Engineering and Operational Risk and Reliability Analysis

Co-Leaders Jerry Foster, USACE Bruce Muller, USBR

Conditions Studied

Pre-Katrina Risks

- HPS features in-place on 28 August 2005
- Include engineering and system knowledge gained by IPET
- Consider range of possible hurricanes

• 1 June 2006 Risks

- HPS with TFG Repairs and improvements in-place on 1 June
- Include engineering and system knowledge gained by IPET
- Consider range of possible hurricanes

• Risks 2006-2007

- Planned improvements (canal closures, etc.)

Hurricane Protection System

IPET Risk Model

- Detailed physical characteristics of polders modeled
- Individual polders aggregated to model system performance.
- Range of potential hurricanes considered
- Performance of physical features modeled (Reliability)
- Polder inflow volumes
 - Overtopping
 - Breaching
 - Rainfall
- Pump station performance
- Stage-storage models
- Net water levels
- Elevation-frequency mapping
- Economic and Human risks

Overall Methodology

Event Tree

Hazard analysis		Polder	system pro	Po	older conse	HDS Dieke					
(hurricane rates and effects)		volu	mes (conditio	(water volume, elevation & loss per event)							
Hurricane (h_i) & rate (λ_i)	Hurricane spatial effects	Closure structure & operations	Overtopping (O)	Breach* (B)	Drainage, pump & power (P)	Net water- levels (W)	Evacuation effectiveness	Life loss	Economic loss (\$)	Life risk	Economic risk (\$)
(h_{1},λ_{1}) (h_{2},λ_{2}) \vdots $(h_{b},\lambda_{l}) -$ \vdots (h_{N},λ_{N})	Spatial peak surge & effective wave height (<i>SW</i>), and durations	All closed <u>C</u> Not all closed C		B B B B B B B B B B B B B B B B B B B		Water volume Water volume Post-surge elevation Water volume Water volume Water volume Water volume Post-surge elevation Water volume Water volume Water volume	Low effectiveness <i>E</i> ₁ Medium effectiveness <i>E</i> ₂ High effectiveness <i>E</i> ₃	Exceed & proba Inundat Point es epistem estimate	ance rates ibilities tion elevations stimates with ic uncertainty es	Loss excee & probabili 1. per pold 2. per Pari 3. for regic 4. for storn Loss in a t	edance rates ties: sh on n categories ime period <i>T</i>
	Precipitation inflow (Q)		Rainfall volume		P P P	Water volume Water volume					
				*includes all failure modes of all reaches and their features							

Risk Model

Reach Number							1			Point in-between reaches				
Reach start-end stations			To be provided											
Reach coordinates			To be provided											
Equal al	location to St	1	1											
Reach le	əngth (ft)	2000	2000											
Reach e	levation (ft)	16												
Mean (V	Veir Coeff.) ¹	3												
COV (W	eir Coeff.)		0.2											
¹ Use 3.0	for floodwalls,	2.6 for levees, an	nd 2.0 for (gates										
Hurrican	ie Runs			1										
Run	Rate (R)		Surge+Waves Duration				OT Leng	th	OT Probability	OT Volume (Weir Eq)				
i	Mean	StD*	Hs		Т	Т			P(OT)	VIOT				
		<u> </u>	Mean	StD*	Mean	StD*	Mean	StD*		Mean	StD			
ID	event/yr	event/yr	ft	ft	sec	sec	ft	ft		ft^3	ft^3			
1	5.00E-04	0.00E+00	25	0	5400	0	2000	0	1.00E+00	8.748E+08	1.750E+08			
2	5.00E-04	0.00E+00	25	0	5400	0	2000	0	1.00E+00	8.748E+08	1.750E+08			
3	7.50E-04	0.00E+00	24	0	5400	0	2000	0	1.00E+00	7.331E+08	1.466E+08			
4	1.00E-03	0.00E+00	23	0	5400	0	2000	0	1.00E+00	6.001E+08	1.200E+08			
5	1.00E-03	0.00E+00	22	0	5400	0	2000	0	1.00E+00	4.762E+08	9.524E+07			
6	1.50E-03	0.00E+00	21	0'	5400	0	2000	0	1.00E+00	3.622E+08	7.245E+07			
7	2.00E-03	0.00E+00	20	0	5400	0	2000	0	1.00E+00	2.592E+08	5.184E+07			
8	2.00E-03	0.00E+00	19	0'	5400	0	2000	0	1.00E+00	1.684E+08	3.367E+07			
9	2.00E-03	0.00E+00	18	0'	5400	0	2000	0	1.00E+00	9.164E+07	1.833E+07			
10	2.00E-03	0.00E+00	17	0'	5400	0	2000	0	1.00E+00	3.240E+07	6.480E+06			
11	3.50E-03	0.00E+00	16	0'	5400	0	0	0	0.00E+00	0.000E+00	0.000E+00			
12	5.00E-03	0.00E+00	15	0	4320	0	0	0	0.00E+00	0.000E+00	0.000E+00			
13	5.00E-03	0.00E+00	14	0'	3600	0	0	0	0.00E+00	0.000E+00	0.000E+00			
14	5.00E-03	0.00E+00	13	0	3600	0	0	0	0.00E+00	0.000E+00	0.000E+00			
15	5.00E-03	0.00E+00	12	0'	3600	0	0	0	0.00E+00	0.000E+00	0.000E+00			
16	5.00E-03	0.00E+00	11	0'	3600	0	0	0	0.00E+00	0.000E+00	0.000E+00			
17	5.00E-03	0.00E+00	10	0	3600'	0	0	0'	0.00E+00/	0.000E+00'	0.000E+00			

* Reserved for future epistemic uncertainty analysis

Hurricane Modeling

•Hurricane parameter sets developed for ADCIRC runs.

•Number of runs required was reduced by selecting parameter ranges considered possible for NO.

•Approx. 1200 runs with a medium resolution grid

•Approx. 40 runs using a high resolution grid to calibrate the medium resolution runs

•Parameter sets to include historic storms

•Add waves

•Joint probability used to determine frequencies

•Outputs: Surge plus significant wave height & durations, estimates of hurricane rates and uncertainties

Polder Inflow Volumes

					Summ	ary by Sub-P	older		Over	toppi	ng	
1				2	Cumm		Jaci	3	Dree			
				_				Ť	Brea	cning		
										· · · · ·		
										Rainfall		
To be provid	ded			To be provided To be r					provided			
Sub-F	Polder	1		Sub-	Polder	2		Su	b-Polder	3		
OT Probabi	lity	OT Volume (Weir Eq)	OT Probab	oility	OT Volume	(Weir Eq)	OT Proba	ability	OT Volume ((Weir Eq)	
P(OT)	-	VIOT	•*	P(OT)		VIOT	*	P(OT)		VIOT	*	
Mean	StD*	Mean	StD	Mean	StD*	Mean	StD	Mean	StD*	Mean	StD	
Prob.	Prob.	ft^3	ft^3	Prob.	Prob.	ft^3	ft^3	Prob.	Prob.	ft^3	ft^3	
1.00E+00	NA	1.532E+09	1.918E+08		TBD		TBD		TBD		TBD	
1.00E+00	NA	1.532E+09	1.918E+08		TBD		TBD		TBD		TBD	
1.00E+00	NA	1.378E+09	1.658E+08		TBD		TBD		TBD		TBD	
1.00E+00	NA	1.027E+09	1.306E+08		TBD		TBD		TBD		TBD	
1.00E+00	NA	9.629E+08	1.121E+08		TBD		TBD		TBD		TBD	
1.00E+00	NA	7.109E+08	8.421E+07		TBD		TBD		TBD		TBD	
1.00E+00	NA	4.107E+08	5.527E+07		TBD		TBD		TBD		TBD	
1.00E+00	NA	2.521E+08	3.551E+07		TBD		TBD		TBD		TBD	
1.00E+00	NA	1.408E+08	2.001E+07		TBD		TBD		TBD		TBD	
1.00E+00	NA	4.344E+07	6.846E+06		TBD		TBD		TBD		TBD	
0.00E+00	NA	0.000E+00	0.000E+00		TBD		TBD		TBD		TBD	
0.00E+00	NA	0.000E+00	0.000E+00		TBD		TBD		TBD		TBD	
0.00E+00	NA	0.000E+00	0.000E+00		TBD		TBD		TBD		TBD	
0.00E+00	NA	0.000E+00	0.000E+00		TBD		TBD		TBD		TBD	
0.00E+00	NA	0.000E+00	0.000E+00		TBD		TBD		TBD		TBD	
0.00E+00	NA	0.000E+00	0.000E+00		TBD		TBD		TBD		TBD	
0.00E+00	NA	0.000E+00	0.000E+00		TBD		TBD		TBD	1	TBD	

Net Water Levels

Net Water Levels

Volume versus Elevation - Combined Subpolders

New Orleans East Polder

Boring Logs – NOE East Back Levee

DM and IPET boring logs reviewed by geotechs to determine soil properties for reliability analyses

Feature Definitions

 <u>Reach NOE6 (Citrus Lakefront DM).</u> This reach is defined by a 19,112 linear feet segment of levee. It begins at the end of the Stars and Stripes floodwall and ends at the west side of the Lincoln Beach floodwall. There are two "key" points within this segment: two small floodwall sections embedded within the levee for the discharge pipes of the Citrus and Jahncke Pump Stations. There was some minor scouring and overtopping of this levee at various locations, as indicated in Figure 4, but no failures.

Reach Definition

 <u>Reach NOE16 (East Back DM).</u> This reach consists of the east floodwall around the Michoud Canal. It is approximately 10,757 feet long. It starts at the GIWW and continues along the Michoud Canal where it joins with the Citrus Back floodwall. There are 18 key points along this reach for gated closures at industry and road crossings. However, from site inspections, it appears as if 5 of these gates are placed in the permanently closed position. As shown in Figure 9, the transition sheet pile floodwall at the beginning of this

reach failed during Katrina.

Figure 9. Floodwall Failure at East End of Michoud Canal FW

Reliability Levees – Failure Modes

Walls – Failure Modes

DISPLAY OF RESULTS

Modeling System Risks

- Individual polder results integrated into a system analysis
- Consequence team input
 - Loss of life
 - Direct economic impacts
- Deaggregate results to show feature contributions to system risks
- Risk communication plan