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Abstract

The mobile workforce is rapidly increasing, and technological advances make it feasible for these workers to have
ubiquitous access to a variety of resources with various protection requirements. The dynamic computing environment
of these workers mandates a security paradigm in which security is tightly coupled with a user’s current situation. We
have proposed a security paradigm to achieve this, called Shrink-Wrapped Security, in which security is constantly
adapting to a user’s current situation, and a comprehensive amount of security-relevant context is used to characterize
a user’s situation. We present an approach that uses generalized annotated programs (GAPs) to practically incorporate
such context into security services, with a focus on access control. This allows us to represent context in a principled
manner; consistently make security-related decisions; easily make temporary, ad-hoc changes to a security policy;
and give a user feedback when access is denied so that she can make the appropriate adjustments.
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1. Introduction

The mobile workforce, which consists of employees that do not have one fixed place of work, and are linked
to a corporate base using a mobile computing device, is rapidly increasing. According to the International Data
Corporation, the mobile workforce is expected to comprise 73% of the total United States workforce this year [1].
Technological advances, such as the increasing abundance and convenience of powerful and portable computing de-
vices, combined with the prevalence of wireless broadband availability, create an environment in which these workers
can access a multitude of corporate data and resources anytime and anywhere. Sometimes these workers may need
to access sensitive resources. In fact, a recent survey of mobile workers conducted by Symantec showed that 62% of
respondents planned to access confidential data on their mobile devices [2]. So while technological advances facili-
tate the practicality of ubiquitous resource access, which has its benefits such as increased productivity, it is critical to
ensure that the access is secure and appropriate.

Traditional approaches to security were developed when users were typically computing in a static, stationary
environment, and therefore base security-related decisions on static attributes such as identity or role. In the dynamic
computing environment of mobile workers, users may: 1) use a variety of mobile computing devices with varying
configurations; 2) connect over various networks; and 3) be in varying physical settings when requesting access to
remote resources. To achieve effective security in this dynamic computing environment, security decisions must
consider the user’s context (e.g., co-location, network characteristics, and device characteristics), which can change
frequently and rapidly. Context is commonly defined as any information that can be used to characterize the situation
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of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and application themselves [3].

Shrink-wrapped security, a security paradigm introduced in [4], in which a tight coupling is provided between a
user’s current situation and security, is essential. Shrink-wrapped security is achieved by constantly adapting security
to a user’s current situation, and utilizing a comprehensive amount of security-relevant context, to characterize the
situation. Various security services (e.g., cryptography, authentication, and access control) can be shrink-wrapped,
but in this paper we focus on access control. Shrink-wrapping access control involves not only adjusting a user’s
permissions, but also the policies (rules that determine access), dynamically based on a user’s situation.

In previous work we presented steps towards achieving shrink-wrapped security by developing an approach to
identify relevant context and a framework to facilitate the secure acquisition and management of such context [4, 5].
Identifying relevant context has been noted as a key challenge to context-aware system development. To identify
relevant context, our approach involves using a taxonomy of security-relevant context, in which context is classified
along two dimensions, the relevant entity1 , and the affected security objective2, along with goal-oriented guidelines.
The guidelines involve identifying the high-level security objectives of the target security service and the relevant
entities for the target domain. For example, the security objectives for access control are confidentiality and integrity,
and the relevant entities for the domain of mobile users attempting to access remote resources are: the user, the user’s
computing device, the surrounding environment, and the communication mechanism.

In this paper, we present another step towards shrink-wrapped security with an approach to practically incorporate
the use of security-relevant context into security services, with a focus on access control. We present the application
of generalized annotated programs (GAPs)[6]to this problem, which allows us to represent context in a principled
manner; consistently make security-related decisions; easily make temporary, ad-hoc changes to a security policy;
and give a user feedback when access is denied so that she can make the appropriate adjustments.

2. Motivating Scenario

Suppose a company has a set of resources, including various files, sensitive business data, and business applica-
tions. These resources have different protection requirements based on their importance. Let us assume that each
resource belongs to one of three classes, least important, somewhat important and very important. Let us also as-
sume that different types of resources have different access operations, which define allowable ways that they can be
accessed. For example, the access operations for a text file may be read only, append, or read and write. In order
for a user to perform a certain access operation on a resource belonging to a certain resource class, they must have
the required permission. A permission is a tuple <access operation, resource class> that specifies an authorized
interaction.

Following the shrink-wrapped security paradigm, our objective is to utilize context to dynamically adjust a user’s
permissions so that at any given time she only has permissions that are appropriate based on her current situation.
In order to explain what we mean by appropriate, let us consider the fact that security in any system should be
commensurate with its risks. Risk is a function of the likelihood of threats to the system being realized and the
resulting impact[7]. By considering the values of relevant contextual attributes3, the likelihood of threats to the
system being realized can be estimated. The class of a resource will determine the impact of such an exploit (which
is organization dependent). Based on these two factors, the most appropriate security measure(s) can be employed,
which in the case of access control amounts to granting or denying a requested permission.

Using the guidelines in [4] we have identified a set of contextual attributes that we feel characterize the security-
relevant aspects of the situation of users in our domain, and identified possible values for each attribute. We have
conducted a survey of security experts to determine how the values of the contextual attributes affect the likelihood
of various security threats being realized (see figure 1)4. This allowed us to associate a threat likelihood with each
value of an attribute and establish an ordering of an attribute’s values from least secure to most secure (values with

1This dimension stems from Dey’s definition of context
2We consider the fundamental security objectives: confidentiality, integrity, and availability
3A contextual attribute is a measurable context primitive (e.g., a users location), and context is the full set of contextual attributes that comprise

the situation of an entity[8]
4Due to page limitations we have not included a list of the identified attributes nor a full discussion of the survey results in this paper
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higher threat likelihoods are less secure than those with lower threat likelihoods). For example, the order of the
three identified values for the contextual attribute, device authentication requirements, is {No device authentication,
Authentication required on initial login, Authentication required on initial login and after x* minutes of inactivity}.
We also collected information on the perceived level of relevance of each attribute, as some attributes may be more
pertinent to making informed security-related decisions than others. Both the threat likelihood and relevance are
numbers in the interval [0, 1]. In the next section we present an approach to allow security administrators to incorporate
such information into the security policies that govern access to resources.

Figure 1: Example Survey Question

3. Using Context to Determine Access with GAPs

Our objective is to develop a principled technique to determine if permissions should be granted or not, based on a
user’s context. As with previous work such as [9] and [10], we look to represent context with a logic-based framework.
In our framework, we have a logic-program that encodes an administrator’s policies. This information is supplemented
by a user’s context. We aim to determine the overall threat level of a user’s current situation by combining the two. Our
key intuition lies with our choice of the logic-programming paradigm - specifically generalized annotated programs
(GAPs). GAPs are logic programs that allow for real-numbered values called annotations to be associated with
atomic propositions. In using this paradigm, we gain two advantages: 1) we can associate real-numbered values
with contextual attributes (rather than just boolean ones), and 2) we can directly leverage results from [6] to correctly
determine the threat level entailed by a user’s context. In this section, we describe how GAPs can be utilized to
incorporate context into access control policies and highlight some additional advantages to our approach.

3.1. Using GAPs for Context-based Security
We represent every contextual attribute, relevant entity, and security objective as an atomic proposition in the set

Prop. We also have additional atomic propositions that represent aggregate security levels, which an administrator will
in turn utilize to make decisions about access control. We divide Prop into four subsets -A,E,O,G - containing atomic
propositions associated with contextual attributes, relevant entities, security objectives, and aggregates respectively.
Specific to our application, we shall also introduce two functions. The first is the function threat : A → [0, 1], which
represents the threat likelihood (e.g, .1 for low threat, 0.5 for medium, and 1 for high) associated with the current
value of an attribute. The second function, relev : A → [0, 1], represents the relevancy of each attribute (i.e. .1 for
low relevancy, 0.5 for medium relevancy, and 1 for high-relevancy). These values are entered a-priori. Administrators
may use default values, such as those obtained from our survey of security experts, or they can set them themselves.
Now that we have defined our set of atomic propositions, we will define GAPs as per [6].

Definition 1 (annotated atom/GAP-rule/GAP [6]). GAPs are defined as follows.

• Given A ∈ Prop and annotation x (which is a number in [0, 1], a variable symbol, or a function over [0, 1]),
A : x is an annotated atom.
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• Given annotated atoms A0 : x0, A1 : x1, . . . , An : xn, the following: A0 : x0 ← A1 : x1 ∧ . . . ∧ An : xn

is a GAP rule. The annotated atom A0 : x0 is the head and the conjunction A1 : x1 ∧ . . . ∧ An : xn is the body.

• A generalized annotated program (GAP)Π is a finite set of GAP rules.

Specific to our application, we have some restrictions on the composition of GAP rules. For rules with an atom
from set A in the head, the annotation must be a function of the associated threat and relev functions for that atom.
Further, for such rules, the body must be a tautology (see Rules 1-6 of Figure 2). Intuitively, we want the threat level
assigned to a contextual attribute to be a function of the threat likelihood and relevancy. If the head of the rule contains
a relevant entity atom, then the body can only have contextual attribute atoms associated with that entity5. Likewise,
rules with security objective atoms in the head can only have contextual attribute atoms associated with that objective
in the body. We now provide an example of how GAPs can be used by an administrator to make security decisions
based on context.

Example 1. Suppose we have very simple context providers that can only determine the strength of the user’s pass-
word pwd, the authentication technique used by the user auth tech, who the user is co-located with co-location, the
antivirus status of the user’s computing device antivirus, the currency of the user’s system patches patches, and the
connection encryption con-encrypt. In Figure 2, we have a portion of a GAP for this scenario Π.

Rules 1-6 are standard. Each contextual attribute is assigned an initial annotation based on the relevancy of
the attribute and the value returned by the threat function. Here, we simply weight the value returned by the threat
function using the relevancy value returned by the relev function.

The remaining rules would be created by an administrator. Note, that while the administrator adheres to our
previosly mentioned restrictions, she has much flexibility in creating the rules. For example, in rule 12 she aggregates
the annotations of the relevant entities by selecting the entity that poses the greatest threat. However, in 14, she
aggregates the annotations of the security objectives in a different manner - using the average.

pwd : relev(pwd) · threat(pwd) ← (1)

auth tech : relev(auth tech) · threat(auth tech) ← (2)

antivirus : relev(antivirus) · threat(antivirus) ← (3)

co-location : relev(co-location) · threat(co-location) ← (4)

con-encrypt : relev(con-encrypt) · threat(con-encrypt) ← (5)

patches : relev(patches) · threat(patches) ← (6)

user :
√

x1 · x2 ← pwd : x1 ∧ auth tech : x2 (7)

computing device : x ← antivirus : x (8)

confidentiality : 4 ·

∑
i

1
0.01 + 0.99 · xi

−1

← pwd : x1 ∧ antivirus : x2 ∧ auth tech : x3 ∧ patches : x4 (9)

integrity : min
i

xi ← pwd : x1 ∧ antivirus : x2 ∧ auth tech : x3 ∧ patches : x4 (10)

availability : x ← antivirus : x (11)

overall : max(x1, x2, x3, x4) ← user : x1 ∧ computing device : x2 ∧ communication mechanism : x3(12)

∧ surrounding environment : x4 (13)

obj : avg(x1, x2, x3) ← confidentiality : x1 ∧ integrity : x2 ∧ availability : x3 (14)

(15)

Figure 2: Example GAP (Π) for Context-based access control. See Examples 1-2.

GAPs have a formal semantics defined in [6] that can be used. An interpretation I is simply an assignment of
values to all atomic propositions - formally a mapping from the set Prop to [0, 1]. Let I be the set of all possible
interpretations. We now define the operator TΠ : I → I, which, given an interpretation, produces a new interpretation

5Recall that contextual attributes are classified with our taxonomy by the relevant entity, and security objective
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based on the program Π. We can apply this operator multiple times until the interpretation converges. In[6] it is proven
that upon convergence, it has a least fixed point.

Definition 2 (TΠ and Multiple Applications of TΠ). Given GAP Π and interpretation I:

• The operator TΠ(I) produces an interpretation that assigns atom A an annotation that is the supremum of all
annotations assigned to A in the head of a rule in Π which satisfies I. Formally: TΠ(I)(A0) = sup{x0 |A0 : x0 ←

A1 : x1 ∧ . . . ∧ An : xn is a rule in Π and for all 1 ≤ i ≤ n, I |= Ai : xi}.

• For application i of TΠ, we write T(i)
Π

and define it as follows: for i = 0, T(i)
Π

= TΠ(I0) (where I0 assigns zero to
all atoms), otherwise, T(i)

Π
= TΠ(T(i−1)

Π
).

Not only are we guaranteed that TΠ has a least fixed point, but [6] also show that this fixed point precisely
captures the maximum annotations of the all atomic propositions entailed by Π. Hence, the annotation assigned by
the least fixed point of the operator, corresponds to the highest threat level associated with each atom. We can use this
information to make decisions about access control.

Example 2. Consider the GAP Π presented in Example 1. Now suppose that relev(patches) = 1 and for any atom
A , patches, relev(A) = 0.5. Additionally the threat function returns the following values: threat(pwd) = 0.5,
threat(auth tech) = 0.1, threat(antivirus) = 0.5, threat(patches) = 1, threat(co-location) = 1, and threat(con-encrypt) =

0.1. If we compute the least fixed point of the TΠ, we obtain an annotation of 0.5 for user, an annotation of 0.6 for
computing device, and an annotation of 1.0 for overall. For every access operation-resource class pair, the admin-
istrator should set a maximum tolerable threat level for various entities, security objectives, and other aggregates.
Using this, a user can be granted or denied access based on the result of this fixed-point computation.

It is important to note that the fixed point computation takes polynomial time and obtains the same solution
regardless of the arrangement of the rules in the GAP specified by the administrator. Hence, we can quickly make
consistent decisions about access in a principled manner that is a direct, logical consequence of the administrator’s
policies.

3.2. Advantages of Using GAPs for Context-Based Security
There are several additional advantages to using GAPs for context-aware security. First, it is very easy for an

administrator to make ad-hoc changes to a security policy - and easily undo those changes later. Consider the following
example.

Example 3. Following from Examples 1-2: A security administrator was just informed by human intelligence sources
that a rival firm was placing blackhats equipped with sniffers near a certain coffee shop. Obviously, this could
seriously impact the confidentiality of resources. He can easily create a function, computable server-side, that can
determine if the user is in the vicinity of the coffee shop in question (e.g., by considering GPS or cell-phone tower
data). She also (temporarily) adds a new security atom - coffee that is assigned a value of 1 if the user is in a certain
radius of the coffee shop and 0 otherwise. Now the administrator adds the following two rules to Π.

confidentiality : x ← coffee : x (16)

coffee : threat(coffee) ← (17)

Rule 16 assigns an annotation to the security objective confidentiality that is the same annotation of coffee.
Rule 17 simply assigns the coffee atom the value ascribed by the threat function (relevancy is not considered here as
the administrator clearly feels this is urgent). If a user is near the coffee shop, and we re-compute the least fixed point
of TΠ, as done in Example 2, the annotation assigned to confidentiality is now 1.

Another benefit of using GAPs is that we can give a user feedback about why a certain access was denied. This is
due to the constructive nature of the fixpoint operator. In our current implementation we can simply track each rule
that causes the annotation of the atom in the rule head to exceed the tolerable threat value specified by an administrator.
The union of security attributes in the bodies of all such rules is then the set of atoms that led to the security decision
in question. Therefore, a user can be informed of the aspect(s) of her context that caused the denial.
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4. Related Work

Previously, logic programming has been employed for access control in various ways. In the classic work of
[11], the authors introduce flexible authorization manager (FAM) programs that allows an administrator to specify
access policies for users and groups. This was later followed by [12], who utilizes constraint logic programming
to provide role-based access control (RBAC). However, in an ad-hoc, mobile environment, the user’s context must
be considered as well. Context was not considered in these previous works. The authors of [9] show that context
can be represented with first-order logic. In [10] an extension to Prolog is developed to provide native support for
context-aware applications. In [13], logic programming is used to support secure ad-hoc collaborations based on
context. However, we are unaware of any previous work that utilizes annotated logic in context-aware security
decision making. As a result, contextual attributes must be identified with a boolean variable instead of a range of
values as we do here by leveraging GAPs. Our use of GAPs allows an administrator more flexibility in how the various
contextual attributes are combined, which can lead to the creation of policies that are not possible to express in other
frameworks.

5. Conclusion

To enable effective security for mobile users, it is important to address the disparity between traditional, context-
insensitive approaches to security and this dynamic computing environment. We believe that addressing this issue
requires the tight coupling of security with a user’s situation, in other words shrink-wrapping security. In this paper
we present another step towards achieving shrink-wrapped security by applying the logic programming paradigm,
specifically generalized annotated programs, to context-aware security decision making, with a focus on access con-
trol. This approach has many benefits, including: allowing us to represent context in a principled manner; consistently
making access control decisions; easily making temporary, ad-hoc changes to a security policy; and giving a user
feedback when access is denied so that she can make the appropriate adjustments. We have implemented the T oper-
ator for GAPs in Java, and created interfaces that allow an administrator to create GAP rules, and specify maximum
tolerable threat levels for permissions. Future work includes evaluating the system in a test environment.
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