Women in Physies in the United States (numbers, challenges, solutions)

Elizabeth H. Simmons

Dean, Lyman Briggs College
Professor, Department of Physics and Astronomy
Michigan State University

FOR FUR'THER INFORMATION

American Institute of Physics Statistical Research Center: www.aip.org/statistics/

American Physical Society Gender Equity Report:
www.aps.org/programs/women/workshops/gender-equity/

Univ. of California Faculty Family Friendly Edge (including articles by Prof. Mary Ann Mason) ucfamilyedge.berkeley.edu/

The Gender Equity Project (including articles by Prof. Virginia Valian): www.hunter.cuny.edu/genderequity/

Women Don't Ask [Negotiation and the Gender Divide]: www.womendontask.com/ Ask for It [How Women can Use the Power of Negotiation...]

National Science Foundation ADVANCE Program: www.nsf.gov/crssprgm/advance/ ADVANCE Portal Website: www.portal.advance.vt.edu/ Michigan State's ADAPP-ADVANCE Project: www.adapp-advance.msu.edu/

The Numbers

Number of Male and Female Physics Students All US High Schools

Numbers in thousands
http://www.aip.org/statistics

Representation of Female Students among Physics Students by Type of Course All US High Schools

* Includes data for both Physics First and Conceptual Physics for 2009; Physics First data was not collected separately in 1993
http://www.aip.org/statistics

Do you have to take physics in high school to succeed in physics later?

- FACT: 93\% of physics bachelor's degree recipients in 2007 took physics in high school.
- FACT: Only 70\% of the 2007 physics bachelors who started their undergraduate education at a 2-year college took a high school physics class.
- 9\% of the 2007 physics bachelor's degree recipients started their undergraduate education at a 2-year college.

Percent of Bachelor's Degrees Earned by Women in Selected Fields, 1966-2009

National Center for Education Statistics. Data for class of 1999 were not available.
Compiled by American Institute of Physics Statistical Research Center

Percent of PhDs earned by women in selected fields, 1958-2006

AIP Statistical Research Center. Compiled from data collected by National Science Foundation.

Doctorate recipients in selected physics fields, 1988-2006.								
	All Physics*		Elementary Particle Physics		Atomic, Molecular \& Optics		Condensed Matter	
Year	Total N	$\begin{gathered} \text { Female } \\ \% \end{gathered}$	Total N	$\begin{gathered} \text { Female } \\ \% \end{gathered}$	Total N	$\begin{gathered} \text { Female } \\ \% \end{gathered}$	Total N	$\begin{gathered} \text { Female } \\ \% \end{gathered}$
2004 to 2006	3879	16	551	13	667	16	925	14
2000 to 2003	4591	15	557	12	768	16	1143	15
1996 to 1999	5484	13	687	10	884	13	1313	14
1992 to 1995	5829	12	682	8	822	12	1502	14
1988 to 1991	4884	10	652	9	618	9	1227	11

[^0]Source: AIP Statistical Research Center; Compiled from data collected by the National Science Foundation.

Percentage of physics faculty members who are women

	1998	2002	2006	2010
Academic Rank				
Full Professor	3	5	6	8
Associate Professor	10	11	14	15
Assistant Professor	17	16	17	22
Instructor/Adjunct	N/A	16	19	21
Other ranks	13	15	12	18
Highest Degree Offered				
PhD	6	7	10	12
Master's	9	13	14	15
Bachelor's	11	14	15	17
Overall	8	10	12	14

The "scissors plot" summarizing these results reveals a "leaky pipeline" for women physicists

- Actual 2005, 2006

Expected is based on available pool of women physicists in the past

Source: American Institute of Physics Statistical Research Center
This is a problem for Physics!

G円R S•諨•חS

As the NSF ADVANCE website notes:
... women's representation and advancement in academic STEM positions are affected by many external factors that are unrelated to their ability, interest, and technical skills...

Implicit Bias

The Gender Equity Project, Virginia Valian

- We are all (women and men) prone to unintentional bias
- This affects affects many decisions we make in the course of our professional duties
- Relevant concepts include:
- gender schemas
- accumulation of disadvantage
- stereotype threat

What are Gender Schemas?

- Gender schemas are hypotheses about what it means to be male or female.
- We all - male and female alike - share these hypotheses.
- Schemas assign different psychological traits to males and females (Martin and Halverson, 1987).

Gender Bias in Peer Review

> \checkmark Developed a model of "total impact points", which took into account productivity and prestige of the journals the applicant published in.
> Women had to receive 100 or more impact points to get the same rating from the judges that a man with 40 or fewer impact points.

> This model found that, in addition to productivity. gender had a significant influence on the scores.

IMPACT
Women have to meet a higher standard in order to receive the same recognition that men do.

The Gender Equity Project, Virginia Valian 2006

Accumulation of Disadvantage

Martell, Lane, and Emrich's (1996) model assumed a tiny bias in favor of men, which accounted for only 1% of variance in promotion.

After many iterations the top level was 65\% male.

The Gender Equity Project, Virginia Valian 2006

Percent of PhD physics departments by number of women in professorial ranks, 2006

- solutions include:

* leaders emphasize importance of diversity for achieving institutional goals
* institutions make criteria and processes for hiring, tenure, promotion, awards clear and easily available to all
* departments frame faculty searches broadly
* hiring/award committees
* are trained to recognize and minimize implicit bias
* explicitly use multiple dimensions to evaluate candidates' qualifications (e.g. \# publications, research impact, teaching accomplishments, funding potential)
* have women interviewees meet women faculty
* departments and professional societies offer professional development opportunities for women at all levels

Family Responsibilities

Report on the UCWork and Family Survey; Mary Ann Mason, Angelica Stacey, and Mark Goulden, 2004; Do Babies Matter? Mary Ann Mason and Mark Goulden 2002

Leaks in the Academic Pipeline for Women*

Mason, Stacy, and Goulden, 2004; Data from NSF Survey of Doctorate Recipients I98I-I995

Leaks in the Pipeline: PhD to Tenure Track Position

Year

Years out from PhD Receipt

Mason, Stacy, and Goulden, 2004; Data from NSF Survey of Doctorate Recipients 198I-I995

Leaks in the Pipeline: Tenure Track to Tenure

Mason, Stacy, and Goulden, 2004; Data from NSF Survey of Doctorate Recipients I98I-I995

Everybody is Very Busy

\square Professional \square Housework \square Caregiving

Mason, Stacy, and Goulden, 2004; Data on UC faculty, ages 30-50

solutions include:

* employers provide parental leave, tenure-clock adjustment, modified duties for parental or elder care and ensure these will not impact evaluation for promotion or tenure
* employers ensure policies are clear, well-advertised, and framed as entitlements, not exceptions [to minimize "bias avoidance" behavior]
* department heads and mentors openly offer support and advice on work-life balance to all new faculty, so this is seen as a normal aspect of professional life
* departments schedule all meetings during business hours
* departments and professional societies offer childcare grants for faculty attending conferences

Dual-Career Couples

- a pervasive issue in physics
(Dual-Science-Couple Survey, McNeil \& Sher, I998; 1990 APS Survey)
- $\mathbf{6 8 \%}$ (I8\%) of married physicists have scientist spouses
- 3 I \% (6\%) of all physicists < 3 lyrs have scientist spouses
- In 85% of couples, man is older [thus, more senior in job]
- Dual-science-couples seeking first faculty jobs reported
- short-term career goals affected by these issues (86\%)
- one partner (usually woman) was under-employed (60\%)
- solutions include:
* Employers offer clear, well-advertised spousal hire policies
* Employers reframe dual-career assistance as recruitment tool
* Employers form Higher-Education Recruitment Consortia
* Job candidates raise dual-career issues with employers

Negotiation

Women Don't Ask: Negotiation and the Gender Divide (Linda Babcock \& Sarah Laschever, 2003)

- Women avoid negotiation because they are
- unsure what they "deserve"; fear asking too much
- worried about harm to relationships
- less optimistic about benefits of negotiation
- not confident of their negotiation skills
- relatively risk-averse
- In negotiations, women tend to

* ask for less -- and therefore receive less
* use "interest-based" negotiation approach, focused on underlying needs/motives rather than narrow concrete goals (Getting to Yes: Negotiating Agreement Without Giving In, Roger Fisher \& William Ury, 1990)

- Solutions include

* Professional organizations offer workshops on negotiation skills e.g. APS Professional Skills Development Workshops offered annually at major physics meetings (sponsored by NSF); has impacted > 250 women physicists since 2005 http://www.aps.org/programs/women/workshops/skills/
* Mentors teach women (and men) that interest-based negotiation is very effective and improves professional relationships
* Mentors recommend targeted readings such as Ask For It (Babcock \& Laschever, 2009) and Getting to Yes (Fisher \& Ury, 1990)
* Employers offer clear directions to job finalists to avoid unintended bias in discussions of salary and start-up packages

Toward large-scale solutions: the NSF "ADVANCE" Program

Increasing the representation and advancement of women in STEM (science, technology, engineering, mathematics) by

- helping universities and professional societies address aspects of academic culture and institutional structure \& practice that pose differential barriers to women
- supporting research on effective practices
- creating a community of researchers and practitioners

Since 2001 , over $\$ 130 \mathrm{M}$ has been invested in grants to 100+ universities and organizations across the country.

MSU's ADVANCE project focuses on ensuring that clear, consistent policies are formulated and followed in faculty

- Recruitment and Hiring
- Annual Evaluation
- Promotion and Tenure
- Leadership Development
- Mentoring
$\frac{\text { MICHIGAN STATE }}{\text { UN IVERSITY }}$

Solutions include

* Establishing and communicating clear, consistent, objective evaluation criteria for faculty
* Training administrators
* Standardized electronic faculty records
* Resources \& guides for administrators and faculty
* Assistance for units to develop mentoring programs, adopt inclusive search practices, etc.

Conclusions

- The Leaky Pipeline:

Women's participation rate in physics continues to be low compared to that of men. The scope of the problem is larger than in many other science fields.

Social Science research reveals numerous causes: family responsibilities, dual-career issues, implicit bias, negotiation skills, isolation...

- Research also identifies solutions involving individuals, institutions, and funding agencies

Clear, known, consistent, family-friendly practices
Open discussion of the importance of inclusion
Role models, skill-building and mentoring

What can you do?

What can you do?

EDUCATE YOURSELF

What ean you do?

EDUCATE
YOURSELF

ACT LIKE
A LEADER

[^0]: * Not including astronomy \& astrophysics

