

Interagency Performance Evaluation Task Force (IPET)

Floodwall and Levee Performance

Analysis

US Army Corps Physical Performance Analysis

of Engineers

Floodwall and Levee Performance **US Army Corps** Analysis of Engineers

Objective

- Analyze the levees and floodwalls performance during Hurricane Katrina
- Investigate the most likely causes of the damage and failure of the levees and floodwalls in the system
- Compare them with similar sections or reaches where the performance was satisfactory
- Understand mechanisms that led to the breaches along a reaches in order evaluate the potential performance of the similar un-breached reaches of the protective system

Floodwall and Levee Performance **US Army Corps** Analysis of Engineers

Approach

- Conduct a comprehensive assessment of the background information
 - Geology of the area
 - Geological conditions along the system
 - History of the construction
 - Design criteria and approach
 - Actual design documents, the as-built drawings and inspection and maintenance records.

Approach (continued)

- Examine entire levee system to identify areas or reaches that have performed satisfactory and those that have suffered damage
- Characterize damage areas or reaches based on the type of damage, the surge height and the wave action

Approach (continued)

- Select breaches will be analyzed separately in detail to ensure that no important site conditions or breach mechanisms are overlooked
- All potential failure possibilities and mechanisms will be considered and evaluated

Floodwall and Levee Performance US Army Corps of Engineers Analysis

Work Plan

- Data Collection and Assessment
- Assessment of Field Evidence
- Define Soil Profile
- Material Characterization
- Conventional Analyses
- Numerical Modeling
- Comparison to Physical Model
- Comparison to Failure Evidence

Floodwall and Levee Performance US Army Corps of Engineers Analysis

Computer Codes

- Limit equilibrium analyses:
 - UTEXAS4.
 - SLIDE v5.0.
 - CSHTWAL
- Soil-structures interaction analyses:
 - SAGE (Finite Element Program for <u>Static Analysis of</u> <u>Geotechnical Engineering Problems</u>)
 - FLAC2D/3D (Fast LaGrangian Analysis of Continua)
 - PLAXIS/3D (Finite-Element Code for Soil and Rock Analysis
- <u>Seepage analysis:</u>
 - SLIDE, SAGE, PLAXIS, and FLAC

Floodwall and Levee Performance Analysis

W W

Impacted Area

Damaged No Significant Damage Non-Federal Levee

Floodwall and Levee Performance **US Army Corps** Analysis of Engineers

Types of Damage

- Overtopping of Floodwalls
- Overtopping of Levees
- Non-Overtopping Breaches
- Transitions, Closures, Levee and Wall Penetrations
- Piping

Assessment of Entire System

Selection For Detailed Analysis

- Walls that failed (category WF)
- Walls that were close to failure, indicated by permanent deflection (WCF)
- Walls that are stable, with no permanent deflection (WS)
- Levees that overtopped and breached (LOB)
- Levees that overtopped and did not breach (LONB)
- Levee under seepage locations (LU)
- Failures at transitions between different types of flood protection structures (TF)

US Army Corps 17th Street Canal Breach

17th Street Canal Breach

17th Street Slide Block

of Engineers

US Army Corps

CPT and Soil Borings

Determine Soil Properties for Use in Analysis

Borings in the vicinity of the 17th Street canal failure

			SCALE 1800	SCALE 1800				
•	25	250	503	753	1,000 Fact			
0	37.5	75	150	725	300			
	°	6 (25 6 37.5	0 <u>125 250</u> 0 37.5 75	6 125 250 503 0 37,3 75 150	50ALE 1800 0 125 250 500 750 0 37.5 75 150 225	50ALE 1800 0 135 250 503 753 1000 Pref 0 37.5 75 133 225 300		

Borings in the vicinity of the London Avenue canal North failure

US Army Corps of Engine<u>ers</u>

Log	end					5	CALE 11.00	0		
	ERDC_banker_bankgi_and_canes	0	175	350			700		1,050	1,400
٠	SEN Jander, beinge	-	_				_			Foot
٠	Bath, Capazol, Jurings									
				0	25	50	100	150	200	
									Motors	

Borings in the Vicinity of the London Avenue canal Sorth failure

Soil Properties Database

17th Street Canal

US Army Corps of Engineers

London Avenue Canal

- Currently complete for 17th Street Canal & London
- Scheduled for IHNC, Orleans, MS River Levees

Undrained Shear Strength

Cross-Sections & Soil Profiles for Use in Analysis

17th Street Canal C/L Failure Section

Verification of As-Built Conditions

US Army Corps of Engineers

Pre-Katrina Cross-Section Through Breach Area of 17th Street Canal (From LIDAR Survey)

17th Street Model

US Army Corps

London Avenue North Model

London Avenue South Model

Analysis

Up-lift: deep failure mechanism

US Army Corps

17th Street Canal

August 26th 2003

Netherlands

Field Test

Typical Circular Failure Mechanism

Centrifuge Modeling

New Failure Mechanism

Floodwall and Levee Performance Analysis, Physical Modeling

Co-Lead Michael K. Sharp, PhD, PE ERDC, GSL

Co-Lead R. Scott Steedman, PhD, FREng

Steedman & Associates, UK

ERDC Centrifuge

RPI Centrifuge

17th Street Canal Failure

17th Street Model Soils

- Levee
 - Synthetic clay (match field conditions based on lab test, CPT, etc)
- Swamp/Marsh
 - Actual field material
 - Alternate material (match important characteristics of field material)
- Lacustrine
 - Synthetic clay (match field conditions)
- Beach
 - Fine sand such as Nevada Sand

17th Street Slide Block

16 inch block samples of peat and peat/clay interface at 17th Street Canal

Block samples of material at 17th Street Canal

Draft Literature Review Peat Soil

US

of

Marcelo González Tarek Abdoun

December 28, 2005

Introduction 1 2 Geotechnical classification 3 **Physical Properties** 3.1 Fiber Content 3.2 Ash Content 3.3 Organic Content 3.4 Natural density 3.5 Specific Gravity 3.6 Void Ratio and Total Porosity 3.7 Water Retention Properties 3.8 Atterberg Limits 3.9 Hydraulic Conductivity 3.10 Shrinkage **Consolidation of Peat** 4 4.1 Primary Consolidation 4.2 Secondary Compression 4.3 Theories Including Secondary Consolidation 4.4 Factors Affecting Compressibility 4.5 Compressibility of Natural Organic Deposits 5 Shear Strength of Organic Soil 5.1 Effect of Fibers 5.2 Other Influences 5.3 Determination of Shear Strength 5.4 Some values of strength References

17th Street Planned Tests

- Vary strength of levee material
- Vary strength of lacustrine material
- Explore flow path down sheet pile with increased flow and pressure in the lacustrine material
- Explore possible early movement of wall opening a large flow path

London Avenue Canal Failures (North & South)

Mirabeau (London South)

Robert Lee (London North)

London Avenue Model Soils

- Levee
 - Synthetic clay (match field conditions based on lab test, CPT, etc)
- Swamp/Marsh
 - Actual field material
 - Alternate material (match important characteristics of field material)
- Lacustrine
 - Synthetic clay (match field conditions)
- Beach
 - Actual field material
 - Fine sand such as Nevada Sand

London Avenue Failures

London Avenue Planned Tests

- Vary strength of levee material
- Explore flow path down sheet pile with increased flow and pressure in the Beach material
- Explore possible early movement of wall opening a large flow path

Typical Results

91111133333333333333333		
	The second second	
	and free and	
-11011111111		
- (()) 341 (11) (3535555)		 201001111111111001002100044

