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ABSTRACT: 

This paper summarizes methodological advances in regional log-space 
skewness analyses that support flood-frequency analysis with the log Pearson Type 
III (LP3) distribution.  A Bayesian Weighted Least Squares/Generalized Least 
Squares (B-WLS/B-GLS) methodology that relates observed skewness coefficient 
estimators to basin characteristics in conjunction with diagnostic statistics represents 
an extension of the previously developed B-GLS methodology.  B-WLS/B-GLS has 
been shown to be effective in two California studies.  B-WLS/B-GLS uses B-WLS to 
generate stable estimators of model parameters and B-GLS to estimate the precision 
of those B-WLS regression parameters, as well as the precision of the model.  The 
study described here employs this methodology to develop a regional skewness 
model for the State of Iowa.  To provide cost effective peak-flow data for smaller 
drainage basins in Iowa, the U.S. Geological Survey operates a large network of crest 
stage gages (CSGs) that only record flow values above an identified recording 
threshold (thus producing a censored data record).  CSGs are different from 
continuous-record gages, which record almost all flow values and have been used in 
previous B-GLS and B-WLS/B-GLS regional skewness studies.  The complexity of 
analyzing a large CSG network is addressed by using the B-WLS/B-GLS framework 
along with the Expected Moments Algorithm (EMA).  Because EMA allows for the 
censoring of low outliers, as well as the use of estimated interval discharges for 
missing, censored, and historic data, it complicates the calculations of effective record 
length (and effective concurrent record length) used to describe the precision of 
sample estimators because the peak discharges are no longer solely represented by 
single values.  Thus new record length calculations were developed.  The regional 
skewness analysis for the State of Iowa illustrates the value of the new B-WLS/B-
GLS methodology with these new extensions. 
 
 
INTRODUCTION: 

For the log-transformation of the flood flows, Bulletin 17B [IACWD, 1982] 
recommends using a weighted average of the at-site skewness coefficient and a 
regional skewness coefficient to help improve flood quantile estimators. The Bulletin 
supplies a national map, but also encourages hydrologists to develop more specific 
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local relations.  Since the first map was published in 1976, some 35 years of 
additional information has accumulated, and better spatial estimation procedures have 
been developed [Stedinger and Griffis, 2008].  

Tasker and Stedinger [1986] developed a weighted least squares (WLS) 
procedure for estimating regional skewness coefficients based on sample skewness 
coefficients for the logarithms of annual peak-discharge data. Their method of 
regional analysis of skewness estimators accounts for the precision of the skewness 
estimator for each station, which depends on the length of record for each station and 
the accuracy of an Ordinary Least Squares (OLS) regional mean skewness. More 
recently, Reis and others [2005], Gruber and others [2007], and Gruber and Stedinger 
[2008] developed a Bayesian generalized least squares (GLS) regression model for 
regional skewness analyses.   The Bayesian methodology allows for the computation 
of a posterior distribution of both the regression parameters and the model error 
variance.  As shown in Reis and others [2005], for cases in which the model error 
variance is small compared to the sampling error of the at-site estimates, the Bayesian 
posterior distribution provides a more reasonable description of the model error 
variance than both the GLS method-of-moments and maximum likelihood point 
estimates [Veilleux, 2011].  While WLS regression accounts for the precision of the 
regional model and the effect of the record length on the variance of skewness 
coefficient estimators, GLS regression also considers the cross-correlations among 
the skewness coefficient estimators.  In some studies the cross-correlations have had a 
large impact on the precision attributed to different parameter estimates [Gotvald, 
2009; Parrett and others, 2011]. 

Due to complications introduced by the use of the Expected Moments 
Algorithm (EMA) (see Cohn and others [1997])  and large cross-correlations between 
annual peak discharges at pairs of gages sites, an alternate regression procedure was 
developed to provide both stable and defensible results for regional skewness 
coefficient models [Veilleux, 2011].  This alternate procedure is referred to as the B-
WLS/B-GLS regression framework [Veilleux, 2011; Veilleux and others, 2011].  It 
uses an OLS analysis to fit an initial regional skewness model; that OLS model is 
then used to generate a stable regional skewness coefficient estimate for each site. 
That stable regional estimate is the basis for computing the variance of each at-site 
skewness coefficient estimator employed in the WLS analysis. Then, B-WLS is used 
to generate estimators of the regional skewness coefficient model parameters.  
Finally, B-GLS is used to estimate the precision of those WLS parameter estimators, 
to estimate the model error variance and the precision of that variance estimator, and 
to compute various diagnostic statistics. 

To provide cost effective peak-flow data for smaller drainage basins in Iowa, 
the U.S. Geological Survey (USGS) operates a large network of crest stage gages 
(CSGs) that only record flow values above an identified recording threshold (thus 
producing a censored data record).  CSGs are different from continuous-record gages, 
which record almost all flow values and have been used in previous B-GLS and B-
WLS/B-GLS regional skewness studies.  Thus, while the Iowa regional skewness 
study described here did not exhibit large cross-correlations between annual peak 
discharges, it did make extensive use of EMA to estimate the at-site skewness 
coefficients and its mean square error.  Because EMA allows for the censoring of low 
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outliers, as well as the use of estimated interval discharges for missing, censored, and 
historic data, it complicates the calculations of effective record length (and effective 
concurrent record length) used to describe the precision of sample estimators because 
the peak discharges are no longer solely represented by single values.  To properly 
represent these complications, modifications were made to the B-WLS/B-GLS 
procedure.  The steps in this analysis are described below. 
 
 
METHODOLOGY FOR REGIONAL SKEWNESS MODEL 
 This section provides a brief description of the B-WLS/B-GLS methodology.  
Veilleux and others [2011] and Veilleux [2011] provide a more detailed description. 
 
OLS Analysis 
 The first step in the B-WLS/B-GLS regional skewness analysis is the 
estimation of a regional skewness model using Ordinary Least Squares (OLS).  The 
OLS regional regression yields parameters  and a model that can be used to 
generate unbiased and relatively stable regional estimates of the skewness for all gage 
sites: 
          (1) 
Here X is an (n x k) matrix of basin characteristics,  are the estimated regional 
skewness values, n is the number of gage sites, and k is the number of basin 
parameters including a column of ones to estimate the constant.  These estimated 
regional skewness values OLSy are then used to calculate unbiased at-site regional 
skewness variances using the equations reported in Griffis and Stedinger [2009].   
These at-site regional skewness variances are based on the regional OLS estimator of 
the skewness coefficient instead of the at-site skewness estimator, thus making the 
weights in the subsequent steps relatively independent of the at-site skewness 
estimates. 
 
WLS Analysis 
 A Bayesian Weighted Least Squares (B-WLS) analysis is used to develop 
estimators of the regression coefficients for each regional skewness model [Veilleux, 
2011; Veilleux and others, 2011].  The WLS analysis explicitly reflects variations in 
record length, but intentionally neglects cross correlations thereby avoiding the 
problems experienced with GLS parameter estimators [Veilleux, 2011; Veilleux and 
others, 2011].  
 
GLS Analysis 
 After the regression model coefficients, ˆ

WLS , are determined with a WLS 
analysis, the precision of the fitted model and the precision of the regression 
coefficients are estimated using a Bayesian Generalized Least Squares (B-GLS) 
analysis [Veilleux, 2011; Veilleux and others, 2011]. Precision metrics include the 
standard error of the regression parameters, , and the model error variance, 

, pseudo 2Rδ as well as the average variance of prediction at a gage site not 
used the regional model, AVPnew.   
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DATA ANALYSIS: 
Data for Iowa Regional Skewness Study 
 This study is based on annual peak flow data from 273 stream flow gage sites 
in Iowa and the surrounding states.  The annual peak flow data were downloaded 
from the USGS National Water Information System: Web Interface (NWISWeb).  In 
addition to the peak flow data, over 65 basin characteristics for each of the 273 sites 
were available as explanatory variables in the regional study.  The basin 
characteristics available include percent of basin contained within different 
hydrologic regions, as well as the more standard morphometric parameters such as 
location of the basin centroid, drainage area, main channel slope, and basin shape 
among others. 
 
At-Site Skewness Estimators 
 In order to estimate the at-site log10 skewness, G, and its mean square error, 
MSEG, the analysis used the expected moments algorithm (EMA) [Cohn and others, 
1997; Griffis and others, 2004].  EMA provides a straightforward and efficient 
method for the incorporation of historical information and censored data, such as 
those from a crest stage gage, contained in the record of annual peak flows for a gage 
site.  PeakfqSA, an EMA software program developed by Cohn [2011], is used to 
generate the at-site log10 estimates of G and its MSEG, assuming an LP3 distribution 
and employing a Multiple Grubbs-Beck test for low outlier screening. 
 
Pseudo Record Length 
 Because the data set includes censored data and historic information, the 
effective record length used to compute the precision of the skewness estimators is no 
longer simply the number of peak flows at a gage site.  Instead, a more complex 
calculation should be used to take into account the availability of historic information 
and censored values.  While historic information and censored peaks provide valuable 
information, they often provide less information than an equal number of years with 
systematically recorded peaks [Stedinger and Cohn, 1986]. The following 
calculations provide a pseudo record length, PRL, which appropriately accounts for all 
peak flow data types available for a site. PRL equals the systematic record length if 
such a complete record is all that is available for a site. 
 The first step is to run EMA with all available information, including historic 
information and censored peaks (denoted EMAC, for EMA complete).  From the 
EMA run, the at-site skewness without regional information  and the MSE of that 
skewness estimator  are extracted, as well as the year the historical period 
begins, YBC, the year the historical period ends YEC and the length of the historical 
period HC.  (YBC, YEC, and HC are used in Equation 9.)      
 The second step is to run EMA with only the systematic peaks (denoted 
EMAS, for EMA systematic).  From the EMAS analysis, the at-site skewness without 
regional information  and the MSE of that skewness estimator,  are 
extracted, as well as the number of peaks PS.   (PS is used in Equation 4.) 
 The third step is to represent, from both EMAC and EMAS, the precision of 
the skewness estimators as two record lengths, RLC and RLS, based upon the 
estimated skew and MSE.  The corresponding record lengths are calculated using 
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equation (2) below from Griffis and others [2004] and Griffis and Stedinger [2009]: 
where RLC uses  and , and RLS uses  and . 

   (2) 

   
   
   
Next, the difference between RLC and RLS is employed as a measure of the extra 
information provided by the historic and/or censored information that was included in 
the EMAc analysis, but not in the EMAs analysis. 
         (3) 
The pseudo record length for the entire record at the gage site, PRL, is calculated using 
RLdiff from equation (3) and the number of systematic peaks PS, 
         (4) 
PRL must be non-negative.  If PRL is greater than HC, then PRL should be set to equal 
HC.  Also if PRL is less than PS, then PRL is set to PS.  This ensures that the pseudo 
record length will not be larger than the complete historical period or less than the 
number of systematic peaks. 
 
Unbiasing the At-Site Estimators 
 The at-site skewness estimates are unbiased by using the correction factor 
developed by Tasker and Stedinger [1986] and employed in Reis and others [2005]. 
The unbiased at-site skewness estimator using the pseudo record length is  
         (5) 
Here  is the unbiased at-site sample skewness estimate for site i,  is the pseudo 
record length for site i as calculated in Equation 4, and Gi is the traditional biased at-
site skewness estimator for site i from EMA. 
 The variance of the unbiased at-site skewness includes the correction factor 
developed by Tasker and Stedinger [1986]: 

       (6) 
where  is calculated using [Griffis and Stedinger, 2009] 
   

   

   

   
 
Estimating the Mean Square Error of the Skewness Estimator 
 There are several possible ways to estimate MSEG.  The approach used by 
EMA (taken from Cohn and others [2001, eqn 55]) generates a first order estimate of 
the MSEG, which should perform well when interval data are present.  Another option 
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Thus, there are 240 gage sites remaining from which to build a regional skewness 
model for the State of Iowa.  The unbiased Griffis and Stedinger [2009] MSEG is used 
in the regional skewness model because it is more stable and relatively independent 
of the at-site skewness estimator. 
 
Cross-Correlation Models 

A critical step for a GLS analysis is estimation of the cross-correlation of the 
skewness coefficient estimators.  Martins and Stedinger [2002] used Monte Carlo 
experiments to derive a relation between the cross-correlation of the skewness 
estimators at two stations i and j as a function of the cross-correlation of concurrent 
annual maximum flows, ij:   

 ( ) ( )ˆ ˆ ˆ ˆ ˆ,
k

i j ij ij ijSign cfρ γ γ ρ ρ=       (7) 
where  is the cross-correlation of concurrent annual peak discharge for two gaged 
stations,  is a constant between 2.8 and 3.3, and cfij, a factor that accounts for the 
sample size difference between stations and their concurrent record length, is defined 
as follows: 

        (8)

  CYij= pseudo record length of the period of concurrent record, and 
  , = the pseudo record length corresponding to sites i and j, 
    respectively (see equation 4)  
 
Pseudo Concurrent Record Length 

After calculating the PRL for each gage site in the study, the pseudo concurrent 
record length between pairs of sites can be calculated.  Due to the use of censored 
data and historic data, the effective concurrent record length calculation is more 
complex than determining in which years the two gage sites both have recorded 
systematic peaks.   

The years of historical record in common between the two gage sites is first 
determined.   For the years in common, with beginning year YBij and ending year 
YEij, the following equation is used to calculate the concurrent years of record 
between site i and site j. 

    (9) 

 The computed pseudo concurrent record length depends upon the years of 
historical record in common between the two gage sites, as well as the ratios of the 
pseudo record length to the historical record length for each of the two gage sites. 
 
 
 
IOWA REGIONAL SKEWNESS RESULTS 
 This section describes the Iowa regional skewness regression analysis using 
the B-WLS/B-GLS regression methodology [see Veilleux, 2011; Veilleux and others, 
2011] described above. All of the available basin characteristics were considered as 
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CONCLUSIONS 
 This paper continues efforts to develop a regional statistical methodology for 
the estimation of skewness parameters. Regional log-space skewness studies to 
support frequency analysis with the LP3 distribution have extended the Bayesian-
Generalized Least Squares methodology presented by Reis and others [2005] [Parrett 
and others, 2011; Veilleux and others, 2011].  The inclusion of censored data from 
crest stage gages and historic information in Iowa required significant adaptations of 
the B-WLS/B-GLS regression procedures.  This paper describes those extensions of 
the B-WLS/GLS algorithm to account for the censored data in record length and 
concurrent record length calculations required for the GLS covariance matrix. The 
Bayesian WLS/GLS methodology is used successfully to develop regional skewness 
models for the log-skewness of Iowa peak flows. The nominal effective record length 
(ERL) of the regional skewness estimators is 50 years (MSE = 0.16).  This ERL is 
dramatically better than the ERL of 17 years (MSE = 0.302) reported for Plate 1 in 
Bulletin 17B, the current flood frequency guidelines used by Federal agencies in the 
United States.  
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