

US Army Corps of Engineers

Performance Evaluation of New Orleans and Southeast Louisiana Hurricane Protection System

Floodwall and Levee Performance Analysis

Interagency Performance Evaluation Task Force (IPET)

Floodwall and Levee Performance **US Army Corps** Analysis of Engineers

The Performance: How did the floodwalls and levees, individually and acting as an integrated system, perform in response to Hurricane Katrina, and why?

Objective

- Analyze the levees and floodwalls performance during Hurricane Katrina
- Investigate the most likely causes of the damage and failure of \bullet the levees and floodwalls in the system
- Compare them with similar sections or reaches where the ۲ performance was satisfactory
- Understand mechanisms that led to the breaches along a reaches in order evaluate the potential performance of the similar unbreached reaches of the protective system

- Primary Factors Leading to the 17th Street Canal Breach:
 - Development of a gap between the wall and the levee fill on the canal side of the wall
 - Variation in foundation clay shear strength from levee crest to landside toe
- Except for the outfall canals, all other damage to the floodwalls and levees has been due to overtopping

US Army Corps of Engineers

Cross-Sections & Soil Profiles for Use in Analysis

US Army Corps of Engineers

LEGEND

Point bar

Inland swamp

Spoil

Top of Pleistocene-ft msl

 $\wedge \wedge$

-40

New Orleans Area

US Army Corps Spanish Fort: X-Section C-C'

US Army Corps

Pine Is Beach Ridge

US Army Corps of Engineers 17th Street Canal Breach

EAST

17th Street Canal Breach

NEST

US Army Corps of Engineers

17th Street Canal Breach

US Army Corps of Engineers

US Army Corps 17 Street Canal Swamp of Engineers

17th Street Slide Block

US Army Corps of Engineers

17th Street Slide Block

US Army Corps of Engineers

US Army Corps of Engineers

17th Street Canal I-wall Soil Strength and Stability

17th Street Canal C/L Failure Section

US Army Corps of Engineers

1992

1.011

Station 10+00

US Army Corps of Engineers

Undrained Shear Strength (psf)

US Army Corps of Engineers

IPET shear strength model

US Army Corps of Engineers

Comparison of IPET shear strength model with design shear strengths

US Army Corps of Engineers

Clay Strengths in Breach and Adjacent Areas

- Data are sparse and scattered
- Based on five UC and one UU-1 tests from two borings in the breach area, <u>the average s_u is</u> <u>260 psf</u>
- Based on three UC, three UU, and one UU-1 tests from two borings north of the breach area, <u>the average s_u is 335 psf (30%)</u>
- Based on nine UC, two UU, and one UU-1 tests from three borings south of the breach, <u>s_u 318</u> psf (20%)

Station 10+00

US Army Corps of Engineers

DISTANCE IN FEET

US Army Corps of Engineers

17th Street Canal Hydrograph

Lake Pontchartrain Canal Hydrographs

Date and Time, CDT

US Army Corps of Engineers Water levels (NGVD)

- W. L. = 11.3 ft, with crack, F = 1.00
- W. L. was 7.5 ft to 9.5 ft, plus wave effects, at time of failure
- Wave effects may be + 1.0 ft
- W. L. for F = 1.0 is one to two feet higher than estimated effective water level at time of failure

US Army Corps of Engineers

W. L. = 11.5 NGVD No crack Method of planes F = 1.30

Design Cross Section for Breach a Area

US Army Corps of Engineers

W. L. = 11.5 NGVD No crack Spencer's method F = 1.45

Design cross section and strength

US Army Corps of Engineers

W. L. = 13.6 NGVD, with crack for F = 1.00 using Spencer's method

Probabilities of failure

US Army Corps of Engineers

Probabilities of failure (in yellow)				
			COV _F	
Area	WL	F_{MLV}	15%	30%
Breach	11.5 ft	0.99	56%	57%
Adjacent	11.5 ft	1.15	19%	37%

- The peat is not the weak link
- The peat is stronger than the clay beneath the peat

• The strength of the clay increases markedly with depth

- Strengths are lower beneath levee slope and beyond toe than beneath crest
- GDM 20 strengths were the same beneath the levee crest, slope and beyond the toe
- Strengths are about 20% higher to the south of the breach and 30% higher to the north
- Factor of safety are about 15% higher for adjacent areas than for the breach area

 Factors of safety are about 25% lower for the cracked condition than for uncracked condition

 Development of a crack on the canal side of the wall is an important factor in the mechanism of failure

- Water level = 11.3 ft required for F = 1.00
- These water levels are higher than the eyewitness water level at time of failure
- Differences may be due to:
 - Wave effects
 - IPET shear strengths higher than actual
 - Circular slip surfaces give factors of safety that are higher by about 3%, and water levels for F = 1.0 that are about 1.2 ft higher than noncircular surfaces

US Army Corps of Engineers

System-Wide Assessment

Impacted Area

Hri

US Army Corps of Engineers, New Orleans District

Local Authorities

- Louisiana DOTD
- Port of New Orleans
- Lake Borgne Basin Levee District
- N.O. Sewerage and Water Board
- Orleans Levee District
- Plaquemines Parish Government
- St. Bernard Parish Government

Hurricane Protection System

- 284 miles: Federal levees/floodwalls
- 71 pump stations

Damage

- 169 miles: Federal levees/floodwalls
- 34 pump stations

Damaged No Significant Damage Non-Federal Levee

Assessment of Entire System

US Army Corps of Engineers

Selection For Detailed Analysis

- Walls that failed (category WF)
- Walls that were close to failure, indicated by permanent deflection (WCF)
- Walls that are stable, with no permanent deflection (WS)
- Levees that overtopped and breached (LOB)
- Levees that overtopped and did not breach (LONB)
- Levee under seepage locations (LU)
- Failures at transitions between different types of flood protection structures (TF)

New Orleans East Basin

US Army Corps of Engineers

of Engineers

Erosion Assessment

- Pre-Katrina and post-Katrina LIDAR surveys
 - Determine depth and surface area of erosion
 - Categorize the severity of the erosion
- Storm surge height and duration
- Wave height and duration
- Levee surface soil type
- Elevation of the levee crest

US Army Corps of Engineers

Remaining Effort

- Additional CPTU, Vane Shear, DSS
- Soil-Structure Interaction Analysis

Remaining Effort

- London Avenue Canal
- Orleans Canal
- Inner Harbor Navigation Canal
- St. Bernard Parish
 - Mississippi River Gulf Outlet
- Plaquemines Parish