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1 Introduction

Liquidity premia, or convenience yields, are key determinants of asset prices. This point is un-

controversial for �at money, which derives its value solely from its liquidity services. According

to Krishnamurthy and Vissing-Jorgensen (2010), the same is true for government securities, high-

grade corporate bonds, and agency bonds. In this paper we present a theory of asset liquidity and

convenience yields, based on the following premise: an asset�s liquidity� the extent to which it can

facilitate exchange, as means of payment or as collateral� depends on its vulnerability to fraud. We

address a class of questions related to the cross-sectional dispersion and time-variation of liquidity

premia, such as what fundamental characteristics make some assets have higher turnover and lower

yields than others? What shocks prompt investors to suddenly shift their portfolios towards the

most liquid assets, which leads to widening yield spreads? Are liquid assets more susceptible of

exhibiting excess volatility? And, what types of open-market operations and �nancial regulations

are e¤ective to mitigate aggregate liquidity shortages?

The threat of fraud has been a pervasive friction throughout history. Classical examples include

the clipping of coins in ancient Rome and medieval Europe, and the counterfeiting of banknotes

during the �rst half of the 19th century in the United States (Sargent and Velde, 2002; Mihm,

2007). Modern �nancial assets are no less susceptible to fraud. Intangible means of payment su¤er

from identity thefts (Schreft, 2007), and mortgage-backed securities are subject to moral hazard

problems and lax incentives that plague the process of securitization (see, among others, Keys,

Mukherjee, Seru, and Vig, 2010).1 Similarly, the fact that some investors can spend resources to

cherry-pick the collateral used to secure risk-sharing arrangements is a concern for participants in

OTC derivative markets.2

We introduce the threat of fraud into a search-theoretic model of asset markets, building on

1The 2010 �Performance and Activity Report� of the SEC details many cases of �nancial fraud related to
mortgage-based securities. Frauds and moral hazard problems in the mortgage market are not new. Snowden
(2010) describes the US mortgage crisis of the late 20s and 30s and the earlier forms of securitization in the 20s. Real
estate bond houses were overappraising properties, they violated underwriting standards, and they substituted bad
loans for performing mortgages in their mortgage pools.

2The International Swap and Derivatives Association (2010) reported that over 78% of OTC derivatives trades
are collateralized. Importantly, market participants consider some asset classes (e.g., cash or government securities)
to be of higher collateral quality than others. Collateral quality depends on various factors such as volatility, credit
risk, and pricing ease.
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recent work in monetary and �nancial economics (e.g., Lagos and Wright, 2005; Du¢ e, Gârleanu,

and Pedersen, 2005). In the �rst period, agents trade an arbitrary number of assets in a competitive

market. In the second period, they trade goods and services in an over-the-counter (OTC) market,

with bilateral meetings and bargaining. Because of the frictions caused by a lack of commitment

and limited enforcement, agents use assets as means of payment, or as collateral, in the OTC

market. However, the extent to which an asset can play such a role is limited by the threat of

fraud: after incurring an asset-speci�c �xed cost, an agent can produce fraudulent assets, which

are worthless and indistinguishable from their genuine counterparts. In order to solve the resulting

OTC bargaining problem under asymmetric information, we assume that the asset holder makes a

take-it-or-leave-it o¤er, and we use the recent methodology of In and Wright (2011) for signaling

games with hidden choices to select an equilibrium.

A key insight of our analysis is that the threat of fraud generates asset-speci�c, endogenous

resalability constraints. While there are no exogenous restrictions on the transfer of assets in

bilateral matches in the OTC market, if the quantity of an asset o¤ered is above some threshold,

then the trade is rejected with positive probability because of the rational fear that the asset might

be fraudulent. In equilibrium, agents never �nd it optimal to o¤er more of the asset than what

can be accepted with certainty, which prevents fraud from taking place. The resulting endogenous

resalability constraint has three determinants: the asset�s vulnerability to fraud, the di¤erence

between the asset�s price and the discounted value of its cash �ows, and the frequency of trades in

OTC markets. We emphasize three main implications of these endogenous resalability constraints

below.

First, because an asset�s resalability depends on its own vulnerability to fraud, prices and mea-

sures of liquidity vary across assets with identical cash �ows. We obtain an endogenous three-tier

categorization of assets: illiquid, partially liquid, and liquid assets, which di¤er in their resalability,

their price, as well as their sensitivity to shocks and policy interventions. While the price of an

illiquid asset is equal to the present value of its cash �ows, the price of a partially liquid or liquid

asset is strictly larger than the present value of its cash �ows; i.e., this asset enjoys a liquidity

premium. This premium increases with the asset�s recognizability but decreases with its supply,

which is consistent with the downward-sloping aggregate demand for Treasury debt documented
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in Krishnamurthy and Vissing-Jorgensen (2010). Finally, while the prices of illiquid and partially

liquid assets are constant in the absence of shocks to fundamentals, the prices of liquid assets can

exhibit self-ful�lling �uctuations.

Second, in a similar spirit as Guerrieri and Shimer (2011), our model identi�es shocks that

generate phenomena akin to �ights to liquidity, whereby investors shift their asset demands from

less liquid to more liquid assets, widening the liquidity spread between the two types of assets (see

Longsta¤, 2004, and Dick-Nielsen, Feldhutter, and Lando, 2010). For instance, we consider an

increase in the frequency of liquidity needs in the OTC market that results in higher demand for

collateral. Such a shock increases the value of holding assets, as they are more likely to be used

as means of payment or as collateral, but it also has the countervailing e¤ect of increasing fraud

incentives. We show that the �rst e¤ect dominates for liquid assets and raises their prices, while

the second e¤ect dominates for partially liquid assets and lowers their prices. Moreover, the set of

liquid assets endogenously shrinks, meaning that agents shift their demand to the most recognizable

assets, in accordance with a �ight to liquidity. The same phenomenon can be generated in our model

by a shock that raises the threat of fraud for some partially liquid or liquid assets, thereby reducing

their resalability.

The third main implication of our results concerns policies aimed at managing the aggregate

supply of liquidity through open-market operations or �nancial regulations. In our model, an open-

market operation has a positive welfare e¤ect if and only if it increases a simple measure of aggregate

liquidity� a weighted sum of asset supplies. Therefore, a substitution of liquid assets with other

liquid assets is irrelevant. An open-market purchase of illiquid assets with liquid ones, on the other

hand, raises aggregate liquidity and output. However, under a balanced budget requirement, a

purchase of partially liquid assets with liquid ones reduces aggregate liquidity, the yield of liquid

assets, and output. This paradoxical result arises because of a "pecuniary externality," according to

which an increase in the price of an asset reduces its resalability, which in turn can lower its liquidity

premium below the true marginal social value of its liquidity services. Due to this externality, a

balanced budget open-market purchase syphons out more liquidity than it is injecting in. This

result can shed some light on quantitative easing, which consists of injecting reserves in exchange

for less liquid assets (Krishnamurthy and Vissing-Jorgensen, 2011). According to our model, for
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such policies to successfully increase aggregate liquidity, they must target the most illiquid assets.

In a similar vein, we study retention requirements that were introduced by the Dodd-Frank Act to

mitigate moral hazard problems in the securitization process. In the context of our model, such

requirements are welfare improving only if applied to illiquid assets.

1.1 Literature review

Kiyotaki and Moore (2001, 2005) study limited resalability by assuming that each period, agents

cannot sell more than an exogenous proportion of their asset holdings. While such exogenous

resalability constraints can be chosen to replicate our distribution of asset prices, they generate

markedly di¤erent comparative statics and policy recommendations (see Supplementary Appendix

E). For instance, with proportional resalability constraints, an increase in the frequency of trading

needs weakly increases the prices of all assets, while in our model it has asymmetric e¤ects: it

increases the prices of liquid assets, and decreases the prices of partially liquid assets, consistent

with evidence on �ight to liquidity. As another example, with proportional liquidity constraints,

an open-market purchase of partially liquid assets with liquid ones increases liquidity, asset yields,

and welfare. In our model, because of a new pecuniary externality, we obtain the opposite e¤ects,

consistent with evidence on quantitative easing.

In Holmstrom and Tirole�s (2011, and references therein) corporate �nance model, a moral

hazard problem generates endogenous borrowing constraints, i.e., resalability constraints in the

primary asset market. In the secondary market, corporate claims with identical cash �ows enjoy the

same liquidity premium. In our model, by contrast, we focus on moral hazard in secondary markets.

We highlight the fact that agents�incentives to take hidden actions depend on contemporaneous

secondary market prices and on OTC market frictions, and we generate cross-sectional di¤erences

in liquidity premia between assets with identical cash �ows.

The search-theoretic literature on the liquidity structure of asset returns includes, e.g., Wallace

(1998, 2000), Weill (2008), and Lagos (2010), and related work on the rate-of-return-dominance

puzzle. Our approach goes beyond this earlier search literature by showing how cross-sectional

di¤erences in liquidity arise from fraud-based endogenous resalability constraints.3 Lester, Postle-

3Wallace (1998, 2000) emphasizes assets�indivisibilities, Weill (2008) assumes increasing returns in the matching
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waite, and Wright (2011) consider a private information problem where agents can recognize the

quality of an asset at some cost, but to determine the terms of trade under asymmetric informa-

tion they make the simplifying assumption that unrecognized assets are not accepted in a bilateral

match.4 They address this issue in an extension that follows our methodology closely.

There is a literature that emphasizes adverse selection problems in asset markets with search

frictions (e.g., Hopenhayn andWerner, 1996). The most closely related papers are Rocheteau (2009)

who introduces an adverse selection problem in a monetary model to explain the illiquidity of risky

assets, and Guerrieri, Shimer, and Wright (2010), who consider a competitive search environment to

illustrate how trading delays emerge endogenously to screen high- and low-quality assets. Guerrieri

and Shimer (2011) extend the previous paper to a general equilibrium framework and, among

other results, provide an explanation for �ights to liquidity based on a dynamic adverse selection

problem. While the distinction between adverse selection and moral hazard in asset markets is

often subtle, the methodologies for capturing the two frictions di¤er profoundly. We take the

view that informational asymmetries in asset markets often result from strategic behavior, which

allows us to focus the model more squarely on the e¤ects of the threat of fraud on asset liquidity.

At a more theoretical level, an important distinction between adverse selection and moral hazard

is that the type distribution is exogenous with the former, but is endogenous with the latter.

With an exogenous type distribution, under some conditions, agents can mitigate the asymmetric

information friction by holding broadly diversi�ed asset portfolios. As our model demonstrates,

when the type distribution is endogenous, the asymmetric information friction remains relevant.

The next section presents the model. Section 3 solves the bargaining game under the threat

of fraud. Section 4 solves for asset prices, and Section 5 presents three main implications. The

appendix contains omitted proofs, and the supplementary appendix presents additional results and

extensions.

technology, and Lagos (2010) introduces exogenous restrictions on the use of some assets as means of payment.
Similarly, Shi (2008) studies the pricing of bonds in a search economy where exogenous legal restrictions prevent
bonds from being used in payments in a fraction of trades.

4There is also a related literature on counterfeiting, e.g., Green and Weber (1996), Williamson and Wright (1994),
and Nosal and Wallace (2007). In those studies, there is a single asset, asset holdings are restricted to f0; 1g; and
assets are indivisible, while those restrictions are all relaxed in our model.
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2 The model

The economy lasts for two periods, t 2 f0; 1g, and is populated by a continuum of agents who

trade sequentially in two markets: in a centralized market (CM) at t = 0, and in a decentralized

over-the-counter market (DM) at t = 1. There are two perfectly divisible and perishable goods.

The �rst good, which we take to be the numéraire, is produced and consumed at t = 0 and at

the end of t = 1. The second good, labeled the DM good, is produced and consumed in bilateral

meetings in the DM. There is a �nite set of assets indexed by s 2 S. Each asset pays o¤ at the end

of t = 1 a dividend normalized to one unit of the numéraire.

OTC MARKET:
BILATERAL MATCHES

 AND BARGAINING

COMPETITIVE
MARKET

Decisions to produce
fraudulent assets

Figure 1: Timing of the game

Agents are divided evenly into two types, called buyers and sellers. Buyers wish to consume in

the DM but cannot produce, while sellers have the technology to produce goods in the DM but do

not want to consume. Together with frictions described below, this preference structure creates a

need for liquidity: buyers will acquire assets in the CM in order to �nance the purchase of goods

produced by sellers in the DM. The utility of a buyer is:

x0 + � [u(q1) + x1] ; (1)

where xt 2 R is the consumption of the numéraire good at time t, with xt < 0 being interpreted

as production, q1 2 R+ is the consumption of the DM good, and � � (1 + r)�1 2 (0; 1) is a

discount factor. The utility function, u(q), over the DM good is twice continuously di¤erentiable,

with u(0) = 0, u0(q) > 0, u0(0) =1, u0(1) = 0, and u00(q) < 0. The utility of a seller is:

x0 + � (�q1 + x1) ; (2)
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where q1 is the seller�s production in a pairwise meeting in the DM. Let q� = argmaxq [u(q)� q] > 0

denote the output level that maximizes the match surplus, so u0(q�) = 1.

The CM is a perfectly competitive market, where agents trade the numéraire good and assets.

The DM, on the other hand, is an over-the-counter market, where a fraction � 2 (0; 1] of buyers

are matched bilaterally and at random with an equal fraction of sellers. Because of a lack of

commitment and limited enforcement, buyers purchase DM goods with assets or, equivalently, with

loans collateralized by assets (see footnote 11).

Terms of trade in pairwise meetings in the DM are determined according to a simple bargaining

game, in which the buyer makes a take-or-leave-it o¤er.5 The buyer, whose asset holdings are private

information, asks for a given amount of the DM good in exchange for some speci�ed portfolio of

assets.6 The seller accepts or rejects the o¤er. If the seller accepts the o¤er, then the trade is

implemented, provided that the asset transfer is feasible given the buyer�s asset holdings. Matched

agents split apart before assets pay o¤.

We introduce the possibility of asset fraud as follows. In the CM at t = 0, a buyer can pay a

�xed cost k(s) > 0 to produce any quantity of fraudulent asset of type s. Fraudulent assets have

zero terminal value and, in the DM, cannot be distinguished by sellers from genuine assets.

2.1 Interpretations

Counterfeiting of a means of payment. A literal interpretation of the model concerns assets

used as means of payment, such as coins or banknotes, for which the fraud consists of producing

counterfeits.7 During the �rst half of the 19th century, the �xed cost to produce fake banknotes in-

cluded the cost to acquire plates and dies. See, e.g., Mihm (2007). Nowadays, this cost corresponds

5 In her discussion of our paper, Veronica Guerrieri investigated a version of the model with competitive search
and showed that this alternative pricing mechanism generates the same liquidity constraint as the one obtained under
our simple bargaining game.

6By assuming that asset holdings are unobservable, we reduce the set of signals sent by a buyer, which simpli�es
the analysis. As shown in the earlier version of our working paper, results are robust to alternative assumptions
regarding the observability of asset holdings. Also, we do not allow buyers to o¤er lotteries over allocations. In
our context we conjecture that it is with no loss in generality, but such lotteries could be useful in the presence of
alternative cost structures of producing fraudulent assets� see Supplementary Appendix C on variable costs.

7Our model can accommodate fraud on unsecured credit in bilateral matches. In this case, an agent has the
option to produce a fake identity in the CM at a �xed cost (e.g., the cost incurred by a computer hacker to steal the
identity of someone else) and he can issue an IOU in the DM if matched. The repayment of genuine IOUs can be
enforced in the following CM. In contrast, IOUs based on fake identities are not repaid.
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to the price of photo-editing software and copy machines.

Collateral fraud. An alternative interpretation is that buyers use assets as collateral to secure

loans to be repaid at the end of t = 1. If the asset is a house, the transaction in the DM is an equity

extraction loan to �nance consumption. An example of mortgage fraud that closely resembles our

model is the property �ipping scheme, whereby a buyer obtains a high-loan-to-value mortgage

based on a fake property appraisal, and the bank is left with worthless collateral.8 In this example,

the cost of producing fraudulent assets represents the cost of creating false documentation about

the borrower and the property. The DM can also be interpreted as an OTC market for credit

derivatives, such as the market for credit default swaps or interest rate swaps. In that context, the

goods traded in the DM are risk-sharing services, and collateral is used to mitigate counterparty

risk.9 The cost of producing fraudulent assets is the informational cost incurred by the buyer to

identify bad collateral. This cost is related to the complexity of the asset, its issuer, and the quality

and quantity of information released about the asset�s cash �ows.

Securitization fraud. In this context buyers represent mortgage securitizers who originate and

package loans in the CM. Sellers represent �nal asset holders who acquire securitized assets in

the DM. There are gains from trading assets in the DM because it allows mortgage securitizers

to spread the risk of the underlying loans to �nal asset holders.10 In this example, the cost of

producing fraudulent assets is the cost of generating false documentation about the underlying

security, bribing an agency for a good rating, or engaging in accounting frauds.

3 Bargaining under the threat of fraud

In this section we solve for the equilibrium of the game between a buyer and a seller matched at

random. The game starts in the CM at t = 0 and ends in the DM at t = 1. For now we take as

8See http://www.fbi.gov/about-us/investigate/white_collar/mortgage-fraud/mortgage_fraud.
9 In Supplementary Appendix G, we provide an explicit model of risk-sharing arrangements, where the DM good

can be interpreted as risk-sharing services.
10 In Supplementary Appendix H, we provide such a model of securitization, where agents have Constant Absolute

Risk Aversion (CARA) utilities. This model con�rms, albeit with di¤erent functional forms, that u(q) can be
interpreted as the utility of reducing the securitizer�s risk position, and q = c(q) can be interpreted as the cost of
increasing the �nal asset holder�s risk position.
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given asset prices in the CM, �(s), s 2 S; and we anticipate that, in equilibrium, they will satisfy

�(s) � �; i.e., the rate of return of asset s is no greater than the discount rate, which would be the

�fundamental price�of the asset in a frictionless economy.

The sequence of moves is as follows: (i) In the CM at t = 0, the buyer chooses a portfolio of

fa(s)g genuine and f~a(s)g fraudulent assets, subject to a(s) � 0 and ~a(s) � 0; (ii) In the DM

at t = 1, the buyer is matched with a seller with probability �, in which case he makes an o¤er

(q; fd(s)g), where q represents the output produced by the seller and d(s) is the transfer of assets

of type s (genuine or fraudulent) from the buyer to the seller; (iii) The seller decides whether to

accept the o¤er; (iv) If the o¤er is accepted, the seller delivers q units of goods to the buyer, and

the buyer delivers �(s) 2 [0; a(s)] genuine and ~�(s) 2 [0; ~a(s)] fraudulent units of asset s to the

seller, with �(s) + ~�(s) = d(s).11 The extensive form of the game, for the � = 1 case, is illustrated

in the left panel of Figure 2. Arcs indicate that the action set at a given node is in�nite, while a

dotted line represents an information set.

Buyer

Buyer Buyer

Buyer

Buyer

Seller Seller

Seller Seller

Yes YesNo No

O
ffe

r

O
ffe

r

Yes YesNo No

O
ffe

r

Original game Reverse ordered game

Porfolios of genuine
and fraudulent assets

Porfolios of genuine
and fraudulent assets

Figure 2: Game trees

11We can reinterpret the payment, (q; fd(s)g), as a fully collateralized loan, where the buyer promises to repayP
s2S d(s) units of the CM output at the end of period 1. In order to secure the repayment of the loan, the buyer

posts d(s) units of asset s as collateral with a third party. If one asset is fraudulent, then the buyer will choose to
default on his obligation, in which case the seller seizes the assets that serve as collateral. If all assets are genuine,
then the buyer is indi¤erent between repaying his debt or defaulting.
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Payo¤s. The Bernoulli payo¤ of the buyer is:

�
X
s2S

�
k(s)If~a(s)>0g + �(s)a(s)

�
+ ��

�
u(q) +

X
s2S

[a(s)� �(s)]
�
+ �(1� �)

X
s2S

a(s);

where If~a(s)>0g = 1 if the buyer produces fraudulent assets of type s, ~a(s) > 0, and zero otherwise.

In the above, � = 1 if the buyer meets a seller who accepts his o¤er, and � = 0 otherwise. The �rst

term is the payo¤ of the buyer at t = 0. In order to accumulate ~a(s) > 0 fraudulent units of asset

s, the buyer must incur the �xed cost k(s). In order to accumulate a(s) units of genuine asset s, he

must produce �(s)a(s) units of the numéraire good in the CM. The second term is the discounted

payo¤ at t = 1 if � = 1; i.e., if the buyer meets a seller in the DM and his o¤er is accepted. He

then enjoys the utility of DM good consumption, u(q), as well as the payo¤ from his net holding

of genuine assets, a(s) � �(s), the initial amount purchased net of the asset transfer to the seller,

keeping in mind that each unit of genuine asset pays o¤ one unit of the numéraire good at the end

of t = 1. The last term is, similarly, the discounted payo¤ of the buyer at t = 1 if � = 0. Collecting

terms, we can rewrite the payo¤ as

�
X
s2S

�
k(s)If~a(s)>0g +

�
�(s)� �

�
a(s)

�
+ ��

(
u(q)�

X
s2S

�(s)

)
: (3)

Similarly, the Bernoulli payo¤ of the seller is

��

(
�q +

X
s2S

�(s)

)
; (4)

where we anticipate that, in equilibrium, sellers will not �nd it optimal to accumulate assets in the

CM.12 If the seller accepts the o¤er (� = 1), he su¤ers the disutility of producing, q, and receives

�(s) genuine units of asset s.

Equilibrium concept. Our equilibrium concept is Perfect Bayesian Equilibrium: actions are

sequentially rational following every history, and beliefs accord with Bayes�s rule whenever it is

possible. The notion of Perfect Bayesian Equilibrium imposes little discipline on the seller�s belief

in the DM regarding the decision of the buyer in the initial stage of the game to produce fraudu-

lent assets, conditional on an o¤-equilibrium o¤er being made. Our approach to circumvent this
12Sellers have no strict incentives to accumulate assets if �(s) � �, because their asset holdings are not observable

and hence do not a¤ect the terms of trade o¤ered by the buyer.
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di¢ culty consists of adopting a notion of strategic stability, according to which any equilibrium

of the original game should also be an equilibrium of the reverse-ordered game, whose timing is

shown in Figure 2: (i) The buyer determines his DM o¤er, (q; fd(s)g), before making any decision

in the CM (e.g., one interpretation is that he posts an o¤er at the beginning of the CM for the next

DM); (ii) He chooses his portfolio composed of genuine and fraudulent assets; (iii) He is matched

with a seller who chooses whether to accept or reject the o¤er.13 This reordered game captures the

idea that upon seeing the buyer�s o¤er, the seller will infer that the buyer�s unobservable actions

(portfolio and production of fraudulent assets) were chosen optimally with the o¤er in mind. The

re�nement is intuitive in that it selects an equilibrium of the original game that yields the highest

payo¤ to the player making the o¤er, in our case the buyer. Moreover, it improves tractability as

subgame perfection becomes su¢ cient to solve the game.

Solving for equilibrium. The analysis of the game can be simpli�ed by making two observations.

First, because of the �xed cost, the buyer will either produce the quantity of fraudulent assets that is

necessary to execute the o¤er in a match or he will produce no fraudulent asset at all. Consequently,

~�(s) = [1� �(s)] d(s) and �(s) = �(s)d(s), where �(s) = 0 if the buyer produces fraudulent assets,

and �(s) = 1 otherwise. Moreover, the buyer must be able to cover his intended transfer of genuine

assets; i.e., a(s) � �(s)d(s).

Second, we can solve for the buyer�s optimal asset demand before solving for equilibrium o¤ers.

Indeed, if �(s) = �, it follows from the buyer�s payo¤, (3), that any demand satisfying the constraint

a(s) � �(s)d(s) is optimal. If �(s) > �, it is costly to hold assets, and so it is optimal to demand

a(s) = �(s)d(s). In both cases, substituting the optimal asset demands into the objective amounts

13The re-ordering methodology, called the reordering invariance re�nement, was developed by In and Wright
(2011) for signaling games with unobservable choices. This re�nement is based on the invariance condition of strategic
stability from Kohlberg and Mertens (1986), which requires that the solution of a game should also be the solution
of any game with the same reduced normal form. (The intuitive criterion does not apply to our game because
in contrast to standard signaling games types are endogenous.) Beside being powerful in selecting equilibria and
tractable (because subgame perfection becomes su¢ cient to solve the game), this equilibrium notion has a strong
decision-theoretic justi�cation and nice normative properties. Speci�cally, in our model the reordered game captures
the idea that upon seeing the buyer�s o¤er, the seller will infer that the buyer�s unobservable actions (portfolio and
production of fraudulent assets) were chosen optimally with the o¤er in mind. (This forward induction logic is
reminiscent to the one of most re�nements in the signaling literature.) From a normative viewpoint, this re�nement
has the appealing property of selecting an equilibrium of the original game that yields the highest payo¤ to the buyer,
the agent making the o¤er. A more detailed description of the merits of this approach is provided in In and Wright
(2011).
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to replacing a(s) with �(s)d(s).

With these observations in mind, a buyer�s strategy speci�es the following two objects: the

o¤er, (q; fd(s)g); and conditional on any o¤er, a probability distribution over f�(s)g 2 f0; 1gS ,

denoted by �. The seller�s strategy speci�es, conditional on any o¤er (q; fd(s)g), the probability of

accepting, denoted by �.

The game is solved by backward induction. Following an o¤er, (q; fd(s)g), the seller�s decision

to accept a trade must be optimal given the buyer�s decision to produce fraudulent assets; i.e.,

� 2 arg max
�̂2[0;1]

�̂

(
� q +

X
s2S

�(s)d(s)

)
; (5)

where �(s) denotes the marginal probability of bringing genuine assets of type s.14 The seller�s

value of accepting the o¤er depends on the disutility of producing q units of goods and on the

expected quality of the asset transfer, determined by �.

Similarly, following an o¤er (q; fd(s)g), the buyer�s decision to bring genuine or fraudulent assets

is optimal given the seller�s probability of accepting; i.e.,

f�(s)g 2 arg max
f�̂(s)g

�
X
s2S

�
k(s) [1� �̂(s)] + [�(s)� �] �̂(s)d(s) + ����̂(s)d(s)

�
; (6)

where the expression that is maximized consists of the terms in the buyer�s payo¤ that depend on

�. It shows that there are two gains from producing fraudulent assets: the savings in the holding

cost, �(s)� �; and the savings in the expected cost of transferring genuine assets to a seller.

Finally, given equilibrium decision rules f�(s)g and �, the optimal o¤er, (q; fd(s)g); maximizes

the following objective

�
X
s2S

�
k(s) [1� �(s)] + [�(s)� �] �(s)d(s)

�
+ ���

(
u(q)�

X
s2S

�(s)d(s)

)
: (7)

A perfect Bayesian equilibrium that satis�es the reordering invariance re�nement is a pair of buyer�s

and seller�s strategies satisfying (5), (6), and (7). The next proposition provides a simple joint

characterization of the asset demands and the o¤ers made in any equilibrium.

14Note that, after replacing a(s) and �(s) with �(s)d(s) in (3) and (4), the payo¤s of buyers and sellers become
linear functions of the binary actions f�(s)g. Therefore, taking expectations with respect to � amounts to replacing
�(s) with the marginal probability �(s).
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Proposition 1 The asset demands, fa(s)g, and the equilibrium o¤ers, (q; fd(s)g), solve:

max
q;fa(s);d(s)g

�
�
X
s2S

[�(s)� �] a(s) + �� [u(q)� q]
�

(8)

s.t.
X
s2S

d(s)� q = 0 (9)

d(s) � k(s)

�(s)� � + �� ; for all s 2 S (10)

d(s) 2 [0; a(s)] ; for all s 2 S: (11)

Moreover, following any equilibrium o¤er, the buyer transfers genuine assets with probability one,

�(s) = 1 for all s, and the seller accepts the o¤er with probability one, � = 1.

Proposition 1 shows that equilibrium asset demands and o¤ers maximize the buyer�s expected

utility subject to three constraints. First is the individual rationality constraint, (9), which states

that the seller must be indi¤erent between accepting and rejecting the o¤er, given that the buyer�s

assets are genuine. The seller�s expected payo¤ is zero since the bargaining protocol speci�es that

the buyer makes a take-it-or-leave-it o¤er. Second is the incentive compatibility constraint, (10),

which states that the buyer must �nd it optimal to accumulate genuine assets with probability one,

given that the seller accepts with probability one. Third is the feasibility constraint, (11), which

states that the buyer must hold enough genuine assets to cover his transfer to the seller.

To understand why the buyer �nds it optimal to bring genuine assets with probability one,

consider a candidate equilibrium in which he brings genuine assets of type s0 with a probability

�(s0) 2 (0; 1).15 In this candidate equilibrium, the buyer�s payment capacity is slack. To see this,

notice that the buyer could deviate and demand higher consumption in the DM, q0 > q, keep the

same fd(s)g, and compensate the seller by bringing genuine assets of type s0 with higher probability,

�0(s0) > �(s0). This deviation would not change the buyer�s expected cost of transferring assets,

since he is indi¤erent between genuine or fraudulent assets of type s0. Moreover, by (6), indi¤erence

implies:

k(s0) = [�(s)� � + ���] d(s0) =) � =
k(s0)� [�(s0)� �] d(s0)

��d(s0)
;

i.e., the seller�s probability of acceptance, �, is pinned down by the transfer d(s0), and is una¤ected

by the increase in q. Taken together, these observations mean that the buyer could increase his
15Looking at �(s0) > 0 is without loss. See the proof of Proposition 1 for details.
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payo¤by raising his o¤er q without changing his expected cost of transferring the asset, and without

changing the seller�s acceptance probability.

Lastly, the proposition shows that, in equilibrium, the buyer always �nds it optimal to make an

o¤er that is accepted with probability one. This result is not obvious because o¤ering more assets

than the threshold of equation (10) has two e¤ects going in opposite directions. The positive e¤ect

is that the buyer can demand a higher q in exchange for a higher d. The negative e¤ect is that

a larger o¤er increases fraud incentives, and hence it has a positive probability of being rejected.

Our proof shows that, with the �xed cost of producing fraudulent assets, the negative e¤ect always

dominates.16

Endogenous resalability constraints. Perhaps the most important result of Proposition 1 is

that the incentive-compatibility constraints, (10), take the form of resalability constraints, speci-

fying upper bounds on the transfer of assets from buyers to sellers.17 The resalability constraints

depend on the cost of producing fraudulent assets, k(s), the holding cost of an asset, �(s)� �, and

the frequency of trades in the DM, �.

From (10), an asset which is more susceptible to fraud is subject to a more stringent resalability

constraint. To illustrate this point, suppose that there are no search frictions, � = 1. Then,

the resalability constraint of asset s is �(s)d(s) � k(s). The real value of the asset that can be

transferred in a bilateral match is simply the cost of producing fraudulent assets. In accordance

with the Wallace (1998) dictum, the liquidity of an asset depends on its intrinsic properties, which

here are captured by the ease of producing fraudulent assets.

The resalability constraints also depend on the frequency of trade in the DM. Increasing the

frequency of trade exacerbates the threat of fraud because the trade surplus of a con artist, u(q),

is greater than the match surplus of an honest buyer, u(q) � q. Therefore, the upper bound must

16 In Supplementary Appendix C, we show that the negative e¤ect also dominates if we add proportional costs of
producing fraudulent assets provided that those costs are not too large. If the proportional costs are large relative
to the �xed costs, then there can be situations where fraud generates rationing both at the intensive margin (the
quantity of assets that can be transferred in a match) and at the extensive margin (the number of matches in which
trade occurs).

17 If the asset is interpreted as an IOU (see Footnote 7), s = `, then one can set �(`) = � since an IOU is issued
in the DM and there is no cost of holding it. In this case the incentive-compatibility constraint, (10), takes the form
of a borrowing constraint, d(`) � k(`)

��
:
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be lowered to keep incentives in line. To give a concrete example, if the process of securitization

implies that an asset can be retraded more frequently, then an increase in securitization raises the

threat of fraud and makes resalability constraints more likely to bind.18

Finally, the holding cost of the asset, �(s) � �; enters the resalability constraint, because lack

of commitment forces agents to accumulate assets before liquidity needs occur. An increase in the

asset price raises the holding cost, which raises the buyer�s incentives to produce fraudulent versions

of the asset for a given size of the trade.

4 The liquidity structure of asset returns

In this section we study the implications of our model for cross-sectional liquidity premia. We

endogenize asset prices in the CM and show that the endogenous resalability constraints derived in

Proposition 1 create liquidity and price di¤erences across assets, even if they have the same cash

�ows. Our results help explain di¤erences in asset prices that cannot be fully accounted for by

risk, and shed light on a variety of evidence on the positive relationship between liquidity and asset

prices.19

4.1 The liquidity-return trade-o¤

Assume that each asset s 2 S comes in �xed supply, denoted by A(s). We de�ne a symmetric

equilibrium to be a collection of prices, f�(s)g, asset demands, fa(s)g, and a DM o¤er, (q; fd(s)g),

such that the asset demands and the o¤er solve the buyer�s problem (8)-(11) given prices, and the

asset market clears; i.e., a(s) = A(s) for all s 2 S.20

Guessing that a(s) � 0 and d(s) � 0 do not bind, the �rst-order conditions of the buyer�s

18Keys, Mukherjee, Seru, and Vig (2010) establish evidence that the securitization of subprime loans led to lax
screening. Purnanandam (2009) �nds that banks involved highly in the originate-to-distribute market, where the
originator of loans sells them to third parties, originated excessively poor-quality mortgages.

19Since Amihud and Mendelson (1986), liquidity (level and risk) has been shown to explain risk-adjusted asset
return di¤erentials. For recent studies, see, e.g., Chordia, Huh, and Subrahmanyam (2009).

20The symmetry restriction that all buyers have the same asset demands serves to pin down portfolios when some
assets are priced at their fundamental values, �(s) = �.
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problem are:

� = ��
�
u0(q)� 1

�
= �(s) + �(s) (12)

�(s) = � + �(s), (13)

for all s 2 S, where � � 0 is the Lagrange multiplier of the seller�s participation constraint, (9),

�(s) � 0 is the multiplier of the resalability constraint, (10), and �(s) � 0 is the multiplier of the

feasibility constraint, (11). The multiplier, �, measures the net utility of spending an additional

unit of asset in the DM, if matched with a seller with probability �. The increased consumption

yields marginal utility u0(q) to the buyer, and the asset transfer has an opportunity cost equal to

one.

Taken together, (12) and (13) imply the following bounds on asset prices:

� � �(s) � � + �: (14)

The upper bound is the present value of the asset�s cash �ow, �, which we refer to as the "fun-

damental value" of the asset, augmented by the net utility of spending an additional unit of the

asset in the DM, �. The lower bound is the �fundamental value�of the asset, �, since a buyer can

always hold onto any unit of the asset and consume its cash �ow at the end of t = 1. Assuming for

now that q < q�, so that � > 0, these �rst-order conditions imply that there are three categories of

assets.

Liquid assets. For this type of asset, the feasibility constraint is binding, �(s) > 0, but

the resalability constraint is slack, �(s) = 0. Therefore, the asset price is equal to the upper

bound, � + �. The asset is said to be perfectly liquid in the following sense: if the buyer holds

an additional unit of the asset, he would spend it in the DM. Substituting the market clearing

condition, a(s) = A(s), and the price, �(s) = � + �, into the binding feasibility constraint and the

slack resalability constraint, we obtain d(s) = A(s) � k(s)
�+�� . This last inequality can be equivalently

written as �(s) � �� + �, where �(s) � k(s)=A(s) is the cost of fraud per unit of the asset.

partially liquid assets. For this type of asset, both the resalability and feasibility constraints

bind, �(s) > 0 and �(s) > 0. In equilibrium, a buyer spends all his holdings of the asset. However, if
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he were to acquire an additional unit, he would choose not to spend it in the DM, for otherwise there

would be a positive probability of the trade being rejected. The asset is thus said to be partially

liquid and its price must be lower than the upper bound. From (10), d(s) = A(s) = k(s)
�(s)��+�� ,

which leads to �(s) = � + �(s) � ��, keeping in mind that �(s) = k(s)=A(s). The conditions

�(s) = � + � � �(s) > 0 and �(s) = �(s)� � > 0 can be written as �� < �(s) < �� + �.

Illiquid assets. Lastly, there are assets for which the resalability constraint binds, �(s) > 0,

but the feasibility constraint is slack, �(s) = 0. In equilibrium the buyer does not spend a fraction

of his asset holdings even though he is liquidity constrained. Therefore, the asset is said to be

illiquid, and its price is equal to the lower bound, �(s) = �. The binding resalability constraint

implies that d(s) = k(s)
�� . Substituting this expression into the slack feasibility constraint, we obtain

that �(s) � ��.

The next step is to determine � and verify that q < q�. From the above, we have:

d(s) = min

�
A(s);

k(s)

��

�
= �(s)A(s); where �(s) = min

�
1;
�(s)

��

�
:

That is, the buyer either transfers all his holdings of asset s, or the maximum holding consistent

with the resalability constraint and the no-arbitrage restriction that �(s) � �. Substituting the

expression for d(s) into the seller�s binding participation constraint, (9), we obtain

q = L �
X
s2S

�(s)A(s): (15)

The aggregate liquidity, L, is a weighted average of asset supplies, with endogenous weights de-

pending on trading frictions and assets�recognizability characteristics.21 Given q, the convenience

yield of liquid assets, �, is determined by (12). One can easily verify that, if L < q�, the above asset

prices, o¤er, and asset demands constitute a symmetric equilibrium. The condition L < q� means

that the aggregate liquidity is not large enough to satiate buyers�liquidity needs, represented by

q�. If L � q�, then the equilibrium has q = q� and �(s) = � for all s 2 S. Summarizing:
21This approach is consistent with a de�nition of the quantity of money suggested by Friedman and Schwartz

(1970) as "the weighted sum of the aggregate value of all assets, the weights varying with the degree of moneyness."
Our de�nition of aggregate liquidity is also related to the Divisia monetary aggregates (e.g., Barnett, Fisher, and
Serletis, 1992). A key di¤erence is that in our approach the weight assigned to an asset in order to calculate liquidity
changes is not equal to its holding cost, which has normative implications that we discuss in Section 5.
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Proposition 2 (The liquidity-return relationship) There exists a unique symmetric equi-

librium. If L � q�, then q = q� and �(s) = � for all s 2 S. If L < q�, then q < q�,

� � �� [u0(q)� 1] > 0. Letting � � ��, and � � �� + �, there are three categories of assets:

1. Liquid assets: for any s 2 S; such that �(s) � �,

�(s) = � + � (16)

�(s) = 1: (17)

2. Partially liquid assets: for any s 2 S; such that �(s) 2 (�; �),

�(s) = � + [�(s)� ��] (18)

�(s) = 1: (19)

3. Illiquid assets: for any s 2 S; such that �(s) � �,

�(s) = � (20)

�(s) =
�(s)

��
< 1: (21)

The central implication of Proposition 2 is that, whenever there is a liquidity shortage, L < q�,

assets with identical cash �ows can have di¤erent prices. See Figure 3 for a graphical representation

of these price di¤erences. This departure from the no-arbitrage principle is another formulation of

the rate-of-return dominance puzzle, according to which monetary assets coexist with other assets

with similar risk characteristics that generate a higher yield. In our model price di¤erentials across

assets are attributed to di¤erences in the cost of fraud. An asset which is more recognizable�

in the sense of not being sensitive to fraudulent activities� as captured by a high cost of fraud,

is used more intensively to �nance random spending opportunities. Relative to assets that are

less recognizable, this asset generates some non-pecuniary liquidity services, �(s) = �(s)� �, also

referred to as a convenience yield, and is sold at a higher price.22

22To see why the price di¤erentials do not represent arbitrage opportunities, relax the short-selling constraint and
assume that, in order to sell an asset he does not own, an agent has to borrow it from someone else in exchange for a
fee, to be determined in equilibrium. The agent who borrows the asset can use it in the DM, but the agent who lends
it cannot. The equilibrium remains unchanged, and the fee clearing the market for borrowing asset s 2 S is equal to
its convenience yield, �(s)� �. Indeed, an agent who borrows a liquid or partially liquid asset must compensate the
lender for his forgone liquidity services in the DM.
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Figure 3: Liquidity structure of asset returns (L < q�)

Krishnamurthy and Vissing-Jorgensen (2010, 2011) document the existence of convenience yields

for Treasury securities and, to a lesser extent, highly-rated bonds. They argue that a safety-

premium (which they view as distinct from a standard risk premium) is an important component

of asset prices. Through the lens of our model, we can interpret this safety premium as the pre-

mium o¤ered by assets that are highly recognizable and that are less sensitive to informational

asymmetries and moral hazard considerations. Similarly, Vickery and Wright (2010) argue about

the existence of a liquidity premium for agency mortgage-backed securities, which are better pro-

tected against the informational asymmetries that plague the process of securitization.

Proposition 2 also has insights for cross-sectional di¤erences in transaction velocity, a standard

measure of liquidity in monetary economies. In our model, transaction velocity in the DM is

V(s) � �d(s)
A(s) = ��(s). Proposition 2 predicts a positive relationship between the price of an asset

and its velocity. The most liquid assets (i.e., any asset s such that �(s) � ��) trade at the highest

price, and their velocity is maximum and equal to the frequency of spending opportunities in the

DM, �. Illiquid assets (i.e., any asset s such that �(s) <�), however, have the highest rate of return,

equal to the rate of time preference, and the lowest velocities, less than �. This result is consistent
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with the view that bonds that are used more intensely as collateral in OTC markets tend to have

higher prices (Du¢ e, 1996).

In reality, a myriad of assets are not used as means of payment or collateral. This observation

is consistent with our results if there is a mass of assets that do not circulate in the DM, �(s) = 0.

From (21) such assets must be characterized by �(s) = 0: these are assets for which agents have so

little knowledge about their mere existence or attributes, that even simple, costless frauds can be

deceptive.23

5 Applications and Extensions

In this last section we apply our model of the liquidity structure of asset returns to analyze �ight-

to-liquidity phenomena and to assess the e¤ectiveness of aggregate liquidity management policies.

Moreover, we extend the model to an in�nite time horizon in order to study time variations in

liquidity premia.

5.1 Flights to liquidity

A �ight to liquidity occurs when market participants seek to reallocate their portfolios toward highly

liquid assets, which leads to a widening yield spread between liquid and less liquid assets.24 In what

follows, we apply our analysis on the liquidity structure of asset returns to identify the shocks that

can generate a simultaneous increase in the prices of the most-liquid assets and a reduction in the

prices of less-liquid ones� a phenomenon resembling a �ight to liquidity.

According to our model, a �ight to liquidity can be explained by an exogenous reduction in k(s)

for some initially liquid or partially liquid assets that make them become illiquid. For instance,

agents might realize that some assets (e.g., MBS) can be subject to a broader set of fraudulent

23That assets, or claims on those assets, can be counterfeited at no cost has been the standard explanation in
monetary theory for why capital goods are illiquid, since Freeman (1985), and more recently, Lester, Postlewaite, and
Wright (2011).

24During the 1998 Russian-default crisis, many investors shifted their funds into the more liquid U.S. Treasury
market, widening the yield spread between Treasury bonds and less-liquid debt instruments (Longsta¤, 2004). Ev-
idence also shows that, during the subprime crisis, the �ight-to-quality was con�ned to AAA-rated bonds, and the
illiquidity component of the rate of return of bonds with lower grades rose sharply (Longsta¤, 2010; Dick-Nielsen,
Feldhutter, and Lando, 2010).
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practices than previously thought.25 The resalability and velocity of these assets decrease, which

causes aggregate liquidity and output to fall, and the liquidity premium on liquid assets, �, to

increase.26 The prices of partially liquid assets do not change, except for the ones that are charac-

terized by a lower cost of fraud. In addition, an increase in the threat of fraud can shrink the set

of liquid assets, while it expands the set of illiquid and partially liquid ones. Indeed, the threshold

�� = �� + � and the interval ��� � = � are increasing functions of the size of the liquidity premium

on liquid assets. Therefore, during a �ight to liquidity, market demand for assets is concentrated

on a smaller set of highly recognizable assets.

An alternative explanation for a �ight to liquidity is an increase in � that formalizes an aggregate

liquidity demand shock, e.g., an increase in counterparty risk, leading to an increase in the demand

for collateral for OTC transactions.27 From (16) and (18) when � increases the prices of liquid

assets rise, whereas the prices of partially liquid assets fall. The increase in the prices of liquid

assets occurs due to two e¤ects going in the same direction. There is a direct e¤ect according

to which liquid assets are used more often as collateral or means of payment, which raises their

liquidity value. The indirect e¤ect is to reduce aggregate liquidity: from (15), an increase in �

lowers the weights of illiquid assets in L, which reduces the output in bilateral matches and makes

liquid assets even more useful; i.e., the term � [u0(q)� 1] in (12) goes up. For partially liquid assets

the increase in � has the additional markedly di¤erent e¤ect of exacerbating fraud incentives. As

a result, their prices have to fall so that their resalability constraints hold, re-establishing buyers�

incentives to bring genuine assets. As shown in Figure 3, the set of illiquid and partially liquid

assets expands (because � increases with � and ���� increases with �) while the set of liquid assets

shrinks (because �� increases in �).

25For some prominent economists this type of shock is a central explanation for the �nancial crisis of 2008. In
an interview to the Wall Street journal (09/24/2011), Robert Lucas argued that "the shock came because complex
mortgage-related securities minted by Wall Street and certi�ed as safe by rating agencies had become part of the
e¤ective liquidity supply of the system. All of a sudden, a whole bunch of this stu¤ turns out to be crap".

26Some recent studies (e.g., Ajello, 2010; Shi, 2011) formulate the hypothesis that recessions are driven by liquidity
shocks formalized by a reduction in the exogenous resalability of some assets. In contrast to our approach, these
models have the counterfactual implication that the prices of the assets that become more di¢ cult to resell increase.

27Suppose, for instance, that a fraction �u of the trades in the DM can be �nanced with unsecured debt (e.g.,
because commitment/enforcement is available in those meetings) while a fraction �s of the trades require collateral
to be posted because of counterparty risk (e.g., sellers in those meetings cannot commit or cannot be forced to repay
their debt.) An increase in counterparty risk can be formalized as an increase in �s such that �s + �u is unchanged.
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5.2 Liquidity management

In this section we use our model to study the e¤ectiveness of policies aimed at managing the

supply of liquidity in the economy. These policies can take the form of open-market operations by

the central bank, which are intended to substitute liquid assets for less-liquid ones, or regulatory

measures that reduce the threat of frauds and relax resalability constraints for some assets.

Measuring the social value of assets�liquidity services. Much of the analysis that follows is

based on the following theoretical observation. In competitive models with reduced-form demand

for liquidity (e.g., cash-in-advance or money-in-the-utility function), the convenience yield of an

asset not only measures the marginal private value of its liquidity services, but also its marginal

social value.28 In our model this property holds true for illiquid and liquid assets, but fails to hold

for partially liquid assets.

The marginal social value of the liquidity services provided by a unit of asset s is @L
@A(s)�,

which is equal to � for liquid and partially liquid assets, and 0 for illiquid assets. Therefore, the

convenience yield of partially liquid assets, �(s) � � < �; underestimates the true marginal social

value of their liquidity services. The reason for this discrepancy is that an increase in the price of

an asset reduces its demand in two ways: by raising the holding cost, �(s)� �, and by tightening

the resalability constraint. The latter e¤ect creates a negative �pecuniary externality,�which can

depress asset prices below the marginal social value of the asset�s liquidity services.29 As we show

below, this observation implies that liquidity management policies targeting partially liquid assets

can be welfare reducing, because they underestimate these assets�true contribution to aggregate

liquidity. By contrast, when targeting illiquid assets, the same policies are welfare improving.

Open-market purchases. Central banks routinely engage in aggregate liquidity management,

by issuing (or withdrawing) reserves, the most liquid assets, in exchange for Treasuries and, in recent

28This logic is underlying the calculation for the welfare cost of in�ation in Lucas (2000), the measure of the
liquidity services provided by Treasuries in Krishnamurthy and Vissing-Jorgensen (2010), and Barnett, Fisher, and
Serletis�s (1992) de�nition of Divisia monetary aggregates.

29By contrast, with the exogenous proportional resalability constraint, there is no such pecuniary externality, and
asset convenience yields coincide with the marginal social value of the asset�s liquidity services. See Supplementary
Appendix E.
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years, a wider range of less liquid assets, including agency bonds and mortgage-backed securities.

Consider a policy-maker in the CM, who sells a quantity, �A(s), of some liquid asset s from his

portfolio, and simultaneously purchases a quantity, �A(s0), of some other asset s0. A small open-

market operation has a small e¤ect on prices, so that the budget constraint of the policy-maker is,

to a �rst-order approximation, �(s)�A(s) +�(s0)�A(s0) = 0. The welfare e¤ect of such a policy is

�L� � =
�
@L

@A(s)
�A(s) +

@L

@A(s0)
�A(s0)

�
� =

�
1� @L

@A(s0)

�(s)

�(s0)

�
�A(s)� �:

Suppose �rst that �(s0) > ��, so both s and s0 are liquid assets. Then, �(s) = �(s0), @L
@A(s0) = 1,

and �L = 0. Such an open-market operation is irrelevant: it does not change aggregate liquidity

and welfare, and hence it has no e¤ect on output and asset prices. So liquidity management has

real e¤ects only if it involves assets with di¤erent degrees of liquidity.

Suppose next that �(s0) <�, asset s0 is illiquid. In this case aggregate liquidity does increase

because the purchase of illiquid assets has no consequence on aggregate liquidity; i.e., �L � � =

�A(s)� � > 0. Thus, welfare increases, the price of liquid assets decreases, and the price of illiquid

assets is una¤ected.

Finally, suppose that �(s0) 2 (�; ��) ; i.e., asset s0 is partially liquid. Then, �(s0) < �(s) and

�L � � =
h
1� �(s)

�(s0)

i
�A(s) � � < 0, implying that such a policy reduces aggregate liquidity and

welfare. The intuition is in line with our earlier observation: while partially liquid and liquid assets

have di¤erent prices, they contribute equally to aggregate liquidity. At the same time, because it

has a higher price, one share of a liquid asset buys more than one share of a partially liquid one.

Thus a balanced-budget open-market operation ends up syphoning out more liquidity than it is

injecting in; i.e., aggregate liquidity is reduced. The welfare e¤ect of this open-market operation is

of the opposite sign of the yield di¤erence between the asset that is withdrawn and the asset that

is injected, and the prices of both assets s and s0 increase.

The results above can help interpret some of the �ndings in Krishnamurthy and Vissing-

Jorgensen (2011) regarding the e¤ect of quantitative easing. They �nd that the purchases of

Treasuries, agency bonds, and highly-rated corporate bonds in exchange for reserves led to a drop

in interest rates but it did not a¤ect the yields on relatively illiquid assets (Baa corporate bonds).

This �nding is consistent with our results if we interpret Baa corporate bonds as illiquid assets,
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Treasuries and highly rated bonds as partially liquid, and reserves as fully liquid. Furthermore,

according to our �ndings, the drop in interest rates indicates that quantitative easing reduced

liquidity and welfare.

Regulatory measures. Some of the leading regulatory measures of the Dodd-Frank Act aim

to curb fraud incentives in the securitization industry.30 One of these measures is a requirement

for securitizers to retain at least 5 percent of the credit risk they originate. Importantly, some

asset-backed securities, deemed of higher quality, are exempted from this requirement. In this

section, we study the optimality and welfare impact of retention requirements. We show that the

regulator faces a trade-o¤ between the role these requirements play as a discipline mechanism and

the distortion they introduce by increasing the costs of holding assets. We demonstrate that the

�rst e¤ect dominates for illiquid assets, while the second e¤ect dominates for partially liquid and

liquid assets. Hence, our model suggests that retention requirements should be con�ned to the least

liquid assets, i.e., the ones more susceptible to fraud.

Under a retention requirement policy, a buyer who wishes to transfer d(s) units of asset s in

the DM must hold 1 + �(s) units of the asset; i.e., d(s) � a(s)
1+�(s) , where �(s) is the retention rate

associated with asset s. The policy imposes that the asset kept in retention is the exact same

asset as the one transferred in a match, i.e., if the asset transferred is fraudulent, so is the asset in

retention.31 The cost of producing d(s) units of fraudulent asset is of the form kf (s) + kv(s)d(s),

where the variable cost component, kv(s)d(s), was introduced to provide a channel through which

the regulatory measure can reduce agents�incentive to commit fraud. We let kf (s) > 0 and take

kv(s) to be small enough so that, as before, equilibrium o¤ers are accepted with probability one

(see Supplementary Appendix B). The resalability constraint of asset s becomes:

kf (s) + kv(s) [1 + �(s)] d(s) � [�(s)� �] [1 + �(s)] d(s) + ��d(s): (22)

The left side of (22) is the cost of fraud on d(s) units of asset s. If kv(s) > 0, then policy increases

30The Dodd-Frank Act, enacted in July 2010 in response to the 2007-08 �nancial crisis, institutes a wide array of
new regulations for the �nancial services industry.

31 In the context of securitization (see Supplementary Appendix H), a retention requirement means that the
securitizer (represented in the model by the buyer) needs to retain assets from the same issue of asset-based securities
he is o¤ering to the general public (represented in the model by the seller).
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the cost of fraud and, therefore, reduces fraud incentives. The right side of (22) is the cost of holding

[1 + �(s)] d(s) genuine units of asset s. Thus, if the asset is liquid or partially liquid, �(s)� � > 0,

the retention requirement generates a distortion by increasing the e¤ective holding cost of the asset.

In Supplementary Appendix B, we solve for equilibrium following the same steps as before. We

show that a retention requirement has asymmetric e¤ects on the resalability of an asset, depending

on its liquidity status. For illiquid assets, equilibrium resalability becomes:

�(s) =
kf (s)=A(s)

�� � kv(s) [1 + �(s)]
: (23)

It is an increasing function of �(s) because when �(s) = � retention rates raise the cost of com-

mitting fraud but do not a¤ect assets�e¤ective holding costs. For liquid and partially liquid assets

resalability becomes:

�(s) =
1

1 + �(s)
; (24)

which is a decreasing function of �(s). Thus, for liquid or partially liquid assets, the distortionary

e¤ect of retention rates dominates the incentive e¤ect, reducing velocity and welfare. In the case of

liquid assets, this result is straightforward since the threat of fraud is not a binding constraint. In the

case of partially liquid assets, retention requirements have the partial equilibrium e¤ect of relaxing

resalability constraints. But this e¤ect simultaneously increases the demand for partially liquid

assets. Therefore, for asset markets to clear, the prices of partially liquid assets must increase,

tightening back the resalability constraints and eliminating the positive incentive e¤ect of the

retention policy. Taken together, the above results suggest that retention requirements should target

illiquid assets. Other, more recognizable assets, should be exempted, in line with the prescriptions

of the Dodd Frank Act.

5.3 Dynamics of liquidity premia

This section provides a dynamic extension of our static model. We show that the prices of all

liquid assets covary with a common liquidity premium.32 This common liquidity premium can be

32References on the empirical literature on the co-movements of liquidity across assets are included in Acharya
and Pedersen (2005) who develop an asset pricing model in which a per-share cost of selling securities can vary over
time.
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the subject of self-ful�lling �uctuations, creating excess volatility in the price of liquid assets. The

prices of illiquid and partially liquid assets are, however, immune to such �uctuations.

Given agents�quasilinear preferences, it is straightforward to introduce an in�nite time horizon

using the setup of Lagos and Wright (2005). Time is indexed by t 2 N. Each period is divided into

two subperiods, a DM followed by a CM. Each unit of the asset s pays o¤ a dividend normalized

to one unit of the numéraire at the beginning of each CM. The technology to produce fraudulent

assets in period t� 1 becomes obsolete in period t, and all fraudulent assets produced in period t

are con�scated by the government before agents enter the CM of period t.33

As shown in supplementary Appendix D, these assumptions allow us to apply the analysis of

the static model, where the terminal value of the asset is equal to the cum-dividend value, 1+�t(s),

of reselling the asset in the CM in period t. Focusing on equilibrium with qt < q�, Proposition 2

generalizes as follows.34 There are three classes of assets, of which the prices solve:

�t�1(s) = [1 + �t(s)]�

8<:
� + �t �t(s) � ��t
� + [�t(s)� ��] if �t(s) 2 (�; ��t)
� �t(s) � �

; (25)

where �t(s) � k(s)
[1+�t(s)]A(s)

; � � ��, ��t � �t + ��, and

�t = ��
�
u0(qt)� 1

�
(26)

qt = L =
X
s2S

�t(s) [1 + �t(s)]A(s); where �t(s) = min

�
1;
�t(s)

��

�
: (27)

The equilibrium equations are the same as in the static model, but with an endogenous terminal

value of 1 + �t(s). This di¤erence is substantial because expectations of future liquidity premia,

capitalized in �t(s), feed back into the current liquidity premium, �t�1(s)� � [1 + �t(s)].35

We now characterize equilibria in a neighborhood of the unique steady state,


f��(s)g; �q; ��

�
. In

such a neighborhood, the sets of liquid, partially liquid, and illiquid assets do not change. Moreover,

33This assumption, borrowed from Nosal and Wallace (2007), is made for tractability to prevent fraudulent assets
from circulating across periods.

34 If aggregate liquidity is abundant, there exists a unique equilibrium in which the resalability constraint and
the feasibility constraint do not bind at any date, qt = q�; and each asset is priced at its fundamental value; i.e.,
�t(s) = 1=r:

35This e¤ect, as is well known, can lead to an equilibrium in which an asset has positive value even if it pays no
dividend; i.e., a positive liquidity premium can be a self-ful�lling phenomenon. In Supplementary Appendix D we
consider such an economy with �at money.

26



from (25), one can verify that
d�t�1(s)
d�t(s)

2 [0; 1) for all �t(s) < ��t, so that the prices of illiquid and

partially liquid assets are equal to their steady-state values in any dynamic equilibrium. This need

not be the case for liquid assets. To see this point, let us linearize the equilibrium equations near

the steady state. We obtain, from (25), that the price of liquid assets solves:

�̂t�1(s) =
�
� + ��

�
�̂t(s) +

�
��(s) + 1

�
�̂t, (28)

where �̂t(s) � �t(s)� ��(s) and �̂t � �t���. The �rst term on the right side of (28) is the discounted

value of the future price of the asset, with the discount rate augmented by a liquidity premium;

the second term captures the change in the liquidity premium. Linearizing (26) and (27) in the

neighborhood of the steady state:

�̂t = ��u00(�q)q̂t where q̂t =
X

s:�(s)���
�̂t(s)A(s); (29)

and q̂t � qt � �q. From (29), the size of the liquidity premium, relative to its steady-state value,

depends negatively on changes in the market capitalization of liquid assets.

Multiplying both sides of (28) by A(s) and taking the sum over all liquid assets, we obtain

�̂t�1 = �̂t; where  = � + �� + ��u00(�q)
X

s:�(s)���

�
��(s) + 1

�
A(s): (30)

The nature of the dynamics depends on . If  > �1, then �̂t = �� for all t; and the liquidity

premium is constant over time. If  < �1, in contrast, there exists a continuum of equilibria

indexed by the initial value of �̂ in the neighborhood of zero that converges to the steady state.

Along these equilibria, �̂t alternates between positive and negative values. The price of liquid assets

covaries and exhibits excessive volatility relative to fundamentals, whereas the prices of partially

liquid assets and illiquid ones remain constant. As can be seen from (29), the �uctuating liquidity

premium is a self-ful�lling phenomenon. If agents anticipate that the liquidity premium will be

high in the future so that �̂t > 0, then aggregate liquidity and output are high, q̂t > 0. But, at

the margin, agents do not value much the asset�s liquidity services, and so the current liquidity

premium is low, �̂t < 0. If the constant multiplying �̂t in (28) is large enough, then �̂t�1 < 0. The

same reasoning implies that the liquidity premium one period before will be high, �̂t�1 > 0, and

the �uctuations will continue.
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6 Conclusion

In this paper we have proposed a theory of the cross-sectional distribution and time-variation of

liquidity premia by taking seriously the possibility of asset fraud in an economy with limited com-

mitment and enforcement. We have shown the emergence of asset-speci�c resalability constraints

that take the form of upper bounds on the transfer of assets in OTC market trades. These bounds

are not invariant to policy shifts (e.g., the composition of asset supplies and regulation on assets�

retention requirements), and they depend on some characteristics of the assets such as their vulner-

ability to fraud, as well as the frequency of trading opportunities. Our model generates a liquidity

structure of asset returns based on a three-tier classi�cation of assets. This classi�cation is rele-

vant for the comparative statics of asset prices, the dynamics of liquidity premia, explanations of

�ight-to-liquidity phenomena, and the analysis of open-market operations and regulations of the

OTC market.
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A Proof of Proposition 1

We de�ne an outcome of the game as an o¤er (q; fd(s)g) made by the buyer, probabilities f�(s)g of

bringing genuine assets, and a probability � 2 [0; 1] that the seller accepts the o¤er. Let us consider

the auxiliary problem of choosing an outcome in order to maximize the expected utility of a buyer,

�
X
s2S

�
k(s) [1� �(s)] + [�(s)� �] �(s)d(s)

�
+ ���

"
u(q)�

X
s2S

�(s)d(s)

#
; (31)

subject to the constraint that the probabilities � and f�(s)g are the basis of an equilibrium in the

sub-game following o¤er (q; fd(s)g); that is:

� 2 arg max
�̂2[0;1]

�̂

�
� q +

X
s2S

�(s)d(s)

�
(32)

�(s) 2 arg max
�̂2[0;1]

�̂

�
k(s)� [�(s)� � + ���] d(s)

�
; for all s 2 S: (33)

We start by showing that:

Claim 1 Any solution of the auxiliary problem has the property that �(s) = 1 and q =
P

s2S d(s).

Proof. Consider �rst any feasible outcome hq; d; �; �i such that �(s0) < 1 for some s0. If

�(s0) = 0, then consider the alternative outcome, hq0; d0; �0; �0i, such that: (i) q0 = q, d0(s) = d(s)

for all s 6= s0, d0(s0) = 0; (ii) �0(s) = �(s) for all s 6= s0 and �0(s0) = 1; (iii) �0 = �. The

incentive constraint of the seller, (32), is satis�ed since it only depends on the product �(s)d(s).

The incentive constraint of the buyer, (33), is obviously satis�ed for s 6= s0. For s = s0 we have

k(s0) > [�(s)� � + ��] d0(s0) = 0 and so �0(s0) = 1 is optimal for the buyer. One can then verify

that, with this alternative outcome, the expected utility of the buyer increases by k(s0) > 0.

Next, consider any feasible outcome such that �(s0) 2 (0; 1): the buyer is indi¤erent between

counterfeiting asset s0 or not. We then increase �(s0) by " 2 (0; 1] and q by "d(s0), which is positive

since the incentive constraint of the buyer, (33), binds. The incentive constraint of the seller, (32)

is satis�ed because his payo¤ conditional on accepting the o¤er does not change. Because the buyer

is indi¤erent between counterfeiting asset s0 or not, an increase in �(s0) a¤ects neither his payo¤,

(31), nor his incentive constraint, (33). The corresponding increase in q, however, increases his

payo¤ strictly.
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Next, consider any feasible outcome hq; d; �; �i such that �(s) = 1 for all s; but q <
P

s2S d(s).

Then the alternative outcome with q0 =
P

s2S > q, �0(s) = 1, and �0 = �, increases the expected

payo¤ to the buyer by ��� [u(q0)� u(q)] > 0 and satis�es all the constraints.

This claim implies that we can rewrite the auxiliary problem as

max
q;d;�

�
X
s2S

[�(s)� �] d(s) + ��� [u(q)� q] (34)

s.t.
X
s2S

d(s)� q = 0 (35)

k(s) � [�(s)� � + ���)] d(s), for all s 2 S. (36)

The second condition is the �rst-order necessary and su¢ cient condition for (33) evaluated at

�(s) = 1. Next, we show:

Claim 2 Any solution of the auxiliary problem, (31)-(33), has the property that u0(q) � 1 and

� = 1.

Proof. The �rst claim holds because otherwise one could reduce the quantity produced, increase

the expected utility of the buyer, and satisfy all the constraints. To prove the second claim suppose,

towards a contradiction, that � < 1. Note �rst that the value of the auxiliary problem must be

positive: a small o¤er q0 = d0(s0) > 0, d0(s) = 0 for s 6= s0, and �0 = 1 yields a positive payo¤.

This implies that both q > 0 and � > 0. Moreover, at least one of the incentive constraints,

(36), must be binding since otherwise one could increase � without violating any of the incentive

constraints, and improve the objective. Let SB � S be the set of binding IC constraints. Since

[�(s)� � + ���] d(s) = k(s) for all s 2 SB, it follows that d(s) > 0. Now consider the following

variational experiment: increase � by some small " and decrease the payments d(s), for all s 2 SB,

so that all the incentive constraints continue to bind. Up to second-order terms, the decrease in

d(s) is equal to m(s)", where

m(s) � ��d(s)

�(s)� � + ��� ;

is the marginal rate of substitution between � and d(s) in the IC constraint for asset s 2 SB.

Lastly, to satisfy the participation constraint, the decrease in q must be, up to second order terms,
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P
s2SB m(s)". The change in the buyer�s expected utility is, up to second-order terms, equal to

�U � ", where

�U =
X
s2SB

[�(s)� �]m(s)� ���
�
u0(q)� 1

� X
s2SB

m(s) + �� [u(q)� q]

>
X
s2SB

[�(s)� �]m(s) + ��
�
u0(q)� 1

� 24q � � X
s2SB

m(s)

35
�
X
s2SB

[�(s)� �]m(s) + ��
�
u0(q)� 1

� X
s2SB

[d(s)� �m(s)] =
X
s2SB

[�(s)� �]m(s)u0(q) � 0;

where we move from the �rst line to the second line using u(q)� q > q [u0(q)� 1] � 0 (the equality

is strict because of two facts: �rst, u(q) is strictly concave and second, q > 0, since the value of

the auxiliary problem is positive); from the second line to the third line using q �
P

s2SB d(s); and

from the third to the fourth line by noting that d(s)� �m(s) = [�(s)� �]m(s)=(��).

From Claims 1-2 and the result according to which a(s) � �(s)d(s) if �(s) = �, and a(s) =

�(s)d(s) if �(s) > �, it follows that the auxiliary problem, (31)-(33), reduces to the maximization

problem of Proposition 1, (8)-(11). Now we note that the solution to the auxiliary problem is an

upper bound on the value of the buyer in any equilibrium of the game. Let (~q; f ~d(s)g) be one

solution of the auxiliary problem. Because, as argued above, the value of the auxiliary problem

is positive, it must satisfy ~q > 0 and ~d(s) > 0 for some s 2 S. Consider, for any " > 0 small

enough, the o¤er d"(s) = maxf ~d(s)� "; 0g and q" = ~q� (S+1)". By construction, this o¤er is such

that [�(s)� � + ��] d"(s) < k(s), and q" <
P

s2S d
"(s). Thus, � = 1 and �(s) = 1 is the unique

equilibrium in the subgame following (q"; fd"(s)g). By letting " go to zero and making the above

o¤er, the buyer can achieve a value arbitrarily close to that of the auxiliary problem. Therefore, in

any equilibrium, the buyer�s value must be equal to that of the auxiliary problem. Moreover, any

equilibrium outcome satis�es (32) and (33). Therefore, any equilibrium outcome must solve the

auxiliary problem.
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Supplementary Appendix to
�Liquidity and the Threat of Fraudulent Assets"

This supplementary appendix establishes results to complement and extend the main analysis of

the paper. Each section is self-contained and can be read separately.

� Appendix B, page 37, derives the equilibrium with retention requirements and variable costs

of fraud, that is used in the discussion of regulatory measures, in Section 5.2 of the paper.

� Appendix C, page 44, shows that with variable costs of fraud one can generate situations

where sellers accept buyers� o¤er with probability less than one, creating rationing at the

extensive margin.

� Appendix D, page 46, provides the detailed derivation of the dynamic equilibrium presented

in Section 5.3.

� Appendix E, page 52, shows that our model has di¤erent implications than a model with

exogenous resalability constraints, à-la Kiyotaki and Moore.

� Appendix F, page 63, shows that our model has di¤erent implications than corporate �nance-

based models of liquidity constraints.

� Appendix G, page 65, provides an over-the-counter market version of our model, where agents

buy assets in the CM in order to collateralize �xed-for-�oating risk-sharing contracts in the

DM.

� Appendix H, page 75, shows how to embed our model into the standard Capital Asset Pricing

Model (CAPM). This model provides a simple representation of the securitization process:

buyers are interpreted as professional investors who buy risky assets in the CM, package them

into portfolios and re-sell them to consumers in the DM. But DM transactions are subject to

the threat of fraud.
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B Proofs omitted in Section 5.2

This section derives the equilibrium with retention requirements and variable costs of fraud, that

is used in the discussion of regulatory measures, in Section 5.2.

In all what follows we assume that the cost of producing d(s) units of fraudulent assets is

kf (s)+ kv(s)d(s); i.e., it includes a variable cost. We consider collections of retention requirements

� � f�(s)g belonging to the set R = [0; ��]S , where �� such that

(1 + ��)max
s2S

�
kf (s)

A(s)

�
> ��:

Following the same steps as in the proof of Proposition 1 (Appendix A, page 33) we �nd that

the participation constraint of the seller is binding, and that the buyer brings genuine assets with

probability one. With these preliminary results in mind, we prove existence of equilibrium in two

steps. First, given small enough variable costs, and assuming that the seller accepts the o¤er with

probability � = 1, we solve for the equilibrium allocation and prices in Section B.1. Second, given

that these prices prevail, and given small enough variable costs, we prove in Section B.2 that a

buyer always �nds it optimal to make an o¤er that is accepted with probability one. In Section

B.3, we �x some small enough kv and solve for the optimal retention requirement in [0; ��]S .

B.1 Equilibrium assuming that � = 1

Assuming � = 1, the asset demands, fa(s)g, and o¤ers, (q; fd(s)g), maximize:

�
X
s2S

[�(s)� �] a(s) + �� [u(q)� q]

s.t.:

q =
X
s2S

d(s) (37)

d(s) � kf (s)

[�(s)� � � kv(s)] [1 + �(s)] + ��
(38)

[1 + �(s)] d(s) � a(s): (39)
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The �rst-order conditions with respect to q, d(s), and a(s) are:

� = ��
�
u0(q)� 1

�
�(s) = � + �(s)

� = �(s) + [1 + �(s)] �(s);

where, as in the paper, � is the Lagrange multiplier on the participation constraint, (37), �(s) is the

multiplier on the resalability constraint (38), and �(s) is the multiplier on the feasibility constraint,

(39). Assuming for now that q < q�, where q� is such that u0(q�) = 1, and following the same step

as in the text, we obtain our usual three-tier categorization of assets:

Liquid assets. For these assets �(s) = 0 and �(s) > 0, implying that:

d(s) =
A(s)

1 + �(s)

�(s) = � +
�

1 + �(s)

�(s) � �� + �

1 + �(s)
;

where �(s) � kf (s)=A(s) + kv(s) is, as before, the average cost of fraud on asset s.

Partially liquid assets. For these assets, �(s) > 0 and �(s) > 0, implying that:

d(s) =
A(s)

1 + �(s)

�(s) = � + �(s)� ��

1 + �(s)

��

1 + �(s)
< �(s) <

�� + �

1 + �(s)
:

Illiquid assets. For these assets, �(s) > 0 and �(s) = 0, implying that:

d(s) =
kf (s)

�kv(s) [1 + �(s)] + ��
�(s) = �

�(s) � ��

1 + �(s)
:
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From (37), we then obtain that q < q� if

q = L =
X
s2S

min

�
kf (s)

� [1 + �(s)] kv(s) + ��
;
A(s)

1 + �(s)

�
< q�:

Conversely, if the above condition is satis�ed, and if the variable costs are chosen small enough

so that kv(s) [1 + �(s)] < �� for all s 2 S, then the above price and allocation constitute an

equilibrium.

B.2 Buyers choose � = 1

We now prove that, for small enough variable costs, given the prices derived in the previous section,

a buyer always �nds it optimal to make an o¤er that is accepted with probability one; i.e., � = 1.

To that end, let us consider some collection of variable costs kv � fkv(s)gs2S in the compact set

Kv de�ned by 0 � kv(s) [1 + ��] � ��
2 for all s 2 S. These restrictions on kv ensures that the price

�(s) derived in the previous section are well de�ned continuous functions of kv and �, given that

�(s) � ��. Consider, then, the auxiliary problem given the candidate equilibrium prices derived in

the previous section. Instead of solving the full auxiliary problem, let us start by solving it for any

given � 2 [0; 1]. That is, let us consider:

v (�; kv; �) = sup
q;fd(s)g�0

�
X
s2S

[�(s)� �] [1 + �(s)] d(s) + ��� [u(q)� q] (40)

s.t.

q =
X
s2S

d(s) (41)

kf (s) + [1 + �(s)] kv(s)d(s) �
�
[�(s)� �] [1 + �(s)] + ���

	
d(s); (42)

where the prices, �(s), implicitly depend on (kv; �). We proceed with the following results. First,

we apply the Theorem of the Maximum and show:

Claim 3 The function v(�; kv; �) is continuous, satis�es v(0; kv; �) = 0 and v(�; kv; �) > 0 for all

� 2 (0; 1].

The proof follows standard arguments and is relegated to Section B.4. Next, show that:
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Claim 4 There exists some � > 0 such that, for all (kv; �) 2 Kv � R, � < � implies that

v(�; kv; �) < sup�2[0;1] v(�; kv; �).

The claim, shown in Section B.4, follows from the continuity of v(�; kv; �) and from the fact

that v(0; kv; �) = 0. Thus, for the purpose of maximizing v(�; kv; �) with respect to � 2 [0; 1], we

can without loss of generality restrict attention on � 2 [�; 1]. Having bounded � below, we can also

bound the quantity o¤ered below:

Claim 5 There exists q > 0 such that, for all � 2 [�; 1] and all (kv; �) 2 Kv � R, the output q

maximizing (40)-(42) is greater than q.

The claim is shown in Section B.4. With this in mind, for (�; kv; �) 2 [�; 1)�Kv�R, consider a

maximizer of (40)-(42) and perform the variational experiment in the proof of Proposition 1 (Claim

2 in the appendix of the paper). Following the same steps, we obtain that, when increasing � by

some small " > 0 the change in utility is, up to second order terms, equal to �U(�; kv; �)� " where

�U(�; kv; �) = �� [u(q)� q] +
X
s2SB

[�(s)� �] [1 + �(s)]m(s)� ���
�
u0(q)� 1

� X
s2SB

m(s);

SB is the set of binding IC constraints, and

m(s) =
��d(s)

[�(s)� � � kv(s)] [1 + �(s)] + ���
> 0:

To conclude the proof, we show that:

Claim 6 There is some neighborhood Nv of zero variable costs such that, for all (�; kv; �) 2 [�; 1)�

Nv �R, �U(�; kv; �) > 0.

First we note that

�� [u(q)� q] = ��
�
u(q)� u0(q)q

�
+ ��

�
u0(q)q � q

�
� ��

�
u(q)� u0(q)q

�
+ ��

�
u0(q)� 1

�
q;

where the inequality follows from the function q 7! u(q) � u0(q)q being increasing, and q � q.

Plugging this inequality back into the expression for �U(�; kv; �), and using that q �
P

s2SB d(s),
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we obtain after some manipulations:

�U(�; kv; �) � ��
�
u(q)� u0(q)q

�
+
X
s2SB

m(s) [1 + �(s)]

�
� kv(s)

�
u0(q)� 1

�
+ u0(q) [�(s)� �]

�
� ��

�
u(q)� u0(q)q

�
�
X
s2SB

m(s)kv(s) [1 + ��]
�
u0(q)� 1

�
;

where the second inequality follows because �(s) � � for all s 2 S, because �(s) � ��, and because

u0(q) � u0(q) as q � q. Now restricting attention to variable costs such that 0 � kv(s) [1 + ��] �

���=2, we can boundm(s) above by setting d(s) = q�, � = �, kv(s) = [1 + ��]
�1 ���=2, and ignoring

the �(s) � � term at the denominator. This gives the upper bound m(s) � 2q�=�. Plugging this

back in the above we �nd that:

�U(�; kv; �) � ��
�
u(q)� u0(q)q

�
�
X
s2S

kv(s)
2q�

�
:

Since u(q) is strictly concave, u(0) = 0, and q > 0, the �rst term is strictly positive. The second

term can be made arbitrarily close to zero by choosing kv close enough to zero. This proves the

claim and shows that the auxiliary problem is solved at � = 1.

B.3 Optimal retention requirements

Fix some kv 2 Nv and consider retention requirements � 2 R. By construction of Nv, for all � 2 R,

there exists an equilibrium of the form shown in Section B.1. Focusing on such equilibria, it is clear

that an optimal retention requirement maximizes L. If the asset is partially liquid or liquid, in that

�(s) � ��, then �(s) = 0. If the asset is illiquid, in that �(s) < ��, then the optimal retention

requirement solves

kf (s)

� [1 + �(s)] kv(s) + ��
=

A(s)

1 + �(s)
() [1 + �(s)]

�
kf (s)

A(s)
+ kv(s)

�
= ��;

which, by (??) is strictly less than ��.

B.4 Omitted Proofs

Proof of Claim 3. We use the Theorem of the Maximum as stated in Chapter 3.3 of Stokey, and

Lucas (1989). First, note that we can without loss of generality restrict attention to q 2 [0; Sq�],
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d(s) 2 [0; q�], for all s 2 S. Indeed, if d(s) > q�, then by (41) it follows that q > q�. Thus u0(q) < 1

and reducing d(s) and q improves the objective (40) strictly. Second, we need to show that the

correspondence �(�; kv; �) de�ned by (41), (42), q 2 [0; Sq�] and d(s) 2 [0; q�] for all s 2 S, is

continuous.

To show that it is upper hemi continuous (uhc), let us �rst note that it is non-empty as it contains

the zero o¤er, d(s) = q = 0. Next, consider a sequence (�n; knv ; �
n) converging to some (�; kv; �),

and some associated sequence (dn; qn) 2 �(�n; knv ; �n). Because for any (�; kv; �), �(�; kv; �) is a

subset of the compact [0; q�]S � [0; Sq�], the sequence (dn; qn) has a converging subsequence. Given

that the correspondence �(�) is de�ned by weak inequalities satis�ed by continuous functions, the

limit of the converging sequence must belong to �(�; kv; �).

To show that it is lower hemi continuous (lhc), consider some (d; q) 2 �(�; kv; �), and some

sequence (�n; knv ; �
n) converging to (�; kv; �). We need to �nd some sequence (dn; �n) converging

to (�; kv; �) and such that (dn; qn) 2 �(�n; knv ; �n) for all n large enough. We proceed as follows. If

for some s 2 S, the constraint (42) is not binding for d(s) with (�; kv; �) then, by continuity, for

n large enough it is not binding for d(s) with (�n; knv ; �). Thus we can pick d
n(s) = d(s). If the

constraint (42) is binding for some s with (�; kv; �), then we distinguish three sub cases.

1. If [1 + �(s)] kv(s) < [�(s)� �] [1 + �(s)] + ���, then by continuity the same strict inequality

holds for (�n; knv ) and n large enough, and we can choose d
n(s) so that the constraint (42)

holds with equality, that is:

dn(s) =
kf (s)

[�(s)� �] [1 + �n(s)]� [1 + �n(s)] knv (s) + ���n
�! d(s):

2. If [(1 + �(s)] kv(s) > [�(s)� �] [1 + �(s)]+���, then by continuity the same strict inequality

holds for (�n; knv ; �
n) and n large enough, implying that the associated IC constraint, (42),

holds for all d 2 [0; q�]. In particular, we can choose dn(s) = d.

3. If [(1 + �(s)] kv(s) = [�(s)� �] [1 + �(s)] + ��� then the left-hand side and the right-hand

side coe¢ cients multiplying d in the IC constraint (42) can be made arbitrarily close to each

other for n large enough. Thus, for n large enough, the IC constraint holds for all d 2 [0; q�],

and we can choose dn(s) = d(s).
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Since the correspondence �(�; kv; �) is compact valued, uhc, and lhc, and since the objective

(40) is continuous, it follows from the Theorem of the Maximum that v(�; kv; �) is continuous.

That v(0; kv; �) = 0 follows since, when � = 0, the objective is non-positive, and since the objective

is zero with o¤er d(s) = q = 0. That v(1; kv; �) > 0 follows because, when � > 0, a small o¤er is

feasible and, since u0(0) =1, achieves a positive value.

Proof of Claim 4. Let � � inf f� : 9 (kv; �) 2 Kv �R; v(�; kv; �) � v(1; kv; �)=2; g. To see that

� > 0, suppose by contradiction that � = 0. By de�nition of �, there exists a sequence (�n; knv ; �
n)

such that �n ! � = 0 and v(�n; knv ; �
n) > v(1; knv ; �

n)=2. Without loss of generality since Kv�R is

compact, we can assume that (knv ; �
n) has some limit (kv; �). By continuity of v( � ), we thus obtain

that v(0; kv; �) � v(1; kv; �), a contradiction. Clearly, for all � 2 [0; �) and all (kv; �) 2 Kv �R, we

have:

v(�; kv; �) <
v(1; kv; �)

2
< sup

�2[0;1]
v(�; kv; �):

Proof of Claim 5. First note that the program (40)-(42) has a maximizer because the objective

is continuous and the constraint set compact. Moreover, since the objective is strictly concave

in q, all maximizers o¤er the same level of output q. Now to prove the claim, suppose to the

contrary that we can �nd a sequence (�n; knv ; �
n; dn; qn) 2 [�; 1]�Kv �R� [0; q�]S � [0; Sq�], such

that, for each n, (dn; qn) maximizes (40)-(42), and such that qn ! 0. Clearly, since the sequence

is bounded, we can assume without loss of generality that it converges to some (�; kv; �; d; q),

where q = 0. Since the correspondence �(�) de�ning feasible o¤ers is continuous, we must have

(d; q) 2 �(�; kv; �). Moreover, since the objective (40) evaluated at (dn; qn) achieves the maximum

value v(�n; knv ; �) for each n, and since v(�) is continuous, it follows by taking the limit that (d; q)

achieves the maximum value v(�; kv; �). But since q = 0 this means that v(�; kv; �) = 0, which is

a contradiction given that � � �.
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C Variable costs of fraud and rationing at the extensive margin

Throughout this paper we assume that the production of fraudulent assets involves a �xed cost

only. This assumption is realistic to describe counterfeiting of assets and frauds in payments. It also

makes the model simple and tractable. We want to explore how our results would be a¤ected if the

cost of producing fraudulent assets had a linear component. We will show that under alternative

cost structures our model can generate resalability constraints that a¤ect both the intensive margin

(the quantity of assets transferred in a match) and the extensive margin (the frequency of trades).

In order to make our point we describe a single-asset economy where the cost of producing d

units of fraudulent asset is kf + kvd. Following the same reasoning as in Proposition 1, it can be

shown that an outcome of the game between a buyer and a seller solves

max
q;d;�

f� (�� �) d+ ��� [u(q)� d]g (43)

s.t. � q + d = 0 (44)

kf + [kv � �+ �(1� ��)] d � 0, (45)

where (q; d) is the equilibrium o¤er, � is the probability that the o¤er is accepted. If kv � � �

�(1� �), then the liquidity constraint (45) does not bind and � = 1. In the following we focus on

the case where kv < �� �(1� �).

Consider �rst the case where kf = 0 and kv > 0. If kv � � � �, then the per unit cost of of

producing fraudulent assets is less than that of acquiring genuine assets. As a consequence, the DM

shuts down, d = q = 0. Suppose next that �� � < kv < �� �(1� �). The solution to (43)-(45) is

� =
kv � �+ �

��
2 (0; 1) :

q = u0�1
�

kv
kv � �+ �

�
:

The resalability constraint takes the form of a positive probability that an o¤er is rejected. The

fraction of the meetings where the asset is accepted increases with the cost of producing fraudulent

assets, but decreases with the price of the asset and the frequency of the trading opportunities.

In order to endogenize asset prices, suppose that there is a �xed supply of the asset, A. If

kv � ��u0(q) where q = min(A; q�), then the asset is liquid, in which case � = � + �� [u0(q)� 1]
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and � = 1. If kv < ��u0(q), then

� = � + kv
[u0(A)� 1]
u0(A)

� =
kv

u0(A)��
:

The price of a partially liquid asset depends on the proportional cost of fraud but it does not depend

on the frequency of trading opportunities. In contrast, the probability that a trade is accepted

decreases with the frequency of trading opportunities so that the asset velocity is constant.

In the more general case where kf > 0 and kv > 0, the resalability constraint can a¤ect both

the quantity of assets transferred in a match and the frequency of matches. To see this, suppose

that � = � and kf < (�� � kv) q�. The solution to (43)-(45) is such that

� =
kf + kvq

��q

q = arg max
q2[q;q�]

�
kf
q
+ kv

�
[u(q)� q] :

where q = kf
���kv (assuming �� � kv > 0). First, q < q� so that agents trade less than the

surplus-maximizing quantity. Second, if

kv >
kf
�
1� �

�
q�

;

where �=
q[u0(q)�1]
u(q)�q 2 (0; 1), then q > q and � < 1. If prices are endogenous, such an outcome is an

equilibrium provided that A � q.

Kiyotaki and Moore (2005) assume that agents can only use a fraction of their capital holdings

to advance investment opportunities, while in Lagos (2010) agents can spend their assets in an

exogenously given fraction of trading opportunities. Our model can capture both e¤ects with

various setups on the cost structure of producing fraudulent assets.
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D Proof Omitted in Section 5.3

We derive the equilibrium for the dynamic extension of our model. Section D.1 provides the main

equilibrium equations and the pricing of assets in period t� 1, taking as given the price prevailing

in period t. Section D.2 derives the steady-state equilibrium. Section D.3 studies the special case

of �at money. Section D.4 provides the one-stage deviation principle allowing us to reduce agents

inter-temporal problem to a sequence of static problems.

D.1 Equilibrium equations

In Section D.4 below we show that a one-stage deviation principle applies to agents� problem.

Together with quasilinearity, this implies that agents�intertemporal optimization problem reduces

to a sequence of static problems. These static problems are identical to the one presented in the

analysis of the static model, except for one di¤erence: the terminal value of the asset is no longer

normalized to one, but is instead equal to the cum-dividend value of reselling the asset in next

period CM. With this in mind, a buyer in the CM of t� 1 choosing his portfolio of assets faces the

following problem:

max
at(s);dt(s);qt

�
X
s2S

�
�t�1(s)� � [�t(s) + 1]

�
at(s) + �� [u(qt)� qt] (46)

s.t. � qt +
X
s2S

[1 + �t(s)] dt(s) = 0 (47)

dt(s) �
k(s)

�t�1(s)� �(1� �) [1 + �t(s)]
(48)

dt(s) 2 [0; at(s)] : (49)

The �rst-order conditions associated with the problem (46)-(49) are

u0(q) = 1 +
�t
��

�t�1(s) = � [1 + �t(s)] + �t(s); for all s 2 S

�t(s) + �t(s) = �t [1 + �t(s)] ; for all s 2 S;

where �t; �t(s) and �t(s) are the Lagrange multipliers associated with the seller�s participation

constraint, (47), the resalability constraint, (48), and the feasibility constraint, (49), respectively.
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The complementary slackness conditions are

�t(s)

�
k(s)

�t�1(s)� �(1� �) [1 + �t(s)]
� dt(s)

�
= 0

�t(s) [at(s)� dt(s)] = 0:

Consider �rst an equilibrium with abundant liquidity, where �t = 0 for all t. Then, qt = q� and

�t(s) = �t(s) = 0 for all t and all s 2 S. From the asset pricing equation, �t�1(s) = � [1 + �t(s)]

for all s. Under the transversality condition limt!1 �t�t(s) = 0, the solution to this �rst-order

di¤erence equation is �t(s) = 1=r.

Consider next �liquidity-constrained" equilibria, �t > 0 for some t. As in the static model we

distinguish three classes of assets: illiquid assets (�t(s) = 0, �t(s) > 0), partially liquid assets

(�t(s) > 0, �t(s) > 0), and liquid assets (�t(s) > 0, �t(s) = 0). The price of illiquid assets solves

�t�1(s) = � [1 + �t(s)]. The condition �t(s) = 0 implies dt(s) � at(s); which yields
k(s)

��[1+�t(s)]
�

at(s). Therefore, the fraction of the stock of the asset that can be resold is �t(s) =
�t(s)
�� � 1;

where �t(s) � k(s)
[1+�(s)]A(s) ; which implies �t(s) � � � ��: The price of liquid assets solves �t�1(s) =

(� + �t) [�t(s) + 1]. The conditions �t(s) = 0 and �t(s) > 0 imply that the buyer spends all his asset,

while the resalability constraint, (48), is slack; that is, d(s) = A(s) � k(s)
(�t+��)[1+�t(s)]

. Therefore,

�t(s) � ��t � �t+��: Finally, the price of partially liquid assets solves �t�1(s)��(1��) [1 + �t(s)] =
k(s)
At(s)

since �t(s) > 0. Similarly, from � > 0 and � > 0, one can derive �t(s) 2 (�t; ��t) : Rearranging

these expressions leads to the pricing equations shown in the text.

D.2 Steady-state equilibrium

From (25) asset prices at the steady state solve

��(s) =

8>><>>:
�+��
1�����
�
1��
�(1��)+ k(s)

A(s)

1��(1��)

if

8>><>>:
(1�����)k(s)

A(s) � ��
(1��)k(s)
A(s) � �

[1��(1��)]k(s)
[A(s)+k(s)] 2 (�; ��)

(50)
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where � = �� and �� = �� + ��. The output traded in the DM is

�q =
X

s:
(1��)k(s)

A(s)
���

k(s)

��
+

A(s) + k(s)

1� �(1� �)I
n
[1��(1��)]k(s)
[A(s)+k(s)]

2(�;��)
o (51)

+
X

s:
(1��)k(s)

A(s)
>��

A(s)

1� � � ��
In [1��(1��)]k(s)

[A(s)+k(s)]
���
o:

From (52) �q is a non-decreasing function of ��. Finally, �� is the unique solution to

�� = ��
�
u0(�q)� 1

�
:

Such a solution exists if L < q�. If L � q�, then the steady state is the �liquidity-abundant"

equilibrium described above.

D.3 A special case �at money

As a special case, we now study an economy with a single asset, �at money, that pays no dividend.

This case is worthwhile studying as counterfeiting of currency has been prevalent throughout history.

We will ask whether the threat of counterfeiting a¤ects the existence of a monetary equilibrium and

the design of the optimal monetary policy. In order to study in�ation policy we assume that the

supply of money, At, is growing at a constant rate,  � At+1
At

> �. Money is injected through lump-

sum transfers to buyers, T = �t(At+1�At). Because of quasi-linear preferences, these transfers do

not a¤ect the buyer�s problem in the CM.

We focus on stationary equilibria where the real value of money is constant over time, �t+1At+1 =

�tAt. The rate of return of money is
�t+1
�t

= �1 < �. From the paper, the resalability constraint

can be rewritten as �td � k
��(1��) : One novelty is that policy, through the growth rate of the

money supply, has a direct e¤ect on the resalability of the asset. An increase in the in�ation

rate, ; makes it more costly to hold genuine money, which makes it more attractive to produce

counterfeits. If the resalability constraint does not bind, then the value of money solves

�t =
q

At
: (52)

From (25) and the fact that
�t�1
�t

= , we obtain � =  � �. Hence q solves

u0(q) = 1 +
 � �
��

: (53)
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When the resalability constraint binds, we obtain

�t =
k

[ � �(1� �)]At
(54)

q =
k

 � �(1� �) : (55)

Let �k � [ � �(1� �)] q̂ be the threshold for the counterfeiting cost below which the resalability

constraint is binding, where q̂ solves u0(q̂) = 1 + ��
�� . If k � �k, then q solves (53); otherwise q is

determined by (55). Thus, there exists a monetary equilibrium with �tAt > 0 if and only if

u0(0) > 1 +
 � �
��

: (56)

Fiat money can be valued even though sellers do not have the technology to distinguish genuine

units of money from counterfeits. The possibility of counterfeiting does not threaten the existence

of a monetary equilibrium since the cost of producing counterfeits, k > 0, is absent from (56).

In terms of policy implications, the Friedman rule ( & �) is optimal because, from (53) and

(55), q is a decreasing function of . It achieves the �rst best if and only if k � �k at  = � and

q = q�; i.e.,

k � ��q�: (57)

That is, the Friedman rule achieves the �rst-best allocation if and only if the cost of producing

counterfeits is large enough.

D.4 The one-stage deviation principle

For the seller. A seller chooses a plan fat(s) : s 2 Sg1t=1 and f�tg
1
t=1 ; where the choice of asset

holdings, at(s), is a function of the history up to the CM of t� 1, and the acceptance rule, �t(ot),

that speci�es the probability that an o¤er, ot = (qt; fdt(s)g), is accepted is a function of the history

up to the DM of t. The expected discounted utility of the seller up to period T with initial asset

holdings fa0(s)g is

UTs =
X
s2S

�0(s) [a0(s)� a1(s)] + E0

"
TX
t=1

�t�t(ot)

 
�qt +

X
s2S

[�t(s) + 1] dt(s)

!#

+E0

"
TX
t=1

�t
X
s2S

f[�t(s) + 1] at(s)� �t(s)at+1(s)g
#
;
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where the expectation is with respect to the di¤erent histories up to T; and the meeting probability

is taken into account by the expectation operator. Rearrange the terms to obtain:

UTs =
X
s2S

�0(s)a0(s) + E0

"
TX
t=1

�tt�t(ot)

 
�qt +

X
s2S

[�t(s) + 1] dt(s)

!#

+E0

"
T�1X
t=0

�t
X
s2S

�
��t(s) + �

�
�t+1(s) + 1

�	
at+1(s)

#
�
X
s2S

�T�T (s)aT+1(s):

Taking the limit as T goes to in�nity, and using the assumptions that aT+1(s) is bounded above

and limT!1 �T�T (s) = 0, we have

U1s =
X
s2S

�0(s)a0(s) + E0

" 1X
t=1

�t�t(ot)

 
�qt +

X
s2S

[�t(s) + 1] dt(s)

!#

+E0

" 1X
t=0

�t
X
s2S

�
��t(s) + �

�
�t+1(s) + 1

�	
at+1(s)

#
:

It is then clear from the above expression that the one-stage deviation principle applies. In the DM

of period t the seller accepts or rejects an o¤er depending on the sign of�qt+
P

s2S [�t(s) + 1]Etdt(s).

(Remember that the o¤er is independent of the seller�s asset holdings.) In the CM of period t the

seller chooses his asset holdings to maximize
�
��t(s) + �

�
�t+1(s) + 1

�	
at+1(s). Since ��t(s) +

�
�
�t+1(s) + 1

�
� 0, it is optimal for sellers not to hold assets.

For the buyer. A buyer chooses a plan fat(s) : s 2 Sg1t=0 and a sequence of o¤ers, fqt; fdt(s) :

s 2 Sgg1t=1, where the choice of asset holdings, at(s), is a function of the history up to the CM of

t � 1, and the o¤er, ot, is a function of the history up to the DM of t. The expected discounted

utility of the buyer up to T is

UTb =
X
s2S

�0(s) [a0(s)� a1(s)] + E0

"
TX
t=1

�t�t(ot)

(
u(qt)�

X
s2S

[�t(s) + 1] dt(s)

)#

+E0

"
TX
t=1

�t
X
s2S

f[�t(s) + 1] at(s)� �t(s)at+1(s)g
#
:
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Rearrange the terms to obtain:

UTb =
X
s2S

�0(s)a0(s) + E0

"
T�1X
t=0

�tUt(fat(s)g; qt; fdt(s)g)
#
� E0

"X
s2S

�T�T (s)aT+1(s)

#
;

where

Ut =
X
s2S

�
��t(s) + �

�
�t+1(s) + 1

�	
at+1(s) + ��t+1(ot+1)

 
u (qt+1)�

X
s2S

�
�t+1(s) + 1

�
dt+1(s)

!
:

As before, we can take the limit as T goes to obtain

U1b =
X
s2S

�0(s)a0(s) + E0

"
T�1X
t=0

�tUt(fat(s)g; qt; fdt(s)g)
#
:

The buyer faces a sequence of independent problems in each period, where he has to maximize

Et�1 [Ut(fat(s)g; qt; fdt(s)g)] ; taking as given the acceptance rule of sellers.
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E Comparison: models with exogenous resalability constraints

In this section we show that the implications of our model with endogenous resalability constraints

di¤er from the implications of leading models with exogenous resalability constraints.

E.1 Proportional resalability constraints

We start with the proportional resalability constraints of Kiyotaki and Moore (2005, henceforth

KM): agents can re-sell a fraction �(s) 2 [0; 1] of their holdings of asset s 2 S. We �rst show an

observational equivalence result: it is possible to choose asset supplies and resalability constraints

in order to obtain the same cross-sectional asset prices as in our fraud-based model. However, the

comparative statics and policy implications often go in opposite directions than in KM. Notable

di¤erences between the two models include:

1. Flight to liquidity. With KM resalability constraints, an increase in � increases the price of

partially liquid and liquid assets, and increases welfare. In our model, increasing the frequency

of trades has the additional e¤ect of increasing incentives to commit fraud. As a result, the

prices of liquid assets increase, but the prices of partially liquid assets decrease. In some case,

welfare can also decrease.

2. Open-market operations. With KM resalability constraints, a budget-balanced open market

purchase of partially liquid assets in exchange for liquid assets leads to an increase in the

interest rate, as measured by the yield of liquid assets. Moreover, it increases welfare. In our

model we obtain the opposite e¤ects: the interest rate goes down, and welfare decreases.

3. Aggregate liquidity measurement. With KM resalability constraints, an increase in the Divisia

liquidity aggregate is always associated with an increase in welfare. In our model, we can

have the opposite e¤ect. This is because, in our model, the Divisia method underestimates

the true contribution of partially liquid assets to aggregate liquidity.

4. Excess volatility. With KM resalability constraints, the prices of all partially liquid and

liquid assets can be indeterminate and exhibit endogenous �uctuations and excess volatility.

In contrast, in our fraud-based model only the prices of liquid assets can be indeterminate.
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Therefore, even though the model with KM resalability constraints can generate the same

cross-sectional asset prices as in our model, it has di¤erent implications for dynamics.

5. Shocks to assets� resalability. Several authors (e.g., Ajello, 2010; Shi, 2011) formulate the

hypothesis that recessions are driven by liquidity shocks formalized by a reduction of the

exogenous resalability of some assets. Under the KM speci�cation, however, these models can

have the counterfactual implication that the prices of the assets that become more di¢ cult

to resale increase. In contrast, in our fraud-based model we can formalize such a shock as a

reduction in k(s), which reduces the resalability of the asset. If the asset that becomes less

recognizable is a partially liquid asset, then its price decreases.

The model. Assume that buyers in the DM can only re-sell a fraction �(s) 2 [0; 1] of their

holding of asset s 2 S. These resemble the exogenous resalability constraints of Kiyotaki Moore

(2001, 2005). Following the same steps as in the paper, the asset demands and o¤ers of buyers

solve:

max
a(s);q;d(s)

�
X
s2S

[�(s)� �] a(s) + �� [u(q)� q] (58)

subject to X
s2S

d(s) = q (59)

0 � d(s) � �(s)a(s); for all s 2 S: (60)

Note that, since �(s) 2 [0; 1], we do not need to add the feasibility constraint. An equilibrium is a

collection of prices, f�(s)g, asset demands, fa(s)g, and DM o¤er, (q; fd(s)g), such that the asset

demands and the o¤er solve the buyer�s problem (58)-(60) given prices, and the asset market clears;

i.e., a(s) = A(s) for all s 2 S.

Let � be the multiplier on the seller�s participation constraint, (59), and �(s) the multiplier on

the resalability constraint, (60). The �rst-order conditions are:

� = ��
�
u0(q)� 1

�
= �(s) (61)

�(s) = � + �(s)�(s): (62)

Following similar calculations as in the paper, we obtain the following Proposition.
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Proposition 3 Let L �
P

s2S �(s)A(s). If L � q�, then q = q� and �(s) = � for all s 2 S. If

L < q�, then

q = L =
X
s2S

�(s)A(s) (63)

�(s) = � + ��(s); (64)

for all s 2 S, where � = �� [u0(q)� 1].

Partial observational equivalence. We show that the model with exogenous resalability con-

straint is observationally equivalent to our fraud-based model: one can set asset supplies and

resalability constraints, �(s), so as to obtain the same cross-sectional asset prices as in our model.

Consider the fraud-based model described in the paper, with asset supplies ~A(s), equilibrium

output ~q, and equilibrium asset prices ~�(s). Let us start with the liquid assets, i.e., assets such

that ~�(s) � �� + ~� in our fraud-based model. The price of such assets is ~�(s) = � + ~�. Assuming

q = ~q and � = ~�, one can set �(s) = 1 so that �(s) = ~�(s). Consider next illiquid assets, i.e., assets

such that ~�(s) � �� in our fraud-based model. The price of such assets is ~�(s) = �. Therefore,

we have to set �(s) = 0 to obtain �(s) = ~�(s). Finally, consider partially liquid assets, i.e., assets

such that �� < ~�(s) < ��+~�. The prices of such assets are ~�(s) = �+ [~�(s)� ��]. The condition

�(s) = ~�(s) implies �(s) = ~�(s)���
� . See Figure 4. In order to guarantee that q = ~q and � = ~�, one

can choose the supplies of assets such that
P

s2S �(s)A(s) = ~q.

Even though the equilibrium distribution of asset prices in the model with KM resalability

constraints is the same as in our fraud-based model, asset velocities are di¤erent: in our model,

an asset with �(s) = � is partially traded in the DM, whereas �(s) = 0 for such an asset in the

KM model; i.e., it is not traded at all. Moreover, we show below that the comparative statics and

welfare analysis often go in the opposite direction in the two models.

Flight to liquidity. From Proposition 3, when � increases in the KM model, q is una¤ected but

� rises. Because, from (58), the liquidity premium of all assets are proportional to �; it follows that

the prices of the partially liquid and liquid assets go up. In the fraud-based model, an increase

in � has an additional e¤ect by raising incentives to produce fraudulent assets, which tightens
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Figure 4: Observational equivalence: Asset prices and proportional liquidity constraints.

resalability constraints. As a consequence, the prices of partially liquid assets fall. Moreover, in

the fraud-based model, which assets are liquid or illiquid is endogenously determined, and depends

on the frequency of trades: as � increases, the set of illiquid assets expands and the set of liquid

assets shrinks. Such an e¤ect cannot be captured in a model with exogenous liquidity constraints.

Open market operations. Suppose the Central Bank purchases some partially liquid asset, s,

by selling some more liquid asset, s0, with �(s0) > �(s). We consider a small open market operation

that is budget balanced at t = 0, which implies:

�(s)�A(s) + �(s0)�A(s0) = 0 ) �A(s) = ��(s
0)

�(s)
�A(s0); (65)

where �A(s0) > 0 and �A(s) < 0. The increase in liquidity in the DM is:

�(s)�A(s) + �(s0)�A(s0) =
1

�

�
[�(s)� �]�A(s) +

�
�(s0)� �

�
�A(s0)

�
:

Substituting the above equation into (65), we obtain the change in liquidity as

�

�

�(s0)� �(s)
�(s)

�A(s0):
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The change in welfare is the change in liquidity multiplied by �,

�W = �

�
1

�(s)
� 1

�(s0)

�
| {z }

yield spread

�(s0)�A(s0)| {z }
quantity sold

> 0:

Thus, exchanging liquid for illiquid assets is always welfare improving. This is intuitive: the Central

Bank wants to have as many liquid assets in circulation as possible.

Perhaps surprisingly, our model has the opposite implication. The reason for this di¤erence is

that in our fraud-based model partially liquid assets are underpriced, in the sense that their prices

is low relative to the �true" amount of liquidity services they provide in the DM. When the Central

Bank buys partially liquid assets, it syphons out assets that provide good liquidity at a low price.

But, when it sells liquid assets, it injects assets that provide good liquidity at a high price. If one

insists on budget balanced intervention, the net e¤ect on aggregate liquidity and welfare is strictly

negative. The prices of partially liquid and liquid assets go up instead of going down.

Aggregate liquidity measurement. From (63) and (64), changes in aggregate liquidity in the

KM model can be calculated using the standard Divisia method:

�Ldivisia =
X
s2S

�(s)� �
�

�A(s): (66)

i.e., the marginal social value of asset s is proportional to its holding cost, or convenience yield.

In the KM model, an increase in the Divisia aggregate, �Ldivisia > 0 in equation (66), is always

associated with an increase in welfare.

This is not so in our fraud-based model. For instance, the open-market which sells liquid assets

in exchange for partially liquid ones increases the Divisia liquidity aggregate; i.e., �Ldivisia > 0 in

equation (66). At the same time, it decreases welfare. The reason is that, in our model, partially

liquid assets contribute their full supply to aggregate liquidity, even though their convenience yields

are smaller than that of the most liquid assets. In other word, the convenience yields of partially

liquid asset underestimate their true contribution to aggregate liquidity.

Resalability constraints. Suppose that �(s) decreases; i.e., the resalability of asset s decreases.

From (63), output falls and � rises, but the e¤ect on the price of asset s is ambiguous. To see this,
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suppose that there is a single asset and the utility function is u(q) = (q+b)1���b1��
1�� ; with b close to

0. From (64), the asset price is

� = � + ��
�
�1��A�� � �

	
:

If � > 1, then � decreases with �: as the resalability constraint becomes tighter, the price of the

asset increases. In our fraud-based model, however, a decrease in k(s) tightens the resalability

constraint, and so the price of partially liquid assets declines.

Asset supply e¤ects. In the KM model, the liquidity premia of all assets are proportional to

�: From (63), an increase in the supply of any asset with �(s) > 0 and �(s) > � results in a higher

q; which reduces �, and consequently, prices of all assets traded in the DM fall. In our fraud-based

model, by contrast, the prices of partially liquid assets, s0 6= s, are a¤ected by their own supply,

and do not respond to changes in the supply of asset s.

Furthermore, our model is better suited to address the observation that �asset demand curves

slope down" (see Schleifer, 1986, and the limit-to-arbitrage literature more generally). To see this,

suppose that there is a continuum of assets in in�nitesimal supply. Then, an increase in the supply

of any asset has no e¤ect on its price. In our model, by contrast, an increase in the supply of a

partially liquid asset a¤ects its price, even in the limit where the supply of all assets is small.

Optimal liquidity provision. In the model with KM resalability constraints, aggregate liquidity,

L =
P

s2S �(s)A(s), is strictly increasing with the supply of liquid or partially liquid assets. The

monetary authority thus can always satiate liquidity needs in the DM by issuing su¢ cient liquid

assets. In a version of the model with �at money, this �nding suggests that the Friedman rule

implements the �rst best. In our fraud-based model, however, aggregate liquidity has an upper

bound independent of asset supplies:

L =
X
s2S

min

�
A(s);

k(s)

��

�
�
X
s2S

k(s)

��
:

Therefore, even if assets are abundant, the liquidity they provide may not be su¢ cient for the

economy needs, due to the recognizability problem of assets. (Some researchers, e.g., Caballero
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(�On the macroeconomics of asset shortages", 2006) , have emphasized the shortage of safe assets

to explain the recent crisis and dynamics of asset prices.) This result implies that, in the context

of the model with �at money, the Friedman rule may not implement the �rst best if the cost to

produce counterfeits is su¢ ciently low.

Dynamics. We now show that the model with KM resalability constraints generates di¤erent

dynamics than our fraud-based model. In order to make our point, it su¢ ces to consider an

economy with a single asset. This asset is in�nitely lived and generates a dividend equal to � units

of numéraire good in every CM. In the DM an agent can only spend a constant fraction, �, of his

asset holdings. A buyer in the CM of t� 1 faces the following problem:

max
at;dt;qt

(
�
X
s2S

�
�t�1 � � (�t + �)

�
at + �� [u(qt)� qt]

)
(67)

s.t. � qt + (�t + �) dt = 0 (68)

dt 2 [0; �at] : (69)

The �rst-order conditions are

u0(qt) = 1 +
�t
��

�t�1 = � (�t + �) + ��t

�t = �t (�t + �) ;

where �t and �t are the Lagrange multipliers associated with the seller�s participation constraint,

(68), and the resalability constraint, (69), respectively. Following the same method as in the paper,

the dynamics of asset prices are

�t�1 = (�t + �)�
�
(� + ��t) if � > 0
� if � = 0

(70)

In a liquidity-constrained equilibrium, output is given by

qt = � (�t + �)A:

The unique solution for the price of illiquid assets is �t = 1=r.
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Suppose next that the asset is at least partially liquid, � > 0. From (70) and using �t =

�� [u0(qt)� 1] ; the asset price solves

�t�1 = �
�
1 + ��

�
u0 [� (�t + �)A]� 1

		
(�t + 1) . (71)

Consider the limit when � ! 0 and take the functional form u(q) = (q+b)1���b1��
1�� with b close to

0. The di¤erence equation (71) can be reexpressed as

�t�1 = �
�
(1� ��)�t + �1���A���1��t

	
.

The steady-state value of the asset price is

�� =
1

A

�
�1����

1� � + ���

� 1
�

.

With this in mind we obtain:

@�t�1
@�t

����
�t=

��

= 1� � [1� �(1� ��)] :

If
@�t�1
@�t

���
�t=

��
< �1 then the equilibrium is indeterminate, which occurs if � > 2

1��(1���) . The price

of a partially liquid asset can be indeterminate and exhibit endogenous �uctuations provided that

agents are su¢ ciently risk-averse. In our fraud-based model only liquid assets exhibit �uctuations

in prices.

E.2 Match-speci�c resalability constraints

We consider a version of the model where some assets are accepted in a fraction of the matches,

as in Lagos (2010) or Lester, Postlewaite, and Wright (2011). For tractability, and following the

above mentioned papers, we assume that there are only two assets, S = f1; 2g. Asset 1, which is

accepted in all matches, is said to be liquid, while asset 2 is accepted in a fraction � 2 [0; 1] of the

matches, and is called a partially liquid asset. We show that, just as KM resalability constraints,

match-speci�c resalability constraints have di¤erent implications than the endogenous resalability

constraints studied in the paper:

1. Flight to liquidity. In the model with match speci�c resalability constraint constraints, in-

creasing the frequency of trades always increase asset prices and welfare. We can obtain the

opposite in our model.
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2. Open market operations. With match speci�c resalability constraints, a budget balanced open

market purchase of partially liquid assets in exchange for liquid assets leads to an increase in

welfare. In our model we obtain the opposite e¤ect.

3. Increasing the resalability of the partially liquid asset. With match speci�c resalability con-

straint, increasing � can reduce the price of liquid assets. In contrast, in our model if the

recognizability of a partially liquid asset improves; i.e., k(s) increases, its price increases but

the price of liquid assets is una¤ected.

The model. Let
�
q; d(s)

	
denote the o¤er in a match where only asset 1 is accepted, and

�
�q; �d(s)

	
the o¤er in a match where both assets are accepted. The buyer�s problem in the CM is

max
a(s);fq;d(s)g;f�q; �d(s)g

�
X
s2S

[�(s)� �] a(s) + ��
�
� [u(�q)� �q] + (1� �)

�
u(q)� q

�	
subject to

d(1) + d(2) = �q

d(1) = q

d(s) 2 [0; a(s)] ; for all s 2 S:

The �rst-order conditions are

�� = ���
�
u0(�q)� 1

�
� = ��(1� �)

�
u0(q)� 1

�
�(s) = � + �(s), s 2 f1; 2g

�(1) = �� + �

�(2) = ��;

where �(s) is the Lagrange multiplier associated with the feasibility constraint for asset s, and ��

and � are the Lagrange multipliers associated with the seller�s participation constraints in the two

types of matches.
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The marginal welfare e¤ect of an open-market operation that consists in the Central bank selling

liquid assets and purchasing less liquid ones is measured by

�W = ��
�
�
�
u0(�q)� 1

�
[�A(1) + �A(2)] + (1� �)

�
u0(q)� 1

�
�A(1)

	
= [�(2)� �]�A(2) + [�(1)� �]�A(1):

The change in welfare is equal to a weighted sum of the changes in asset supplies where the weight

assigned to each asset is its holding cost. We already saw that this measure was inaccurate in our

fraud-based model because the holding cost of an asset has a direct e¤ect on its resalability that is

ignored by reduced form models.

We distinguish three regimes.

Regime 1: A(1) � q� Then liquidity is abundant in all matches. In this case, �(1) = �(2) = �

and q= �q = q�. The �rst best is achieved and all assets are priced at their fundamental value.

Regime 2: A(1) < q� and A(1)+A(2) � q� Then liquidity is scarce in a fraction of the matches.

In this case, �q = q�, q = A(1), and

�(1) = � + ��(1� �)
�
u0(q)� 1

�
�(2) = �:

Asset 2 is illiquid (at the margin) while asset 1 is liquid. The price of the liquid asset increases

with � and decreases with its own supply. A policymaker who purchases asset 2 in exchange for

asset 1 raises output in matches where liquidity is scarce. These �ndings are consistent with our

fraud-based model. An increase in � raises the velocity of illiquid assets whereas in our fraud-

based model the liquidity of illiquid assets is una¤ected by �. Indeed, in our model � reduces the

resalability of illiquid assets.

Regime 3: A(1) < q� and A(1)+A(2) < q� Then liquidity is scarce in all matches. In this case,

�q = A(1) +A(2), q = A(1), and

�(1) = � + ��
�
u0(q)� 1

�
+ ���

�
u0(�q)� u0(q)

�
�(2) = � + ���

�
u0(�q)� 1

�
:
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According to our terminology, asset 1 is liquid while asset 2 is partially liquid. Asset prices increase

with � and decrease with the supply of liquid assets. These �ndings are consistent with those

of a model with proportional liquidity constraints. In contrast, in our fraud-based model the

prices of partially liquid assets decreases with � because � a¤ects incentives to commit frauds and

resalability. The supply of illiquid assets only a¤ects �(2). If asset 2 can be used more often, �

increases, its price increases, but the price of asset 1 decreases. In contrast, in our fraud-based

model the resalability of partially liquid assets does not a¤ect the price of liquid assets.

Suppose the Central Bank purchases some asset 2 by selling some asset 1. Budget balance

implies:

�(1)�A(1) + �(2)�A(2) = 0 ) �A(2) = ��(1)
�(2)

�A(1);

where �A(1) > 0 and �A(2) < 0. The change in expected welfare in the DM is:

�W = ��
�
�
�
u0(�q)� 1

�
[�A(1) + �A(2)] + (1� �)

�
u0(q)� 1

�
�A(1)

	
= ��

�
�
�
u0(�q)� 1

� ��(2)� �(1)
�(2)

�
�A(1) + (1� �)

�
u0(q)� 1

�
�A(1)

�
= �

�
1

�(2)
� 1

�(1)

�
�(1)�A(1) > 0:

As before, the change in welfare is the product of the yield spread and the quantity sold. In contrast,

in our fraud based model such an open market operation can lead to a reduction in social welfare

by reducing aggregate liquidity.
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F Comparison: corporate-�nance-based models

Holmstrom and Tirole (2011, Section 1.2), HT henceforth, proposed a model of investment with

moral hazard. The baseline economy is composed of a �rm and competitive outside investors that

are risk neutral. There are two periods. In the initial period the �rm receives an opportunity to

invest. The cost of the investment is I. In the second period, the investment pays o¤ R if it is a

success and 0 otherwise. The probability of success depends on an unobserved action taken by the

entrepreneur of where to invest I. There is an e¢ cient technology with probability of success ph and

an ine¢ cient technology with probability of success p` < ph. The use of the ine¢ cient technology

allows the entrepreneur to capture some private bene�t, B. HT shows that the maximum amount

the �rm can borrow against the returns of its investment, the pledgeable income, is

ph

�
R� B

ph � p`

�
:

Our model and HT have similarities: (i) They both propose a theory of endogenous liquidity

constraints; (ii) Both models incorporate some hidden actions: in our model, the decision to produce

fraudulent assets, in HT the decision of an investment technology. (iii) Opportunistic behavior

(default or fraud) does not materialize in equilibrium; (iv) Both theories have implications for how

liquidity a¤ect asset prices. In our view, the most salient di¤erences between the two approaches

are the following:

1. Timing of hidden actions. The timing of the moral hazard problem di¤ers in a crucial way.

In HT, the hidden action follows the investment opportunity. In our model, by contrast,

the hidden action is taken before the agent receives a spending opportunity. This is because

lack of commitment and enforcement forces agents to hold assets in advance of spending

opportunities, and because the hidden action determines the quality of these assets. As a

consequence, in our model the holding cost of the asset as well as the frequency of trades, �,

determine the incentives to take di¤erent actions. This would not be the case if the action

was taken after the consumption opportunity is realized. As shown in the paper, our novel

comparative statics arise precisely because the frequency of trades, �, and the asset holding

cost enter the resalability constraints.

63



2. Liquidity di¤erences in secondary asset markets. While HT endogenizes inside liquidity (the

aggregate supply of corporate claims) our model endogenizes di¤erences in outside assets

liquidity. In particular:

(a) Our model can explain a shortage of liquidity even when assets are abundant.

(b) Our model can generate violations of the no-arbitrage principle: assets with identical

cash �ows can be traded at di¤erent prices. By contrast, in the Liquidity Asset Pricing

Model (see Chapter 4 in HT�s book), a no-arbitrage principle holds: the price of all

outside assets can be found by applying some common stochastic discount factor to

their cash �ow.

3. Market structure. We consider di¤erent market structures. While HT stays as close as

possible to Arrow-Debreu, we consider an over-the-counter market with bilateral meetings

and bargaining. The frequency of trades in the OTC market matter for incentives, resalability

constraints, and asset prices. Moreover, the presence of bilateral meetings provides a natural

framework to discuss issues related to private information and signaling.
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G Risk sharing in OTC markets

This appendix provides a simple model of an OTC market for bilateral risk sharing, such as the

market of interest-rate swaps. We show that, up to small modi�cations, this OTC�market model

can be mapped into our benchmark model.

G.1 The model

There are two dates, t 2 f0; 1g, one good, and a �nite set S of assets. Asset s 2 S supply is A(s) and

pays o¤ at the end of t = 1 a dividend normalized to one. The economy is populated by two kinds

of traders who seek to share risk with each others: �buyers", who seek to purchase risk-sharing

services, and sellers, who seek to provide such services. At time zero, buyers can purchase assets in

a perfectly competitive centralized market (CM), where asset s 2 S is sold at price �(s). At t = 1,

a fraction � 2 (0; 1] of buyers and sellers are matched at random in pairs in an OTC market.

We specify the demand for risk sharing services in the OTC market so that the contracts

signed by buyers and sellers resemble �swaps," whereby buyers and sellers make a �xed-for-�oating

exchange of cash �ow streams. Precisely, we assume that a buyer enters the OTC market with an

obligation to make a �oating payment to some outside counterparty at time t = 1. Formally, the

buyer is endowed with one share of some risky tree with payo¤ x at the end of t = 1, for some

negative random variable x with twice continuously di¤erentiable moment generating function. In

a pairwise meeting, the buyer makes an o¤er to the seller specifying that, at the end of t = 1,

the seller will make the �oating payment �qx to the buyer, and the buyer will make some �xed

payment to the seller. We assume one sided limited commitment: the seller can commit to his

payment at the end of t = 1 but the buyer cannot. Therefore, the buyer�s promise to pay at the

end of t = 1 has to be fully collateralized by assets acquired at t = 0. As in the paper, we assume

that the buyer can transfer fraudulent assets. Namely, at t = 0, the buyer can produce any quantity

of fraudulent assets of type s at a �xed cost k(s). The terminal value of a fraudulent asset at the

end of t = 1 is zero.
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G.2 Payo¤s

Using the same notations as in the paper, the sum of all payo¤s of a buyer is:

cB = �
X
s2S

�
k(s) [1� �(s)] + [�(s)� 1] a(s)

�
+ �

�
x � (1� q)�

X
s2S

�(s)

�
+ (1� �)x; (72)

and the sum of all payo¤s of a seller is:

cS = �

�
x � q +

X
s2S

�(s)

�
: (73)

To simplify the analysis, we assume that buyers and sellers evaluate the utility associated with

their random payo¤s in the following way. As in Shi (1997) and Shimer (2010), we organize buyers

and sellers in large families that share all the idiosyncratic risk created by random matching and

mixed strategies. We assume that all the �oating payments, x, are perfectly correlated across

buyers, since otherwise all payment risks would be diversi�ed away within each family, eliminating

families�demand for risk sharing services.

In our OTC context, it is natural to interpret a family as a �nancial institution employing a

large number of traders. The systematic payment risk, represented by x, could represent the risk

associated with �uctuations in interest rates. Financial institutions share such risk by trading in

OTC markets for interest rate swaps.

We assume that families derive CARA utility over the aggregate payo¤ of all their traders.

Restricting attention to symmetric equilibria where all buyers make the same o¤er in the OTC

market, and aggregating the payo¤s (72) across all the traders in a buyer�s family, it follows that

a buyer�s family has a payo¤ of the form:

deterministic constant+ ���(1� �q) � x+ (1� ���) � x;

where �q is the o¤er of a representative buyer, and �� is the probability that a representative seller

accepts the o¤er. The �rst term contains the payo¤s associated with asset transfers and fraudulent

asset productions. These payo¤s are deterministic when aggregated at the family level. The second

term is the quantity of risk collectively held by buyers whose o¤er was accepted by some seller.

The third term is the quantity of risk collectively held by the buyers who did not meet a seller or
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whose o¤er was rejected. Now, let � be the coe¢ cient of absolute risk aversion of a buyer�s family,

and de�ne

B � � [���(1� �q) + (1� ���)] : (74)

It then follows that a buyer�s family has a marginal utility

�B(x) = deterministic constant� e�Bx: (75)

over payo¤s. As is standard in large family models, an individual trader in a buyer�s family uses

the marginal utility �B(x) as a stochastic discount factor for his payo¤. That is, an individual

buyer in the family evaluates his payo¤ according to E [�B(x)cB], taking �B(x) as given, where cB

is de�ned in equation (72). Similarly, an individual seller in a seller�s family evaluates his payo¤

according to E [�S(x)cS ], where �S(x) = deterministic constant� e�Sx, and

S � �����q:

Now, let us calculate the expected payo¤s of buyers and sellers, conditional on all random variables

except x. Note that, conditional on all other random variables, both cB and cS can be written as

a¢ ne functions K0+K1x, for some constants K0 and K1. Therefore, to obtain the expected payo¤

of a trader conditional on all random variables except x, all we need to do is to calculate

E
�
e�x (K0 +K1x)

�
= E

�
e�x

�
� [K0 � z()K1] ; where z() � �E [xe

�x]

E [e�x]

Moreover, we show in subsection G.5.1 that z() is positive and increasing. This immediately leads

to the following Lemma:

Lemma 1 Let z() � �E [xe�x] =E [e�x]. Then z() is a positive and increasing function.

Moreover, conditional on all random variables except x, the expected payo¤ of a buyer is, up to

some positive constant of proportionality:

�
X
s2S

�
k(s)If~a(s)>0g + [�(s)� 1] a(s)

�
+ �

�
z(B) � q �

X
s2S

�(s)

�
� z(B);

and the expected payo¤ of a seller is, up to some positive constant of proportionality:

�

�
� z(S) � q +

X
s2S

�(s)

�
:
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This Lemma shows that there is a very simple mapping between the model of the paper and

the present OTC market setup: the utility of a buyer is z(B) �q, and the cost of a seller is z(S) �q.

The two constants that individual buyers and sellers take as given, B and S , are endogenous and

depend on the amount of risk that a typical family holds after trading in the OTC market.

G.3 Equilibrium

Proposition 4 In any symmetric equilibrium: z(B) � z(S); �(s) � 1 for all s 2 S; genuine

assets are acquired with probability one; the asset demands and o¤er solve:

max
q;fa(s);d(s)g

�
�
X
s2S

[�(s)� 1] a(s) + � [z(B)� z(S)] q
�

(76)

s.t. � z(S)q +
X
s2S

d(s) = 0 (77)

d(s) � k(s)

�(s)� (1� �) ; for all s 2 S (78)

0 � d(s) � a(s); for all s 2 S: (79)

0 � q � 1: (80)

If, in addition, B > S, then the seller accepts the o¤er with probability one.

To understand the �rst restriction, note that if B < S , then there would be negative gains

from transferring q > 0 trees, implying that q = 0 or � = 0 in any pairwise meeting. But then,

from (74) and (75), it follows that B = � > S = 0, a contradiction. The restriction that �(s) � 1

follows from elementary no-arbitrage reasoning: indeed, if the asset price were less than its terminal

payo¤, �(s) < 1, then the asset demand would be in�nite.

The asset demands derived above imply the following equilibrium asset prices. We use the

same notations as in the paper and we let: �(s) � k(s)=A(s), �(s) � minf1; �(s)=�g, and L �P
s2S �(s)A(s). First, consider the case when there is enough liquidity to achieve the e¢ cient

amount of risk sharing in the OTC market.

Proposition 5 Suppose

L > z(��q�) � q�; where �q� = min
�
�;
1

2

�
: (81)
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Then, in equilibrium: �(s) = 1 for all s 2 S. Moreover, if � > 1=2, then ��q = 1=2 and S = B.

If, on the other hand, � < 1=2, then q = � and S < B.

The second case is:

Proposition 6 Suppose L < z(��q�)q�. Then, in equilibrium, q solves z(��q)q = L, B = 1��q,

and S = �q. Letting �(s) � k(s)=A(s), asset prices are given by:

1. Liquid assets: if �(s) � � z(B)z(S)
, �(s) = 1 + �

h
z(B)
z(S)

� 1
i
.

2. Partially liquid assets: if � < �(s) < � z(B)z(S)
, then �(s) = 1� � + �(s).

3. Illiquid assets: if �(s) � �, then �(s) = 1.

G.4 Comments

The results of this Appendix con�rm the robustness of our benchmark model: Proposition 4 is

almost identical to Proposition 1 in the main body of the paper, and the asset-pricing formulas of

Propositions 5 and 6 are essentially the same as in Proposition 2 in the main body of the paper.

In addition, the OTC model o¤ers a few novel insights that we describe below.

The e¢ cient trade. Because of the large family assumption, the e¢ cient trade in a bilateral

meeting depends on the matching technology. To see why, note that the total amount of risk

transferred by the buyer�s family is equal to �q. Given that all buyers hold one tree, the maximum

feasible risk transfer is �. In addition, on aggregate, a family of buyers will not �nd it optimal to

transfer more than 1=2 shares of risky tree �i.e., the amount that results in perfect risk sharing.

Taken together, this implies that the e¢ cient trade in a bilateral meeting solves:

�q� = min

�
�;
1

2

�
: (82)

The condition (81) for assets to be priced at their fundamental value. The condition

has the same interpretation as in the paper: if there is enough liquidity to realize the e¢ cient trade,

in equation (82), then assets are priced at their fundamental value. To derive it explicitly, note

that the cost to an individual seller of providing the e¢ cient amount of insurance is z(S)q
�. But if
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all other sellers in the family provide that e¢ cient amount of insurance, then the cost is z(��q�)q�,

where q� is de�ned in equation (82). For this to be the basis of an equilibrium, we need that a

buyer�s liquidity is su¢ cient to cover that cost; i.e. L � z(��q�)q�, as stated in condition (81).

Some new insights coming out of condition (81). A di¤erence between condition (81) and

its counterpart in the benchmark model is that � a¤ects fraud incentives in two ways: as in the

paper, an increase in � increases the incentives to commit fraud, because traders are more likely

to encounter counterparties in the DM, who cannot distinguish between fraudulent and genuine

assets. But there is now another e¤ect that can go in the opposite direction: if � � 1=2 an increase

in � allows a buyer�s family to transfer less risk per match and achieve the same aggregate amount

of risk transfer. Therefore, each buyer is in charge of a smaller trade, and so he has less incentives

to commit fraud.

The frequency of trades, �, and the liquidity premium. When �(s) > 1 for some s, then the

maximum liquidity premium is �
�
z(B)
z(S)

� 1
�
. But B = �(1��q), S = �q, and z(��q)q = L. So

�q and S are increasing functions of �L, while B is a decreasing function of �L. Taken together,

this means that z(B)=z(S) is a decreasing function of �L, so we can write the maximum liquidity

premium as:

� � (some decreasing function of �L) :

One sees that, contrary to the benchmark model, the e¤ect of � on the maximum liquidity premium

is ambiguous. One of the e¤ect of the benchmark model is still present: an increase in � means

that a trader �nds a match with higher probability, which makes liquidity more valuable and this

increases the liquidity premium. But there is another e¤ect going in the opposite direction. When

� is higher, the family can share more risk in other matches: this lowers the value of sharing risk

in any particular match, makes liquidity less valuable, and thus decreases the liquidity premium.

Either e¤ect can dominate: if B ' S , and in this sense liquidity is plentiful, then the second

e¤ect dominates. If every k(s) is less than �A(s), and in this sense liquidity is scarce, then �L is

independent on �, and the �rst e¤ect dominates.
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G.5 Proofs

G.5.1 Proof of Lemma 1

All we need to show is that z() is positive and increasing. Positivity follows because, since  � 0

and x < 0, xe�x � x < 0. Taking expectations on both sides leads to E [xe�x] < 0. Now,

di¤erentiating z() with respect to  leads to:

z0() =
E
�
x2e�x

�
E [e�x]� E [xe�x]2

E [e�x]2

But note that:

E
�
xe�x

�2
= E

�
�xe�x

�2
= E

h�
x2e�x

�1=2 �
e�x

�1=2i2
< E

�
x2e�x

�
E
�
e�x

�
where the inequality follows from the Cauchy-Schwarz inequality, given that x2e�x and e�x are

linearly independent. Plugging this back shows that z0() > 0.

G.5.2 Proof of Proposition 4

The proof that B � S and �(s) � 1 follows from the argument stated in the text. Next, we

follow the same steps as in the paper. Claims 1 through 4 follow identically, and we can rewrite

the auxiliary problem as:

max
q;d;�

�
X
s2S

[�(s)� 1] d(s) + �� [z(B)� z(S)] q

s.t. � z(S)q +
X
s2S

d(s) = 0

k(s) � [�(s)� 1 + ��] d(s):

To conclude the proof, there are three cases to consider. The �rst case is when B > S and

�(s0) < 1 + �
h
z(B)
z(S)

� 1
i
for some s0 2 S. Then the value of the auxiliary problem is positive

� for instance, a small o¤er q = d(s0)=z(S) > 0, d(s) = 0 for s 6= s0, and � = 1 would yield a

positive payo¤. Applying the arguments following Claim 4 in the paper, we then obtain that, for

any equilibrium of the game, � = 1, �(s) = 1 for all s, and the asset demands and o¤er solve the

problem of Proposition 4.
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The second case is when B > S and �(s) � 1+�
h
z(B)
z(S)

� 1
i
for all s 2 S. Then the objective

of the buyer becomes, after substituting in the participation constraint:X
s2S

�
1 + ��

h
z(B)
z(S)

� 1
i
� �(s)

�
d(s) � 0:

Regardless of �, the buyer can achieve this zero upper bound by o¤ering q0 = d0(s) = 0. Therefore,

the buyer�s value in any equilibrium must be zero. Given that any equilibrium outcome is feasible

for the auxiliary problem, it thus follows that any equilibrium outcome solves the auxiliary problem.

In particular, by Claim 4, �(s) = 1 for all s. Moreover, in a symmetric asset market equilibrium,

all buyers hold a(s) = A(s) > 0. Since �(s) > 1 for all s 2 S, the equilibrium o¤er must be

d(s) = A(s) > 0 and z(S)q =
P

s2S A(s). Substituting the previous expression into the buyer�s

objective derived above yields:
P

s2S

�
1 + ��

h
z(B)
z(S)

� 1
i
� �(s)

�
A(s) = 0. It thus follows that

� = 1 and �(s) = 1 + �
h
z(B)
z(S)

� 1
i
. Clearly, the equilibrium asset demands and o¤er solve the

problem of Proposition 4.

The third case is when B = S . Then, the value of the auxiliary problem must be zero. As

above, any equilibrium must solve the auxiliary problem, and so by Claim 4 we have that �(s) = 1

for all s. Also note that in a symmetric asset market equilibrium, a(s) = A(s) for all buyers. If

�(s) > 1 for some s, then d(s) = a(s) = A(s), implying that the value of the auxiliary problem

is negative. Thus, �(s) = 1 for all s. Clearly, the equilibrium asset demand and o¤er solve the

problem of Proposition 4.

G.5.3 Proofs of Proposition 5 and 6

Case 1: if B = S. In that case, the value of the auxiliary problem is zero and, as shown at the

end of the proof of Proposition 4, �(s) = 1 for all s 2 S. Also, using the formulas (74) and (75) for

B and S , one obtains that 2��q = 1. Since � 2 [0; 1], this implies that � � 1=2. Plugging this

back into (75), we �nd S = �=2. Using the participation constraint of a seller, we �nd:

z(S)q = z
��
2

� 1

2��
=
X
s2S

d(s) �
X
s2S

min

�
k(s)

�
;A(s)

�
= L =) �L � z

��
2

� 1
2
:

where: the inequality follows from the resalability constraint, (78), evaluated at �(s) = 1, and the

feasibility constraint (79); the implication follows from the fact that � 2 [0; 1]. Taken together, this
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means that a necessary condition for B = S is � � 1=2 and �L � z
�
�
2

�
1
2 . Conversely, one easily

veri�es that, if these two conditions hold, then one can construct an equilibrium with B = S .

Moving on to the case when B > S , we let � be the multiplier on the participation constraint

(77), �(s) the multiplier on the resalability constraint (78), �(s) the multiplier on the feasibility

constraint (79), and  the multiplier on the constraint (80) that the tree transfer cannot exceed

one unit. The �rst-order conditions can be written:

� = �

�
�B �  
�S

� 1
�
; � = �(s) + �(s); and �(s) = 1 + �(s):

We consider to cases:

Case 2: if B > S and � = 0. Then �(s) = 1 for all s 2 S. Moreover,  > 0 and so

q = 1. But then S < B implies that � < 1=2. Also, from the participation constraint, z(S)q =

z(��) =
P

s�S d(s) � L, which can be rearranged as �L � z(��)�. Conversely, if � < 1=2 and

�L � z(��)�, then the above is the basis of an equilibrium with B > S and � = 0.

Case 3: if B > S and � > 0. Following the same arguments as in the paper, we obtain the

following characterization of asset prices:

1. If �(s)=� � 1, then �(s) = 1.

2. If �(s)=� � �B� 
�S

, then �(s) = 1 + �
�
�B� 
�S

� 1
�
.

3. Otherwise, �(s) = 1 + � + �(s).

In addition,
P

s2S d(s) = L; i.e., all liquidity is used up in the OTC transaction. Using the

participation constraint L = z(S)q and keeping in mind that S = ��q, we obtain that z(��q)q =

L. If q < 1, we have that  = 0, and prices are the same as in Proposition 6. If q = 1, then we can

pick any  2
�
0; � [z(B)� z(S)]

�
. In all case, z(��q)q = L and q � 1 implies that z(��) � L, or

�L � z(��)�. Moreover, B > S also implies that q < 1=(2�). Plugging this into z(��q)q = L, we

obtain that �L < z
�
�
2

�
�
2 . Conversely, if �L � z(��)� and �L < z

�
�
2

�
�
2 , then one can construct

an equilibrium where B > S and � > 0.

Wrapping up we �nd the following characterization, which implies Proposition 5 and 6:
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� There exists an equilibrium with � = 0 and B = S if and only if �L � z
�
�
2

�
�
2 and � �

1
2 .

� There exists an equilibrium with � = 0 and B > S if and only if �L � z(��)� and � < 1
2 .

� There exists an equilibrium with � > 0 and B > S if and only if �L � z(��)� and

�L < z
�
�
2

�
�
2 . If, moreover, the �rst inequality is strict, then the prices are the ones given in

Proposition 6.
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H A fraud-based CAPM

In this Appendix we embed our fraud friction into the standard Capital Asset Pricing Model

(CAPM) of Sharpe (1964). We view the CM as a competitive market where professional investors

buy and sell risky assets among each others. The DM is a decentralized market where these

professional investors can re-sell these assets to consumers. The gains from trade in the DM arise

because professional investors spread the risk of assets to the broader investment base represented

by consumers; i.e., in the language of the paper, the DM is a market where professional investors

buy risk sharing services from consumers. As in the main body of the paper, DM trades are

threatened by fraud.

Interpretations. This fraud-based CAPM provides a simple representation of the securitization

process. Intermediaries can be viewed, say, as securitizers who compete to purchase the mortgages

of homeowners. The DM stands in for the securitization process, whereby mortgages are pooled

together into mortgage based securities and sold to the general public. Exposure to fraud vary

across types of mortgages, capturing the commonly held view that subprime mortgages are more

susceptible to fraud than prime mortgages.

Stepping further away from the main paper, we can also think of professional investors buying

and selling a broader range of assets, setting up an investment fund, and o¤ering consumers to buy

shares in their investment funds. In that case, fraudulent assets represent claims to assets that were

not actually acquired, as in many cases of fraud �led by the Securities and Exchanges Commission

(SEC). The cost of fraud can di¤er across assets because it may be easier to defraud investors on

some part of a portfolio than on others: for instance, one may argue that it is easier to commit

fraud on private equity, on opaque or complex assets, or on novel assets.

Main results. This appendix con�rm the robustness of our results and show how they can be

integrated in a textbook asset pricing model. We �nd that, if the cost of fraud is large enough

relative to the gains from transferring risk in the DM, then it is easy for professional investors

to re-sell assets to consumers, and there is full risk sharing between them. Moreover, assets are

priced according to their fundamental value, which in this context means that the standard CAPM
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formula holds. If the cost of fraud is not large enough, then there is partial risk sharing. Professional

investors hold more risk than consumers: they cannot re-sell as much asset as they would like in

the absence of fraud frictions. Just as in the main body of the paper, we obtain a three-tier

characterization of assets, holding fundamentals (risk, dividend) �xed:

1. Liquid assets: if an asset cost of fraud is large enough, then it is fully re-sold to consumers in

the DM, and the resalability constraint is slack. Such an asset is priced according to its risk

contribution to consumers�portfolio. Thus, it ends up with a high price because consumers

hold less risk than professional investors. Note that, for this class of assets, a modi�ed version

of CAPM holds after replacing the market portfolio by the portfolio of consumers.

2. Partially liquid assets: if an asset cost of fraud takes on intermediate values, then the asset

is also fully re-sold to consumers in the DM. But the resalability constraint binds: as in

the paper this means that the equilibrium price has to fall below the price of an otherwise

identical liquid asset. The price of such an asset decreases with its on own supply, even if

this asset is negligible relative to the aggregate supply of risk �a feature that is reminiscent

of empirical evidence from the literature on limits to arbitrage (see Schleifer, 1986). For this

class of assets, no version of CAPM hold.

3. Illiquid assets: if an asset cost of fraud is low enough, then the asset is not fully re-sold

to consumers. Professional investors have to retain some of it in their portfolio. Such an

asset is priced according to its risk contribution to professional investors�portfolio. Thus, it

ends up with a low price because professional investors hold more risk than consumers. Note

that, for this class of assets, a modi�ed version of CAPM holds after replacing the market

portfolio by the portfolio of professional investors. The pricing formula is reminiscent of

evidence about market segmentations, whereby agents who specialize in trading some assets

(dealers, professional investors, etc...) somehow have di¢ culties re-selling these assets to non

specialists. As a result, they end up holding too much of the risk of these assets, and they

require a higher return for holding them (Collin-Dufresne, Goldstein, and Martin, 2001, and

Gabaix, Krishnamurthy, and Vigneron, 2007).
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H.1 The formal model

There two dates, t 2 f0; 1g. The economy is populated by a measure one of professional investors

and a measure one of consumers. An professional investor (consumer) is a coalition of nP (nC) risk

averse agents with CARA utility

�nP
�
E
�
e
� �
nP
(c0+c1)

�
over consumption streams (c0; c1) 2 R2, with a negative consumption being interpreted as produc-

tion. The utility of a consumer is de�ned similarly, with nP being replaced by nC .

There is a �nite set S of assets. The supply of asset s 2 S is A(s), and at the end of t = 1 it

pays o¤ the dividend:

y(s) = �y(s) + (s)f;

where �y(s) is a constant component and (s) is the exposure to f , a random component a¤ecting

all assets, which we take to be normally distributed with mean zero and variance 1. For simplicity

we assume that (s) > 0 and we impose the technical condition:

�y(s)� (s) �

minfnP ; nCg
X
s02S

(s0)A(s0) � 0:

We model the process through which assets are allocated from professional investors to con-

sumers in the following way. We assume that, at t = 0, there is a Walrasian market (the CM)

where only professional investors participate and buy the entire supply of �nancial assets. But pro-

fessional investors only hold these assets temporarily: at t = 1 there is a decentralized market (the

DM) where professional investors meet consumers and sell them these assets. Precisely, we assume

that, at time t = 1 in the DM, there is full matching of professional investors and consumers.36 A

professional investor o¤ers a consumer to buy up to aC = faC(s)g shares of each asset. She also

o¤ers a price schedule: if the consumer decides to purchase fractions � = f�(s)g 2 [0; 1]S of the

maximum o¤ers, faC(s)g, then she has to pay �(�), for some function such that �(0) = 0.

As in the main body of the paper, there is a moral hazard problem: the professional investor

can defraud the consumer. Namely, instead of purchasing the entire o¤er aC(s) of asset s in the

36Handling partial matching in this setup is made di¢ cult because it creates an additional source of risk. One
could circumvent that di¢ culty using the framework of Appendix G .
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CM, she can buy only a fraction �(s) 2 [0; 1] and commit fraud on the remaining fraction, 1� �(s),

at cost k(s) [1� �(s)]. That is, k(s) is for asset s the cost of fraud per �y(s) dollars of asset s face

value. Summarizing, the timing of move is as follows:

� The professional investor �rst commits to an o¤er faC(s)g and �(�), and also chooses a

portfolio faP (s)g of asset to acquire for its own proprietary investment.

� Then, the professional investor chooses, for each asset s, the fractions �(s) of aC(s) to purchase

in the DM, and the fraction 1� �(s) on which to commit fraud.

� The professional investor is matched with a consumer, and the consumer decides the frac-

tions f�(s)g to acquire. If the consumer accepts a fraction �(s) of the o¤er, she receives

�(s)�(s)aC(s) genuine assets.

The payo¤ of a family of professional investor, c0 + c1, is:

�(�)�
X
s2S

�
p(s)

�
aP (s) + �(s)aC(s)

�
+
�
1� �(s)

�
k(s)

�
+
X
s2S

�
aP (s) + �(s) (1� �(s)) aC(s)

�
y(s)

After plugging this expression into the CARA utility function, we �nd that the certainty-equivalent

payo¤ can be written �(�) + UP (aP ; aC ; �; �) where

UP (aP ; aC ; �; �) = �
X
s2S

�
�p(s)

�
aP (s) + �(s)aC(s)

�
+
�
1� �(s)

�
k(s)

�

+
X
s2S

�
aP (s) + �(s) (1� �(s)) aC(s)

�
�y(s)� �

2nP

�X
s2S

�
aP (s) + �(s) (1� �(s)) aC(s)

�
(s)

�2
:

Similarly, the certainty-equivalent payo¤ of a consumers� family is ��(�) + UC(aP ; aC ; �; �),

where:

UC(aP ; aC ; �; �) =
X
s2S

�
�(s)�(s)aC(s)

�
�y(s)� �

2nC

�X
s2S

�(s)�(s)aC(s)(s)

�2
:

H.2 Equilibrium

Just as in the original model, we consider the auxiliary problem of maximizing the payo¤ of the

professional investor:

UP (aP ; aC ; �; �) + �(�)
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with respect to (aP ; aC ; �; �) and � , subject to the constraint that the fractions (�; �) are the basis

of an equilibrium in the subgame following o¤er (aC ; �):

UP (aP ; aC ; �; �) + �(�) � UP (aP ; aC ; ~�; �) + �(�)

UC(aP ; aC ; �; �)� �(�) � UC(aP ; aC ; �; ~�)� �(~�);

for all alternative ~� and ~�. We proceed in two steps. First, we simplify the auxiliary problem and

show the analogue of Proposition 1 in the main body of the paper. Second, we solve for asset prices,

and provide the analogue of Proposition 2 in the main body of the paper.

Proposition 7 The equilibrium value of a professional investor coincide with the value of the

auxiliary problem, and is given by the maximum of

�
X
s2S

p(s)

�
aP (s)+aC(s)

�
+
X
s2S

�
aP (s)+aC(s)

�
�y(s)� �

2nP

�X
s2S

aP (s)(s)

�2
� �

2nC

�X
s2S

aC(s)(s)

�2
with respect to aP (s) � 0 and aC(s) � 0, and subject to the incentive constraint k(s)=p(s) � aC(s).

With this in mind, we let an equilibrium be a collection of prices fp(s)g and asset demands,

faP (s); aC(s)g, such that: the asset demands solve the problem of a professional investor, as given

in Proposition 7; and asset markets clear; i.e., aP (s)+aC(s) = A(s). As before, there are two cases

to consider.

Proposition 8 (Full risk sharing) Let p�(s) = �y(s)� �(s)
P

s02S (s
0)A(s0) denote the CAPM

price of asset s 2 S and suppose that:

X
s02S

(s0)min

�
A(s0);

k(s0)

p�(s0)

�
� nC

X
s02S

(s0)A(s0): (83)

Then CAPM holds: p(s) = p�(s) for all s 2 S and there is full risk sharing:

1

nI

X
s2S

(s)aI(s) =
1

nC

X
s2S

(s)aC(s):

The other case is:
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Proposition 9 (Partial risk sharing) Suppose that condition (83) does not hold. Then, in equi-

librium, there is partial risk sharing, in that 1
nI

P
s2S (s)aI(s) >

1
nC

P
s2S (s)aC(s). Letting

p(s) � �y(s) � �
nI
(s0)

P
s2S (s)aI(s) and p(s) � �y(s) � �

nC
(s0)

P
s2S (s)aC(s), asset prices are

given by:

1. Liquid assets: if k(s)=A(s) � p(s), then p(s) = p(s).

2. Partially liquid assets: if k(s)=A(s) 2 (p(s); p(s)), then p(s) = k(s)=A(s).

3. Illiquid assets: if k(s)=A(s) � p(s), then p(s) = p(s).

H.3 Arbitrage

In the above, we have derived conditions under which identical assets can trade at di¤erent prices:

an asset that is relatively easier to re-sell (large k(s), small A(s)) to a consumer trades at a

premium, even if it has the exact same fundamental characteristics (expected dividend and risk).

One would think, then, that obvious arbitrage opportunities would arise if we relaxed the short-

selling constraint.37 Our results are, however, robust to relaxing the short-selling constraint

To see why, assume that, in order to short an asset in the CM, a professional investor has to

borrow this asset from some other professional investor. Crucially, a professional investor who lends

an assets cannot re-sell it in the DM; i.e., in order to transfer an asset to an outside investor, one

needs the physical stock certi�cate. The intuition for why this is su¢ cient to preclude arbitrage is

intuitive: essentially, this means that an asset on loan cannot be used to transfer risk to consumer.

If an asset is liquid or partially liquid, in that p(s) > p(s), then this constraint creates a strictly

positive opportunity cost, equal to p(s)� p(s). Clearly, in equilibrium, the lending fee of that asset

has to be greater than the opportunity cost. Now we argue that it has to be exactly equal to the

opportunity cost. Indeed, each asset is in strictly positive supply, which implies that there are

more securities held long than short.38 Hence, only a fraction of the supply of asset is lent, which

37Consider two assets (s; s0) with identical fundamental characteristics but di¤erent prices, say p(s) > p(s0). Then,
one would think that a professional investor should be able to make arbitrage pro�ts by shorting one share of s, buying
one share of s0: he would pocket the price di¤erence, p(s)� p(s0) > 0 in the CM, and use the dividend of asset s to
repay the dividend of asset s0.

38This follows from the market clearing condition: shares held long = exogenous supply + shares held short.
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implies in turns that holders of the asset have to be indi¤erent between lending or not (Graveline

and McBrady, 2010).

H.4 Proofs

H.4.1 Proof of Proposition 7

As before we proceed in several steps.

Claim 7 To solve the auxiliary problem, we can restrict attention to price schedules such that

�(�) = UC(aP ; aC ; �; �).

Indeed, take any feasible (aP ; aC ; �; �) and � , and consider the alternative price schedule �̂(~�) �

UC(aP ; aC ; �; ~�) for all ~�. Together with (aP ; aC ; �; �), this price schedule satis�es the two IC

constraints. Moreover, evaluating the IC constraint of the consumer at ~� = 0, we obtain that

�(�) � UC(aP ; aC ; �; �) = �̂(�). Hence, with �̂(~�) instead of �(~�), the objective of the professional

investor�s auxiliary problem increases weakly.

Claim 8 To solve the auxiliary problem, we can restrict attention to � such that �(s) > 0 for all

s 2 S.

Consider any feasible (aP ; aC ; �; �) with �(~�) = UC(aP ; aC ; �; ~�). Suppose that �(s0) = 0 for

some s0 2 S. Then consider the alternative choice obtained by setting �(s0) = 1 and aC(s0) = 0,

and keeping everything else the same. Clearly, the IC constraint of the consumer is satis�ed, since

it only depends on �(s)aC(s). The IC constraint of the intermediary continues to hold for �(s) 6= s0,

and it also holds for s0 because aC(s0) = 0.39

Claim 9 The IC constraint of the professional investor can be written:

� p(s)aC(s) + k(s) + (1� �(s))aC(s)�y(s)

� �

nP
(1� �(s))aC(s)(s)

X
s02S

(s0)

�
aI(s

0) + (1� �(s0))�(s0)aC(s0)
�
� 0

for all s 2 S, with equality if �(s) 2 (0; 1).
39Since � 7! UP (aP ; aC ; �; �) is concave, it is su¢ cient to check the IC constraint coordinate-per-coordinate.
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Since � 7! UP (aP ; aC ; �; �) is concave, �rst-order conditions are necessary and su¢ cient in the

IC constraint. The result follows by taking derivative with respect to �(s), and keeping in mind

that �(s) > 0.

Claim 10 To solve the auxiliary problem, we can restrict attention to � such that �(s) = 1 for all

s 2 S.

Consider any feasible (aP ; aC ; �; �) with �(~�) = UC(aP ; aC ; �; ~�). Suppose that �(s0) 2 (0; 1) for

some s0. Then the corresponding IC constraint holds with equality. In particular, since k(s0) > 0,

it follows that aC(s0) > 0 and

p(s0)� (1� �(s0))�y(s0) +
�

nP
(s0)(1� �(s0))

X
s02S

�
aP (s

0) + (1� �(s0))�(s0)aC(s0)
�
= 0:

Then consider the alternative choice obtained by setting �0(s0) = 1, a0C(s) = �(s0)aC(s0), and

keeping everything else the same. The right-hand side of the s0 IC constraint of the professional

investor decreases, and so this IC constraint holds. The other IC constraints, only depends on the

product �(s)aC(s), which stays the same, and so they are all satis�ed. Lastly, the objective of the

professional investor increases strictly.

Taken together the above claims imply that, to solve for the value of the auxiliary problem, it

is su¢ cient to maximize

�
X
s2S

p(s)

�
aP (s) + aC(s)

�
+
X
s2S

�
aP (s) + aC(s)

�
�y(s)

� �

2nP

�X
s2S

�
aP (s) + (1� �(s)) aC(s)

�
(s)

�2
� �

2nC

�X
s2S

�(s)aC(s)(s)

�2
with respect to �(s) 2 [0; 1], aI(s) � 0, aC(s) � 0 and subject to the IC constraint:

k(s) � aC(s)

�
p(s)� (1� �(s))�y(s) + �

nP
(1� �(s))(s)

X
s02S

(s0)

�
aP (s

0) + (1� �(s0))aC(s0)
��
:

Note that a lower bound for the value of the problem is zero since it is feasible to choose

aP (s) = aC(s) = �(s) = 0. Also, if both aP (s) and aC(s) are large enough, then the objective

is strictly negative, for any other choice of aP (s0), aC(s0) and �(s0). So, to �nd the value of the

problem, we can restrict attention to a compact set of aP (s) and aC(s). We are left maximizing
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a continuous function on a compact: we thus know the problem has a solution. Now, if at this

solution, �(s) = 0 for some s 2 S, then the same value is achieved by �0(s) = 1, a0C(s) = 0, and

a0P (s) = aP (s) + aC(s), and keeping everything else the same. So we can always consider solutions

such that �(s) > 0 for all s.

Now, in a neighborhood of such a solution, we make the change of variable

~aP (s) � aP (s) + (1� �(s))aC(s)

~aC(s) � �(s)aC(s):

The objective becomes:

�
X
s2S

p(s)

�
~aI(s)+~aC(s)

�
+
X
s2S

�
~aI(s)+~aC(s)

�
�y(s)� �

2nP

�X
s2S

~aP (s)(s)

�2
� �

2nC

�X
s2S

~aC(s)(s)

�2
and the IC constraint becomes:

�(s)k(s) � ~aC(s)
�
p(s)� (1� �(s))�y(s) + �

nP
(1� �(s))(s)

X
s02S

(s0)~aP (s
0)

�
:

We now show that:

Claim 11 To solve the auxiliary problem, we can restrict attention to �(s) such that �(s) = 1 for

all s 2 S.

Start from a solution of the auxiliary problem and, for all s, replace �(s) by the the largest

�0(s) such that the IC constraint holds. Clearly, this does not change the value of the objective, so

this is also a solution of the problem. If this results in �0(s) = 1 for all s, we are done. Otherwise,

if �0(s) < 1 for some s, then the IC constraint must bind, and furthermore:

k(s) < ~aC(s)

�
�y(s)� �

nP
(s)

X
s02S

(s0)~aP (s
0)

�
:

Otherwise it would be possible to increase �(s) further without violating the IC constraint. Multi-

plying both sides by �0(s) and replacing the resulting strict inequality into the binding IC constraint,

we obtain that:

p(s) < �y(s)� �

nP
(s)

X
s02S

(s0)~aP (s
0): (84)
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But then for all s such that �0(s) < 1, we increase ~aP (s) by ", and simultaneously lower �0(s) so

that all the corresponding IC constraints hold. Note that these increases do not impact the IC

constraint for those s such that �0(s) = 1. Thus, this deviation is feasible. The marginal increase

in the objective is: X
s :�0(s)<1

"
�p(s) + �y(s)� �

nP
(s)

X
s02S

(s0)~aP (s
0)

#
;

which is strictly positive because of (84), a contradiction. Lastly, we have

Claim 12 In any equilibrium, the value of an intermediary is equal to the value of the auxiliary

problem.

We �rst note that the value of the auxiliary problem is an upper bound of the value of the

professional investor in any equilibrium. Keeping this in mind, let aP and aC be solution of the

auxiliary problem and consider any candidate equilibrium such that the professional achieves a

strictly lower value. The intermediary could o¤er maxfaC � "; 0g, �(1) = UC(aP ; aC � "; 1; 1)� ",

and �(~�) = UC(aP ; aC � "; 1; ~�). The unique equilibrium in the corresponding subgame is then

� = 1 and � = 1. By letting " go to zero, one sees that the professional investor can guarantee

herself a value arbitrarily close to that of the auxiliary problem. In particular, she can achieve a

value strictly higher than the one in the candidate equilibrium, a contradiction.

H.4.2 Proof of Propositions 8 and 9

We solve for the unique equilibrium in steps.

Claim 13 If an asset demand faP (s); aC(s)gs2S solves the professional investor�s problem, then

1

nP

X
s2S

(s)aP (s) �
1

nC

X
s2S

(s)aC(s): (85)

Indeed, if the opposite equality were true, it would be possible to increase the intermediary�s

objective by lowering some aC(s) and increase some aP (s).

Claim 14 In a �full risk sharing" equilibrium, where (85) holds with equality:

1

nP

X
s2S

(s)aP (s) =
X
s2S

(s)A(s) =
1

nC

X
s2S

(s)aC(s):
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In a �partial risk sharing" equilibrium, where (85) holds with inequality:

1

nP

X
s2S

(s)aP (s) >
X
s2S

(s)A(s) >
1

nC

X
s2S

(s)aC(s):

This follows directly from combining (85) with the market clearing condition aI(s) + aC(s) =

A(s). Now, letting �(s) be the multiplier on the IC constraint for asset s 2 S, the �rst-order

necessary and su¢ cient conditions are:

p(s) � �y(s)� �

nP
(s)

X
s02S

(s0)aP (s
0); with \ = " if aP (s) > 0 (86)

p(s) � �y(s)� �

nC
(s)

X
s02S

(s0)aC(s
0)� �(s); with \ = " if aC(s) > 0; (87)

and �(s) (k(s)=p(s)� aC(s)) = 0, with complementary slackness. Based on this, we have:

Claim 15 In a full risk-sharing equilibrium, CAPM holds in that

p(s) = p�(s) = �y(s)� �(s)
X
s02S

(s0)A(s0):

In equilibrium, either aP (s) > 0 or aC(s) > 0. If aP (s) > 0, then the claim follows from (86).

If aC(s) > 0, then (87) holds with equality, implying that p(s) � p�(s). But, in a full risk-sharing

equilibrium, (86) writes p(s) � p�(s). Taken together, these inequalities imply that p(s) = p�(s) as

claimed.

Claim 16 There exists a full risk-sharing equilibrium if and only if (83) holds.

If there exists a full risk-sharing equilibrium, then p(s) = p�(s). By market clearing, aC(s) �

A(s), and by the IC constraint aC(s) � k(s)=p�(s). Thus, aC(s) � minfA(s); k(s)=p�(s)g. Plug-

ging this into the condition that
P

s2S (s)aC(s) = nC
P

s2S (s)A(s), we obtain inequality (83).

Conversely, suppose that (83) holds. Then it is possible to �nd faC(s)gs2S so that aC(s) � A(s),

aC(s) � k(s)=p(s), and
P

s2S (s)aC(s) = nC
P

s2S (s)A(s). One then easily veri�es that these

asset demands are the basis of a full risk sharing equilibrium, together with p(s) = p�(s) and

aP (s) = A(s)� aC(s).

Claim 17 In a partial risk-sharing equilibrium, aC(s) > 0 for all s 2 S.
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If aC(s) = 0 for some s 2 S, then it would be possible to increase the intermediary�s utility by

increasing aC(s) (this does not violate the IC constraint) and decreasing aP (s).

For the next claim, note that the FOC implies that the price of asset s, p(s), must lie in between

the following two bounds:

p(s) � �y(s)� �

nI
(s0)

X
s2S

(s)aI(s) and p(s) � �y(s)� �

nC
(s0)

X
s2S

(s)aC(s)

With these de�nitions in mind, we have:

Claim 18 In a partial risk-sharing equilibrium:

1. If k(s)=A(s) � p(s), then p(s) = p(s).

2. If k(s)=A(s) � p(s), then p(s) = p(s).

3. Otherwise, p(s) = k(s)=A(s).

Suppose k(s)=A(s) � p(s) but p(s) > p(s). Then, from (86), aP (s) = 0. Together with

market clearing, this implies that aC(s) = A(s). Plugging this into the IC constraint, we �nd that

p(s)A(s) � k(s), p(s) � p(s), a contradiction.

Suppose k(s)=A(s) � p(s) but p(s) < p(s). Then, from (87), we have that the IC constraint

must bind, and p(s)aC(s) = k(s). Together with the market-clearing condition, this implies that

p(s)A(s) � k(s), p(s) � p(s), a contradiction.

Now suppose that p(s) < k(s)=A(s) < p(s). If p(s) = p(s), then p(s) < k(s)=A(s), so the IC

constraint does not bind, and p(s) = p(s), a contradiction. If, on the other hand, p(s) = p(s), then

p(s) � k(s)=A(s) and so the IC constraint binds if aC(s) � A(s). Therefore, aC(s) < A(s) and, by

market clearing, aI(s) > 0. But this means that p(s) = p(s), a contradiction. Since p(s) > p(s),

we have that aI(s) = 0 and thus, by market clearing, aC(s) = A(s). Since p(s) < p(s), the IC

constraint binds, and therefore aC(s) = A(s) = k(s)=p(s)) p(s) = k(s)=p(s).

Claim 19 There exists a partial risk sharing equilibrium if and only if (83) does not hold.

Suppose a partial risk sharing equilibrium exists, and let x � 1
nP

P
s02S (s

0)aP (s
0), so that

p(s) = �y(s)� (s)�x. Note that, if p > p(s), then aP (s) = 0, and k(s)=A(s) > p(s). If p(s) = p(s),
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then the IC constraint binds and so aC(s) = k(s)=p(s), and aP (s) = A(s) � k(s)=p(s). Taken

together, this implies that:

aP (s) = max

�
0; A(s)� k(s)

�y(s)� (s)�x

�
:

Multiplying by (s) and adding up, we obtain:

nPx =
X
s2S

(s)max

�
0; A(s)� k(s)

�y(s)� (s)�x

�
: (88)

In a partial risk-sharing equilibrium, this equation must be satis�ed for some x > 1=nP
P

s2S (s)A(s).

But note that the left-hand side of the above equation is increasing, while the right-hand side is

non-increasing. Thus, if the equation is satis�ed for some x >
P

s2S (s)A(s), then the left-hand

side must be less than the right-hand side when evaluated at 1=nP
P

s2S (s)A(s). That is:

nP
X
s2S

(s)A(s) <
X
s2S

(s)max

�
0; A(s)� k(s)

p�(s)

�
,nP

X
s2S

(s)

�
A(s) +

k(s)

p�(s)

�
<
X
s2S

(s)max

�
A(s);

k(s)

p�(s)

�
,nP

X
s2S

(s)

�
A(s) +

k(s)

p�(s)

�
<
X
s2S

(s)

�
A(s) +

k(s)

p�(s)
�min

�
A(s);

k(s)

p�(s)

��
,
X
s2S

(s)min

�
A(s);

k(s)

p�(s)

�
< nC

X
s2S

(s)A(s):

where: the second line follows by adding
P

s2S (s)k(s)=p(s) on both sides of the equation; the

third line follows from the identity maxfa; bg = a + b � minfa; bg; the fourth line follows from

re-arranging keeping in mind that nP + nC = 1. This establishes the �if" part of the proposition.

For the �only if", note that if condition (83) does not hold, then the �xed point equation for

x, (88), has a solution greater than
P

s2S (s)A(s). Then, one easily checks that the following

is an equilibrium: p(s) � �y(s) � �(s)x, aP (s) � max
n
0; A(s)� k(s)

p(s)

o
, aC(s) � A(s) � aP (s) =

min
n
A(s); k(s)p(s)

o
, p(s) � �y(s)� �

nc
(s)

P
s02S (s

0)aC(s
0), and p(s) as given in the claim above.
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