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Quantum Entanglement: quantum superposition 
with more than one particle

Einstein-Podolsky-Rosen “paradox”: Non-local 
correlations between observations arbitrarily far apart



| i ) Ground state of entire system,

⇢ = | ih |

⇢A = TrB⇢ = density matrix of region A

Entanglement entropy SE = �Tr (⇢A ln ⇢A)
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| i ) Ground state of entire system,

⇢ = | ih |

Take | i = 1p
2
(|"iA |#iB � |#iA |"iB)

Then ⇢A = TrB⇢ = density matrix of region A
=

1
2 (|"iA h"|A + |#iA h#|A)

Entanglement entropy SE = �Tr (⇢A ln ⇢A)
= ln 2

Entanglement entropy
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SE = aP � b exp(�cP )

where P is the surface area (perimeter)

of the boundary between A and B.

B

Entanglement entropy of a band insulator

A P



H = J
�

�ij⇥

⌅Si · ⌅Sj =

Mott insulator: Kagome antiferromagnet

P. Fazekas and 
P. W. Anderson, 
Philos. Mag. 
30, 23 (1974).
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Mott insulator: Kagome antiferromagnet
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Mott insulator: Kagome antiferromagnet

Alternative view A nearby configuration
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Entanglement in the Z2 spin liquid

A

The sum over closed loops is characteristic of the Z2 spin liquid, introduced in 
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991), 
X.-G. Wen, Phys. Rev. B  44, 2664 (1991)
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Entanglement in the Z2 spin liquid

A

Sum over closed loops: only an even number of 
links cross the boundary between A and B

The sum over closed loops is characteristic of the Z2 spin liquid, introduced in 
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991), 
X.-G. Wen, Phys. Rev. B  44, 2664 (1991)

P



SE = aP � ln(2)

where P is the surface area (perimeter)

of the boundary between A and B.

B

M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006);
Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B  84, 075128 (2011).
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M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006);
Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B  84, 075128 (2011).
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Simeng Yan, D. A. Huse, 
and S. R. White, 
Science 332, 1173 (2011).

Mott insulator: Kagome antiferromagnet

S. Depenbrock, 
I. P. McCulloch, 
and 
U. Schollwoeck, 
arXiv:1205.4858

Hong-Chen Jiang, 
Z. Wang, 
and L. Balents, 
arXiv:1205.4289

Strong numerical evidence 
for a Z2 spin liquid



Mott insulator: Kagome antiferromagnet

Evidence for spinons
Young Lee, 

APS meeting, March 2012
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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depth of
entanglement

D-dimensional
space

Tensor network representation of entanglement
  at quantum critical point

G. Vidal, Phys. Rev. Lett. 99, 220405 (2007)

d



• Entanglement entropy obeys SE = aP � �, where

� is a shape-dependent universal number associated

with the CFT3.

Entanglement at the quantum critical point

B

M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009).
H. Casini, M. Huerta, and R. Myers, JHEP 1105:036, (2011)

I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598
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Brian Swingle, arXiv:0905.1317



depth of
entanglement

D-dimensional
spaceA

Entanglement entropy = 
Number of links on 

optimal surface 
intersecting minimal 

number of links.

d

Tensor network representation of entanglement
  at quantum critical point

Brian Swingle, arXiv:0905.1317



Key idea: ) Implement r as an extra dimen-

sion, and map to a local theory in d + 2 spacetime

dimensions.

r
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Holography

xi

For a relativistic CFT in d spatial dimensions, the

metric in the holographic space is fixed by de-

manding the scale transformation (i = 1 . . . d)

xi ! ⇣xi , t ! ⇣t , ds ! ds



r

Holography

xi

This gives the unique metric

ds

2
=

1

r

2

�
�dt

2
+ dr

2
+ dx

2
i

�

This is the metric of anti-de Sitter space AdSd+2.
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Minkowski

CFT3

AdS/CFT correspondence

A

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

Associate entanglement entropy with an observer in the enclosed 
spacetime region, who cannot observe “outside” : i.e. the region is 
surrounded by an imaginary horizon.

xi
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AdS/CFT correspondence

A

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

The entropy of this region is bounded by its surface area 
(Bekenstein-Hawking-’t Hooft-Susskind)

xi
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AdS/CFT correspondence

A
Minimal 

surface area 
measures

entanglement
entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
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Brian Swingle, arXiv:0905.1317



depth of
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D-dimensional
space

Entanglement entropy

A
d

Emergent direction
of AdSd+2 Brian Swingle, arXiv:0905.1317

Entanglement entropy = 
Number of links on 

optimal surface 
intersecting minimal 

number of links.
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AdS/CFT correspondence

A

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

• Computation of minimal surface area yields

SE = aP � �,
where � is a shape-dependent universal number.

xi
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• Allows unification of the standard model of particle

physics with gravity.

• Low-lying string modes correspond to gauge fields,

gravitons, quarks . . .

String theory



• A D-brane is a d-dimensional surface on which strings can end.

• The low-energy theory on a D-brane has no gravity, similar to

theories of entangled electrons of interest to us.

• In d = 2, we obtain strongly-interacting CFT3s. These are

“dual” to string theory on anti-de Sitter space: AdS4.
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Tensor network representation of entanglement
  at quantum critical point

Emergent direction
of AdS4 Brian Swingle, arXiv:0905.1317
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String theory near 
a D-brane

depth of
entanglement

D-dimensional
space

Emergent direction
of AdS4
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Needed: 
Accurate theory of 

quantum critical 
dynamics
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A 2+1 
dimensional 
system at its 

quantum 
critical point

A “horizon”, similar to the 
surface of a black hole !

String theory at non-zero temperatures



Objects so massive that light is 
gravitationally bound to them.

Black Holes



Horizon radius R =
2GM

c2

Objects so massive that light is 
gravitationally bound to them.

Black Holes

In Einstein’s theory, the 
region inside the black hole 
horizon is disconnected from 

the rest of the universe.



Around 1974, Bekenstein and Hawking 
showed that the application of the 

quantum theory across a black hole 
horizon led to  many astonishing 

conclusions 

Black Holes + Quantum theory
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Quantum Entanglement across a black hole horizon

There is a non-local quantum 
entanglement between the inside 

and outside of a black hole

This entanglement leads to a
black hole temperature 

(the Hawking temperature)
and a black hole entropy 
(the Bekenstein entropy)



A “horizon”,
whose temperature 
and entropy equal 

those of the quantum 
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Friction of quantum 
criticality = waves 

falling into black brane 

A “horizon”,
whose temperature 
and entropy equal 

those of the quantum 
critical point

String theory at non-zero temperatures
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A 2+1 
dimensional 
system at its 

quantum 
critical point

An (extended) Einstein-Maxwell 
provides successful description of 

dynamics of quantum critical 
points at non-zero temperatures 
(where no other methods apply)

A “horizon”,
whose temperature 
and entropy equal 

those of the quantum 
critical point

String theory at non-zero temperatures
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E↵ective theory on AdS4 obtained by a gradient expansion; all
parameters fixed by “OPE data” from CFT3.
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where Cabcd is the Weyl curvature tensor.
Stability and causality constraints restrict |�| < 1/12.
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BaFe2(As1�x

P
x

)2

K. Hashimoto, K. Cho, T. Shibauchi, S. Kasahara, Y. Mizukami, R. Katsumata, Y. Tsuruhara, T. Terashima, 
H. Ikeda, M. A. Tanatar, H. Kitano, N. Salovich, R. W. Giannetta, P. Walmsley, A. Carrington, R. Prozorov, 
and Y. Matsuda, Science 336, 1554 (2012).

Resistivity
⇠ ⇢0 +ATn

FL
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Af
Af = hQi

• Bose metal: the boson, b, fractionalizes into (say) 2

fermions, f1 and f2 (“quarks”), each of which forms

a Fermi surface. Both fermions necessarily couple to

an emergent gauge field, and so the Fermi surfaces

are “hidden”.

O. I. Motrunich and M. P. A. Fisher, 
Physical Review B 75, 235116 (2007)

L. Huijse and S. Sachdev,  
Physical Review D 84, 026001 (2011)

S. Sachdev,  to appear

Q = b†b
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O. I. Motrunich and M. P. A. Fisher, 
Physical Review B 75, 235116 (2007)

L. Huijse and S. Sachdev,  
Physical Review D 84, 026001 (2011)

S. Sachdev,  to appear

Q = b†b
b ! f1f2

Gauge invariance:
f1(x) ! f1(x)ei✓(x),
f2(x) ! f2(x)e�i✓(x)

• Bose metal: the boson, b, fractionalizes into (say) 2

fermions, f1 and f2 (“quarks”), each of which forms

a Fermi surface. Both fermions necessarily couple to

an emergent gauge field, and so the Fermi surfaces

are “hidden”.



In particle physics: Quarks and gauge fields are 
“fundamental”, and two quarks can bind to form 
a bosonic meson.

In condensed matter: The lattice boson is 
“fundamental”, but it can fractionalize into 
fermionic quarks and emergent gauge fields.
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Bose metals

• Area enclosed by the Fermi surface A = Q, the

fermion density

• Particle and hole of excitations near the Fermi sur-

face with energy ! ⇠ |q|z; three-loop computation

shows z = 3/2.

• The phase space density of fermions is e↵ectively one-

dimensional, so the entropy density S ⇠ T (d�✓)/z

with ✓ = d� 1.
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• Area enclosed by the Fermi surface A = Q, the

fermion density

• Particle and hole of excitations near the Fermi sur-

face with energy ! ⇠ |q|z; three-loop computation

shows z = 3/2.

• The phase space density of fermions is e↵ectively one-

dimensional, so the entropy density S ⇠ T (d�✓)/z

with ✓ = d� 1.

⇥| q
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Bose metals



Logarithmic violation of “area law”: SE / (kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A.

The coe�cient is independent of the shape of A.

B

A

Entanglement entropy of a Bose metal

P

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)

Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)
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t, ds ! ⇣
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ds.

Recall: conformal matter has ✓ = 0, z = 1, and the metric is

anti-de Sitter



r

Holography

xi

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012).

Consider a metric which transforms under rescaling as

xi ! ⇣ xi, t ! ⇣

z
t, ds ! ⇣

✓/d
ds.

Recall: conformal matter has ✓ = 0, z = 1, and the metric is

anti-de Sitter

The value ✓ = d�1 reproduces all the essential characteristics
of the entropy and entanglement entropy of a Bose metal.
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Consider a metric which transforms under rescaling as

xi ! ⇣ xi, t ! ⇣

z
t, ds ! ⇣

✓/d
ds.

Recall: conformal matter has ✓ = 0, z = 1, and the metric is

anti-de Sitter

The null-energy condition of gravity yields z � 1 + ✓/d. In d = 2,

this corresponds to z � 3/2 (recall: field theory yields z = 3/2!)
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surfaces
of “quarks”

Fully fractionalized state has all the electric

flux exiting to the horizon at r = 1
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Realizations of many-particle 
entanglement:

Z2 spin liquids and 
conformal quantum critical points 



Conclusions

More complex examples in metallic 
states are experimentally 

ubiquitous, but pose difficult 
strong-coupling problems to 
conventional methods of field 

theory



Conclusions

String theory and gravity in 
emergent dimensions 

offer a remarkable new approach 
to describing states with many-
particle quantum entanglement.

Much recent progress offers hope of a 
holographic description of “strange metals”


