

U.S. Government Printing Office
Federal Digital System

System Design Document

Volume III: FDsys Publish
R1C2 Edition

Prepared by: FDsys Program

Office of the Chief Information Officer
U.S. Government Printing Office

September 2008

Volume III: FDsys Publish FDsys System Design Document– R1C2

Revision History

 2

Revision Date Description

0.1 4/2/2008 Start initial draft

0.2 4/22/2008
Split FDsys Push component away from
higher-level Search Design document,
complete initial draft for review

0.3 4/22/2008
Removed <![CDATA[]> wrapping (can be
handled by XML), removed Appendix A (more
appropriate for another document)

0.4 4/27/2008

Implemented updates suggested by Deng Wu,
including sections on security. Also defined .xsl
file management, clarified inputs, and added
additional command types. Change name from
"Push" to "Publish". Added error notification
back to Documentum.

0.6 4/28/2008
Added missing "close()" commands to
Documentum sample code, revved version to
0.6 (mistakenly distributed 0.4 as 0.5)

0.7 5/5/2008
Remove embargo tags in favor of a simpler,
search-side mechanism. Incorporate final
comments from Deng Wu

0.8 5/5/2008
Add class and method for converting a
package ID to a package file as a reusable
utility.

0.9 5/14/2008

Added information on servlet deployment, what
"unpublish" means, why do we pull from the
CMS (instead of push), added a full-path
method to ACPCacheUtility, changed location
of DMZ, added method for detecting updates to
.xsl files

1.0 5/25/2008

Minor updates from peer review. Also decided
to perform all exports to <packagedir>.swp
(followed by rename/delete) to reduce down-
time for package updates

1.1 7/7/2008

Added note to publish.xml section to reference
the ACPCacheUtility class.
Added a logging section to describe the logging
functionality to implement.
Added new tasks section, for tasks determined
as implementation occurs.

Volume III: FDsys Publish FDsys System Design Document– R1C2

1.2 8/5/2008

Updated Documentum Metadata requirements
section based on discussions with Paul and
Documentum developers.
Removed documentum server information from
publish.xml and added a section “DFC
Properties File” under the Documentum
Interface section.
Replaced references to search.xsl to refer to
mods.xsl.
Updated Documentum metadata section to
reflect new datetime fields used to improve
publish performance.

1.3 8/5/2008 Reformat the front-matter for inclusion in the
official SDD.

 3

Volume III: FDsys Publish FDsys System Design Document– R1C2

Table of Contents

1. Background..1

2. Architecture Overview ..3
2.1. Other Architectural Considerations ...6

2.1.1. "Unpublish" .. 6
2.1.2. Pull vs Push... 6

3. Requirements...7
3.1. Notification Requirements: ..7
3.2. Re-index requirements: ...8
3.3. ACP Cache Maintenance Requirements:..9
3.4. ACP Cache Re-build requirements: ..10
3.5. Processing Requirements: ..10
3.6. Status Monitoring: ...11

4. HTTP Servlet Wrapper...11
4.1. HTTP Commands..11

4.1.1. The "package" command .. 12
4.1.2. The "range" command... 13
4.1.3. The "update" command ... 13
4.1.4. The "setupdate" command .. 13
4.1.5. The "other" command.. 14
4.1.6. The "status" command .. 14

4.2. Admin User Interface...14
4.3. HTTP Security ...15
4.4. Deployment ...15

5. Configuration...16
5.1. publish.xml ..16

5.1.1. DQL Statements .. 18
5.2. index.xsl and mods.xsl ..18

5.2.1. Locating XSL Transformations Files ... 19

6. ACP Cache Structure ..20
6.1.1. ACP Cache Utility .. 20

7. Package Processing Overview...21
7.1. Processing Threads ..22
7.2. Purge...23
7.3. Error Handling ...23

8. Documentum Interface..24
8.1. Documentum Metadata Requirements..25
8.2. Publishing A Document ...26
8.3. Scheduled vs On-Demand Processing ...26

8.3.1. Scheduled Commands .. 26

 4

8.3.2. On-Demand Commands.. 26

Volume III: FDsys Publish FDsys System Design Document– R1C2

 5

8.4. DFC Properties File...27

9. The "update" command ..27

10. FAST Search and Delete ...27

11. Indexing Packages ..28

12. Status ...29

13. Logging ..30

14. Additional Tasks..30

Appendix A: Code Fragment for Documentum APIs31

Appendix B: fdsys.xml Example...34

Appendix C: Sample FASTXML file ..36

Appendix D: Sample "index.xsl" ..38

Appendix E: Sample "mods.xsl" file ..42

1. Background
FDsys will have a custom publish and index notification service. The purpose of this
service will be to: 1) Extract documents from the Content Management System
(Documentum) and transfer those documents to the ACP cache using Documentum
APIs, 2) Notify FAST of new documents to index, and 3) Handle deletes as well as
updates.

Many other options were evaluated before it was decided to write a custom program for
this purpose. Specifically, we considered:

• Using the FAST Documentum Connector

• Incorporating the content publish and index notification by adding modules to the
FAST document processing pipeline

• Using the Documentum Site Caching Service to publish documents

• Using the FAST file traverser to identify updates made to the ACP cache

Our analysis showed that none of these approaches would be able to maintain the
integrity between the ACP Cache directory and the FAST indexes both for daily
processing and when confronted with disaster recovery scenarios.

Only a single program which controlled both the index notification and the document
publication process together would be able to maintain integrity and synchronization in
all situations. Since the Documentum Site Caching Service appears ill suited to notifying
FAST for new index updates, only a special purpose program will fully satisfy system
stability and accuracy requirements.

Fortunately the FDsys Publish program is made up of well understood components and
will be straightforward to implement and test.

Volume III: FDsys Publish FDsys System Design Document– R1C2

Search Technologies (www.searchtechnologies.com) works as a services partner with
FAST Search & Transfer, providing technical and project management personnel in the
delivery of search projects. We were the 2006 Alliance Partner of the Year for FAST,
having delivered exceptional services value to FAST and FAST clients.

Founded in May 2002 and headquartered in Herndon, VA, Search Technologies is a
privately held, profitable provider of comprehensive search solutions based on in-house
and third party products. The company operates worldwide, with offices in North
America, Central America and Europe. Search Technologies is comprised of many
seasoned leaders in our industry, as well as up and coming young professionals –
creating the perfect foundation and eye to the future.

Search Technologies focuses on delivering comprehensive search based solutions to
enterprise and government customers. We have expertise with FAST’s FDS4 and ESP5
product line as well as with their InStream, Unity, ImPulse, and AdMomentum SDA
products. In addition to the services delivered to FAST customers, Search Technologies
is an active reseller of FAST’s products.

`Confidential October 6, 2008 2

Search Technologies also has expertise with many other search engines, including
RetrievalWare from Convera and the open source search engine, Lucene. Whatever the
needs when it comes to search, Search Technologies is able to deliver experienced
personnel.

http://www.searchtechnologies.com/

Volume III: FDsys Publish FDsys System Design Document– R1C2

2. Architecture Overview
The FDsys Publish program is the interface between package workflow and the search
engine and ACP cache.

Package
Updating
Workflow

Access
Processing
Workflow

Content
Publishing

FAST

ACP
Cache

CMS Access

Web
Application

The interface between the workflow and content publishing will be very simple. In order
to publish a package, the workflow will need to:

• Set the metadata field "is_published" to true

• Update the metadata field "publish_change_datetime" to the current date and
time

• If "first_publish_datetime" is null, then set it to "publish_change_datetime"

Content publishing, when it next runs, will pull all recently updated packages from the
Content Management System and push them to FAST and to the ACP Cache.

Additionally, workflow can send a URL command to the Content Publisher to
immediately publish a package or set of packages.

The FDsys Publish program is divided into the following major sections:

• Java Servlet Wrapper - Receives indexing requests via HTTP and processes
the requests.

• Documentum APIs - The Documentum DFC API will be used to executes DQL
(Documentum Query Language) to obtain a list of updated packages that need to
be processed and exported to the ACP Cache.

`Confidential October 6, 2008 3

• FAST Search for Deletes - When packages are made up of multiple granules,
queries FAST to determine the complete list of granules associated with a
package so they can be deleted.

Volume III: FDsys Publish FDsys System Design Document– R1C2

• FAST Content Processing - Converts the package metadata to FASTXML,
divides it up into individual documents and submits them to FAST using the
FAST content API.

These components combine together to create the FDsys Publish program as follows:

`Confidential October 6, 2008 4

FAST
Search
Engine

Documentum

ACP Cache:

fdsys.xml and
content files for
each Package

FAST Search
for Deletes

TO
M

C
A

T
se

rv
le

t w
ra

pp
er

FDsys
Publish

individual
granule

files

Documentum APIs

fdsys.xml

Pr
oc

es
si

ng
 R

eq
ue

st
s

vi
a

U
R

L

FAST Content
Processing

Volume III: FDsys Publish FDsys System Design Document– R1C2

This next diagram dives down to one level of additional detail to more precisely show
how data flows through the FDsys Publish program.

Documentum

DQL
List of

Changed
Packages

Scan and Export
Package
Contents

ACP Cache:

fdsys.xml and
content files for
each PackageQuery FAST to

Obtain Package
Granules

Delete
Package
Granules

Apply index.xsl (which imports search.xml)
to each Added or Updated Package fdsys.xml

Submit granules one at a time to FAST

FDsys Publish
Internal

Data Flow

FAST
Content Distributor

FAST
Pipeline

FAST
Indexers

individual
granule

files

FAST
Search Indexes

Documentum APIs

FAST
Search
Engine

FAST Content APIs + RTPush
FAST

Search API

Choose proper index.xsl based on metadata

The Internal Data Flow of the FDsys Publish Program

`Confidential October 6, 2008 5

The components on this diagram are described in detail in the following sections.

Volume III: FDsys Publish FDsys System Design Document– R1C2

2.1. Other Architectural Considerations
Some additional notes on the above architectural diagrams:

• DQL statements are not embedded in the Java Code of the FDsys Publish
program. Instead they are located in an external configuration file (publish.xml).
This allows the FDsys Publish program to be flexible should there be any
changes to the Documentum DQL language in the future, or for additional
publishing requirements (such as to republish or re-index an entire collection).

• It was decided to query FAST to determine the complete list of granules which
belong to a package (rather than accessing the existing ACP Cache) to improve
system reliability. Since it is the FAST indexes which are being updated, it is
proper to query the FAST indexes themselves to determine which pieces need to
be deleted.

This way, there can be no discrepancy between the contents of the ACP Cache
and the FAST indexes which can not be fixed by simply republishing (or merely
re-indexing) the necessary packages.

• "RTPush" is a multi-threaded, connection-pooling wrapper around the standard
FAST content APIs available from Search Technologies. "RT" stands for "Real-
Time".

2.1.1. "Unpublish"
The FDsys Publish program will be completely responsible for the management and
maintenance of both the ACP Cache and the search engine indexes.

When a package is "unpublished", it will be deleted from the ACP cache and from the
FAST indexes and therefore will no longer be available to public users.

However, the package may still be available to authorized users, at the discretion of the
archive management workflow.

Examples of packages which need to be "unpublished" include when new star print
versions are available or when more complete versions of some packages (such as
congressional indexes) are produced.

2.1.2. Pull vs Push

`Confidential October 6, 2008 6

The FDsys Publish application is the interface between the content management system
and the FAST search engine and ACP cache. The FDsys Publish program will *pull*
data from the Content Management System, and then will *push* that data to the FAST
indexes and the ACP Cache, as follows:

Volume III: FDsys Publish FDsys System Design Document– R1C2

It was decided to make the FDsys Publish pull data from the CMS for the following
reasons:

• FDsys Publish is responsible for maintaining the FAST indexes and the ACP
cache. Therefore, it is in the best position to know the state of those indexes and
the additional requirements.

o For example, if the indexes are corrupted and need to be pulled from
backup, FDsys publish will know exactly what date-range of packages will
need to be refreshed.

• The FDsys Publish program can pull data from the CMS system at the rate it
needs. Therefore, there will be no chance that updates will be lost because the
indexers are "too busy" or "unable to keep up".

• The architecture allows for multiple FDsys publish programs to be created to
create multiple, parallel sets of indexes from the same Content Management
System, should this be required for advanced availability and recovery options.

3. Requirements
This section identifies the technical derived requirements (and the associated system
requirements where available) which are satisfied, wholly or in part, by this design.

Note 1: The requirements which are solely the responsibility of the FDsys Publish
Program are indicated below with an asterisk (*).

Note 2: For each derived requirement, the parent requirement(s) are identified in square
brackets.

3.1. Notification Requirements:
• Publish

[2556, 2557, 2563] FAST must be notified of newly published packages

`Confidential October 6, 2008 7

• Update
[2561] FAST must be notified of any package changes which require the
package to be re-indexed

Volume III: FDsys Publish FDsys System Design Document– R1C2

o Metadata changes

o New renditions which need to be indexed

• Unpublish
 [2561] FAST must be notified of any package which becomes “unpublished”

o Updated versions of publicly available documents (e.g. Congressional
Index, as new sections of it are added each day)

o Corrected version of documents (the “starprint”) versions, the old version
should be unpublished

The FDsys Publish program will run periodically and will process all documents who
have a "publish_change_datetime" which is later than the last time the indexes were
updated.

It is the responsibility of CMS workflow to update the "publish_change_datetime"
metadata field for packages that need to be published or re-published as per the
requirements above.

RD-2556 The system shall provide the capability to search for and retrieve content from

the system.
RD-2557 The system shall provide the capability to search for and retrieve metadata from

the system.
RD-2561 * The system shall provide the capability to search content that is currently

available on the GPO Access public Web site.

RD-2563 The system shall provide the capability to search and retrieve unstructured
content (e.g., text).

* These requirements allocated solely to the FDsys Publish Program.

3.2. Re-index requirements:
• [39] Re-process all updates since <date/time>

There are many failure modes which will require reprocessing of package
updates.

o FAST indexers down

o FAST indexes corrupted

o Software bugs

• [39] Re-build entire index from scratch
o For disaster recovery

o Maybe required when fielding a new version of the FDsys

• [39] Re-build a publication and/or collection
o If parsing for a publication is fixed/improved

`Confidential October 6, 2008 8

o If the publication gets assigned to a different collection (assuming index-
time collection assignment)

Volume III: FDsys Publish FDsys System Design Document– R1C2

RD-39 The system shall support an average peak time availability of 99.7%.

3.3. ACP Cache Maintenance Requirements:
• Publish

o [2417, 2418, 3733, 3740, 3741, 3862] Newly published packages must
be copied to the ACP cache

• Update

o [2417, 2418, 2424, 3740, 3741] Updated packages must be similarly
updated in the ACP cache

• Un-publish

o [2417, 2418, 3740, 3741, 3943] Any package which becomes
“unpublished” must be removed from the ACP cache

• Selecting
o [2326, 2361, 3734] Only in-scope packages will be copied to the ACP

cache

o [2327, 3733] Only public renditions will be copied to the ACP cache

`Confidential October 6, 2008 9

RD-2326 The system shall provide the capability to limit access to content that is out of
scope for GPO's dissemination programs.

RD-2327 The system shall provide the capability to limit access to content that has not
been approved by authorized users for public release.

RD-2361 The system shall provide the capability for users to access in scope final
published versions of ACPs.

RD-2417 * The system shall provide the capability to manage content that is used for
access.

RD-2418 * The system shall provide the capability to manage metadata that is used for
access.

RD-2424 The system shall provide the capability for an existing ACP to be modified.

RD-3733 * The ACP cache shall only contain public access renditions of final published
content and associated metadata

RD-3734 The system shall provide the capability for authorized users to prevent external
ACPs from being created from internal ACPs.

RD-3740 * For all publicly available content, the publicly available content shall be the
same as the content available to authorized users.

RD-3741 * For all publicly available metadata, the publicly available metadata shall be the
same as the metadata available to authorized users.

RD-3862 The system shall provide access to digitally signed PDF content in public user
search results.

RD-3943 The system shall delete an ACP in the case that the content has been replaced
by a star print version.

Volume III: FDsys Publish FDsys System Design Document– R1C2

* These requirements allocated solely to the FDsys Publish Program.

3.4. ACP Cache Re-build requirements:
• [39] Re-process all updates since <date/time>

o If the disk space fills up and updates get lost

o If the update mechanism down for other reasons

• [39] Re-build entire ACP Cache from scratch
o For the initial build
o For disaster recovery

RD-39 The system shall support an average peak time availability of 99.7%.

3.5. Processing Requirements:
• [3756, 2738] When a package is published, all granules need to be extracted

and indexed

• [3756, 2738] When a package is un-published, all granules need to be deleted

• [3756, 2738] When a package is updated, all updates need to be processed
(including an update which results in more or fewer granules)

• [3756] The proper rendition will need to be indexed for each granule

• [662] Each granule needs to be indexed with it’s own metadata, as well as the
merged metadata of all it’s parents

• [2565, 2566, 2567] Metadata will need to be mapped to FAST index-profile fields
to support all search features

o Fielded searching

o Search Results and Content Details

o Document access

o Package Table of Contents and Collection Browsing

o Complex metadata searches (via the "Search Schema")

`Confidential October 6, 2008 10

RD-662 The system shall allow GPO to define the level of granularity that content can
be retrieved at.

RD-2565 The system shall provide the capability to search and retrieve semi-structured
content (e.g., inline markup).

RD-2566 The system shall provide the capability to search and retrieve structured
content (e.g., fielded).

RD-2567 The system shall provide the capability to search for content by means of
querying metadata.

RD-3756 The system shall provide the capability for users to search for granules.

Volume III: FDsys Publish FDsys System Design Document– R1C2

RD-2738 The system shall provide the capability to return search results at the lowest
level of granularity supported by the content package.

3.6. Status Monitoring:
• [1356] For the purposes of debugging and monitoring, the status of packages

being processed by the FDsys Publish program should be available for
inspection

RD-1356 The system shall have the capability to monitor real-time performance of the
system in terms of service levels.

4. HTTP Servlet Wrapper
The purpose of the HTTP servlet wrapper is to receive processing requests from HTTP
clients. Such an architecture will allow for processing requests to come directly from the
authorized user's workstation, if (for example) they wish to republish a modified package
immediately.

The HTTP Servlet Wrapper further gives the control of exactly when to publish packages
to the Documentum Servers. It is expected that authorized users will be provided with a
"Publish Now" button which will send the appropriate HTTP command to the FDsys
Publish program to immediately download and process a specified package.

Further, Documentum could be used to manage the scheduled jobs as well, such as the
periodic "update" commands. This would allow, for example, Documentum Workflow to
delay a scheduled publish event if (for whatever reason) the content was not ready to be
published.

4.1. HTTP Commands
These requests will be handled with the following HTTP GET commands:

`Confidential October 6, 2008 11

Description HTTP Get Arguments Example

Publish
Package

package=<packageid>
export=<yes/no>

http://host:9001/publish?cmd=publish
&dql=package&packageid=fr01no06

Publish
Date
Range

from=<date/time>
to=<date/time>
("to" is optional)
export=<yes/no>

http://host:9001/publish?cmd=publish
&dql=range&from=2008-04-00T00:30:00&
&to=2008-04-04T00:30:00

Publish
Updates

<none> http://host:9001/publish?cmd=update

Set Update datetime=<datetime> http://host:9001/publish?cmd=setupdate
&datetime=2008-04-04T00:30:00

Volume III: FDsys Publish FDsys System Design Document– R1C2

Process
Other DQL

dql=<dql-name>
export=<yes/no>
<param1>=<val1>
<param2>=<val2>
. . .

http://host:9001/publish?cmd=publish
&dql=reindexcollection&export=no&collection=fr

Status <none> http://host:9001/publish?cmd=status

Notes:

• Each command will return an XHTML page as a response. The resulting page
will identify the status of the command, and will provide additional feedback in
case of failure (i.e. exactly what failed).

Note that for commands which execute DQL statements, in the current design
the response will come back after the DQL statement has completed executing.

• Commands to provide system status will be executed immediately and will return
an HTML file which describes the results.

• Commands for publishing packages will perform the DQL statement to access
the package ID and publish-specific metadata. The resulting list of packages will
be stored on a queue for background threads to process.

Tasks:

T1. Create the HTTP Servlet wrapper with a doGet() call inside an instance of
Tomcat running on the FAST admin node.

T2. Parse the HTTP Get arguments and return an HTML response for each.

4.1.1. The "package" command
Immediately process a single package. How the package is processed (i.e. is it added,
updated, or deleted) will be determined based on the package metadata retrieved from
Documentum.

`Confidential October 6, 2008 12

Name Allowed values Description

packageid FDsys ACP Package ID The package ID of the package which
should be immediately published

dql "package" Specifies the DQL statement to be used to
implement the package command. Must
always be "package"

export "yes" or "no" Should the package be exported from
Documentum and written to the ACP
Cache? If "no", only the FAST index
notification is performed. If missing,

Volume III: FDsys Publish FDsys System Design Document– R1C2

defaults to "yes"

Note:

• The purpose of "export=no" is to allow the system to re-index content to handle
situations (especially in development), where the data from the fdsys.xml
metadata file is reorganized before it is indexed. This could be the case if there
are new FAST ESP index-profile fields, or changes to the index.xsl or mods.xsl
transformation files.

4.1.2. The "range" command
Process all packages which have a "publish_change_datetime" within the specified
datetime range.

Parameters:

Name Allowed values Description

from Date in ISO 8601 format The starting date and time of the date range.

to Date in ISO 8601 format The ending date and time of the date range.

dql "range" Specifies the DQL statement to be used to
execute the publish range command. Must
always be "range".

export "yes" or "no" Should the package be exported from
Documentum and written to the ACP Cache?
If "no", only the FAST index notification is
performed. If missing, defaults to "yes"

4.1.3. The "update" command
Process all updates since the last time the "update" command was run.

The update command has no parameters. All packages updated since the last time it
was run will be exported from Documentum to the ACP cache and reindexed into FAST.
Behind the scenes, the "update" command will execute the "range" DQL statement.

4.1.4. The "setupdate" command
Set the "last update" time. This is usually performed after the initial bulk load, to specify
the time from which incremental updates are to begin. Note that if the "datetime"
argument to this command is missing, it sets the last update time to the current date and
time.

Name Allowed values Description

datetime Date in ISO 8601 format The date and time to which the "last update"
time should be set

`Confidential October 6, 2008 13

Note:

Volume III: FDsys Publish FDsys System Design Document– R1C2

• The date specified to the "setupdate" command will be stored in a local file for
use by the FDsys Publish program only. See section 9 for more details.

4.1.5. The "other" command
Executes any other DQL statement that has been pre-configured into the configuration
file. Any other set of parameters may be provided which are substituted into the DQL
statement as needed. The "other" command allows for other publishing and disaster
recovery needs to be implemented which may not have been anticipated at the time this
document was written.

Note that the "other" command does *not* take raw DQL as an argument. It will only
execute DQL statements that have been preconfigured into the publish.xml configuration
file. These DQL statements are referenced by name.

Parameters:

Name Allowed values Description

dql The name of a DQL
statement from the
publish.xml configuration
file

Specifies which DQL statement should be
executed.

<param1>,
<param2>,
. . .

As appropriate to the
parameter

Identifies a parameter to be substituted into
the chosen DQL command. The exact name
and value of the parameter will depend on
the DQL command being executed

export "yes" or "no" Should the package be exported from
Documentum and written to the ACP Cache?
If "no", only the FAST index notification is
performed. If missing, defaults to "yes"

4.1.6. The "status" command
Get status on all of the packages currently being processed by the FDsys Publish
component. See section 12 for more details

No additional parameters are required for the "status" command.

4.2. Admin User Interface
A simple HTML Admin User Interface will be provided which allows admin users to
execute HTTP commands directly. All of the commands identified in section 4.1 will be
available to be executed.

`Confidential October 6, 2008 14

The purpose of the Admin User interface is strictly for system testing, status, and
disaster recovery scenarios. It is expected that Documentum will be responsible for
executing HTTP commands during normal usage.

Volume III: FDsys Publish FDsys System Design Document– R1C2

For security purposes, the Admin User interface will require a simple log-in screen
before it can be accessed. The username and password entered will be validated
against the standard FAST Admin Accounts database, using the FAST Admin APIs.

Tasks:

T3. Program the Admin User Interface using a simple HTML user interface
configured to run in the same Tomcat instance as the FDsys Publish servlet.

T4. Require that users enter a username and password before they are allowed
access to the Admin User Interface. Verify the username and password against
the standard FAST admin accounts provided through FAST Home, using the
standard FAST Admin APIs.

4.3. HTTP Security
It is important for the FDsys program to only be accessed by authorized users and/or
servers. This will be accomplished using SSL with a client-authenticated certificate. In
this protocol, the FDsys Publish program will demand a certificate from the HTTPS
client, to ensure that only authorized clients are able to send commands to Publish.

The certificate will be generated with the Java "keytool" program and the certificate will
be transferred and accessible only to the Documentum servers. When needed, a
WebTop user interface will be configured to use the certificate to initiate an SSL
connection to the FDsys Publish program to execute the desired command.

Tasks:

T5. Generate the certificate and test SSL with client authentication to the FDsys
Publish server.

4.4. Deployment
Since the purpose of the FDsys Publish program is to maintain and manage the FAST
indexes and the ACP cache, it will be deployed into the same servlet container provided
by the FAST search engines for administration and other search engine services.

This will centralize management of the data and indexes required for search into a single
location, so they can be properly managed and maintained together.

`Confidential October 6, 2008 15

T6. Configure the FAST servlet container for the FDsys publish application. Create
the necessary FAST deployment scripts for deploying the FDsys publish
application after FAST has been installed.

Volume III: FDsys Publish FDsys System Design Document– R1C2

5. Configuration

5.1. publish.xml
A special XML configuration file will hold configuration information for the FDsys Publish
program. It is recommended that the Apache "Digester" class
(http://commons.apache.org/digester) be leveraged for this task.

An example of publish.xml is as follows:

<fdsys-publish>
 <dql command="package">...DQL statement goes here...</dql>
 <dql command="range">...DQL statement goes here...</dql>
 <!-- Additional DQL statements can be created here for other
 publishing and/or index notification requirements -->
 <collection-config dir="/FDsys/etc/collections"/>
 <acp-cache>/smnt1/fdsys/ACP</acp-cache>
 <last-updated-file>updated.dat</last-updated-file>
 <max-threads n="4"/>
 <documentum>
 <docbase>GPORespostory</docbase>
 <user>fdsyspublish</user>
 <password>changemeplease</password>
 <error-folder>/FDsys Publish/errors</error-folder>
 </documentum>
 <fast>
 <index-servers>fastnode1.gpo.com:16100, fastnode2.gpo.com:16100
 </index-servers>
 <query-servers>fastnode1.gpo.com:15100, fastnode2.gpo.com:15100
 </query-servers>
 </fast>
</fdsys-publish>

This data will be loaded into the FDsys Publish program on startup. The currently
defined configuration elements are as follows:

<dql command="package">

The DQL statement used to fetch a single package based on the package ID
(see sections 5.1.1 and 8 for more details).

<dql command="range">

The DQL statement used to fetch a set of packages to be published based on a
from and to date range (see sections 5.1.1 and 8 for more details).

<collection-config dir="">

`Confidential October 6, 2008 16

Specifies the directory where the collection configuration files are located. For
FDsys Publish, this is the directory where the index.xsl and mods.xsl for each
collection can be located.

http://commons.apache.org/digester

Volume III: FDsys Publish FDsys System Design Document– R1C2

<acp-cache>

The file system location where the ACP Cache is located. The ACPCacheUtility
class should be given this value (see section 6.1.1 for more details).

<last-updated-file>

The file path where the last updated date/time is written. This file is used for the
"update" command, so that FDsys Publish will know the start-time to use for
selecting which documents to publish.

<max-threads n="4"/>

Specify the maximum number of simultaneous processing threads should be
spawned to handle package processing.

<documentum>

A collection of parameters all related to the Documentum Server. Comprising of:

<docbase>

The Documentum repository which contains the ACP packages to be
published and indexed.

<user>

The Documentum user name to use to log into Documentum.

<password>

The Documentum password to use to log into the Documentum servers.

Note: The Documentum user and password may be removed from the
configuration file (or an additional parameter added), if we decide to use a "ticket
granting" method for login. To be determined.

<error-folder>

The Documentum folder to store any error messages which occurred
during processing of commands. See section 7.3 for more details.

<fast>

Holds information required to connect to the FAST search servers. Specifically:

<index-servers>

A list of possible FAST Content Distributor servers which can receive
index notifications via the FAST content APIs. Note that multiple servers
are specified her for process failover in the event that one server is down.

`Confidential October 6, 2008 17

<query-servers>

Volume III: FDsys Publish FDsys System Design Document– R1C2

A list of possible FAST QR servers which can process search requests.
Again, multiple servers are specified here to allow for load balancing and
failover by the FAST search APIs.

Tasks:

T7. Open up the publish.xml file on startup and load all configuration data into
memory.

T8. Every time an HTTP command is executed, check the touch-datetime on the
publish.xml. If it is more recent than the last time it was loaded, then reload the
publish.xml file into memory.

5.1.1. DQL Statements
The DQL statements specified in the publish.xml file can contain substitutable
parameters.

For example:

select package_id, r_object_id, ccode, first_published_date,
 publish_change_date, fdlp_in_scope, is_published, is_purged
from dm_folder
where publish_change_date >= DATE('${from}') and
 publish_change_date < DATE('${to}')

(Note that this DQL is only a sample and may have syntactic or semantic errors)

In this example, ${from} and ${to} are substitutable parameters which will be replaced
with date strings.

The substitutable parameters come from the HTTP command parameters which were
used to execute the command, and have the same names as the command parameter
names.

See section 8 for more details.

5.2. index.xsl and mods.xsl
The FDsys Publish program does not contain any special software for mapping from
FDsys metadata fields into FAST ESP index-profile fields.

Instead, two XSL Transformation files will perform this task on a collection by collection
basis:

mods.xsl This transformation will create the XML document that is indexed into the
"xml" index-profile field for FAST scope searching. FAST scope search
allows users to create complex queries directly over complex structured
XML data.

`Confidential October 6, 2008 18

 See the "Search Schema Definition" document for more details on the
format produced by mods.xml.

Volume III: FDsys Publish FDsys System Design Document– R1C2

index.xsl This transformation file maps the metadata from the ACP into all of the
other FAST index-profile fields (such as the title, URL, abstract,
frompage, etc.).

 The output of index.xsl will be in FASTXML format. This format is defined
by FAST for easy processing by the FAST ESP document processing
pipeline.

 The mods.xsl will be called out from within the index.xsl program using
the <xsl:import> element.

See the "ESP File Traverser Guide" for more documentation of the FASTXML format.

See 'Appendix D: Sample "index.xsl" ' and 'Appendix E: Sample "mods.xsl" file' for
examples of "index.xsl" and "mods.xsl" transformations.

5.2.1. Locating XSL Transformations Files
There will be a different index.xsl and mods.xsl for each different collection to be
processed in FDsys. These files will be located in a common directory, such as:

/FDsys/collections/<collection-name>/

index.xsl

mods.xsl

So, for example, to locate the "index.xsl" file for the Federal Register (code = FR), the
FDsys Publish program will load the "/FDsys/collections/FR/index.xsl" file.

Having all collection-based information in a common directory makes it easy to maintain
configuration control and deployment for new collections. A new collection can be
installed by merely dropping in a directory of the necessary configuration and XSL
transformation files into the proper location, without tweaking any other "master"
configuration file.

Tasks:

T9. Create a routine to locate, compile, and cache the index.xsl transformation as
needed for transforming metadata from the ACP fdsys.xml file into FASTXML.

`Confidential October 6, 2008 19

T10. Every time a document is loaded, check the index.xsl last-modified date time. If it
is more recent than the last time the template was loaded, reload the .XSL file.

Volume III: FDsys Publish FDsys System Design Document– R1C2

6. ACP Cache Structure
The structure of the ACP cache will be as follows:

The purpose of this structure is to limit the number of entries per directory in the ACP
cache to a maximum of 256 and to allow for growth to billions of possible packages.

The package directory structure will be created on-the-fly as each package is exported
from Documentum. Only sub-directories which contain packages (or once contained
packages) will exist in the directory structure.

6.1.1. ACP Cache Utility
Since the function to convert a package access ID into a package directory name will be
needed by many different system components, a utility class will be created to do this:

Method Description

void setACPCacheBaseDir(String path)
Set the base directory where the ACP
cache is located. This will be stored in a
static variable.

String getPackageDir(String pkgId)
Convert a package ID into the full path
name for the package directory. Produces
a path in the format described above.

String getFullPath(String pkgId,
 String relativePath)

Convert a package ID and a relative path
into a full path name. The full path
identifies the location of the file on the local
machine so it can be accessed directly and
(for example) streamed back to the user.

`Confidential October 6, 2008 20

T11. Create the utility class which converts a package access ID to an ACP directory
path, using the MD5 of the package access ID, as described above.

Volume III: FDsys Publish FDsys System Design Document– R1C2

7. Package Processing Overview
The steps for processing a package are as follows:

1. Based on the type of command received by the Tomcat Servlet wrapper, look up
the proper DQL command from the publish.xml configuration file. Substitute the
variable parameters from the HTTP command into the DQL statement and
execute it using the Documentum DFC APIs.

2. Use the flags (is_published, is_public, is_purged) from the DQL statement to
determine if the package is an update and/or delete.

Updated packages are determined by comparing the "first_published_datetime"
to the "publish_change_datetime". If they are equal, then this is the first time the
document has been published (it is an ADD). If they are different, then this is an
update.

Deleted packages will have "is_published" or "fdlp_in_scope" set to "false", or
"is_purged" set to true.

For updated or deleted packages:

a. Use FAST search to find all of the granules contained within the package
and delete them from the FAST indexes (see section 10).

b. (For deletes only, not updates) Remove the package (and all of its
contents) from the ACP cache.

3. Export the package from Documentum and load it into the ACP Cache.

a. Create the package directory (including parent directories, as necessary).

i. Export the package into <packagedir>.swp

b. Scan through the contents of the package folder, exporting files and
creating sub-directories as necessary.

c. Repeat step b, for all nested sub-directories, as necessary.

d. If <packagedir> already exists, rename it to <packagedir>.old

e. Rename <packagedir>.swp to <packagedir>

f. Remove <packgedir>.old (and all of its contents) from the ACP cache.

4. For every package to be added or updated, perform the following steps:

a. Using the document type from the DQL statement, look up the index.xsl
file and parameters to be used from the FDsys process-config module.

`Confidential October 6, 2008 21

b. Apply the index.xsl file from step "a" above to the fdsys.xml file
downloaded with the package. The result will be a FASTXML file to index.

Volume III: FDsys Publish FDsys System Design Document– R1C2

c. Due to limitations in FAST, some additional processing on the FASTXML
will need to be implemented before it can be submitted to the FAST
search engine:

i. Split the FASTXML file into individual documents based on the
<document> tag. Each document will need to be submitted
individually to the FAST indexes.

d. Submit each <document> to FAST using the RTPush content API
wrapper.

e. Monitor content API callbacks.

i. If there is an error, retry the document three times.

ii. If all three attempts fail, then log the error in a log file and return
an error code to a Documentum Queue.

The tasks required to implement each of these steps are identified in the following
sections.

7.1. Processing Threads
The FDsys Publish program will maintain background threads to process package IDs.
Multiple threads will be necessary for large batch updates, where many packages will
need to be published.

The processing will be divided as follows:

publish commands arrive
via HTTP

Single Background Thread:
Execute DQL

Background threads:
process each package

Queue of Package IDsDocumentum

DQL
Results

Package
Contents

`Confidential October 6, 2008 22

The servlet which responds to the HTTP command will be responsible for executing the
DQL statement to Documentum and building a queue of Package IDs. Each item in the
queue will also contain the necessary package metadata (publish_change_datetime,
is_published, etc.) required to determine if the package needs to be deleted, added, or
updated.

Volume III: FDsys Publish FDsys System Design Document– R1C2

Background threads will then process each package from the queue one at a time. Each
background thread will be responsible for deleting the package from the ACP cache,
downloading the new package contents, removing the package from the FAST indexes,
preparing the package for index processing, and submitting the package granules for
indexing.

Finally, for large batch loads, a main() method will be provided so that FDsys Publish
can be executed from the command line. This will be for disaster recovery and initial
batch load situations where the number of documents returned by the DQL statement is
very large.

T12. Spawn background threads when the servlet is initialized. Background threads
wait for packages to be put on a package queue for processing. The number of
threads to create is specified in the publish.xml configuration file.

T13. Implement a command-line version of the FDsys Publish program for large batch
loads.

7.2. Purge
It is assumed that, when a package is purged, that a placeholder for that package will
remain in the Content Management System. This placeholder will only need to have a
very few metadata values: Package ID, publish_change_datetime,
first_publish_datetime, and "is_purged".

It is assumed that this placeholder will never be removed. Therefore, if a package needs
to be purged, it should have an "is_purged" flag set to "true", and have all of it's content
removed.

It is important to leave placeholders for purged packages in the CMS to ensure that
FAST can properly recover from backups. Otherwise, if packages were to be fully
removed and then (as part of disaster recover) the FAST indexes were to be recovered
to a state before the purge, then the purged package would show up in search results as
an orphan.

7.3. Error Handling
Errors in processing content should happen rarely, if at all. And when they do occur (if,
for example, disk space is full), it is likely that they will occur for all documents.

Therefore, errors will not be processed on a document-by-document basis, since this will
likely result in many hundreds of duplicate messages. Instead, all errors will be
aggregated on a per-command basis.

Once a command has completed, any errors accumulated by the command will be
written back as a message to a Documentum Queue, so that the appropriate authorized
users can be notified.

To be determined: The exact format of the message to be returned.

`Confidential October 6, 2008 23

Tasks:

Volume III: FDsys Publish FDsys System Design Document– R1C2

T14. If errors have occurred while processing an HTTP command, accumulate all of
the errors into a message and write it back into a Documentum queue provided
for this purpose.

8. Documentum Interface
We will be using the Documentum "DFC" API for accessing packages from the
Documentum Docbase. See "Appendix A: Code Fragment for Documentum APIs" for
an example which illustrates the Documentum API calls required to process packages in
FDsys.

The basic outline for the Documentum portion of the FDsys Publish program is as
follows:

1. Initialize the Documentum client, session manager, and session.

2. Execute the appropriate DQL command. The DQL commands will have been
pre-loaded from the publish.xml configuration file.

a. The package ID or date range parameters will need to be substituted into
the DQL statement where appropriate.

b. Any string substituted into a DQL statement should have special
characters (such as quotes, etc.) properly escaped.

3. For each package, check its metadata information to determine if the package
will need to be added, updated, or deleted.

4. For updates or adds, the package folder will need to be exported from
Documentum.

a. Create the folder in the ACP cache.

b. Scan through the contents of the folder.

i. If the item is a sub-folder, check that the folder "is_public", and if
so start again at step "a".

ii. If the item is a document, export the document to the ACP Cache
to the appropriate location.

Tasks:

T15. Execute the DQL commands called out by the HTTP command. Substitute the
${parameters} in the DQL statement as necessary. Ensure that special
characters in the parameter value (such as quotes) are properly escaped as
necessary.

`Confidential October 6, 2008 24

T16. Store the results of the DQL in an in-memory queue to be handled by
background threads.

Volume III: FDsys Publish FDsys System Design Document– R1C2

T17. For each item identified by T15, determine if it is an update, delete or add. For
deletes and updates, pass the package ID's to "Fast Search and Delete" (see
section 10.

T18. For packages to be deleted or updated, physically remove the package (and all
nested directories and files) from the ACP cache.

T19. For packages to be updated or added, download the package contents from
Documentum and write the package to the ACP cache.

T20. Pass the package IDs of packages to be updated to "FAST Index Notification".

8.1. Documentum Metadata Requirements
Packages accessed by the FDsys Publish program must have certain metadata to
ensure proper processing. Specifically, the DQL statement for processing packages
must return the following Documentum metadata information:

• “package_id” - The ID used to access the data in Documentum.

• “access_id” - The ID used by the system outside of Documentum to access the
package.

• “r_object_id” - The Documentum folder ID for the package folder, so that the
folder contents can be examined using the DFC APIs

• “collection” - The document collection code (used to locate the proper directory
which contains the "index.xsl" and "mods.xsl" files)

• “package_state” – Used for the WHERE clause in DQL statements to identify
all packages that are packages potentially available for exporting to the ACP
Cache. State will be set to ‘ACP’.

• “is_public” - Flags to determine if a folder is public.

• "first_publish_datetime" - The datetime when the package was first published.
This can be compared to "publish_change_datetime" to determine if the package
is an ADD (both datetimes are the same) or an UPDATE (the datetimes are
different).

• "publish_change_datetime" - Used for the WHERE clause in DQL statements
to identify all packages which have changed in any way that might require some
re-publishing of some sort.

`Confidential October 6, 2008 25

• "mods_change_datetime" - Identifies if there is a metadata change. If this
datetime is within the datetime of the index-datetime-range, then download a new
fdsys.xml and re-index the entire package, Since all mods.xml is copied into the
indexes, then a change to the mods will require a re-index. Further, since all
fdsys.xml descriptive metadata is stored in mods, then a change to the mods.xml
automatically means that the fdsys.xml has changed and needs to be re-
downloaded.

Volume III: FDsys Publish FDsys System Design Document– R1C2

• "content_change_datetime" - Identifies that a content file has changed. If this
datetime is within the datetime of the index-datetime-range, re-export all content
files and the fdsys.xml and rebuild the entire package in the ACP Cache. This
flag should only be set if an isPublic rendition is changed.

• "premis_change_datetime" - Identifies that the premis.xml has changed. If this
datetime is within the datetime of the index-datetime-range, download the new
premis file only. This does not require re-indexing or re-exporting the fdsys.xml
or content files.

• Any flags which are necessary to determine if the package is to be published.
Specifically: "scope", "is_published", and "is_purged"

8.2. Publishing A Document
When the CMS needs to publish a document, it will need to perform the following steps:

1. Set the "publish_change_date" to the current date and time.

2. If the "first_published_date" is NULL, then set "first_published_date" to the same
date and time, otherwise leave it untouched.

And that's all! On the next update cycle, FDsys Publish will automatically publish and
process all packages with a "publish_change_date" younger than the last time the
Publish was executed. The "first_published_date" will be used to determine if this
package is an "update" or an "add".

8.3. Scheduled vs On-Demand Processing
The FDsys Publish program is a passive program which responds and executes to
commands from the outside.

It is expected that there will be two types of commands:

1. Scheduled Commands - running on a periodic basis (e.g. once a night) for
processing all of the packages received that day.

2. On-demand Commands - for initiating a publish and/or index notification
immediately.

8.3.1. Scheduled Commands
FDsys Publish will not be responsible for initiating scheduled commands. These can be
implemented either by the operating system with a CRON job on the local machine, or
possibly through a Documentum scheduled nightly job.

8.3.2. On-Demand Commands

`Confidential October 6, 2008 26

Can be initiated either by the Admin User Interface provided with FDsys Publish, or by
any other (authorized) HTTP client. For example, an on-demand publish could be
performed as part of Documentum work-flow, to immediately process any package

Volume III: FDsys Publish FDsys System Design Document– R1C2

which has been manually corrected and whose corrections must be made available to
the public as quickly as possible.

8.4. DFC Properties File
For FDsys Publish to be able to connect to Documentum, a dfc.properties file will be
included in the installation classpath.

An example of dfc.properties is as follows:

dfc.docbroker.host[0]=cms1.dev.fdsys.gpo.gov
dfc.docbroker.port[0]=1489
dfc.globalregistry.repository=R1C_Dev_01
dfc.globalregistry.username=dm_bof_registry
dfc.globalregistry.password=2dWUCxhGpJ8YW10is0v/PA\=\=

9. The "update" command
The update command is the same as the date-range command, except that the from-
date is taken from the "last-update-file" file (specified in the publish.xml configuration
file), and the to-date is the current date time.

Once the update command has been completed successfully, the time used for the "to-
date" will be written to the "last-update-file".

Tasks:

T21. Open the last-update-file and fetch the last update time.

T22. Time stamp the current time, and then process the date range as normal.

T23. Once complete, write the previously stamped time (from T22) back to the last-
update-file.

T24. Implement the "setupdate" command, which simply sets the time stamp in the
"last-update-file" to the specified time stamp, or to the current datetime if no time
stamp has been specified.

10. FAST Search and Delete
Many of the documents to be indexed for FDsys are split into pieces, called "granules".
For example, each issue of the Federal Register will be split into (roughly) 150 pieces,
one for each regulation or notice which is printed that day.

`Confidential October 6, 2008 27

But publishing updates, deletes, and adds of documents are at the package level, not
the granule level. Therefore, in order to ensure that there are no orphan granules, the
FDsys Publish program must search for all granules and delete them, before deleting or
updating a package.

Volume III: FDsys Publish FDsys System Design Document– R1C2

It was decided to go directly to the FAST indexes to perform this function, rather than
going to an older copy of the package on the ACP cache. This will ensure that the FAST
indexes are correct, whereas the package on disk may or may not be correct (depending
on the disaster recovery scenario).

The following tasks will need to be performed for any package which is deleted or
updated. We will use the standard FAST search and content APIs to perform these
tasks.

Tasks:

T25. Use the package ID to perform a FAST search to determine the complete list of
granules which have been indexed into that package.

T26. Send a "delete" command to the FAST indexes for each granule returned by the
search engine.

11. Indexing Packages
As described in section 7, each package will require some special processing before it is
sent to the FAST search engine for indexing. This special processing is as follows:

1. Convert the fdsys.xml file to FASTXML. This step maps the fielded data from the
fdsys.xml XML <entity>s to FAST index profile fields using the index.xsl template.

a. Note that the .xslt template which does this conversion will import a
second "mods.xsl" template to create the nested "search.xml" file used for
complex metadata searches in FDsys. The results of the "mods.xsl"
template will be indexed into the FAST "xml" index-profile field.

2. The FASTXML will contain multiple documents, one for each granule that needs
to be indexed.

a. Due to a limitation in FAST, The index notification program will need to
split apart these documents and send them one-at-a-time to FAST.

3. The index.xslt template program will put the search.xml inside the <value> entity
for the "xml" index-profile field, wrapped with a <![CDATA[]]> tag.

We will be using the "RTPush" content API wrapper for sending documents to FAST
(available from Search Technologies). This wrapper provides content session pooling
and a simplified interface for submitting documents.

An example of the fdsys.xml file can be found in "Appendix B: fdsys.xml Example."

An example of the FASTXML file which is used as input to the FAST indexers can be
found in "Appendix C: Sample FASTXML file."

`Confidential October 6, 2008 28

See 'Appendix D: Sample "index.xsl" ' for a sample "index.xsl" program which maps
metadata fields from the fdsys.xml file into the FASTXML format.

Volume III: FDsys Publish FDsys System Design Document– R1C2

See 'Appendix E: Sample "mods.xsl" file' for a sample "mods.xsl" program which maps
fields from the fdsys.xml file into "Search Schema" format – for feature-rich and intuitive
searching.

Tasks:

T27. Load the fdsys.xml file for the package into a Java structure (such as an
"InputSource").

T28. Based on the package "collectionCode" attribute, determine the appropriate
'index.xsl' from the FDsys "process-config" module.

T29. Apply the index.xsl template program to the fdsys.xml file to create the index.xml
file.

T30. Split up the index.xml file into pieces and then submit each piece for indexing to
FAST.

12. Status
A special status page is recommended to provide status on the current indexing and
notification progress of the FDsys Publish program. The response to a status command
will be an HTML page which displays the status of all outstanding packages.

Packages which have completed processing will not be displayed on the status page.

The possible status values for packages could be:

• Waiting for processing - The package is still in the package queue and has not
yet been picked up by a background thread.

• Downloading from Documentum - The package contents is currently being
downloaded from Documentum.

• Processing Deletes - The package ID is currently being searched to locate the
package granules and the granules are being submitted for deletes.

• X number of Granules Waiting for deletes - Granule deletes are currently being
processed by FAST for the package.

• Index Preparation - The package is being prepared for indexing.

• X number of Granules Waiting for Document Processing - Granule updates or
adds are currently being processed by the FAST document processors.

• X number of Granules waiting for indexing - Granule updates or adds are
currently being written to the FAST indexes.

`Confidential October 6, 2008 29

All of this information should be readily available by inspecting the package queue, the
thread objects, and the RTPush connection callback hash tables.

Volume III: FDsys Publish FDsys System Design Document– R1C2

Should this task prove to be too difficult or time-consuming to implement, a simpler
version could be implemented where the threads simply write their status to a log file as
they complete each task.

Tasks:

T31. Implement the status command. Inspect the various queues, thread objects, and
hash tables to determine the status of each package ID. Return the results to the
browser as a formatted HTML page.

13. Logging
Using log4j, the FDsys Publish program will log the following:

1. Startup status. This will include connection to FAST and Documentum. Status
will indicate success or failure, with a reason if failure occurred.

2. Commands that are received, either via the Servlet or the command line
application.

3. For each command received, the package IDs that are affected.

4. For each affected package, the action that occurs. Actions will be add, delete or
update.

5. For each package, the result of the action. The result will indicate success or
failure, with a reason if failure occurred.

Tasks:

T32. Implement logging in the FDsys Publish program, as described above.

14. Additional Tasks
T33. Map documentum granule files to collection specific filenames inside the ACP

cache, using based on mapping rule in configuration files for each collection.
The configuration files should reside collection-config dir defined in publish.xml.

T34. Check into issue with RTPush possibly not handling certain types of errors.
Example is when the document retriever can’t find the files, batch completion
never occurs.

`Confidential October 6, 2008 30

Volume III: FDsys Publish FDsys System Design Document– R1C2

Appendix A: Code Fragment for Documentum APIs
The following code fragment demonstrates the Documentum DFC calls which will likely
be required for processing package updates in the FDsys Publish server.

Note that the code below has not been tested. Its purpose is to simply illustrate the
Documentum calls required.

ProcessUpdates(String DQLStatement) {

 //*** Setup Documentum Client and Session ***

 DfClientX clientx = new DFClientX();
 IDfClient client = clientx.getLocalClient();
 IDfSessionManager sessionMgr = client.newSessionManager():

 IDfLoginInfo loginInfo = clientx.getLoginInfo();
 loginInfo.setUser(userName);
 loginInfo.setPassword(password);

 sessionMgr.setIdentity(IDfSessionManager.ALL_DOCBASES, loginInfo);

 IDfSession session =
 sessionMgr.getSession("Documentum Doc Base Name")

 //*** Query Dctm for packages that need to be published ***

 IDfQuery q = new DfQuery();
 query.setDQL(DQLStatement);

 IDfCollection col = query.execute(session, DfQuery.DF_READ_QUERY);

 while (col.next()) {
 // *** Use col.getString("attr-name"),
 // col.getId("attr-name"), and
 // col.getInt("attr-name") to fetch package metadata

 // if is_published = NO or
 // publish_change_date != first_publish_date
 // also removes empty parent directories:
 removePackageFromACPCache(packageId);
 removePackageFromACPSearchEngine(packageId);

 // if is_published = YES
 addPackage(packageIdVal, packageDctmId);

 }

`Confidential October 6, 2008 31

 col.close()

Volume III: FDsys Publish FDsys System Design Document– R1C2

 sessionMgr.release(session);

}

// *** Process the Folder ***

addPackage(String packageId, IDfId dctmId) {
 String packagePath =
 /* Create the path based on the MD5 of the package ID */

 processFolder(packagePath, dctmId);
 addPackageToSearchEngine(packageId);
}

processFolder(String packagePath, IDfId parentFolderId) {
 IDfFolder folder = (IDfFolder) session.getObject(parentFolderId);

 // if the folder is not public
 // (use doc.getString("attr-name") as appropriate)
 // then RETURN without exporting

 IDfCollection folderList = folder.getContents(null);

 while (folderList.next()) {
 IDfTypedObject obj = folderList.getTypedObject();

 // *** if obj.getString("r_object_type") says it's a document

 IDfId docId = obj.getString("r_object_id");
 processDocument(packagePath + "/" +
 obj.getString("object_name"), packageId, docId);

 // *** if obj.getString("r_object_type") says it's a folder

 IDfId childFolderId = obj.getString("r_object_id");
 processFolder(packagePath + "/" +
 obj.getString("object_name") , childFolderId);
 }
 folderList.close()
}

processDocument(String path, String packageId, String docId) {
 IDfExportOperation eo = clientx.getExportOperation();

 IDfDocument doc =

`Confidential October 6, 2008 32

 (IDfDocument) mySession.getObject(new DfId(docId));

Volume III: FDsys Publish FDsys System Design Document– R1C2

 // if the document is not public
 // (use doc.getString("attr-name") as appropriate)
 // then RETURN without exporting

 IDfExportNode node = (IDfExportNode)eo.add(doc);
 node.setFilePath(path + "/" + doc.getObjectName());
 eo.execute()

`Confidential October 6, 2008 33

}

Volume III: FDsys Publish FDsys System Design Document– R1C2

Appendix B: fdsys.xml Example
The following is an example of the fdsys.xml file, which is produced by the FDsys
parsers and is used as the input for creating the FASTXML file for indexing granules in
FAST.

Note that the following file is incomplete. It is missing many metadata values produced
during the content submission process.

<?xml version="1.0"?>
<FDsys doctype="FR" from="parser">
 <packageid>fr01no06</packageid>
 <category>Regulatory Information</category>
 <collection>Federal Register</collection>
 <branch>Executive</branch>
 <government-author-1>National Archives and Records
Administration</government-author-1>
 <government-author-2>Federal Register Office</government-author-2>
 <issuedate>2006-11-01</issuedate>
 <volume>71</volume>
 <issue>211</issue>

 <granules>
 <granule type="node" grantype="section" gid="154" parentgid="0"
order="1">
 <ancestors><g id="0"/></ancestors>
 <title>Rules and Regulations</title>
 </granule>

 <granule type="leaf" grantype="RulesAndRegulations" gid="1"
parentgid="154" order="2">
 <ancestors><g id="0"/><g id="154"/></ancestors>
 <pages from="64111" to="64113"/>
 <file>granules/granule1.txt</file>
 <agency order="1">DEPARTMENT OF TRANSPORTATION</agency>
 <agency order="2">Federal Aviation Administration</agency>
 <agency-list>DEPARTMENT OF TRANSPORTATION, Federal Aviation
Administration</agency-list>
 <effectivedate>2006-10-28</effectivedate>
 <issuedate>2006-11-01</issuedate>
 <title>Reservation System for Unscheduled Arrivals at Chicago's
O'Hare International Airport</title>
 <migrateddocid>fr01no06-1</migrateddocid>
 <docketno>FAA-2005-19411</docketno>
 <rinnumber>RIN 2120-AI47</rinnumber>
 <billingcode>4910-13-P</billingcode>
 <frdocno>06-9000</frdocno>

`Confidential October 6, 2008 34

 <rawaction>Final rule; extension of expiration date.</rawaction>

Volume III: FDsys Publish FDsys System Design Document– R1C2

 <summary>This action extends the expiration date of Special
Federal Aviation Regulation (SFAR) No. 105 through October 31, 2008.
... </summary>
 <rawdate>This final rule is effective on October 28, 2006, and
SFAR No. 105 published at 70 FR 39610 (July 8, 2005), as amended at
70 FR 66255 (November 2, 2005), ...</rawdate>
 <rawcontact>Gerry Shakley, System Operations Services, Air
Traffic Organization; Telephone: (202) 267-9424; E-mail: ...
</rawcontact>
 <cfr title="14">
 <part>93</part>
 </cfr>
 </granule>
.
.

`Confidential October 6, 2008 35

.

Volume III: FDsys Publish FDsys System Design Document– R1C2

Appendix C: Sample FASTXML file
The following is a sample FASTXML file which is produced by the index XSL template
program. Note that this is only an early sample, and is missing many metadata values
which will be required later.

The shaded portion shown below is the "search schema", or the search.xml portion of
the file, after it has been wrapped with <![CDATA[]]> tags. The search schema is copied
directly into the FAST indexes and allows for complex metadata search without having to
add all of the search elements to the FAST index profile.

<documents>
 <document>
 <dgid>fr01no06-1</dgid>
 <element name="url"><value>
 file:///C:/Documents%20and%20Settings/Paul%20Nelson/Desktop/gpo-
fr/Pkgfr01no06/granules/granule1.txt
 </value></element>
 <element name="language"><value>en</value></element>
 <element name="getpath"><value>
file:///C:/Documents%20and%20Settings/Paul%20Nelson/Desktop/gpo-
fr/Pkgfr01no06/granules/granule1.txt
 </value></element>
 <element name="granuleid"><value>1</value></element>
 <element name="title"><value>
Reservation System for Unscheduled Arrivals at Chicago's O'Hare
International Airport
</value></element>
 <element name="issuedate"><value>2006-11-01</value></element>
 <element name="effectivedate"><value>2006-10-28</value></element>
 <element name="volume"><value>71</value></element>
 <element name="issue"><value>211</value></element>
 <element name="volissue">
 <value>Vol. 71;Vol. 71/Issue 211</value>
 </element>
 <element name="frompage"><value>64111</value></element>
 <element name="topage"><value>64113</value></element>
 <element name="abstract"><value>
This action extends the expiration date of Special Federal Aviation
Regulation (SFAR) No. 105 through October 31, 2008. This action is
necessary to maintain the reservation system established for
unscheduled arrivals at O'Hare International Airport consistent with
the newly adopted limitations imposed on scheduled operations at the
airport.
 </value></element>
 <element name="rinnumber"><value>RIN 2120-AI47</value></element>
 <element name="docketno"><value>FAA-2005-19411</value></element>
 <element name="section">

`Confidential October 6, 2008 36

 <value>Rules and Regulations</value>

Volume III: FDsys Publish FDsys System Design Document– R1C2

 </element>
 <element name="agencies"><value>
DEPARTMENT OF TRANSPORTATION;Federal Aviation Administration;
 </value></element>
 <element name="cfrtitlepart">
 <value>14 CFR;14 CFR/Part 93;</value>
 </element>
 <element name="xml"><value><![CDATA[
 <fdsys type="FR">
 <packageid>fr01no06</packageid>
 <granuleid>1</granuleid>
 <date type="issue">2006-11-01</date>
 <date type="effective">2006-10-28</date>
 <id type="fr">
 <cite>71 FR 64111</cite>
 <volume>71</volume>
 <issue>211</issue>
 <page>64111</page>
 </id>
 <title>Reservation System for Unscheduled Arrivals ...</title>
 <fields>
 <action>Final rule; extension of expiration date. </action>
 <summary>This action extends the expiration ... </summary>
 <dates>This final rule is effective on October ... </dates>
 <contact>Gerry Shakley, System Operations ... </contact>
 </fields>
 <parents>
 <section level="1">Rules and Regulations</section>
 </parents>
 <org type="branch">
 <name>Executive</name>
 <org><name>DEPARTMENT OF TRANSPORTATION</name></org>
 <org><name>Federal Aviation Administration</name></org>
 </org>
 <refs>
 <id type="cfr">
 <cite>14 CFR Part 93</cite>
 <title>14</title>
 <part>93</part>
 </id>
 <id type="docket"><cite>FAA-2005-19411</cite></id>
 <id type="rin"><cite>RIN 2120-AI47</cite></id>
 <id type="billing"><cite>4910-13-P</cite></id>
 </refs>
 </fdsys>]]>
 </value></element>

`Confidential October 6, 2008 37

</document>

Volume III: FDsys Publish FDsys System Design Document– R1C2

Appendix D: Sample "index.xsl"
The purpose of "index.xsl" is to transform the metadata from the fdsys.xml file into FAST
index profile fields (the FASTXML format from Appendix C).

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output indent="yes"/>
<xsl:key name="granid" match="//granule" use="@gid"/>
<xsl:preserve-space elements="value"/>
<xsl:template match="/">
 <documents>
 <xsl:for-each select="/FDsys/granules/granule[@type='leaf']">
 <document>
 <dgid><xsl:value-of select="/FDsys/packageid"/>-<xsl:value-
of select="@gid"/></dgid>

 <element name="url">
<value>file:///C:/Documents%20and%20Settings/Paul%20Nelson/Desktop/g
po-fr/Pkgfr01no06/<xsl:value-of select="file"/></value>
 </element>

 <element name="language"><value>en</value></element>

 <element name="getpath">
<value>file:///C:/Documents%20and%20Settings/Paul%20Nelson/Desktop/g
po-fr/Pkgfr01no06/<xsl:value-of select="file"/></value>
 </element>

 <element name="granuleid">
 <value><xsl:value-of select="@gid"/></value>
 </element>

 <element name="title">
 <value><xsl:value-of select="title"/></value>
 </element>

 <element name="issuedate">
 <value><xsl:value-of select="issuedate"/></value>
 </element>

 <xsl:if test="effectivedate">
 <element name="effectivedate">
 <value><xsl:value-of select="effectivedate"/></value>
 </element>
 </xsl:if>

 <element name="volume">
 <value><xsl:value-of select="/FDsys/volume"/></value>

`Confidential October 6, 2008 38

 </element>

Volume III: FDsys Publish FDsys System Design Document– R1C2

 <element name="issue">
 <value><xsl:value-of select="/FDsys/issue"/></value>
 </element>

 <element name="volissue">
 <value>Vol. <xsl:value-of select="/FDsys/volume"/>;Vol.
<xsl:value-of select="/FDsys/volume"/>/Issue <xsl:value-of
select="/FDsys/issue"/></value>
 </element>

 <element name="frompage">
 <value><xsl:value-of select="pages/@from"/></value>
 </element>

 <element name="topage">
 <value><xsl:value-of select="pages/@to"/></value>
 </element>

 <xsl:if test="summary">
 <element name="abstract">
 <value><xsl:value-of select="summary"/></value>
 </element>
 </xsl:if>

 <xsl:if test="rinnumber">
 <element name="rinnumber">
 <value><xsl:value-of select="rinnumber"/></value>
 </element>
 </xsl:if>

 <xsl:if test="docketno">
 <element name="docketno">
 <value><xsl:value-of select="docketno"/></value>
 </element>
 </xsl:if>

 <xsl:call-template name="insertparent">
 <xsl:with-param name="getvalue" select="'title'"/>
 <xsl:with-param name="gid" select="@parentgid"/>
 <xsl:with-param name="grantype" select="'part'"/>
 <xsl:with-param name="elementname" select="'part'"/>
 </xsl:call-template>

 <xsl:call-template name="insertparent">
 <xsl:with-param name="getvalue" select="'title'"/>
 <xsl:with-param name="gid" select="@parentgid"/>
 <xsl:with-param name="grantype" select="'section'"/>
 <xsl:with-param name="elementname" select="'section'"/>
 </xsl:call-template>

`Confidential October 6, 2008 39

Volume III: FDsys Publish FDsys System Design Document– R1C2

 <xsl:if test="agency">
 <element name="agencies">
 <value><xsl:for-each select="agency"><xsl:value-of
select="."/>;</xsl:for-each></value>
 </element>
 </xsl:if>

 <!-- NOTE: Following code assumes CFRs are already sorted
by @title -->
 <xsl:if test="cfr">
 <element name="cfrtitlepart">
 <value><xsl:for-each select="cfr"><xsl:value-of
select="@title"/> CFR;<xsl:for-each select="part"><xsl:value-of
select="../@title"/> CFR/Part <xsl:value-of select="."/>;</xsl:for-
each></xsl:for-each></value>
 </element>
 </xsl:if>

 <element name="xml">
 <value>
 <xsl:value-of select="'<![CDATA['" disable-output-
escaping="yes"/>
 <xsl:call-template name="searchxml">
 <xsl:with-param name="gid" select="@gid"/>
 </xsl:call-template>
 <xsl:value-of select="']]>'" disable-output-
escaping="yes"/>
 </value>
 </element>

 </document>
 </xsl:for-each>
 </documents>
</xsl:template>

<xsl:template name="insertparent">
 <xsl:param name="getvalue"/>
 <xsl:param name="gid"/>
 <xsl:param name="grantype"/>
 <xsl:param name="elementname"/>
 <xsl:for-each select="key('granid',$gid)">
 <xsl:choose>
 <xsl:when test="@grantype=$grantype">
 <element><xsl:attribute name="name"><xsl:value-of
select="$elementname"/></xsl:attribute>
 <value><xsl:value-of
select="child::*[name()=$getvalue]"/></value>
 </element>
 </xsl:when>
 <xsl:when test="@parentgid!='0'">

`Confidential October 6, 2008 40

 <xsl:call-template name="insertparent">

Volume III: FDsys Publish FDsys System Design Document– R1C2

 <xsl:with-param name="getvalue" select="$getvalue"/>
 <xsl:with-param name="gid" select="@parentgid"/>
 <xsl:with-param name="grantype" select="$grantype"/>
 <xsl:with-param name="elementname" select="$elementname"/>
 </xsl:call-template>
 </xsl:when>
 </xsl:choose>
 </xsl:for-each>
</xsl:template>

<xsl:template name="padnumber"><xsl:param
name="ival"/><xsl:choose><xsl:when test="$ival<10"><xsl:value-of
select="concat(' ',string($ival))"/></xsl:when><xsl:when
test="$ival<100"><xsl:value-of select="concat('
',string($ival))"/></xsl:when><xsl:otherwise><xsl:value-of
select="$ival"/></xsl:otherwise></xsl:choose></xsl:template>

<xsl:import href="mods.xsl"/>

</xsl:stylesheet>

`Confidential October 6, 2008 41

Volume III: FDsys Publish FDsys System Design Document– R1C2

Appendix E: Sample "mods.xsl" file
The "mods.xsl" file produces a search XML file for each granule to be search. This
schema is designed for easy and intuitive searching. See the "The Search Schema"
document for more details.

Note that the "mods.xsl" file is imported into the "index.xsl" file, and its contents are
included into the FAST "xml" scope search field. You can see an example of its output in
the shaded portion of the FASTXML file in Appendix C.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output indent="yes"/>
<xsl:key name="granid" match="//granule" use="@gid"/>
<xsl:preserve-space elements="value"/>
<xsl:param name="gid"/>

<xsl:template match="/">
 <xsl:call-template name="searchxml">
 <xsl:with-param name="gid" select="$gid"/>
 </xsl:call-template>
</xsl:template>

<xsl:template name="searchxml">
 <xsl:param name="gid"/>
 <fdsys>
 <xsl:attribute name="type"><xsl:value-of
select="/FDsys/@doctype"/></xsl:attribute>
 <xsl:for-each select="/FDsys/granules/granule[@type='leaf' and
@gid=$gid]">
 <xsl:copy-of select="/FDsys/packageid"/>
 <granuleid><xsl:value-of select="@gid"/></granuleid>
 <date type="issue"><xsl:value-of select="issuedate"/></date>
 <xsl:if test="effectivedate"><date
type="effective"><xsl:value-of
select="effectivedate"/></date></xsl:if>
 <id type="fr">
 <cite><xsl:value-of select="/FDsys/volume"/> FR <xsl:value-
of select="pages/@from"/></cite>
 <xsl:copy-of select="/FDsys/volume"/>
 <xsl:copy-of select="/FDsys/issue"/>
 <page><xsl:value-of select="pages/@from"/></page>
 </id>
 <xsl:copy-of select="title"/>

 <fields>

`Confidential October 6, 2008 42

 <xsl:if test="rawaction"><action><xsl:value-of
select="rawaction"/></action></xsl:if>

Volume III: FDsys Publish FDsys System Design Document– R1C2

 <xsl:if test="summary"><summary><xsl:value-of
select="summary"/></summary></xsl:if>
 <xsl:if test="rawdate"><dates><xsl:value-of
select="rawdate"/></dates></xsl:if>
 <xsl:if test="rawcontact"><contact><xsl:value-of
select="rawcontact"/></contact></xsl:if>
 </fields>

 <parents>
 <xsl:call-template name="insertparents">
 <xsl:with-param name="gid" select="@parentgid"/>
 <xsl:with-param name="level" select="1"/>
 </xsl:call-template>
 </parents>

 <org type="branch">
 <name>Executive</name>
 <xsl:for-each select="agency">
 <org><name><xsl:value-of select="."/></name></org>
 </xsl:for-each>
 </org>

 <refs>
 <xsl:for-each select="cfr">
 <xsl:for-each select="part">
 <id type="cfr">
 <cite><xsl:value-of select="../@title"/> CFR Part
<xsl:value-of select="."/></cite>
 <title><xsl:value-of
select="../@title"/></title><part><xsl:value-of select="."/></part>
 </id>
 </xsl:for-each>
 </xsl:for-each>
 <xsl:if test="docketno"><id type="docket"><cite><xsl:value-
of select="docketno"/></cite></id></xsl:if>
 <xsl:if test="rinnumber"><id type="rin"><cite><xsl:value-of
select="rinnumber"/></cite></id></xsl:if>
 <xsl:if test="billingcode"><id
type="billing"><cite><xsl:value-of
select="billingcode"/></cite></id></xsl:if>
 <xsl:if test="presdoctype">
 <id type="presdoc">
 <xsl:attribute name="type">Presidential <xsl:value-of
select="presdoctype"/></xsl:attribute>
 <cite>Presidential <xsl:value-of select="presdoctype"/>
<xsl:if test="presno"><xsl:value-of select="' '"/><xsl:value-of
select="presno"/></xsl:if> of <xsl:value-of
select="presdate"/></cite>

`Confidential October 6, 2008 43

 <xsl:if test="presno"><number><xsl:value-of
select="presno"/></number></xsl:if>

Volume III: FDsys Publish FDsys System Design Document– R1C2

`Confidential October 6, 2008 44

 <xsl:if test="presdate"><date type="presdoc"><xsl:value-
of select="presdate"/></date></xsl:if>
 </id>
 </xsl:if>
 </refs>

 </xsl:for-each>
 </fdsys>
</xsl:template>

<xsl:template name="insertparents">
 <xsl:param name="gid"/>
 <xsl:param name="level"/>
 <xsl:for-each select="key('granid',$gid)">
 <xsl:element name="{string(@grantype)}">
 <xsl:attribute name="level"><xsl:value-of select="$level"/>
 </xsl:attribute><xsl:value-of select="title"/>
 </xsl:element>
 <xsl:if test="@parentgid!='0'">
 <xsl:call-template name="insertparents">
 <xsl:with-param name="gid" select="@parentgid"/>
 <xsl:with-param name="level" select="$level+1"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:for-each>
</xsl:template>

</xsl:stylesheet>

	1. Background
	2. Architecture Overview
	2.1. Other Architectural Considerations
	2.1.1. "Unpublish"
	2.1.2. Pull vs Push

	3. Requirements
	3.1. Notification Requirements:
	3.2. Re-index requirements:
	3.3. ACP Cache Maintenance Requirements:
	3.4. ACP Cache Re-build requirements:
	3.5. Processing Requirements:
	3.6. Status Monitoring:

	4. HTTP Servlet Wrapper
	4.1. HTTP Commands
	4.1.1. The "package" command
	4.1.2. The "range" command
	4.1.3. The "update" command
	4.1.4. The "setupdate" command
	4.1.5. The "other" command
	4.1.6. The "status" command

	4.2. Admin User Interface
	4.3. HTTP Security
	4.4. Deployment

	5. Configuration
	5.1. publish.xml
	5.1.1. DQL Statements

	5.2. index.xsl and mods.xsl
	5.2.1. Locating XSL Transformations Files

	6. ACP Cache Structure
	6.1.1. ACP Cache Utility

	7. Package Processing Overview
	7.1. Processing Threads
	7.2. Purge
	7.3. Error Handling

	8. Documentum Interface
	8.1. Documentum Metadata Requirements
	8.2. Publishing A Document
	8.3. Scheduled vs On-Demand Processing
	8.3.1. Scheduled Commands
	8.3.2. On-Demand Commands

	8.4. DFC Properties File

	9. The "update" command
	10. FAST Search and Delete
	11. Indexing Packages
	12. Status
	13. Logging
	14. Additional Tasks
	Appendix A: Code Fragment for Documentum APIs
	Appendix B: fdsys.xml Example
	Appendix C: Sample FASTXML file
	Appendix D: Sample "index.xsl"
	Appendix E: Sample "mods.xsl" file

