOTAL Excavation (Area Ft^2)*	TOTAL Excavation (VOL $\left.Y D^{\wedge} 3\right)^{*}$	TOTAL Embankment (Area $\left.F t^{\wedge} 2\right)^{*}$	TOTAL Embankment (VOL YD^3)*
514+00.				
$515+98.73$		0	178.58	657.21
$517+98.63$		0	141.28	1184.07
519+98.63		0	169.19	1149.89
$521+98.63$		0	152.35	1190.89
$523+98.63$		0	118.61	1003.56
$525+98.63$		0	96.21	795.63
$527+98.63$		0	106.45	750.59
$529+98.63$		0	105.47	784.89
$531+13.63$		0	41.2	312.35
532+17.2		0	121	311.09
$533+98.47$		0	90.96	711.52
$535+98.47$		0	55.51	542.48
$537+98.47$		0	36.1	339.3
$539+98.47$		0	69.98	392.89
$541+98.47$		0	88.13	585.59
543+98.47		0	95.99	681.93
545+98.47		0	104.69	743.26
547+98.47		0	137.85	898.3
$549+98.47$		0	136.84	1017.37
$551+98.47$		0	142.42	1034.3
553+98.47		0	154.05	1098.04
555+98.47		0	160.84	1166.26
557+98.47		0	151.15	1155.52
559+98.47		0	160.64	1154.78
$561+98.47$		0	104.91	983.52
563+98.47		0	83.3	697.07
565+98.47		0	62.86	541.33
567+98.47		0	47.43	408.48
569+82.		0	69.3	396.73
570+11.97		0	0	38.46
570+36.97		0	43.63	20.2
$570+81.47$		0	76.67	99.14
571+98.47		0	83.33	346.67
572+39.47		0	29.34	85.55
572+48.92		0	8.66	6.65

$631+58.21$			0	32.69	15.13	
$631+97.71$		0	57.53	65.99		
$633+97.71$		0	98.27	577.04		
$635+97.71$			0	118.9	804.33	
$637+97.71$			0	124.17	900.26	
$639+97.71$		0	109.55	865.63		
$641+97.71$		0	120.92	853.59		
$643+97.71$			0	140.8	969.33	
$645+97.71$		0	148.68	1072.15		
$647+97.71$		0	148.66	1101.26		
$649+97.71$			0	154.53	1122.93	
$651+97.71$			0	163.77	1178.89	
\cdots						
\cdots						

Reach 3 -- West Bank

Excavation and Embankment Quantities				
Station	TOTAL Excavation (Area Ft^2)*	TOTAL Excavation (VOL $\left.Y D^{\wedge} 3\right)^{*}$	TOTAL Embankment (Area Ft^2)*	TOTAL Embankment (VOL YD^3)*
897+02.65				
897+09.		0	188.94	22.22
899+09.		0	204.21	1456.11
$900+58.41$		0	190.87	1093.13
901+09.75		0	190.76	362.83
903+09.75		0	131.68	1194.22
905+09.75		0	126.72	957.04
907+09.75		0	162.75	1072.11
909+09.75		0	143.74	1135.15
911+09.75		0	148.92	1083.93
913+09.75		0	211.42	1334.59
915+09.75		0	129.98	1264.44
917+09.75		0	104.58	868.74
919+09.75		0	85.17	702.78
921+09.75		0	103.51	698.81
923+09.75		0	129.67	863.63
923+87.49		0	97.31	326.77
924+63.		0	16.08	158.56
925+38.22		0	48.72	90.26
927+39.38	Planters Pump		0	181.49
932+46.79	Station		0	0
950+43.4		0	4.45	2466.67
952+43.4		0	13.49	66.44
954+43.4		0	21.79	130.67
956+43.4		0	40.61	231.11
958+43.4		0	36.19	284.44
$960+43.4$		0	21.59	214
962+43.4		0	32.4	199.96
963+29.88		0	43.02	120.78
$964+43.41$		0	33.25	160.35
966+43.41		0	63.78	359.37
$968+43.41$		0	112.41	652.56
968+99.41		0	16.4	133.58
970+41.41		0	48.87	171.64
971+52.78		0	18.16	138.24
972+43.41		0	70.39	148.62

Reach 4 -- East Bank

Excavation and Embankment Quantities				
Station	TOTAL Excavation (Area Ft^2)*	TOTAL Excavation $(V O L$ YD (3$)^{*}$	TOTAL Embankment (Area Ft^2)*	
652+00.				
653+97.71		0	138.69	507.79
655+97.71		0	112.96	932.04
657+97.91		0	136.14	1507.4
659+97.71		0	136.98	1010.54
661+97.71		0	117.54	942.67
$663+29.57$		0	117.02	572.76
664+00.		0	101.41	284.89
666+00.		0	84.46	688.41
668+00.		0	37.13	450.33
670+00.		0	27.86	240.7
672+00.		0	108.6	505.41
672+81.52		0	120.88	346.43
673+55.89		0	1.85	169.03
674+00.		0	89.01	74.22
676+00.		0	132.19	819.26
678+00.		0	104.13	875.26
680+00.		0	73.51	657.93
682+00.		0	59.53	492.74
684+00.		0	37.18	358.19
686+00.		0	52.24	331.19
686+48.74		0	73.13	113.16
688+00.		0	67.58	394.14
690+00.		0	35.85	383.07
692+00.		0	64.45	371.48
694+00.		0	85.25	554.44
696+00.		0	71.39	580.15
698+00.		0	66.89	512.15
700+00.		0	98.51	612.59
702+00.		0	97.03	724.22
704+00.		0	141.88	884.85
704+87.95		0	143.05	464.07
706+00.		0	181.85	674.17
708+00.		0	201.75	1420.74
710+00.		0	218.69	1557.19
712+00.		0	174.02	1454.48

$769+12.93$			0		0	256.29

Reach 4 -- West Bank
Excavation and Embankment Quantities

$887+09$.			0	72.54	269.25	
$889+09$.		0	72.5	537.19		
$891+09$.			0	58.94	486.81	
$893+09$.		0	159.49	809		
$895+09$.			0	181.63	1263.41	
$897+09$.			0	188.94	1372.48	
			0			
			Fill (C.Y.)	$36,266.68$		

[^0]: Comments: Coordinates: North 484688.370, East 3685189.805

[^1]: Comments: Coordinates: North 488130.438, East 3689961.091

[^2]: Comments: Coordinates: North 501517.478, East 3701098.846

[^3]: Comments: Coordinates: North 506135.743, East 3703397.032

[^4]: Comments: Coordinates: North 485906.337, East 3682390.777

[^5]: Comments: Coordinates: North 491181.668, East 3692925.745

[^6]: Comments: Coordinates: North 509148.427, East 3704175.151

[^7]: Comments: Coordinates: North 500124.973, East 3700396.794
 5-in. diameter samples

[^8]: Comments: Coordinates: North 504278.169, East 3702451.616

[^9]: Comments: Coordinates: North 484210.581, East 3683302.379
 $5-\mathrm{in}$. diameter samples

[^10]: Comments: Coordinates: North 490347.872, East 3691858.068
 5 -in. diameter samples

[^11]: PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
 DATE: 19-MAR-1998 BY CLASSICAL METHODS

 \square SOIL PRESSURES FOR a
 a CANTILEVER WALL DESIGN a

 I. --HEADING

[^12]: PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS
 DATE: 20-MAR-1998
 TIME: 9.18.15

 a SOIL PRESSURES FOR a
 a CANTILEVER WALL DESIGN a

 I. --HEADING

[^13]: 'ALGIERS CANAL, EE14638
 ' REACH 2,I WALL, WEST SIDE, WATER EL 11.5

