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Abstract 

This paper explores the potential of transformation and other 
schemes in constructing a sequence of simple binomial processes that 
weakly converges to the desired diffusion limit. Convergence results 
are established for valuing both European and American contingent claims 
when the underlying asset prices are approximated by simple binomial 
processes. We also demonstrate how to construct reflecting and 
absorbing binomial processes to approximate diffusions with boundaries. 
Numerical examples show that the proposed simple approximations not only 
converge, but also give more accurate results than existing methods, 
such as that of Nelson and Ramaswamy (19901, especially for longer 
maturities. 
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Introduction 

Binomial models were first introduced by Sharpe (1978) and Cox, 

Ross, and Rubinstein (1979) to price options on assets with lognormal 

prices. This approach is attractive for valuing both American 

contingent claims and options with alternative asset price processes for 

which a closed-form option pricing formula, such as that of Black and 

Schole (19731, is not available. Cox and Rubinstein (1985) conceptually 

extend their model to approximate general diffusion processes. However, 

the resulting lattice is complicated by the fact that the number of 

states grows exponentially from one period to the next. A simple way to 

avoid such complexity is to transform the process into one that can be 

easily approximated by computationally simple binomial lattices whose 

nodes grow linearly in number from period to period. This idea has been 

used by Nelson and Ramaswamy (1990) in binomial models, and by Hull and 

White (1990) in explicit finite-difference methods. Amin (1991) 

suggests' transforming the 'time scale to overcome 'the computational 

complexity caused by time-dependent volatilities. 

In this paper, we investigate simple binomial approximations from 

several perspectives. First, we identify the class of diffusions that 

can be simply approximated using the popular binomial models of Cox and 

Rubinstein (1985, chapter 71, with no transformation. This results in a 

much larger set of diffusions that can be used as the transformed 

processes; thus, Nelson and Ramaswamy's (1990) method is generalized. 

We then explore the possibility of achieving computational simplicity by 

directly adjusting the Cox and Rubinstein (1985) binomial model. It 

turns out that the adjusted binomial lattice is a second truncation of 

the transformation method, further confirming our belief that 

transformation is, in principle, essential for achieving computational 

simplicity. However, when the transformation is analytically 

intractable, the adjusted binomial model can serve as an approximation. 

We also propose a different approach to resolve the singularity 

problem associated with the boundary of a diffusion. Such diffusions 

are approximated here by reflecting or absorbing binomial processes. 

Although Nelson and Ramaswamy (1990) have developed a multiple-jump 

scheme for such cases, unfortunately, numerical examples show that their 
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approximations become coarse as the maturity lengthens. Theoretically, 

both approaches guarantee convergence; however, the method developed 

here does not become coarse for longer maturities. 

Actually, the time increment can be chosen to make the binomial 

chain purely reflecting or absorbing. Thus, the binomial process will 

reach an approximating boundary in a given number of steps. The process 

is either reflected or stays at the approximating boundary, depending on 

the nature of the boundary. This is particularly attractive when 

applied to the implicit finite-difference method, because it prevents 

the process from getting too close to the ultimate boundary, and the 

calculated transition probability will stay within the interval [O,11. 

If asset prices can be approximated by binomial processes, then the 

corresponding options on such assets can be approximated using the same 

lattice. For European options with a continuous payoff function, the 

continuous mapping theorem of weak convergence guarantees that the 

option price sequence obtained from the binomial lattice will converge 

to its continuous-time counterpart, as long as the binomial processes 

weakly converge to the diffusion limit. For American options, one has 

to show that the sequence of optimal exercise strategies obtained from 

the binomial approximation converges to the optimal exercise strategy in 

the diffusion limit. This is an issue that has not been thoroughly 

studied. Assuming the optimal strategies are the same for both the 

approximating binomial processes and the diffusion limit, one can use 

the intuitive argument that, before the early exercise, the limit of the 

option price sequence satisfies the partial differential equation for 

the option price in continuous time. However, the optimal strategies 

are not known beforehand, and it remains to be shown whether the optimal 

strategies on the approximation lattice converge to the optimal strategy 

in continuous time. 

The paper is organized as follows: Section 1 reviews the basics of 

diffusion approximation. Section 2 discusses how transformation methods 

can be used to achieve computationally simple binomial approximations. 

Section 3 focuses on approximating diffusions with boundaries. Section 

4 deals with convergence in approximating both European and American 

contingent claims. Section 5 provides numerical examples, and section 6 

concludes the paper. Proofs can be found in the appendices. 
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1. Weak Convergence and Diffusion Approximation 

Let (S2.3.P) be a probability space and Wd be the d-dimensional 

Euclidean vector space. Let V(t be an Wd-valued Wiener process defined 

on (S2,Y.P). Fix a finite time interval [O,Tl. Then 4Ft = B(V(s). 0 s s 

si t) c Y for all 0 s t s T. An R~-valued diffusion process Y(t) can be 

defined by the following differential equation: 

where p(t ,Y(t) and cr(t,Y(t) ) are the instantaneous mean and standard 

deviation of Y(t 1, respectively. Let Cd [O,T] be the space of Ftd-valued 
continuous functions on [O,Tl. Then V(t) and Y(t) have sample paths in 

C~[O,TI. 
The processes used to approximate Y(t) do not necessarily have 

continuous paths. Let D~[O.TI, be the space of IRd-valued functions on 

[O,Tl, which are right continuous and have left-hand limits, and let 
y(n) (t be a sequence of processes with sample paths in Dd [O, TI. We use 

"e" to denote weak convergence. Then Y(") * Y if PY'"' ===+ PY, where 

PY'~' and PY are the measures induced by Y(~) and Y. respectively. On 

the other hand, if ~("'(t) e Y(t), every finite distribution of ~(")(t) 

will converge to that of Y(t). For a more detailed discussion of weak 

convergence, see Billingsley (1968). 

In financial models, diffusions are usually approximated by 

binomial or multinomial processes. Such processes are characterized by 

the following definitions. 

Definition 1. (Multinomial tree) Let J1.. . ,J be functions from IRd to 
m 

LRd, and let 0 = to < tl < < t = T and YO E LRd. An m-ary tree is 
n 

constructed as follows. At time to, the starting node (the "root") is 

labeled Yo. At time tk < T, each node Y at the beginning of period k 

branches into m nodes (the "sons"). labeled J1(Y. tk). . . . .J (Y. t k )  We 
m 

call such an arrangement an n-period, m-nomial tree (lattice), and refer 

to (JIB ..., J 1 as the generator of this tree. 
m 

Definition 2. (Multinomial process) Let {Yk. 0 -( k = n} be a discrete 
Markov chain in LRd with transition function v(yk, tk,T) = P{Y~+~ I -  I Yk 
= yk}. If I- takes values only from Jl (Yk, tk), . . . , J (Yk, tk) . where J1, 
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. . . , J are given functions from R~ to R ~ ,  then Y is called an m-nomial 
m k 

Markov chain on the m-nomial tree generated by (J i,...,J I .  The process 
m 

Y(t) = Ylntl is called an m-nomial Markov process, where [ntl is the 

largest integer less than or equal to nt. 

In graph theory terminology, levels are used to measure the 

distance from a node to the root in a (rooted) tree. Here we use 

periods instead. We also draw the tree on two-dimensional Cartesian 

coordinates, with time on the x-axis and state on the y-axis. In this 

case, we picture the tree growing from left to right. 

In each period k (or time tk) , there are mk nodes. The number of 

nodes grows exponentially from one period to the next, but this number 

can be dramatically reduced if we combine those that have the same 

labels (values). Graphically, we no longer have a tree once this 

combination is performed. Thus, we use the term "lattice." Such a 

lattice is considered computationally simple if, after combination, the 

number of nodes grows linearly from period to period. 

In these definitions, if Jl(Yks tk) and v(Yk, tk,T) are not dependent 

on the time index tk, then the m-nomial tree, the Markov chain (Yk), and 

the Markov process Y(t) are nonhomogeneous. 

For diffusion approximation, we present in lemma 1 a modified 

version of corollary 7.4.2 of Ethier and Kurtz (1986, pp. 355-3561. 

This is the theoretical basis for the discrete approximations used in 

recent finance literature (see Nelson [I9901 and He [19911). 

Lemna 1. Suppose the stochastic differential equation (1.1) has an a.e. 

unique solution for any given Y .  Let Y:"), 0 a k a n ,  be an m-nomial 
0 

Markov chain with lattice generator (J . . , J 1 and transition function 
1' ' m 

v(x, t , r) . Set 

m 
1 

p (x,t) = n 1 [Jl(x,t)-xlv(x,t,Jl(x,t)) and 
n 

1=1 

Suppose for every r > 0, 

sup [Jl(x, t) - X I  -f 0 
IIxIIsr 
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sup iqx. t) - p(x, t)l --t 0 
IIx[=r 

2 2 sup o x ,  t 1 - o (x, t, 1 --t 0. 
~ x ~ s r  

Define ~("'(t) = ~'"'([nt]). Then ~'"'(t) converges in distribution to 

the solution of (1.1). 

In order to apply lemma 1, one first has to check whether the 

underlying diffusion equation (1.1) has an a.e. unique solution (or 

whether the corresponding martingale problem is well posed). Because 

most diffusions in financial models have this property, condition (1.4) 

is trivially satisfied in most cases. Conditions (1.5) and (1.61, which 

are often referred to as the consistency conditions, state that the 

first two calculated local moments converge to that of the diffusion. 

The next lemma is a direct consequence of weak convergence and is 

useful in proving convergence in option approximation. 

Lemna 2. Let g be a real-valued, bounded, and continuous function on 

D~[O,TI. Then Y'") - Y implies g(~(n)l -+ g(Y). 

2. Binomial Approximation 

2.1. Complexity of the Binomial Lattice 

In the rest of this paper, we will consider only one-dimensional 

diffusions. Divide the time interval [O,Tl into n subintervals 

[tl,tl+ll of equal length h = T/n, where t = i h  i = 0 1 , .  n. From 
1 

definition 1, a binomial tree is generated by two functions, J* and J - .  

Graphically, the building block at any node y looks like 

For convenience, we call J* and J- the up and down jumps, respectively. 

If the up-jump probability is q(y,t), then the down-jump probability is 

1 - q(y, t). After J+ and J- are constructed, q(y, t is calculated to 
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satisfy consistency conditions (1.5) and (1.6). 

The building block (2.11, together with the calculated transition 

probability q(y,t), generates a binomial model. If the number of nodes 

grows linearly from period to period, then the model is computationally 

simple. In particular, the model is path-independent if, starting at 

any node, the binomial chain reaches the same state by following 

different paths, as long as these paths have the same number of up and 

down Jumps. The model is considered stable if q(y, t) falls between 0 

and 1. 

Assume J+ and J -  are twice differentiable with respect to fi for 
any given y and t .  Then conditions (1.5) and (1.6) require that 

+ 
Omitting the term O'(h), we have the state-symmetric binomial model of 

Cox and Rubinstein (1985, chapter 71, 

with up-jump probability 

An alternative is the probability-symmetric model, where both jumps have 

probability of 1/2: 

Both models have certain advantages. The state-symmetric model 

does not incorporate the drift term p(y,t) in the jumps. This coincides 

with the notion that option price does not depend on the expected stock 

return. However, state-symmetric models may be unstable, whereas 

probability-symmetric models are always stable. 1 

For Brownian motion and the geometric Wiener process, both models 

are computationally simple, with only n + 1 nodes in period n. In fact, 

1 Trigeorgis (1991) has developed a binomial model for Brownian motion 
that is both state-symmetric and stable. 
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the state-symmetric model is path-independent for homogeneous diffusions 
2 if and only if o(y) is linear in y. However, this is not the case in 

general. For the state-symmetric model presented here, a three-period 

binomial lattice looks like 

where 

Generally, y+- and y-+ are not equal, so we have to use different 
h h 

nodes to represent them. The number of nodes in the lattice grows 

geometrically from period to period, exceeding one million in as few as 

20 periods. As a result, we have a computationally complex lattice. 

The next two subsections discuss ways to resolve this problem. 

2 To see this, note that 
- + 

Y;- - Yh = [2o(y, t)-s(y', t+h)-o(y-, t+h) lfi 
= -[o" (y, t )02(y, t 1 + o; (y, t )la3 + 0(h2). 

Y Y 

For homogeneous diffusions , o(y , t 1 = o (y 1 .  Thus, y;' - y;+ = 0 implies 

o" (y) = 0, i-e., o(y) is linear. On the other hand, if o(y) = a + by, 
Y Y 

y+- - y-+ = y+-o(y+)fi- [y-+o(y-)fi] 

= (y+ - y-1 - [ d y + )  + o(y-)lfi 

= (Y+ - y-1 - [2~t+b(~+ + y-116 

= 2(a+by)fi - 2(a+by)fi 
= 0. 
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2.2. Adjusted Binomial Lattices 

To reduce the complexity of the noncombining lattice for general 

diffusions, we make the following adjustment: 

where 

and C is any constant. The binomial lattice (2.8a) is computationally 

simple not only for linear volatility functions, but also for the square 

root volatility function s(y, t 1 = fi. 
Equation (2.8b) is a necessary condition for path-independence. 

(See appendix B for details.) Generally, we need more adjustment terms 

.in the lattice to close the gap between y+- and Y-'. In the Constant 
h h 

Elasticity of Variance (CM) model with ;r = 1 - k-' (k is any positive 
k integer), we need to include terms up to the order of (fi) in the 

adjustment to accomplish this. However, the difference YL- - yif in the 
2 adjusted lattice (2.8a) is usually as small as o(h 1, and we can force 

3 the nodes to reconnect to obtain computational simplicity. (See 

appendix C for further discussion.) 

2.3. Binomial Lattices Generated by Transformations 

In section 2.1, we showed that the Cox and Rubinstein binomial 

mode1 (2.1) is computationally simple if and only if the volatility 

function of diffusion (1.1) is linear. For diffusions with general 

volatility functions, computational simplicity can be achieved through 

transformation. To do this, first identify a function f such that the 

transformed process X(t) = f-'(X(tI,t) has a linear volatility. Then 

construct a sequence of simple binomial processes x'") ( t 1 that weakly 

converges to X(t). If f is continuous, ~("'(t) = f(~(")(t),t) 4 Y(t). 

3 
For example, we can take the average of Yf- and Y;+ or simply pick 

h 
either one of them. 
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4 We first consider the case in which X(t) has unity volatility. To 

identify the transformation f: X(t) I+ Y(t), let g = f-'. Applying 
A 

I to' s formula, we have 

ag = I, which gives Choose g such that v(Y,tIm 

For convenience, we set the lower limit of the integral to zero. This 

gives g(0,t) = 0. As long as c(y,t) > 0, g will be strictly increasing 
in y. Thus, the transformation f, which is the inverse of g, exists and 

is strictly increasing in x .  Since X(t) can be approximated by the 
+ 

simple model x i  = x f 6, the corresponding binomial model for Y(t) is 

with up-jump probability 

Using Taylor's expansion for equation (2.111, we have 

Clearly, the adjusted lattice (2.8) is a truncation of equation (2.13). 

The number of possible states of the binomial lattice (2.11) is at 

most 2n + 1 for n partitions of the time interval [O,TI. Let 9'") be 

the state space for the binomial Markov chain Y:"'; then 

4 
This is the case examined in Nelson and Ramaswamy (1990) and Hull and 

White (1990). 
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Assumption 1. The diffusion equation (1.1) has an a.e. unique solution 

Y(t) on [O,TI for any given yo. 

Assumption 2. p(y,t) is continuous, u(y,t) is nonnegative and twice 

differentiable, and the integral in equation (2.10) exists. 

Assumption 3. For every r > 0, there exists an ha > 0 such that for all 

o < h < ha, o a qh(y.t) s 1 for all y t~ Y"). 

The purpose of assumption 1 is obvious. Assumption 2 validates the 

use of the transformation. Assumption 3 guarantees that equation (2.12) 

defines a valid transition probability. To apply lemma 1, we need to 

check conditions (1.4) - (1.6). Condition (1.4) always holds, since f 

is continuous. From equations (2.12) and (2.131, we have 

This implies that conditions (1.5) and (1.6) are satisfied. Thus, in 

applying lemma 1, we establish the following result: 

Theorem 1. Let assumptions 1 - 3 hold. Let Y:' , k = 0.1, . . . , n be the 

binomial Markov chain with lattice generator (2.11) and transition 
(n) probability (2.12). Define ~(")(t) = Y . Then ~("'(t) * Y(t). 
[nt I 

In the above theorem, assumption 3 can be replaced by conditions 

that are easier to verify. Either of thefollowing is sufficient: 

(i) The transformed process X(t) has a locally bounded drift. 

(ii) There exists an & > 0 such that u(y,t) r E for all y and O<t<T. 

Condition (i 1 is somewhat weaker than condition (ii 1. For example, the 

geometric Wiener process does not satisfy condition (ii). However, the 

transformed process X(t), a Brownian motion, satisfies condition (1). 

Generally, one can transform the underlying diffusion Y into a new 

one, X ,  whose volatility function is either 1 or a + bX. The resulting 

binomial process will be slightly different, however. If f is the 

transformation to a diffusion with unity volatility, the corresponding 
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binomial model will be given by equations (2.11) and (2.. 12). If the 

transformed process has linear volatility a + bX, (b + 0), then the 
resulting binomial model is 

with the same transition probability as in equation (2.12). Using 

Taylor's expansion for equation (2.151, we have 

Generally, a path-independent binomial model for Y would be 

= ( f  (y) f m + of(fi) 1, 
"h 

where 02(r/ii)/fi + 0 as h + 0. (We may even construct examples in 
+ 

which the term o'(fi) depends on y.) 

Even .though the Cox-Rubinstein model (2.1) is . computationally 

simple for diffusions with linear volatility, there are certain reasons 

why one may prefer to transform these diffusions into those with unity 
+ 

volatility. On the other hand, x i  = x f may not be the best choice 
+ 

for the transformed process. For example, Trlgeorgis (19911 uses x i  = x 

2 f i  to achieve stability, where p = r - r2/2, r is the 

risk-free rate, and r is the volatility of stock returns. Stability can 

also be achieved through time changes. 

3. Singular Diffusions 

Many diffusions in financial models have a lower boundary of 0. 

For example, stock prices and nominal interest rates are always assumed 

to be nonnegative. This is often modeled by allowing r(0,t) = 0. If 

the drift term p(O,t) equals zero as well, state 0 will serve as an 
5 absorbing boundary in many cases. If the drift term is positive at 0 ,  

5 The geometric Wiener process is an exception because it has a natural 
boundary at 0. If the process starts from a positive state, it will 
never reach this boundary. 
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it will pull the process back from zero and is thus considered a 

reflecting boundary. There are also cases in between these two. 

When c(y,t) is very close to zero for a small state y, the up-Jump 

probability qh(y) in equation (2.12) may be pushed out of its meaningful 

range [O,11, and assumption 3 will be ~iolated.~ To avoid this problem, 

we use absorbing or reflecting binomial processes in the approximation. 

Specifically, we impose an approximating boundary y* for the binomial 
t 

process Y'"). Let x: be the corresponding approximating boundary for 

the transformed process x("). Then y; = f (x;, t 1. For technical 
(n) reasons, we may allow X to be slightly below x: on the lattice; thus, 

Y'~) may move slightly below y: but remain above zero. 7 

Generally, y* depends on the number of partitions n, the time t, 
t 

and the nature of the true boundary 0. However, in the limit, we 

require y* to approach zero for large n. The following two subsections 
t 

examine reflecting and absorbing boundaries separately. 

3.1. Reflecting Boundary 

Assumption 3a. For any r > 0, there exists an N > 0 such that for any h 
= T/n with n > N, and for any t E (0.T). there exists an x: such that 

This assumption allows the calculated transition probability in equation 

(2.12) to exceed 1 for very small states. At any state smaller than x:, 

the binomial chain cannot jump down any farther. As a result, the first 

state below x; serves as the reflecting boundary for the approximating 

binomial chain x:). The resulting binomial lattice is 

6 Nelson and Ramaswamy (1990) suggest that the up jumps at lower states 
be moved higher (multi-jump) in the lattice to keep the transition 
probability between 0 and 1. The magnitude of the multiple jump 
reflects how "strongly" the drift pulls a small state away from zero. 

7 
Actual&, the step size h can be controlled so that the binomial 

process X reaches the boundary x* in exactly an integer number of 
steps. For details, see the examples in appendix E. 
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x - f i  if x > x: 
x- = { 

X + j f i  if X s X* 
t ' 

where j r 1 is the smallest odd integer such that 

The adjustment for xi in equation (3.2b) ensures that the calculated 

transition probability qh(y,tl is between 0 and 1, with odd integer j 

showing the strength of the reflection. In most cases, j 5 3. When j r 

1, the state y: = f(x:,t) serves as a reflecting barrier for the 

binomial process Y'"). When j = 1, the binomial process jumps to a 

higher node in the lattice with probability 1. It is unlikely that j = 

1 on a binomial lattice. However, we can choose h to make this happen. 

(See appendix E for details.) When j = -1, once the process reaches the 

boundary y:, it will stay there Pith positive probability. 

Theorem 2. Let assumptions 1, 2, and 3a hold. Suppose the j value in 

assumption 3a is bounded for all n, and let x:), k = 0.1, ..., n be the 
binomial Markov chain with lattice generator (3.2) and transition 

probability (2.12). Then Y(")(t) = f(x:::,.[ntl) e Y(t). 

Proof. We need to show that conditions (1.4) - (1.6) hold for all 

possible y on the lattice. Condition (1.4) holds because f is 

continuous. Since qh(y) is defined so that 0 5 qh(y, t) 5 1, condition 

(1.5) also holds. From the proof of theorem 1, condition (1.6) holds 

for all y corresponding to x > x*, so we need only verify this condition 
t 

for y s y:. From equation (3.3) and using Taylor's expansion, we have 

~hus, s(y, t) = 0(fi) and 

2 lo2(y, t) - o (y, t) 1 s { [f(x+fi, t+h)-y)~2 + [f(x+jfi, t+h)-y~2~/h + 02(~, t) 
n 

This implies that condition (1.6) holds for y 5 y:. 
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3.2. Absorbing Boundary 

The absorbing case is relatively simple. Both the drift and 

volatility terms vanish at state 0. Thus, we need to prescribe state 0 

as an absorbing barrier for the approximating binomial process. 

Assumption 3b. For any r > 0, there exists an N > 0 such that for any h 

= T/n with n > N, and for any t E (0.2'). 

For the transformed process, the binomial lattice is defined as 

Accordingly, for the original process Y, 

The up-jump probability is 

Note that when Y'") reaches the absorbing boundary, it stays there with 

probability 1. 

Theorem 3. Let assumptions 1, 2, and 3b hold. Let x:' , k = 0.1, . . . . n 
be the binomial chain defined by equations (3.6) and (3.8). Then 

~'"'(t) = f(~;'':,, [ntl) 4 ~ ( t ) .  

Proof. As for theorem 2, we need only check equation (1 .6 ) .  In fact, 

cr2[0, t 1 - cr2(0, t l = [f (0, t+h) - f (0, t) 12/h 
n 

= [f;(O, tlh + o(h)12/h + 0. 
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4. Contingent Claim Approximation 

4.1. European Options 

Suppose the stock price follows the diffusion process 

and the discount bond price B(t) evolves according to 

Further assume no dividends on the stocks. If the terminal payoff of a 

European contingent claim at maturity T is g(S(T)), then at any time t 

s T, the discounted terminal payoff is 

Following Harrison and Kreps (1979) and Harrison and Pliska (19811, 

there is an equivalent martingale measure Q on ( Q , ' B )  under which the 

price of this contingent claim is the expectation of C (t,S). That 
t,T 

is, 

Under measure Q, the stochastic evolution of the stock prices 

follows the so-called pseudo process, which differs from process (4.1) 

only in the drift term. Specifically, under Q, the stock price process 

solves 

Let {s'"'} be a sequence of binomial processes that weakly 

converges to S under Q. Assume, as before, that the time period is 

evenly divided into n periods of equal length h. For any n, consider a 

European contingent claim on a stock whose prices follow process s'"). 
Let g(~'n)(T) I be the payoff of such a claim at maturity T, and 

r ( t , s'") ( t 1 be the instantaneous return on the associated discount 

bond. Then., this claim can be priced by arbitrage using standard 
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backward recursion on the approximating binomial lattice. 

Let f(s:")) be the value of this claim at node (kh, sin)) on the 
binomial lattice, where Sin) is the stock price at time kh. After one 

(n)+) period, suppose the binomial chain jumps up to (kh+h,Sk with 
(n)-) probability pk and then jumps down to (kh+h,Sk with probability 1 - 

pk. To eliminate arbitrage, we have 

where 

The boundary condition is 

Since S(')(t) = s(") is Markovian and its sample paths are step 
[ t h l  

functions, an induction argument yields 

Therefore. v E  ( ~ ( ~ ' 1  = E [G (s'~))] is the value of the claim on 
t . T  

S(n) 
Q t . T  

. If r and g are continuous functions of t and S(t) on [O,Tl, then 

G (Sl is continuous on IDd[ t , TI. Applying lemma 2, we have 
t . T  

Theorem 4. Suppose S is the a. e. unique solution of equation (4.11, r 

and g are continuous in t and S ( t  1 on [O.T], and {s("') is a sequence of 
binomial processes that weakly converges to S under measure Q. Then 

4.2. Discount Bonds 

A discount bond with maturity T can also be viewed as a European 

option. We consider it to be a contingent claim with a payoff of $1 for 
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every state at time T. Assume that the instantaneous interest rate r(t) 

follows 

Under the local expectation hypothesis,' at any time t r T, the price of 

such a discount bond is 

When the interest-rate process (4.8) is approximated by binomial 

processes, we can calculate the approximated price of the discount bond 

on the binomial lattice. Similar to the European options, we have the 

following convergent theorem for discount bond approximation: 

Theorem 5. Suppose r is the a.e. unique solution of equation (4.8) and 

r n  is a sequence of binomial processes that weakly converges to r 

under measure Q. Then 

Similarly. BtST (r(nr 1 can be calculated on the binomial lattice using 

backward recursion. 

4.3. American Options 

For American options, not all contracts will be held to maturity; 

early exercise may be optimal. An exercise strategy is best described 

by a stopping time, since the decision to exercise an option is based 

only on the information available up to that time. Let 7 be the 
0, T 

class of {DL)-stopping times with values in [O,Tl. Following the 

arbitrage argument of Karatzas (1988). there exists an optimal 

(3 )-stopping time p such that the time t price of an American option is 

CA (S.p) = sup {CA (S,-r))# 
t#T -re? t,T 

0 ,  T 

' 
See Ingersoll (1987) for a discussion of expectation hypotheses. 

17 
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where 

and g(S(u)) is the immediate payoff if the option is exercised at time 

u. Actually, we can restrict the optimization over a smaller class of 

stopping times than the class For example, an American put option 

can be exercised immediately when the stock price falls below a critical 

boundary. Shiryayev (1978) has shown that the value ? (S,p) in 
t, T 

equation (4.11) will not change if we consider only the class of 

stopping times 4> that take the form 
0.1 

where D is a closed subset of R'XIO~TI. From equation (4.131, rD is the 

first time the process S( t reaches the stopping region D. Define the 

continuation region G as W+X[O,TI - D, and suppose the process S(t) 
starts within G; that is, (O,S(O) E G. Then the option is exercised as . 

soon as the stock price reaches the boundary aG = aD. Let p be the 

optimal stopping time in If D* is the corresponding optimal 

stopping region, then 

7 = inf{t: r T: (t,S(t)) E D*). (4.14) 

In binomial approximation, the option can only be exercised at 

discrete times t = k h ,  k = 0.1,. . . ,n. Let 3'") be the subset of 
k 0,T 

(9 )-stopping times with discrete values ih, i S n. Then we have the 
t 

following convergence theorem for American contingent claims: 

Theorem 6. Suppose S is the a.e. unique solution of equation (4.5) and 

s(") is a sequence of processes that weakly converges to S under measure 
Q. Suppose further that 7 is continuous a.e. relative to the measure 

induced by the limit process S(t), the boundary of the optimal stopping 

region. Define 
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Then 

Proof. First, we need to discretize the optimal stopping time 7 in 

order to compare it with p'"). Define 

(n)- (n) r - inf{t = kb: k S n. S (t) s D*}. 

Since p(") is optimal for the price process s("), we have 

for all n. Using Skorokhod embedding (see Kushner [19901), we can 

assume that s(") and S are defined on the same probability space. Since 

r is continuous a.e.  relative to the measure induced by the limit 
(n) process S(t), by weak convergence, r r a.e.  Further, since 

d (S,r) is continuous in both S and 7, we have 
t,T 

On the other hand, the sequence p(n) is tight because 0 < p(") s T. Let 

p be the limit of some convergent subsequence of {p'")). Then 

Taking the limit in equation (4.18) yields 

However, since r is optimal under the price process S, we have 

Notice that equation (4.21 1 does not depend on the subsequence. This 

completes the proof. Q. E. D. 

For each n, the discrete optimal stopping problem (4.15) can be 

solved using dynamic programming on the binomial lattice for the 

approximating process s'"'. Let t(SLn' 1 be the value of the American 
(n) ) claim on s'"' at node (kh. Sk on the binomial lattice, where s:') is 

the stock price at time kh. After one period, suppose the binomial 
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(n)+) chain jumps up to (kh + h, Sk with probability pk and then jumps 

down to (kh + h. s:)-) with probability 1 - pk. The Bellman equation 

for the optimization problem in equation (4.15) is then 

where 

The boundary condition is 

since s") (t = s ~ ~ / ~ ~  (") 
is Markovian and its sample paths are step 

functions, an induction argument yields 

A crucial condition in theorem 6 is the continuity of the optimal 

stopping time t  on the optimal exercising boundary. A sufficient 

condition for t  to be continuous is that the paths of the diffusion S(t1 

are tangent to the boundary aD with probability 0.' It . is also 

sufficient if all the points on the boundary aD are regular for the 

diffusion S(t). When cr(S(t)) > 0 on aD, a point on aD is regular if it 

can be reached by an open cone (Dynkin [I9651 1. For American put 

options on lognormal prices, Van Moerbeke (1976) shows that the optimal 

boundary is increasing and continuously differentiable in time. Thus, 

the open cone condition can be easily verified. Most diffusions and 

their optimal boundaries in financial models fall into this category. 

(See Kushner [I984 and 19901 for further discussion.) 

To see this, we need to show that V c,6>0, 3 N>O such that when n>N, 

P - t n  < c. 

Actually, for any given c,6>0, if one of the processes S and s(") hits 
the boundary K* first, say at time t ,  then the other will hit the 
boundary within time interval (t,t+6) with probability 1-c. 
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5. Numerical Examples 

In this section, we apply the method developed in sections 3 and 4 

in order to approximate discount bond and stock option prices. Since 

the diffusion processes in this section are homogeneous, the time 

argument t will be dropped wherever appropriate. 

5.1. Bond Pricing 

Suppose the instantaneous interest rate follows the mean reverting 

square root (MRSRI process 

dy = ~(p-y) dt + 4 dW. (5.1) 

where K, p, Q > 0. From Feller's boundary classification, state 0 is 
2 an inaccessible reflecting boundary when ~ K C ~ / Q  2 1. Otherwise, state 0 

is accessible and either reflecting or absorbing. 

From equation (2.101,the transformation for this process is 

Let # = ~KC~/Q' - 1. Then the transformed process X( t follows 

Except for some small states, the binomial generator is 

and the up-jump probability is 

2 - - - +  1 # - K X  
2 4x 

fi. 

Case 1. # > 0. From equation (5.5). qh(y) is strictly decreasing for 

all y > 0. For any given large number r > 0, we can always choose a 

sufficiently small h such that qh(y) > 0 for all 0 < y < r. This is 

true because q (y) is decreasing and hh+o qh(r) = 1/2. Actually. when 
h 
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m T  < 16, q (y) > 0 for all possible y values on the binomial lattice. 10 
h 

On the other hand, for any small h, a reflecting boundary x* can be 

calculated by setting q(y) = 1, or tcx2 + (2/fi)x - # = 0. This gives 

Let y* = f(x.1; then 0 s qh(y) < 1 as long as y* < y < r. Therefore, 

assumption 3a is satisfied, and from theorem 2 we have the following 

result : 

Corollary 1. For the MRSR process 15.1 ) with # > 0, let x* be defined 
by equation (5.6) with x* < xo. Let x:), k = 0.1. ..., n be the binomial 
Markov chain with lattice generator (3.2) and transition probability 

(2.12). Then ~("'(t) f(~iz:,)  & Y(t). 

2 
Case 2. -1 < # 4 0 and p(O)h = ~ p h  S ch/4 = f(fi). In this case, the 

reflecting barrier is x* = 0. The binomial Markov chain with the 

lattice generator for the transformed process is defined by equation 

(3.2). By definition, 0 s q ( y )  S 1 when x < 0. For x > 0, 
n 

For 0 n y < &/z, we have 0 5 qn(y) < (uph + y)/(y + c 2 h 4  5 1, since 

1 # - K ?  
&/2 < p for small h. For y z &/2, q (y) = + 

n 4X 
fi is concave 

10 The largest state in 9'"' is ymax = f = f .  Then 

lim hy = Lim h ( 6  + cfi/212 = c2~/4 
max 0 

h+ 0 h+O 

Thus, as long as K ~ T  < 16, there exists an h* > 0 such that 0 r q (y) 5 

1 for all 0 < y < h* and y E 9'") 
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and bounded from above by 1/2. Actually, for large y, the condition WT 

< 16 will guarantee q (y) 2 0. Therefore, assumption 3b is satisfied, 
n 

and we have the following result: 

Corollary 2. For the MRSR process (5.1) with -1 < # S 0, let x* = 0. 

Let x:', k = 0.1,. . . ,n be the binomial Markov chain with lattice 

generator (3.2) and transition probability (5.7). Then ~'"(t) f(x:::, ) 

4 Y(t1. 

We now turn to approximating the discount bond price. Suppose the 

local expectation hypothesis holds. Then the time t price of a discount 

bond that matures at time T is 

Let {Y'~') be the sequence of binomial processes in either corollary 1 

or corollary 2. Then the approximated bond price is . . 

Like the European option, the bond price B(~,Y'"') is calculated using 

backward recursion on the binomial lattice for Y'"). At node (tk,y), 

The boundary condition is B(T,y) = 1. 

Table 1 shows the approximated prices of a discount bond when the 

instantaneous interest rate follows the MRSR process (5.1 1. The first 

four columns specify the same parameters as in Nelson and Ramaswamy 

(1990). The volatility c and the initial interest rate yo are 

annualized, while the maturity T is measured in months. The next three 

columns display the bond prices obtained using several different numbers 

of partitions in the approximation. The last column contains the 

theoretical values calculated using the formula of Cox, Ingersoll, and 

Ross (1985). 

This table clearly illustrates the convergence of the approximated 
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discount bond prices to the corresponding theoretical values for a wide 

range of case parameters. Compared with Nelson and Ramaswamy' s results 

using the same parameters, our approximations are much more accurate, 

especially for higher u, K, and T values. 

Table 1. Discount Bond Prices 

In 7 
K 0- 5 50 100 CIR yo 

n = number of partltlons 
Interest rate follows equation (5.1) 

Face value of the bond = $100 
CIR = accurate value derlved from Cox, Ingersoll, and Ross (1985) 
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5.2. Stock Options 

Consider the CEV stock price process 

When s t. < 1 (which we assume hereafter), state 0 is an absorbing 
2 

boundary. The transformation function is 

yl.-r 
with inverse x = g(y) = (y r 0). The transformed process X(t 

~ ( i - ~ 1 ,  
follows the diffusion process 

ldt + dw. dx = [p(l-r)X - w k  (5.12) 

The approximating . binomial processes x(") , and Y(") are . defined . by 

equations (3.6) and (3.7). Since -0.5 1 r < 1, it can be shown that 
11 

qh(y) is increasing for y 2 0. For any given number r > 0 ,  we can 

always choose a sufficiently small h such that qh(y) > 0 for all 0 c y < 

r. This is true because qh(y) is decreasing and (imhMqh(r) = 1/2. 

Moreover, let y be the largest state on the binomial lattice. Then 
max 

Lim yl-'fi max = t~rn[~:-~ + n ( ~ - ~ ) d ] f i  = ((I-~)~T 
h+ 0 h+ 0 

11 To see this, first consider that 0 < x r fi. Then 

which is increasing in y. When x 5 fi, let z = ( l-.d.)&yr-l. Then 

and 
dq(y) - -(@+I ) [  (l+z) rn-l-(l-z)m-l I + 2(l+~)~(l-z)~ dz - 
d~ (I+Z)~ - (l-z)'"~~/m d~ ' 

For any m > 1 and z > 0, we have (l+z)"l - (I-Z)~-' > 2, 2(l+z)rn(l-z)rn 

< 2, and dz/dy < 0. This implies that dqh(y)/dy > 0. 
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Consequently, q(y) C 1 if (1-r)pT C 1. Assumption 3b is now satisfied. 

This leads to the following result: 

Corollary 3. For the CEV process (5.11 1, suppose -0.5 r C 1. Let 
y(n) , k = O,l, ..., n be the binomial Markov chain with lattice generator 
k 
(3.7) and transition probability (3.8). Then ~'"'(t) I(X:::~ 1 - Y(t). 

Having set up a converging binomial lattice for the stock price, 

options on the stock can be approximated using backward recursion on the 

lattice, as described in section 4. Table 2 shows the approximated 

values of the call and put options. We fix I = 0.5 and set the annual 

risk-free rate at 5 percent. The parameter tr is standardized such that 

the initial annual volatility of the stock return is 20 percent. The 

initial sto=k price' 'is $40. The strike. prices (XI range from $35 to $45, 

and the maturities are one, four, and seven months. The first three 

columns specify case parameters, the next three display call prices for 

different numbers of partitions in the approximation, and the seventh 

column reports the theoretical call prices from Cox and Rubinstein 

(1985, p. 364). Nelson and Ramaswamy (1990) tabulated approximations 

only for maturities of one and four months, and their results show the 

same degree of accuracy as ours. For longer maturities, they reported 

coarse approximations without tabulating the results. The results 

displayed here for a seven-month maturity clearly illustrate that our 

approximations not only converge but are also very accurate. 

Columns eight through 11 are the prices of American put options. 

The last column contains the approximated values obtained by Nelson and 

Ramaswamy (1990) using finite-difference methods. (Again, they did not 

tabulate the results for a seven-month maturity.) The trends of our 

findings for all maturities clearly illustrate that our binomial 

approximations converge as n increases. 
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Table 2. Call and Put Option Prices - Call Prices ----, - Put Prices -, 
X T n=5 n=50 ~ 1 0 0  CR n=5 n=50 n=100 NR 

R = number of partltlons 
Stock prlces follow equatlon (5.11) wlth r = 0.5 
d = lnltlal annual volatlllty of stock return 
X = strlke prlce 
T = maturl ty 1 n months 

Inltlal stock prlce = $40 

Annual lnterest rate = 5 percent 
CR = accurate value adopted from Cox and Rublnsteln (1985. p. 364) 

NR = Nelson and Ramaswamy's (1990) approxlmatlons 
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6. Concluding Rcmarks 

We have demonstrated that transformation is a useful tool for 

simplifying binomial models in diffusion approximations. We have also 

shown that singular diffusions are better approximated by reflecting or 

absorbing binomial processes. This is a promising result, and the idea 

can also be easily applied to finite-difference methods. 

A n  alternative way to achieve computational simplicity within this 

framework is through lattice adjustment. For one-dimensional 

diffusions, this may be less efficient than the transformation method. 

Nonetheless, it may be worthwhile to develop an adjustment scheme for 

general multidimensional diffusions for which the transformation method 

fails. 

Another contribution of this paper is the convergence result 

established in approximating American contingent claims. In almost all 

cases, the optimal early exercise .boundaries cannot be analytically 

solved. However, the approach taken here does require an analytical 

formula for the boundary. All that is needed is the continuity of the 

first hitting time with respect to the sample path of the diffusion. 
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Appendix A. An Invariant Result 

This appendix shows that the probability-symmetric binomial model 

(2.5) is invariant under time-homogeneous transformation. That is, 

path-independence cannot be achieved by a time-transformation while 

probability-symmetry is preserved. To see this, rewrite equation (2.5) 

as 

= y f a(y,t)fi + p(y,t)h. (A. 1) 

Consider the difference between the two states when one follows 

the up-then-down path and the other follows the down-then-up path: 

A necessary condition for path-independence is 

2p;o - 201p - o1 lo2 - 201 = 0, 
Y YY t (A. 3) 

which is equivalent to 

p - [+; + J(o;/02)dylo = 0 .  (A. 4) 

Suppose a transformation x = g(y,t) is employed. The transformed 

X = g(Y,t) diffusion then follows 

dX = M(X1dt + S(X)dK, (A. 5) 

where 
1 2  

M(X) = pg; + giY + g; and 

SCX, = cg;. 

Note that 

J(s;/s2)dx = J m t g ;  + og;y)/(og;)2~~ 

= J[ct/c2 + gl' t Y /(cg; ldy (since dx = gidy) 

We have 
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Therefore, similar to equation (A.41, a necessary condition for the 

transformed binomial lattice to be path-independent is 

1 1 
N o  - -;Q I(ot/c2)dy - Ig;&[=ldy = 0. (A. 6) 

Y 

Obviously, under any homogeneous transformation (g; = 01, conditions 

(A.4) and (A.61 are the same. That is, the original and the transformed 

processes become path-independent at the same time. However, a 

nonhomogeneous transformation may make a difference. 
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Appendix B: Adjusted Binomial Lattice 

Consider the binomial approximation of diffusion process (1.1). 

The adjusted binomial lattice (2.8) is obtained by adding an extra term 

A(y, t )h to the state-symmetric building block (2.3). To determine the 

local adjustment term A(y, t 1, calculate the up-down state (y+-) and 

down-up state (y-+) for the adjusted binomial model (2.8): 

The difference (gap) between these two states is 

Therefore, the difference between the two expected merging states is of 

order fi3, while that between nonmerging states is of order 16. To 

close this gap, we choose A(y,t) such that the coefficient of fi3 in 
(B.2) becomes zero. Or, equivalently, 

2A' (Y, t)u(Y, t)-2u;(Y, t)A(y, t) 
Y = ul'(Y, t) + z~;(Y, t)m2(~, t). (8.3) 

U2(Y, t) YY 

Integrate both sides with respect to y and rearrange. Then 

1 
A(y,t) = u(y,t)[~;(y,t) + dyl . 

When u(y,t) = r(y) does not depend on t, we simply choose 

where C is a constant. For simplicity. C is set to 0. If we set C = b, 

then the adjusted binomial lattice (2.8) will capture the first three 

terms in the Taylor expansion of the alternative binomial model (2.16). 
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Appendix C. Pseudo Path-Independent Hodel 

As noted in section 2, the adjusted binomial lattice may not be 

path-independent. However, under mildly smooth conditions, the gap 

between the up-then-down state (y+-) and the down-then-up state (y-+) is 

sufficiently small after the adjustment. By ignoring such minor 

differences, we obtain a pseudo path-independent lattice. To illustrate 

this idea, we specify a procedure for reconnecting the nodes as follows. 

Pseudo Path-Independent Algorithm: 

Step 1. Starting from the initial node yo at time 0, branch into two 

nodes using the adjusted jumping scheme in (2.8). Denote the 

two nodes in period 1 by y (h) and ylPl(h): 
1.0 

Step 2. At the end of period k (or time t = W, k 1 11, there are k + 1 

nodes y (h), (0 5 j 5 k). Construct the nodes for period 
k. J 

k + 1 as follows: 

(That is, except for the "bottom" node in period k+l, all other 

nodes are computed from upward moves from the previous period.) 

Step 3. In period k, if the process is at state y j = 0,. . . ,k, the 
k, J *  

lattice generator is 
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where 

Step 4. Repeat steps 2 and 3 until k = n. 

In the above construction, we ignore the actual down jumps in the 

adjusted lattice except for the one that is always down. Note that an 

actual down jump in period k would create additional k nodes. Let 

{":+l,, 
(h), j = 0.1. ..., k) represent these nodes. Then 

In general, ~:+~,,(h) f yk+l, J(h). The difference, however, is 

negligible. Therefore, in the above pseudo path-independent lattice, we 

ignore the y*(h) values completely and force the down jumps to reconnect 

with the up jumps from the immediate state below. Specifically, we bend 

the downward branches by 

Ayk, J(h) = ":+I,~ (h) - "k+l, J-1 (h), l s j s k  (C.6) 

such that k + 1 pairs of nodes reconnect at time (k + 1)h. 

In summary, for the pseudo path-independent algorithm, the up and 

down jumps at node j in period k are 

Lemna 3. If c(y, t 1 has locally bounded partial derivatives up to the 

fourth order in y and up to the second order in t, then 

(1) in the adjusted lattice (2.81, 

~,(y,h) = * -  - - +  = o(h2) and (C.9) 

(2) in the pseudo path-independent algorithm, 
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A (h) = o(hl, (k > 1. 1 s j s k). 
ks J 

tc. 10) 

Proof: Equation (C. 9) follows directly from the discussion in section 

2.2. To prove equation (C.101, note that 

Repeatedly using equation (C.9) yields 

Since j 5 n = T/h, in the worst case, we have 

A (h) = n o(h2) 
k, J 

= o(h) for all k > 1, and j = 1, ..., k. 

Proposition C. Suppose the diffusion equation (1.1) has an a.e. unique 

solution Y(t) for any given Y ( 0 ) .  Let ~("'(k) be the binomial Markov 

chain corresponding to the pseudo path-independent lattice in (C.7) - 
(C.8) and the transition probability (2.12). Define ~("'(t) = y(n) 

[ntl ' 
Then Y'~' weakly converges to Y ( t 1. 

Proof. From lemma 2, we can rewrite equation ( C . 8 )  as 

+ - 
To simplify the notation, we use y , y , and y for y+ (h), y- (h), and 

k, J ks J 

'k, J 
(h), respectively. Recall the transition probability (C .4 ) .  We can 

calculate the local drift yl(y,t) and second moment o (y,tl as follows: h 
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We use the fact that [q(y,t) - llu(y.t) = [p(y;t) - X(~,t)lfi. Thus, the 
local drift p (y,tl and second moment uh(y,t) converge to the true drift 

h 

p(y,t) and moment u(y,t). From lemma 1, the pseudo path-independent 

binomial process weakly converges to the corresponding diffusion. 
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Appendix D: Roof of Equations (2.13) and (2.16) 

To prove equation (2.131, use the Taylor expansion for (2.11); then 

Note that f(x,t) = y and that the two partial derivatives of f with 

respect to y in the above equation are 

af(x*t) = r(y, t) and a2f(x, t I 
ax = 4; (y, t )4(y, t 1. 

ax2 

ag ay ag and To find afA:st), note that x = g(y, t). Thus, 0 = - - + - ay at atp 

substituting these derivatives into equatibn (D. 1) yields equation (2.13). 

Next, we prove equation (2.16). In equation (2.91, we choose g such 

that X(t) has a linear volatility function: 

To approximate X(t), we use the Cox-Rubinstein binomial model (2.13): 

The corresponding binomial model for y(t) is 

with up-jump probability (2.121. Using the Taylor expansion on the 

above equation, we obtain equation (2.16). Here, the derivatives used 

are 

ar(r) - 
af(x) - U(Y) [cr; (Y)+blu(Y 1 
- -  a2f(x) - and - - ar af(x) M Y )  - - ax a + bX a + b ~ T -  ax2 (a+bx12 (a + bx12 
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Appendix E: Controlling Step Size 

El. Reflecting Boundary 

This subsection shows how to control the partition size so that the 

approximating binomial chain is a true random walk with a reflecting 

barrier. Even though the process to be approximated has a reflecting 

barrier at 0, the barrier for the Markov chain is a small positive state 

that approaches 0 as the partition size diminishes. Such a barrier can 

be constructed by solving q(y1 = 1. Let y* be the solution. We can 

choose a partition size h such that y* will be a state for the binomial 

process. Thus, when the process reaches y*, it can be reflected with 

probability 1. 

This is best explained by way of example. Let Y(t 1 be the MRSR 

process (5.1). The transformed process X(t1 is given by equation (5.3). 

The approximated boundary x* can then be calculated using equation 

(5.6). suppose the transformed process '~(t 1 starts from X(O) and hits 

the boundary x* in exactly m steps by following an always-down path. 

That is, X(0) - m i 6  = x*, which gives 

The number of partitions of the time period [O,Tl would be the largest 

integer that is less than or equal to T/h; i.e., n = [T/hl. Since T/m 

may not be an integer, we simply assume that the binomial process stays 

at the same state on the residual interval [nh,Tl. 

If we choose x* = @fi/2, then fi = m+#/2 '(O) . Starting with ~(0). 

after m steps, the always-down state will be 

or 

and 
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If we choose q(y*,mh) = 1, the binomial process will never go down any 

farther once it reaches y*. With probability 1, the process Jumps up to 

The corresponding local drift p (y*,t) and second moment oh(yi,t) are 
h 

ph(y*,mh) =[yt(.h + h) + y*l/h = up and (E.6a) 

The true drift and variance at state y* are 

p(y*,mh) = ~(p-y*) = lip - ~(#u)~h/16 = up + O(h) and (E.7a) 

Thus, ~r,(y.t) and %(y,t) converge to p(y,t) and o(y,t), respectively. 

Proposition El. Suppose the binomial lattice for the MRSR process (5.1) 

is generated by (3.2a) and (3.2b). Let $I = 41cplo~ - 1 > 0. Suppose the 

transformed process X(t) starts at t with X(O) such that m = X(0) - 
#/2 is an integer less than n. Define an approximated boundary y* as in 

equation (E.3). Let the transition probability be defined by (2.12) 

when y > y*. At the approximated boundary y*, set q(y*,t) = 1. Then 

the resulting binomial process weakly converges to y(t). 

E2. AbsorbingIReflecting Boundary 

Again, we use the MRSR process (5.1) to illustrate our method. 

Assume -1 a = 4~lr/o~ - 1 < 0. Then y = 0 is a sticky boundary. Let 

y* be the small state such that one up jump from 0 to y* with 

probability 1 matches the local mean exactly with the drift. That is, 

or equivalently, x* = ma for the transformed process. We control 

the step size h such that if the process starts from X(0) and follows an 

always-down path, it will hit the small state y* in exactly m steps. 
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That is, X(O) - on/); = x.. For any state y above y*, 0  r q(y , t )  -C 1. ~t 

x*, X can either jump up to x* + fi with probability 

or it can jump down to 0 with probability 1 - q(y*, t ) .  The true drift 

and variance at state y* are 

p(y*,mh) = u(p - y*) = up + K d(l*')h = ~p + O(h) and 
4 (E. lOa1 

The corresponding local drift p (y* , t )  and second moment o (y* , t )  are 
h h 

Proposition E2. Suppose the binomial lattice for the MFSR process (5.1) 

is generated by (5.4). Let # = 4~p./o~ - 1 > 0. Suppose the transformed 

process X(t1 starts with X(O1 such that m = X(O1 - fi is an 
integer less than n. Define an approximated boundary y* as in equation 

(E.8). Let the transition probability be defined by equation (5.51 when 

y > y*, and let q(y* , t )  be given by equation (E.91. Set q(0. t )  = 0. 

Then the resulting binomial process weakly converges to Y(t1. 
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