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Abstract
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1 Introduction

Lagos and Wright (2005) showed that models with explicit microfoundations for monetary

exchange can be used for policy analysis and they can generate new useful predictions. While

the Lagos-Wright model emphasizes search frictions to explain the usefulness of money, it omits

nominal frictions that many think are important to capture the e¤ects of monetary policy. For

instance, Diamond (1993, p. 53) argued that "some degree of price stickiness is a necessary

part of a realistic transaction technology." This paper brings monetary theory one step closer to

policy analysis by introducing menu costs into a continuous time version of the Lagos-Wright

model.

Building on the literature pioneered by Kiyotaki and Wright (1991, 1993), we adopt a

model where agents trade in bilateral meetings and where means of payment are needed to

mitigate a double-coincidence-of-wants problem. We also endogenize the frequency of trades

through a free-entry condition so that in�ation a¤ects both the quantities traded in individual

matches (i.e., the intensive margin) and the number of matches (i.e., the extensive margin).

The introduction of nominal rigidities is based on the model of Sheshinki and Weiss (1977).

Sellers who incur a �xed cost to change their prices adjust them only infrequently by following

an endogenous (S; s) rule.1

In order to disentangle di¤erent ine¢ ciencies associated with in�ation, and in order to

contrast our analysis with previous search models with sticky prices (e.g., Benabou (1988) and

Diamond (1993)), we �rst study a cashless economy where there is no transaction demand for

money balances. We are able to derive analytically a condition under which a positive in�ation

rate is optimal. This condition states that in�ation can be good for society when sellers have

too much market power, or equivalently, when the congestion imposed by sellers in the goods

market is too severe. In the presence of sticky prices, a deviation from price stability mitigates

1For recent empirical evidence suggesting that price adjustments are infrequent, see Levy, Bergen, Dutta, and
Venable (1997) and Bils and Klenow (2004). The macroeconomic literature on state-dependent price adjustments
was pioneered by Caplin and Spulber (1987) and Caplin and Leahy (1991), and in search-theoretic environments,
by Benabou (1988, 1992), Diamond (1993), and Diamond and Felli (1992). Recent contributions include Dotsey,
King, and Wolman (1999) and Golosov and Lucas (2003).
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this ine¢ ciency by reducing sellers�incentives to enter the market.

The introduction of a transaction role for money into the previous environment brings two

new insights. First, the result obtained in cashless economies according to which de�ation is

never optimal does not survive the introduction of an in�ation tax. In the absence of menu

costs, the Friedman rule is optimal, and in the presence of menu costs, provided menu costs are

small, the optimal in�ation rate is negative. Second, the presence of nominal rigidities matters

for the optimality of the Friedman rule. Depending on the extent of the search externalities

and sellers�market power, it is sometimes optimal to keep in�ation above the level prescribed

by the Friedman rule.2 Also, we illustrate how the presence of nominal frictions can enhance

welfare and how it eliminates a real indeterminacy at the Friedman rule.

The paper is organized as follows. Section 2 describes the environment. Section 3 solves a

model in which there is no money but prices are posted in terms of a unit of account. Section

4 investigates a monetary model with �exible prices, and then with sticky prices. All proofs of

lemmas and propositions are relegated to the appendix.

2 The environment

Time is continuous and goes on forever. Some trades take place in a centralized market, and

others in a decentralized market with bilateral random matching. There are two types of

perishable goods, a special good and a general good. Whereas the general good is produced and

traded in the centralized market, the special good is traded in the decentralized market.3

The economy is populated with a continuum of in�nitely-lived agents divided into two cat-

egories, called buyers and sellers to re�ect their trading behaviors in the decentralized market.

The measure of buyers is normalized to one. The measure of sellers, denoted n, will be en-

dogenous. Buyers di¤er from sellers both in the goods they produce and in their consumption

2These results are not inconsistent with �ndings in new Keynesian models based on monopolistic competition
and time-dependent pricing. In those models, the Friedman rule is optimal if prices are �exible despite the
presence of imperfect competition. With sticky prices, de�ation is still optimal but the de�ation rate can be
lower than the one at the Friedman rule. For details and references, see Khan, King, and Wolman (2002).

3The assumption that trades take place in both centralized and decentralized markets was introduced by
Lagos and Wright (2005). The environment described in this paper is closer to Rocheteau and Wright (2005).
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preferences. Whereas both types of agents consume and produce the general good, buyers,

unlike sellers, also want to consume the special good, and sellers, unlike buyers, produce the

special good.

Buyers Sellers

General good
consume
produce

consume
produce

Special good consume produce

Agents�trading behaviors

The utility of consuming q units of the special good is u0q with u0 > 0.4 The disutility of

producing the special good is c(q) with c(0) = c0(0) = 0, c0(q) > 0 and c00(q) > 0 for q > 0,

and c(q) = u0q for some q > 0. The instantaneous utility function of buyers and sellers in

the centralized market is simply x, where x is the net consumption �ow of general goods.5

Given this speci�cation, producing the general good for oneself is worthless. Buyers and sellers

discount future utility at the same rate, � > 0.

Unmatched agents trade in the centralized market. They are thrown into a bilateral match,

i.e., in the decentralized market, according to a stochastic Poisson process. When matched,

agents do not have access to the centralized market.6 Matched agents choose whether or not to

trade, split apart immediately after the trade has occurred, and return to the centralized market.

Since an agent does not have the ability to produce general goods while in the decentralized

market, he can only transfer the special good he produces or the assets he holds at the time he

is matched.7

We will consider two polar cases regarding agents� abilities to use credit. We will �rst

4The linearity of the utility function in terms of special goods, also used by Benabou (1988), will simplify
greatly sellers�pricing strategy. We will argue, however, that our main results should be robust to alternative
speci�cations.

5The linear speci�cation for the utility functions for centralized market goods is a key assumption to obtain
a tractable model in which the distribution of money holdings is easy to handle. See Lagos and Wright (2005).

6For a somewhat related formalization where centralized and decentralized markets open concurrently, see
Williamson (2006).

7One could assume instead that even though general goods can be produced in bilateral matches, the seller
does not wish to consume the general good produced by the buyer in the match.
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consider an economy in which buyers are able to commit to repay their debts and therefore can

use IOUs to trade in the decentralized market. We will call this economy a cashless economy.8

We will then consider a monetary economy where buyers are unable to commit to repay their

debt and need to use money in order to trade in the decentralized market.

The trading opportunities in the decentralized market are described by a standard random-

matching technology. The instantaneous matching probability of a buyer is � (n), whereas the

instantaneous matching probability of a seller is �(n)=n. Furthermore, �0 > 0 and �00 < 0,

�(0) = 0, �0(0) = 1, �0(1) = 0 and limn!1 �(n) = 1. We denote �(n) = �0(n)n=�(n) the

elasticity of the matching function. As we also want to endogenize n, we assume that sellers

who participate in the decentralized market incur a �ow cost, k > 0, to search for buyers and

to advertise their products.9

There exists a good called money that is intrinsically useless but that serves as a unit of

account. The monetary price of the general good is w(t). It will be exogenous in the cashless

economy, and will be determined by a market-clearing condition in the monetary economy. In

the decentralized market, we adopt the following pricing protocol. Unmatched sellers post a

monetary price. They can change their posted prices at any time at the cost 
 in terms of

utility. When a match occurs, the transaction price is chosen as follows. With probability

1 � �, every unit that is produced is sold at the seller�s posted price. The quantity traded is

the minimum of the buyer�s demand and the seller�s supply at this price. With probability

� 2 (0; 1), however, the buyer makes a take-it-or-leave-it o¤er. If this o¤er is rejected by the

seller, no trade takes place. One can think of this pricing procedure as bargaining with nominal

rigidities, or price posting with imperfect commitment.10 This pricing captures the observation

that transaction prices often di¤er from posted prices. There are two additional reasons to give

8Related cashless economies with state-dependent pricing are studied in Caplin and Spulber (1987), Benabou
(1988, 1992), Diamond (1993), Golosov and Lucas (2003), among others.

9The assumption of free-entry is standard in the search literature to endogenize the number of trades. See,
among others, Pissarides (2000), Diamond (1993) and Rocheteau and Wright (2005).

10For instance, a seller instructs a sales clerk to sell his output at the posted price. The commitment technology
is imperfect in the sense that the sales clerk is not always in the shop, let�s say, because it is too costly to have an
employee full time. This is related to the assumption of costly price commitment introduced by Bester (1994).
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buyers some market power by allowing them to make o¤ers in some matches. First, without

this assumption there would be no monetary equilibrium in the economy with �exible prices.11

Second, this assumption will allow us to derive a simple condition on � and �(n) under which

a deviation from price stability is optimal in the cashless economy.

3 Cashless economies

In this section, we describe an economy in which there are no monetary frictions and agents do

not hold nominal assets. As emphasized earlier, this environment is closely related to the one

in Diamond (1993) and it will provide a useful benchmark to compare against our monetary

economy in Section 4.12 Also, we will derive several analytical results that will prove useful to

build our intuition on the e¤ects of in�ation in the presence of nominal and search frictions.

Buyers use credit arrangements to trade in the decentralized market. They commit to

repay their debt in the general goods market straight after a trade has occurred.13 Sellers post

a monetary price at which they commit to sell their output. The monetary price of general

goods, w(t), is exogenous and is growing at rate � � ��. In the following, we will refer to the

real price p as the nominal price posted by sellers divided by the price of general goods, w.

Note that p decreases at rate � as long as the monetary price remains unchanged.

Consider a buyer. The Poisson arrival rate of a match in the decentralized market is �(n).

With probability �, the buyer makes a take-it-or-leave-it o¤er (qb; db), where qb is the quantity

of the special good produced by the seller, and db is the quantity of general goods that the buyer

11 In order to allow for the existence of a monetary equilibrium in an economy with price posting, one can
introduce heterogeneity across buyers. See Curtis and Wright (2004) and Ennis (2004). One can interpret
our assumption that buyers get the whole surplus of the match with probability � as a reduced-form for this
heterogeneity.

12Our model di¤ers from Diamond (1993) in several dimensions. First, buyers can appropriate the surplus of
a match in a fraction � of the meetings, whereas in Diamond�s model, � is assumed to be 0. Second, the quantity
traded in each match is endogenous, whereas in Diamond, it is set exogenously at 1. Third, buyers can trade
repeatedly in the search market whereas buyers only trade once in Diamond�s environment. As we will show,
the last two assumptions are not crucial to Diamond�s results while the �rst one �the fact that sellers have all
the market power �is.

13Diamond (1993, p.56) assumes that the purchasing power held by customers while searching is earning the
nominal interest rate which increases point for point with the in�ation rate. He argues that "this assumption
�ts with payments by check or credit card rather than currency".
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commits to deliver (the subscript b re�ects the assumption that the o¤er is made by a buyer).

With probability 1 � �, the buyer trades at the posted price: He consumes qs in exchange for

ds = pqs units of general goods. The quantity qs, which is the minimum of the buyer�s demand

and the seller�s supply at the posted price, is a function of p. The value function of a buyer,

W b, satis�es the following �ow Bellman equation

�W b = �(n)

�
� [u(qb)� db] + (1� �)

Z �
u0qs(p)� pqs(p)

�
dH(p)

�
; (1)

where H(p) is the distribution of real prices across sellers.

Consider next a seller. As shown by Sheshinsky and Weiss (1977), in the presence of menu

costs sellers change their price according to an (s; S) rule. If � > 0, the real price of the

seller falls until it reaches the trigger point s and is then readjusted to the target point S.

Conversely, if � < 0 the real price increases steadily from s to S. The length of the period of

time between two price adjustments is denoted � . Suppose the seller has not adjusted his price

for a period of time of length h 2 (0; �). His posted price expressed in terms of the general

good is p(h) = Se��h if � > 0, and p(h) = se��h if � < 0. The seller�s expected utility, W s(h),

obeys the following Bellman equation (see the Appendix)

�W s(h) = �k + �(n)
n
G [p(h)] +

@W s(h)

@h
; (2)

where G(p), the seller�s expected trade surplus, satis�es

G(p) = (1� �) fqs(p)p� c [qs(p)]g+ � fdb � c(qb)g : (3)

Equation (2) has the following interpretation. The seller incurs the cost k to participate in

the market. A match occurs with instantaneous probability �(n)=n, in which case the seller�s

expected surplus is G(p). The last term on the right-hand side of (2) re�ects the fact that the

seller�s value function is not constant over the (S; s) cycle.

At the end of the (S; s) cycle, i.e., when h = � , the seller readjusts his price and starts a new

cycle so that W s(�) =W s(0)� 
. Furthermore, the free entry of sellers implies W s(0)� 
 = 0,

and W s(�) = 0. This simply means that a seller who readjusts his price is in the same position
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as a new entrant. Using this terminal condition, equation (2) can be written in integral form

as

W s(h) =

Z �

h
e��(t�h)

�
�k + �(n)

n
G [p(t)]

�
dt: (4)

Finally, W s(0) = 
 yields Z �

0
e��t

�
�k + �(n)

n
G [p(t)]

�
dt = 
: (5)

According to (5), the expected discounted utility of a seller over the (S; s) cycle has to be equal

to the cost of setting a new price.

3.1 Equilibrium

To characterize equilibrium, we need to specify how terms of trade are formed in the decen-

tralized market. Consider a match between a buyer and a seller whose posted price is p. As

previously stated, the transaction price di¤ers from the posted price with probability �. In

this case, the buyer makes a take-it-or-leave-it o¤er (qb; db) in order to maximize his utility

u(qb)� db, subject to the sellers�participation constraint, �c(qb)+ db � 0. The solution is then

qb = q
� and db = c(q�), where q� solves u0 = c0(q�).

With probability 1� �, agents trade at the posted price. However, the seller can choose not

to serve all the buyer�s demand at that price. The buyer�s demand corresponds to the value of

q that maximizes his surplus u0q � pq. It is unbounded if u0 > p and it is 0 if u0 < p.14 We

call u0 the buyer�s reservation price. Also, sellers produce no more than the quantity q that

maximizes qp� c(q). Therefore, qs(p) is given by

qs(p) =

�
c0�1(p) if p � u0
0 otherwise

: (6)

It should be noticed here that the assumption of divisible output which will play an important

role in the monetary economies is not crucial for the results of the cashless economies.

The optimal pricing policy of sellers is such that S and � maximize sellers�expected utility

as given by the left-hand side of (5). It is characterized in the following Lemma.
14 In the knife-edge case, where u0 = p, the buyer is indi¤erent between trading or not. To guarantee that the

seller�s pricing problem has a solution, we assume that the buyer�s demand is at least equal to the quantity q�

that the seller is willing to produce at this price.
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Lemma 1 (i) If 
 = 0 then sellers set a real price equal to u0. (ii) Assume 
 > 0. The sellers�

optimal pricing policy (S,�) satis�es S = u0 and

�(n)G(u0e�j�j� ) =

�
nk; if � > 0
n (�
 + k) ; if � < 0

, (7)

and � =1 if � = 0.

For all in�ation rates, sellers target the buyers�reservation price u0. They do not let their

price go beyond this target. This result is intuitive since a seller�s expected sales fall to 0 if

his price is above u0. Obviously, this particular form for the (S; s) rule hinges crucially on

the linearity of buyers�utility function.15 In the presence of in�ation, the opportunity cost of

delaying the price adjustment is �W s(�) = 0 (in �ow terms), whereas the instantaneous bene�t

is �(n)n G [p(�)]� k. Therefore, the seller adjusts his price when his instantaneous utility falls to

0.16 In the case of de�ation, the seller readjusts his price when it reaches the buyer�s reservation

price, u0, irrespective of his choice for s. The opportunity cost for the seller of delaying the

price adjustment by setting a price smaller than s is equal to �W s(0) = �
. From (7) there is

a symmetry between in�ation and de�ation only when �! 0.

All through the paper, we focus on time-invariant cross-sectional distributions of real prices

by assuming that real prices are log-uniformly distributed over [s; S]. As shown by Caplin and

Spulberg (1987) and Benabou (1988), the log-uniform distribution is the only one that is time

invariant and consistent with the (s; S) rule.17 Equivalently, the length of the period of time

during which a seller�s price has been kept unchanged is uniformly distributed on [0; � ].

De�nition 1 An equilibrium is a pair (n; �) that satis�es (5) and (7) if � 6= 0 or (5) and

� =1 if � = 0.

15For alternative speci�cations for the utility function, the (S; s) rule would be such that the upper-bound S
overshoots the ideal price of the seller. See, for instance, Benabou (1992). We discuss the importance of this
assumption at the end of the section.

16One may wonder why the menu cost 
 does not appear in Equation (7) when � > 0. The reason is that the
continuation value of a seller who readjusts his price is �
 +W s(0). From the free-entry condition, this term is
0. Note, however, that the menu cost 
 appears in the free-entry condition.

17Under a steady in�ation, a log-uniform distribution of prices is equivalent to a uniform staggered timing
(Rotemberg, 1983).
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We illustrate the determination of equilibrium for the case � > 0 in Figure 1. The free-

entry curve corresponds to (5), whereas the pricing curve corresponds to (7). The pricing-curve

slopes downward since sellers need to readjust their prices more frequently when the market is

congested. The pricing-curve intersects the free-entry-curve when the latter reaches a maximum:

The number of sellers is highest when the frequency of price adjustment is chosen optimally.

As � increases, the free-entry-curve shifts downward (see dotted curve), n decreases, and ��

increases. In�ation drives sellers out of the market and raises (real) price dispersion.18 Results

are analogous when � < 0. An increase in de�ation (a reduction in �) raises price dispersion

and reduces the measures of sellers in the market. These results are summarized in the following

proposition.

Pricing

Free entry

Figure 1: Equilibrium (� > 0).

Proposition 1 If � < 1, equilibrium exists and is unique. If 
 = 0, n is independent of �. If


 > 0 and � > 0 then @��=@� > 0 and @n=@� < 0. If 
 > 0 and � < 0 then @��=@� > 0 and

@n=@� > 0.

18For a search-theoretic model with endogenous price dispersion and �exible prices, see Head and Kumar
(2005) and Head, Kumar and Lapham (2004).
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We measure society�s welfare as the expected surplus of buyers per unit of time.

Wb = �(n)

(
�
�
u0q� � c(q�)

�
+ (1� �)

Z j�j�

0
u0qs(u

0e�h)
�
1� e�h

� dh

j�j �

)
: (8)

This welfare measure is legitimate since the free-entry condition drives sellers�expected utility

to 0. Denote n0 the measure of sellers when � = 0.

Proposition 2 If 
 = 0, equilibrium is e¢ cient i¤ 1� � = �(n0).

The condition in Proposition 2 is similar to the one derived by Hosios (1990) for an e¢ cient

allocation in the presence of congestion externalities. It states that the measure of sellers is

socially e¢ cient if the fraction of the matches where sellers appropriate the whole surplus of a

match coincides with sellers�contribution to the matching process as measured by the elasticity

of the matching function. If 1 � � > �0(n)n=�(n), n is too high. Although it may not be well

known, this is the main ine¢ ciency in the Diamond (1993) economy.

Proposition 3 Provided 
 is su¢ ciently small, the optimal in�ation rate is strictly positive if

� < [1� �(n0)] = [1 + �(n0)].

Proposition 3 indicates under which circumstances positive in�ation is desirable. An increase

in in�ation has two opposite e¤ects on buyers�welfare. It raises the ability of buyers to extract

a higher surplus, but it also reduces the number of sellers and therefore the frequency of trades.

If � is low, the �rst e¤ect dominates and price dispersion raises buyers�welfare. In Diamond�s

(1993) economy, � = 0 so the condition in Proposition 3 is satis�ed.

According to Proposition 1, in�ation and de�ation have similar e¤ects on price dispersion

and the measure of sellers. It is therefore not obvious that optimal in�ation is positive when

� < [1� �(n0)] = [1 + �(n0)]. The intuition for this result goes as follows.19 If buyers could

choose the in�ation rate, they would face a trade-o¤ between the larger share in the gains from

trade that is associated with higher price dispersion and the lower frequency of trade that is

associated with the smaller number of sellers in the market. For a given price dispersion j�� j,
19This result explains the numerical example provided by Diamond and Felli (1992).
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in�ation hurts sellers less than de�ation does. Indeed, if � > 0, sellers set their prices to S and

get high pro�ts at the beginning of the (S; s) cycle, whereas if � < 0, they set their prices to s

and get low pro�ts �rst. Therefore, it is optimal to reduce sellers�market power by running a

positive in�ation instead of a de�ation.
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4 Monetary economies

We now introduce a transaction role for money by assuming that buyers are anonymous in

the centralized market and cannot commit to repay their debts. In the absence of credit

arrangements, trades in bilateral matches need to be quid pro quo, and this requires buyers

hold money balances. The price of general goods in terms of money is now endogenous. We will

determine the optimal monetary policy in the absence of menu costs, and we will investigate

how the presence of nominal frictions a¤ects policy.

The quantity of �at money per buyer is M(t) > 0. The growth rate of the money supply

is constant over time and equal to � � ��; that is, _M = �M . Money is injected (withdrawn

if � < 0) by lump-sum transfers (taxes). For simplicity, transfers go only to buyers. We

will restrict our attention to steady-state equilibria in which the real value of money M=w is

constant over time, i.e., _w = �w.

Let W b(z) be the value of an unmatched buyer holding z units of real money (expressed

in terms of the general good). The stochastic time for a buyer to �nd a seller, denoted Tb, is

characterized by an exponential distribution with mean 1=�. The value functionW b(z) satis�es

W b(z0) = max
fx(t);z(t)g

E
�Z Tb

0
e��tx(t)dt+ e��TbV b [z(Tb)]

�
(9)

s.t. x+ _z = L� �z; (10)

z(0) = z0; (11)

where x(t) is the net consumption �ow of general goods at time t, where V b(z) is the value

function of a matched buyer holding z units of real money, and where the trajectory fx(t); z(t)g

is contingent on t < Tb.20 The �rst term on the right-hand side of (9) is the utility of consump-

tion minus the disutility of production over the time interval [0; Tb]. The second term is the

present value of being matched at time T b with z(Tb) units of real money. Equation (10) is a

budget identity. The term L on the right-hand side is a lump-sum transfer expressed in terms
20 Implicitly, we allow for jumps in the state variables. For a presentation of optimal control problems with

jumps in state variables, see Seierstad and Sydsaeter (1987, chapter 3).
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of the general good, and the last term re�ects the fact that real balances depreciate at rate �.21

The initial condition for real balances is given by (11).

From the assumption that Tb is exponentially distributed, (9) can be rewritten

W b(z0) = max
fx(t);z(t)g

Z 1

0
e�[�+�(n)]t

h
x(t) + �(n)V b [z(t)]

i
dt; (12)

subject to (10) and (11).22 Interestingly, (12) is analogous to a deterministic optimal control

problem in which the e¤ective discount rate is � + �(n) and the instantaneous utility is x +

�(n)V b (z).

Lemma 2 Assume V b(z) is concave. Buyers adjust their real balances instantly to a ẑ that

satis�es

V bz (z) = 1 +
�+ �

�(n)
: (13)

The left-hand side of (13) is the bene�t for the buyer of an additional unit of real balances,

whereas the right-hand side is the marginal cost of real balances. This cost, measured in

terms of the general good, is the sum of the forgone unit of the general good and the cost of

holding real balances, as measured by the sum of the discount rate and the in�ation rate, over

a period of time of length 1=�(n). Assuming V b(z) is strictly concave over a relevant range,

the solution to (13) is unique and the steady-state distribution of real balances across buyers

is degenerate at z = ẑ.23 Given that the buyer adjusts his real balances to ẑ instantly, we have

W b(z) = �(ẑ � z) +W b(ẑ), and in particular, W b(z) = z +W b(0).

The value function of a matched buyer satis�es

V b(z) = �
n
u0qb(z) +W

b [z � db(z)]
o

+(1� �)
Z n

u0qs(z; p) +W
b [z � pqs(z; p)]

o
dH(p); (14)

21Let m be the buyer�s nominal balances. Then, z = m=w and _z = �( _w=w)(m=w) + _m=w. To obtain (10),
use the fact that _w=w = � and _m=w = �x+ L.

22See the Appendix for a derivation of (12).
23 If V b(z) is linear over the relevant range for the choice of z, we restrict ourselves to symmetric equilibria.

This will be the case for 
 > 0 and � close to ��.
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where qs depends on both the buyer�s real balances and the real price p posted by the seller.

With probability �, the buyer has the ability to make an o¤er (qb; db). He enjoys the utility of

consumption u0qb and becomes unmatched with z� db units of real balances. With probability

1��, the buyer trades at the posted price p and consumes qs units of goods for pqs units of real

balances, where qs is determined as before. Using the linearity of W b(z), (14) can be rewritten

V b(z) = �
�
u0qb(z)� db(z)

	
+(1� �)

Z �
u0 � p

�
qs(z; p)dH(p) + z +W

b(0): (15)

The seller�s value function obeys the Bellman equation (2), where G is now a function of

F (z), the distribution of real balances across buyers,

G(p) =

Z
(1� �) fqs(z; p)p� c [qs(z; p)]g+ � fdb(z)� c[qb(z)]g dF (z): (16)

Let us turn to the determination of prices. In the fraction � of the matches where the buyer

has the ability to make a take-it-or-leave-it o¤er, he proposes (qb; db) that satis�es

max
(qb;db)

�
u0qb � db

�
s.t. � c(qb) + db = 0 and db � z: (17)

The main di¤erence with respect to the previous section is that the transfer db is constrained

by the buyer�s (monetary) wealth. The solution to (17) is

qb =

�
q� if z � z� � c(q�)
c�1(z) otherwise

. (18)

According to (18), if z > z�, then db � z is not binding and agents trade the e¢ cient quantity

q�. If z < z�, then the constraint binds and the buyer spends all his real balances to buy less

than q�. In the fraction 1� � of the matches where agents trade at the posted price, the buyer

demands z=p if u0 � p and 0 otherwise, and sellers are willing to produce up to �q such that

c0(�q) = p. Therefore,

qs(z; p) =

(
min

�
c0�1(p); zp

�
; 8p � u0;

0; otherwise.
(19)
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4.1 Flexible prices

The case where prices can be adjusted at no cost (
 = 0) will allow us to contrast the monetary

economy with the economy described in the previous section.24 In particular, we will show that

even though in�ation drives sellers out of the market, as in the cashless economy with sticky

prices, this e¤ect is not welfare-enhancing in the monetary economy with �exible prices.

When prices can be adjusted at no cost, the sellers�optimal pricing strategy is p = u0 for

any distribution of real balances F (z). The reasoning is similar to the one in Lemma 1. If

buyers choose p > u0, they make no trade, and sellers have no incentive to choose a price lower

than u0 since for all p � u0 buyers spend all their real balances. This pricing strategy allows

sellers to extract all the surplus of a match whenever agents trade at the posted price. From

(15), the Bellman equation for the value function of a buyer can be simpli�ed to

V b(z) = �
�
u0qb(z)� c [qb(z)]

	
+ z +W b(0):

Di¤erentiate V b(z) to get

V bz (z) =

(
�
n

u0

c0[qb(z)]
� 1
o
+ 1 if z < z�;

1 otherwise.
(20)

Equation (20) can be interpreted as follows. Consider a match where the buyer makes a take-

it-or-leave-it o¤er. If the buyer brings one additional unit of real balances, he increases his

consumption by 1=c0(qb), which is worth u0=c0(qb) in terms of utility. Consider next a match

where the buyer trades at the posted price. The buyer can increase his consumption by 1=u0,

which is worth 1 in terms of utility. From (20), V bzz < 0 for all z < z�. From Lemma 2,

there is a unique solution ẑ < z� to (13), and the distribution of real balances across buyers is

degenerate.25 Furthermore, (13) and (20) yield:

�+ �

�(n)�
=

u0

c0 [qb(z)]
� 1: (21)

24This model is related to the search equilibrium described in Rocheteau and Wright (2005).
25To check that z < z�, note �rst that V b

z (z) is strictly decreasing for all z < z
�. Furthermore, �+�(n)+� >

�(n)V b
z (z) for all z � z� and for all � > ��.
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Free entry of sellers implies W s(0) = 0, which gives from (2)

�(n)

n
(1� �)

�
u0qs(z; u

0)� c
�
qs(z; u

0)
�	
= k: (22)

De�nition 2 A monetary equilibrium with �exible prices is a list (z; n) that satis�es (21) and

(22).

Assume � > �� (We will treat the case � = �� separately). We cannot rule out multiplicity

of steady-state equilibria. When such multiplicity arises, we focus on the equilibrium with the

highest values for q and n as it converges to an equilibrium at the Friedman rule.

Proposition 4 If � = 0 or � = 1, there is no monetary equilibrium. If � 2 (0; 1), there exists

�� > �� such that a monetary equilibrium exists for all � 2 (��; ��). At the equilibrium with the

highest z, @z=@� < 0 and @n=@� < 0.

If � = 0, there is no demand for real balances and hence no monetary equilibrium. Similarly,

if � = 1, there is no active equilibrium because sellers have no incentive to enter the market. So,

for a monetary equilibrium, we need � 2 (0; 1). In contrast to the model in the previous section,

in�ation is no longer neutral when 
 = 0. An increase in � reduces the quantities traded in

bilateral matches as well as the measure of sellers in the market. Therefore, one may conjecture

that the result for cashless economies, that in�ation is welfare improving when n is too high,

carries over to monetary economies. The following proposition shows that this conjecture is

wrong.

Proposition 5 Welfare is decreasing with �, and the optimal monetary policy is the Friedman

rule. Furthermore, lim�#�� qb = q� and lim�#�� qs < q�.

According to Proposition 5, the monetary equilibrium is ine¢ cient since the quantities

traded in matches where agents trade at the posted price are always ine¢ ciently low, even

at the limit when � approaches ��. This monopolistic competition ine¢ ciency is related to

the fact that sellers do not internalize the e¤ects of their pricing decisions on buyers� real
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balances.26 Even if the quantities traded in bilateral matches were e¢ cient, the entry of sellers

would generically be ine¢ cient because of the presence of search externalities.

Let us turn to the case � = ��. Denote n� the value of n that satis�es (22) when qs = q�.

Proposition 6 If � = �� then any (z; n) such that z 2 [c(q�); u0q�] and n satis�es (22) is

an equilibrium. Equilibria are strictly positively Pareto-ranked according to z. There is an

equilibrium that generates the �rst-best allocation i¤ � = 1� �(n�).

From the previous proposition, there is a real indeterminacy at the Friedman rule. There

exists a continuum of equilibria and these equilibria are Pareto-ranked. Intuitively, when �+� =

0 there is no cost of holding real balances so that buyers are indi¤erent between any level of

real balances above c(q�). However, an increase in real balances above c(q�) allows sellers to

extract a higher surplus in matches where buyers trade at the posted price. If one selects the

equilibrium by taking the limit � ! ��, this equilibrium corresponds to the one with the lowest

welfare, i.e., the one with the lowest real balances.

Calibration We calibrate this model using the methodology in Lucas (2000). A unit of time

corresponds to a year and r = 0:03. We de�ne B as the aggregate output in the centralized

market.27 The functional forms for the disutility of production is c(q) = q�+1=(�+1). We adopt

the normalization u0 = 1. As in Lagos and Wright (2005), we choose the parameters (�;B) to

�t money demand in the model to the data. Money demand is de�ned as L � M=PY . In the

model, nominal output in the centralized market is pB, and nominal output in decentralized

market is �(n)M . Hence, PY = pB+�(n)M and Y = B+�(n)M=p. In equilibrium,M=P = z,

and so

L =
M=P

Y
=

z

B + �(n)z
;

26This ine¢ ciency should be distinguished from the bargaining ine¢ ciency based on the nonmonotonicity of
the generalized Nash solution in Lagos and Wright (2005).

27 It is indeterminate in the model because of the linearity of the utility function. The only requirement imposed
by the model is B � �(n)z. We introduce this parameter to pin down the relative size of the decentralized market
and to make the calibration as close as possible to the one in Lagos and Wright (2005).
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where the pair (z; n) solves (21) and (22). Hence L is a function of i = r + �. Following Lucas

(2000), i is taken to be the commercial paper rate and let M be M1. The sample period is

1900-2000.

The matching technology takes the following functional form: �(n) = n� where � 2 (0; 1).

Since there are no study on the matching technology in goods market and the best �t for money

demand is obtained for small values of � we pick � = 0:1. We choose k to generate the same

frequency of trade as in Lagos and Wright (2005), that is �(n) = 0:5, at � = 2%.28 Finally, the

parameter � is chosen so as to generate an average markup of 10% when � = 2%, i.e.,

B

B + �(n)z
+

�
�(n)z

B + �(n)z

� �
�

z

qbc0(qb)
+ (1� �) z

qsc0(qs)

�
= 1:1:

The markup in the centralized market is 1. In the decentralized market, the markup is z=qbc0(qb)

if the buyer makes the o¤er and z=qsc0(qs) otherwise. The parameter values for our benchmark

example are recapitulated in Table 1.

Preferences
u0 = 1
� = 0:65

Discount rate r = 0:03

Matching � = 0:10

Pricing � = 0:34

Entry cost k = 76:16

General good B = 0:79
Table 1: Parameter values.

We measure welfare as buyer�s expected utility in the decentralized market plus the net

consumption of buyers and sellers in the centralized market (which is 0 by de�nition of the

utility function). We omit sellers�expected utility in the decentralized market since it is 0 from

the free-entry condition. Welfare is then

Wb
� = �(n�)�

h
u0qb� � c(qb�)

i
;

where (n�; qb�) are the equilibrium values of n and qb when the in�ation rate is �. Suppose next

that the in�ation rate is set at � = 0 but total consumption is reduced by a factor 1�� (where
28As in Lagos and Wright (2005) the best �t for money demand is obtained for low values of buyers�frequency

of trade.
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� will be our measure of the welfare cost of in�ation). Society�s welfare is then

Wb
0(�) = �(n0)�

h
u0qb0 (1��)� c(qb0)

i
�B�;

where the last term is the reduction in consumption in the centralized market. The welfare

cost of an in�ation rate � is the fraction � of total consumption that agents would be willing

to give up to be in a steady state with no in�ation instead of a steady state with in�ation �,

i.e., � solves Wb
� =Wb

0(�).

� (%) �3 0 5 10

z 0.61 0.40 0.22 0.13
�(n) 0.52 0.51 0.48 0.46
� (%) -0.43 0 1.17 2.26

Table 2: Flexible price economy

Table 2 reports the equilibrium values for real balances (z), the frequency of trade (�) and

the welfare cost of in�ation (�) at di¤erent in�ation rates. As shown in Proposition 4 real

balances and the frequency of trade fall with in�ation. The welfare cost of in�ation increases

with � and the Friedman rule is the optimal monetary policy. The �rst-best allocation is such

that qb = qs = 1 and �(n) = 0:43. So, in equilibrium the measure of sellers is too high and

the quantities traded in bilateral matches are too low. The welfare cost of 10 percent in�ation

is 2.26% of total consumption which is lower than the estimates in Lagos and Wright (2005)

� but still higher than Lucas�(2000) estimates. The di¤erence with Lagos and Wright (2005)

arises from the fact that the participation of sellers is endogenous in our model. An increase of

the in�ation rate reduces the ine¢ ciently large measure of sellers which mitigates the negative

e¤ect of in�ation on real balances.

4.2 Sticky prices

Assume now that sellers must incur a �xed cost to change prices. As in the previous section, we

focus on steady-state equilibria in which the distribution of (real) prices, H(p); is time-invariant

and price adjustments are uniformly staggered. The seller�s value function obeys a �ow Bellman
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equation analogous to condition (2), but where G is given by (16). The pricing policy of sellers

is still given by Lemma 1.

We describe the buyer�s choice of real balances in the case where the growth rate of the

money supply is positive (� > 0). If a buyer meets a seller at random, the price posted by the

seller is p(h) = u0e��h, where h is uniformly distributed over [0; � ]. The quantity qs satis�es

qs(z; u
0e��h) =

�
z=u0e��h if h � ~h;

c0�1
�
u0e��h

�
if h > ~h;

where ~h is the value of h such that c0(qs) = p(~h); i.e., ze�
~h = u0c0�1

�
u0e��

~h
�
. The seller serves

all the buyer�s demand if p(h) � p(~h) ; otherwise, the buyer is rationed. From (15) and (19),

the expected utility of a matched buyer can be rewritten as29

V b(z) = �
�
u0qb(z)� c [qb(z)]

	
+ (1� �)z

Z min[~h(z);� ]

0
��1

�
e�h � 1

�
dh

+(1� �)u0
Z �

min[~h(z);� ]
��1c0�1

�
u0e��h

��
1� e��h

�
dh+ z +W b(0): (23)

Let us interpret the second term on the right-hand side of (23). If h < ~h, the seller satis�es all

the buyer�s demand and the buyer�s surplus is equal to (u0�p)qs = z
�
u0�p
p

�
= z

�
e�h � 1

�
> 0.

Therefore, the buyer can extract a positive surplus even when trading at the posted price. The

third term on the right-hand side has a similar interpretation.

Di¤erentiate V b(z) to get

V bz (z) = �

�
u0

c0 [qb(z)]
� 1
�+
+ (1� �)

Z min[~h(z);� ]

0
��1

�
e�h � 1

�
dh+ 1; (24)

where [x]+ = max(x; 0). If the buyer can make a take-it-or-leave-it-o¤er, one additional unit

of real balances allows him to raise his utility by u0

c0[qb(z)]
. If the buyer trades at the posted

price, p(h) = u0e��h, and assuming that the seller satis�es all his demand, an additional unit

of real balances allows him to buy e�h=u0 units of the special good which is worth e�h in terms

of utility.

29To obtain (23), we use the fact that for all h < ~h, (u0 � p�) qs = ze�h�z, whereas for all h > ~h, (u0 � p�) qs =
u0
�
1� e��h

�
c0�1(u0e��h).
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From (24), V b(z) is concave, and strictly concave for all z < z� and for all z such that

~h(z) < � . From (13) and (24),

�+ �

�(n)
= �

�
u0

c0 (qb)
� 1
�+
+ (1� �)

Z min[~h(z);� ]

0
��1

�
e�h � 1

�
dh: (25)

In�ation has two opposite e¤ects on the value of money. It raises the opportunity cost of holding

cash, the left-hand side of (25), and it transfers some market power to the buyer, the second

term on right-hand side of (25). The second e¤ect is absent from the model with �exible prices.

The buyer�s choice of real balances in the case of de�ation (� < 0) is derived using similar

reasoning,
�+ �

�(n)
= �

�
u0

c0(qb)
� 1
�+
+ (1� �)

Z min[~h(z);� ]

0
��1

h
e��l � 1

i
dl; (26)

where ~h(z) satis�es ze��~h = u0c0�1(u0e�~h).

De�nition 3 A steady-state monetary equilibrium with menu cost is a list (z; n; �) that satis�es

(5), (7) and, if � > 0, (25), or if � < 0, (26).

At the Friedman rule, � + � = 0 and, from (26), qb = q�, and ~h(z) = 0. Therefore, the

quantities produced and consumed in matches where agents trade at the posted price obey

c0(qs) = u0e�j�jh for all h 2 [0; � ]. In particular, z = u0q� and qs(0) = q�. The economy is then

analogous to the cashless economy studied in the previous section.

4.3 Calibrated examples

The model with endogenous real balances and state-dependent pricing is hard to study ana-

lytically. Therefore, we conduct our analysis through numerical examples. We use the same

parameter values as in Table 1. We choose the menu cost 
 so that prices are adjusted once

a year at � = 2% (
 = 0:536). In Figure 2 the panels on the left (right) plot the endogenous

variables for negative (positive) in�ation rates.

In presence of menu costs and positive in�ation (top right panel of Figure 2), z is a decreasing

function of �. As outlined in (25), in�ation raises the cost of holding real balances, but it also

allows buyers to extract a larger share of the gains from trade. For our parametrization, the
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Figure 2: Equilibrium for the baseline calibration.

�rst e¤ect dominates.30 Real balances are higher in the presence of menu costs since the second

e¤ect of in�ation is absent from the model with �exible prices.

Consider next the case of negative money growth rates (top left panel of Figure 2). An

increase in the de�ation rate reduces the cost of holding real balances and it raises buyers�

average share in the gains from trade. As a consequence, z increases. The relationship between

z and � exhibits an in�ection point when z is in the neighborhood of z�. This result can be

explained as follows. At z = z�, � < ~h so that buyers are never rationed. When the in�ation

30For some parameter values, the second e¤ect dominates at low but positive in�ation rates. In this case z is
a hump-shaped function of �. See our examples with larger menu costs in Figure 5.
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rate falls below the value that generates z�, buyers increase their real balances until they get

rationed in some matches: z increases to the value that satis�es ~h(z) = � . Also, the presence

of nominal frictions eliminates the real indeterminacy at the Friedman rule: as � tends to ��,

z approaches u0q�.

Let us turn to the e¤ects of in�ation on the frequency of trades � See the two panels on the

second row of Figure 2. In�ation reduces sellers�incentives to enter the market since they have

to readjust prices more frequently. Hence, �(n) decreases with �. De�ation has two e¤ects on

the measure of sellers. On the one hand buyers carry more real balances which gives sellers

higher incentives to enter the market. On the other hand a higher de�ation rate implies that

sellers need to readjust their prices more often. For low de�ation rates, the �rst e¤ect dominates

while when � gets closer to the Friedman rule, the second e¤ect dominates.

The e¤ects of in�ation on the length of the (S; s) cycle are in accordance with those obtained

in cashless economies (See the bottom panels of Figure 2). As in�ation increases, sellers need

to readjust their prices more often (but price dispersion increases).

Figure 3 plots the welfare cost of in�ation expressed as a fraction of total consumption (in

the centralized and decentralized market). For positive money growth rates, the welfare cost

of in�ation is a U-shaped function of �. A small increase in in�ation above price stability is

welfare-improving because in�ation raises buyers�gains from trade and therefore their incentives

to invest in real balances. Note however that the welfare gains of positive in�ation are tiny.

A stronger e¤ect occurs when one reduces � below 0. For our example, the welfare gain of

reducing � from 0 to the Friedman rule is about 0.7% of total consumption. So, de�ationary

policies dominate in�ationary ones. This result is robust across the various numerical examples

we have considered provided menu costs are not (unreasonably) large.

To summarize, the presence of nominal rigidities can explain why a small positive in�ation

rate generates a higher welfare than price stability. However, when looking at the optimal

monetary policy, de�ation does better than in�ation (subject to the caveat that menu costs are

not too large). This contrasts with our result for cashless economies.
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Figure 3: Cost of in�ation under the baseline calibration

4.4 Optimality of the Friedman rule

Close to the Friedman rule, the economy behaves similarly to the cashless economy described

in Section 3. The number of sellers decreases as � decreases (equivalently, the de�ation rate

increases) because of the negative e¤ect of price dispersion on sellers�expected utility. If the

number of sellers is ine¢ ciently high at the Friedman rule � which is the case in our calibrated

example� then the Friedman rule is optimal since an increase of the in�ation rate would

make the number of sellers even higher. The case where there are too many sellers because

of congestion externalities corresponds to low values of � relative to (1 � �)=(1 + �) � See

Proposition 3.

In Figure 4, we provide numerical examples where the Friedman rule is not optimal. Con-

sider the following parameter values: � = 0:5, k = 0:1, � = 0:65, � = 0:03 and 
 = 0:001. For

� = 0:45 the number of sellers is too low at the Friedman rule. So a deviation from the Friedman
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Figure 4: (Sub)optimality of the Friedman rule

rule can be optimal because an increase in in�ation raises the entry of sellers. In contrast, when

� = 0:25 the measure of sellers is too large at the Friedman rule so that increasing in�ation

would reduce welfare. For this parametrization we found that the threshold for � above which

the Friedman rule is no longer optimal is slightly above 1=3, the threshold for � above which

a deviation from price stability is suboptimal in cashless economies. So the extent of search

externalities matters in cashless economies to explain the optimality of price stability while it

matters in monetary economies to explain the optimality of the Friedman rule.

4.5 The e¤ects of menu costs

Figure 5 illustrates how the size of menu costs a¤ects real balances and the frequency of trade.

The parameter values are the same as in Table 1 except for 
. According to the top panels of

Figure 5 a larger menu cost raises real balances by increasing the buyer�s (expected) share in the

match surplus. Also, for positive in�ation rates the curve for real balances is hump-shaped. A

small increase in in�ation can increase real balances. The medium-left panel of Figure 5 shows

that the measure of dealers increases with in�ation close to the Friedman rule and this e¤ect

is ampli�ed for large menu costs. By de�ating at a higher rate the monetary authority reduces

sellers�market power (they have to readjust prices more often) and it drives sellers out. On the
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contrary, for positive in�ation rates the frequency of trade increases with the size of the menu

cost since buyers�real balances are higher. Finally, and not surprisingly, the bottom panels of

Figure 5 reveals that sellers readjust prices less frequently when menu costs are larger.

Figure 5: Equilibrium for 
 2 f0; 5; 10g

Figure 6 plots buyers�welfare for di¤erent values of 
. (We do not plot� since the calibration

is not quantitatively relevant for large values of 
.) Buyers are better-o¤ when menu costs are

larger. The reason for this result are twofold. Larger menu costs reduce the ine¢ ciently high

number of sellers (under our parametrization), and it also raises real balances. Welfare is

maximized at the Friedman rule for all values of 
. (As argued earlier, this result holds because

� < (1� �)=(1 + �).)
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Figure 6: Buyers�welfare for 
 2 f0; 5; 10g

Finally, we have been able to �nd (atypical) examples where the optimal in�ation is positive.

Such examples require relatively large menu costs. For instance, for the parameter values

� = 0:03, � = 1:5, � = 0:5, k = 0:1, 
 = 0:05 and � = 0:29 the optimal in�ation is slightly less

than 1%.

5 Discussion

We studied optimal monetary policy in environments with search and nominal frictions. We

showed that search frictions generate a congestion externality in the goods market that can

rationalize a role for positive in�ation in cashless economies and a role for a deviation from the

Friedman rule in monetary economies. In the presence of menu costs, in�ation erodes sellers�

market power by preventing them from maintaining a monopoly price. This e¤ect can be

bene�cial to society when sellers do not internalize the congestion they impose on other sellers.

In monetary economies, however, a monetary wedge associated with a positive nominal interest

rate makes de�ation optimal. A deviation from the Friedman rule is optimal when sellers have

relatively low market power. Our results are summarized in Table 3.
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From the standpoint of models of nominal price rigidity, our paper brings two new elements:

a micro-founded demand for real balances and search externalities. Both elements are essential

to understand the welfare e¤ects of in�ation. The �rst element yields a somewhat standard

in�ation tax e¤ect. In�ation reduces real balances and therefore it lowers the quantities that

agents trade in bilateral meetings. One novelty comes from the fact that our pricing mechanism

tends to amplify the monetary wedge as in Lagos andWright (2005). The second element, search

externalities, arises naturally in random-matching environments when participation decisions

are introduced. Since in�ation act as a tax on participation in the market it can exacerbate

or mitigate the ine¢ ciencies associated with participation decisions. In the absence of search

externalities the optimal in�ation would always be 0 in our cashless economy. (And there would

be no welfare e¤ect of in�ation in Diamond�s (1993) model). In the monetary economy, the

presence externalities matter to the extent that they can make the Friedman rule suboptimal.

Without entry the Friedman rule would always optimal.

Flexible prices Sticky prices

No monetary wedge � is neutral
�� = 0 if � high
�� > 0 if � low

Monetary wedge �� = �� �� > �� if � high
�� = �� if � low

Table 3. Summary of the results

To conclude, we discuss the robustness of our results to alternative assumptions. The main

result of Section 3, according to which the optimal in�ation can be strictly positive in the

presence of search frictions, was derived under a linear utility function. As a consequence, S

is equal to the seller�s ideal price, i.e., the one he would choose if 
 = 0. For strictly concave

utility functions, the upper-bound S can be larger than the seller�s ideal price. The positive

welfare e¤ect of in�ation in our model relies on the congestion externality that prevails in the

goods market. In�ation in the presence of menu costs drives sellers out of the market, which

raises welfare when the congestion is too severe. We conjecture that in�ation will reduce sellers�

expected pro�ts by preventing them from setting a monopoly price irrespective of the speci�c
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form taken by the (S; s) rule.

In our description of the monetary economy, all trades in the decentralized market are

conducted with money. Alternatively, one could assume that only a fraction of trades involve

monetary exchange, while the remaining trades use credit (say, because agents have access to

a record-keeping technology with some probability). As the fraction of monetary trades goes

to 0, the economy approaches the cashless economy described in Section 3. We conjecture that

the optimal in�ation would depend on the extent of monetary exchange in the decentralized

market and that it could be positive provided that the share of monetary trades is su¢ ciently

small.

As emphasized above, our welfare results rely heavily on the search externalities associ-

ated with sellers�participation decisions. While we have assumed a free entry of sellers as in

Diamond (1993) or Rocheteau and Wright (2005), one could consider alternative ways to cap-

ture participation decisions: Agents could choose to be buyers or sellers in the decentralized

market (Shi, 1997) or buyers�and sellers�search intensities could be endogenous (Berentsen,

Rocheteau, and Shi, 2006). As long as the Hosios (1990) condition for e¢ ciency is violated and

sellers have too much bargaining power, in�ation in the presence of menu costs should raise

welfare in cashless economies by raising the buyer�s share of the gains from trade. In monetary

economies, in�ation has a direct negative e¤ect on buyers�welfare by acting as a proportional

tax on real balances. Its e¤ect on society�s welfare is not obvious. But, as illustrated by Craig

and Rocheteau (2006), positive in�ation can be optimal in such economies, even in the absence

of nominal frictions.
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Appendix

A1. Derivation of (2)

The seller�s value function W s(h) obeys the following Bellman equation:

W s(h) = Pr [Ts � � � h]

�E
�Z Ts

0
e��t (�k) dt+ e��Ts [G [p(h+ Ts)] +W s(h+ Ts)]

����Ts � � � h�
+Pr [Ts > � � h]

�Z ��h

0
e��t (�k) dt+ e��(��h)W s(�)

�
; (27)

where � is the length of the period of time between two price adjustments, which has the

following interpretation. If Ts � � � h, then the seller meets a buyer before he readjusts his

price, and his expected surplus is G [p(h+ Ts)], where p(h+Ts) is the price posted by the seller.

If Ts > � � h, then no trade occurs before the seller�s real price hits the trigger point s.

The distribution for Ts conditional on Ts � � � h is a truncated exponential distribution.

Thus, Pr [Ts � � � h] = 1� e�
�(n)
n
(��h). Consequently, (27) can be rewritten

W s(h) =Z ��h

0

�(n)

n
e�

�(n)
n
t

"
(�k)

�
1� e��t

�
�

+ e��t [G [p(h+ t)] +W s(h+ t)]

#
dt

+e�
�(n)
n
(��h) (�k)

�

�
1� e��(��h)

�
+ e

�
�
�+

�(n)
n

�
(��h)

W s(�): (28)

Using the change of variable u = h+ t, (28) yields

W s(h) =Z �

h

�(n)

n
e�

�(n)
n
(u�h)

"
(�k)

�
1� e��(u�h)

�
�

+ e��(u�h) [G [p(u)] +W s(u)]

#
du

+e�
�(n)
n
(��h) (�k)

�

�
1� e��(��h)

�
+ e

�
�
�+

�(n)
n

�
(��h)

W s(�): (29)
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Di¤erentiate (29) with respect to h to obtain

@W s(h)

@h
= ��(n)

n
G [p(h)] + k + �W s(h):

A2. Proof of Lemma 1.

We prove Lemma 1 for the case where buyers hold real balances z and cannot use credit.

The distribution of real balances across buyers is F (z).

Case 1: 
 = 0. The seller chooses p in order to maximize

G(p) � (1� �)
Z
max
q�z=p

[pq � c (q)]1fp�u0gdF (z); (30)

where 1fp�u0g is an indicator function that is equal to 1 if p � u0 and 0 otherwise. According

to (30), in each match the seller chooses the quantity q to produce, subject to the constraint

that q is not greater than the buyer�s demand. If p > u0 the buyer�s demand is 0, and if p � u0

then the buyer�s demand is z=p. Denote �(z) the Lagrange multiplier corresponding to pq � z.

The seller�s problem can be rewritten as

max
p

Z
max
q

�
[pq � c (q)]1fp�u0g + �(z) [z � pq]

	
dF (z): (31)

Assume p � u0 so that 1fp�u0g = 1. The �rst-order condition for q(z) is

p [1� �(z)] = c0 [q(z)] : (32)

Di¤erentiate G(p) and use (32) to obtain

G0(p) = (1� �)
Z
q(z)c0 [q(z)]

p
dF (z) > 0; 8p � u0:

Therefore, the optimal price is p = u0.

Case 2: 
 > 0 and � > 0. First, we show S = u0 using a proof by contradiction. Assume

that the optimal (S; s) rule is such that S > u0. Using the fact that G(p) = 0 for all p > u0, (4)

yields

W s(0) = �
Z ln(S=u0)=�

0
e��tkdt+

Z ln(S=s)=�

ln(S=u0)=�
e��t

�
�k + �(n)

n
G(Se��t)

�
dt: (33)
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The �rst term on the right-hand side corresponds to the interval of time during which the

seller�s price is above u0. Since this term is negative, we have

W s(0) <

Z ln(S=s)=�

ln(S=u0)=�
e��t

�
�k + �(n)

n
G(Se��t)

�
dt;

which can be re-expressed as

W s(0) < e��
ln(S=u0)

�

Z ln(S=s)=�

ln(S=u0)=�
e
��
h
t� ln(S=u0)

�

i �
�k + �(n)

n
G(Se��t)

�
dt:

Since e��
ln(S=u0)

� < 1 we have

W s(0) <

Z ln(S=s)=�

ln(S=u0)=�
e
��
h
t� ln(S=u0)

�

i �
�k + �(n)

n
G(Se��t)

�
dt:

Adopt the change of variable ~t = t� ln(S=u0)
� to rewrite the previous inequality as

W s(0) <

Z ln(u0=s)=�

0
e��

~t

�
�k + �(n)

n
G(u0e��

~t)

�
d~t:

Consequently, a pro�table deviation is to set S = u0 while keeping s unchanged. Therefore,

S > u0 is not optimal. Consider next a (S; s) rule such that S < u0. Since G(Se��t) is increasing

in S, it can be checked from (4) that for given � , W s(0) is a strictly increasing function of S

for all S � u0. Consequently, S < u0 is not optimal. Second, to determine the optimal length

of the (S; s) cycle, di¤erentiate the right-hand side of (4) with respect to � to obtain (7).

Case 3: 
 > 0 and � < 0. The reasoning for S = u0 is similar to the one for the case � > 0.

To determine the optimal � , express W s(0) as

W s(0) =

Z �

0
e��(��t)

�
�k + �(n)

n
G(u0e�t)

�
dt: (34)

Di¤erentiate (34) with respect to � and use the fact that W s(0) = 
 to obtain (7).

A3. Proof of Proposition 1

We consider three cases.
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Case 1: 
 = 0. The seller sets p = u0 and � =1. From (5),

�k + �(n)
n
G(u0) = 0; (35)

where G(u0) = (1 � �) [u0q� � c(q�)] > 0. Since �(n)=n is continuous and strictly decreasing,

limn!0 �(n)=n =1 and limn!1 �(n)=n = 0, there exists a unique n that satis�es (35) and it

is such that @n=@� = 0.

Case 2: 
 > 0 and � > 0. Using p(t) = u0e��t, Equations (5) and (7) yield

max
��0

Z �

0
e��t

�
�k + �(n)

n
G(u0e��t)

�
dt = 
; (36)

where

G(p) = (1� �)max
q
[pq � c(q)] if p � u0

and G(p) = 0 otherwise. Let nf be the value of n that satis�es (35). The left-hand side of

(36) tends to 1 as n approaches 0, and it is equal to 0 for all n � nf . Furthermore, for all

n 2
�
0; nf

�
, the left-hand side of (36) is strictly decreasing in n. Consequently, there exists a

unique n 2
�
0; nf

�
that satis�es (36). Given n, price dispersion �� is determined by (7). Totally

di¤erentiate (36) to obtain

@n

@�
=
�n

R �
0 e

��t �tu0e��tG0(u0e��t)� dt
[1� �(n)]

R �
0 e

��tG(u0e��t)dt
< 0;

where �(n) = ��0(n)n=�(n). From (7), @��=@� > 0.

Case 3: 
 > 0 and � < 0. Using the fact that p(t) = u0e�(��t), (5) and (7) can be rewritten

as

max
��0

Z �

0
e��t

�
�k + �(n)

n
G
�
u0e�(��t)

��
dt = 
: (37)

Following the reasoning of Case 2, it is easy to show that there exists a unique n 2
�
0; nf

�
that

satis�es (37). Furthermore, @n=@� > 0 and @ j�j �=@� < 0.

A4. Proof of Proposition 2.

In the case 
 = 0, W = Wb = �(n)[u(q) � c(q)] � kn. The e¢ cient value for n satis�es

�0(n) [u0q� � c(q�)] = k, whereas the equilibrium value for n satis�es �(n)(1��) [u0q� � c(q�)] =

nk. The two coincide i¤ �0(n)n=�(n) = 1� �.
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A5. Proof of Proposition 3

We �rst show that an increase in in�ation above price stability is optimal when � <

[1� �(n0)] = [1 + �(n0)]. The welfare metric is

Wb = �(n)

�
�
�
u0q� � c(q�)

�
+ (1� �)

Z 1

0
u0qs(l��)� u0e�l��qs(l��)dl

�
:

Di¤erentiate and take the limit as �� ! 0 to obtain

dWb

d��
= �0(n0)�

�
u0q� � c(q�)

� dn
d��

+ �(n0)(1� �)
u0q�

2
; (38)

where the relationship between n and �� is given by (7), i.e.,

�(n)(1� �)max
q
[u0e���q � c(q)] = nk: (39)

From (39),
dn

d��
=

�n0u0q�
[u0q� � c(q�)] f1� �(n0)g

: (40)

Substitute dn=d�� by its expression given by (40) into (38) to get

dWb

d��
= �(n)u0q�

�
(1� �)
2

� ��(n0)

[1� �(n0)]

�
:

It can be checked that dWb=d�� > 0 if � < [1� �(n0)] = [1 + �(n0)]. As shown in Proposition

1 price dispersion �� increases with �. Furthermore, lim�#0 �� can be made arbitrarily close

to 0 by choosing 
 su¢ ciently small. Therefore, an increase in in�ation above � = 0 is welfare-

improving provided 
 is su¢ ciently small.

In order to show that the optimal in�ation rate is not negative, we use a proof by contradic-

tion. Assume the optimal in�ation rate is �� < 0. Let ~� be the positive in�ation rate such that

price dispersion j�j � at � = ~� is equal to price dispersion at � = ��. From (7) the measure of

sellers satis�es n(~�) > n(��). Therefore, from (8), Wb(~�) >Wb(��). A contradiction.

A6. Derivation of (12)

Since Tb is exponentially distributed, the maximand on the right-hand side of (9) can be

rewritten as

RHS =

Z 1

0

�Z t

0
e��sx(s)ds+ e��tV b [z(t)]

�
�(n)e��(n)tdt: (41)

35



Equation (41) yields

RHS =

Z 1

0

Z 1

0
e��sx(s)�(n)e��(n)t1fs�tgdsdt

+

Z 1

0
V b [z(t)]�(n)e�[�+�(n)]tdt: (42)

Interchange the order of integration in the repeated integral to get

RHS =

Z 1

0
e��sx(s)

Z 1

s
�(n)e�[�(n)]tdtds

+

Z 1

0
�(n)V b [z(t)] e�[�+�(n)]tdt: (43)

Finally, substitute e�[�(n)]s for
R1
s �(n)e�[�(n)]tdt into (43) to obtain

RHS =

Z 1

0
x(s)e�[�(n)+�]sds+

Z 1

0
�(n)V b [z(t)] e�[�+�(n)]tdt;

=

Z 1

0
e�[�+�(n)]t

n
x(t) + �(n)V b [z(t)]

o
dt:

A7. Proof of Lemma 2

Let � be the current value costate variable associated with z. The current value Hamiltonian

is

H(x; z; �) = x+ �(n)V b (z) + � (�x+ L� �z) : (44)

Assuming an interior solution for z, the necessary conditions from Pontryagin�s maximum

principle are

� = 1; 8t (45)

�� = �(n)
h
V bz (z)� �

i
� ��+ _�; (46)

where V bz is the derivative of the value function V
b(z). We add the following transversality

condition from the Mangasarian su¢ ciency theorem

lim
t!1

e�[�+�(n)]t�(t)z(t) = 0: (47)
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To get (13), combine (45) and (46). Assuming V b (z) is concave, the Hamiltonian H(x; z; �)

is jointly concave in (x; z). Since the transversality condition is satis�ed for the solution given

by (45) and (46), it is a maximum. Furthermore, (10) implies _� = 0 and z satis�es (13). The

uniqueness of the solution to (13) follows from the strict concavity of V b (z). Note that the

state variable z jumps to the solution of (13) instantly.

A8. Proof of Proposition 4

Part 1. There is no monetary equilibrium if � = 0 or � = 1. From (21), if � = 0, then q = 0

or n = 1. From (22), if n = 1, then q = 0. As a consequence, q = 0. From (22), if � = 1,

then n = 0, which from (21) implies q = 0. In both cases, money is not valued in exchange.

Part 2. If � 2 (0; 1), there exists �� > �� such that a monetary equilibrium exists for

all � < ��. At the equilibrium with the highest z, @z=@� < 0 and @n=@� < 0. Equilibrium

condition (21) can be reexpressed as

q = q (n;�) � c0�1
�

u0�(n)�

�+ � + �(n)�

�
; (48)

with q(0;�) = 0 and q (1;�) = q�. Furthermore, q (n;�) is strictly increasing in n and strictly

decreasing in �. Using (48), equilibrium condition (22) can be reformulated as �(n;�) = 0 with

�(n;�) � (1� �)� (n)
n

�
c [q (n;�)]� c

�
c [q (n;�)]

u0

��
� k: (49)

We �rst show that under the Friedman rule (� = ��) a monetary equilibrium always exists.

From (48), q (n;��) = q� for all n > 0. Therefore, given that c(q�) < u0q�, �(0;��) = 1 and

�(1;��) = �k. Consequently, if � = �� there exists a n > 0 that satis�es �(n;�) = 0.

Consider next � > ��. For all � > ��, �(1;�) = �k. For all n > 0, �(n;�) is continuous

and decreasing in �. Using the continuity of �(n;�) one can deduce that there is a threshold

�� > �� such that for all � 2 (��; ��) there exists n > 0 such that �(n;�) = 0.

Finally, let us show that @z=@� < 0 and @n=@� < 0 at the equilibrium with the highest z.

Equations (21) and (22) give two positive relationships between z and n. Furthermore, at the
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equilibrium with the highest z the curve (21) cuts the curve (22) by below in the space (z; n).

An increase in � moves the curve (21) upward leading to a decrease of both z and n.

A9. Proof of Proposition 5

The two measures of welfare W and Wb are the same in the �exible price economy,

W = � (n)
�
�
�
u0qb � c(qb)

�
+ (1� �)

�
u0qs � c(qs)

�	
� nk: (50)

From (22) and (50), social welfare in equilibrium reduces to W = � (n) � [u0q � c(q)]. Given

that an increase in � reduces both q and n, the optimal monetary policy is the Friedman rule.

Let us turn to the second part of the proposition. Since z = c(qb) and c0(q�) = p = u0,

qs = min [q�; c(qb)=u
0]. From (18), for all z � z�, qb � q� which implies c(qb) � c(q�) < u0q�.

Therefore, qs = c(qb)=u0 < q�.

A10. Proof of Proposition 6

From (18), qb(z) = q� for all z 2 [c(q�); u0q�]. Consequently, from (21), any z 2 [c(q�); u0q�]

corresponds to an equilibrium when � = ��. Seller�s welfare is 0 and buyer�s welfare is Wb =

�[n(z)] fu0q� � c(q�)g where n(z) is the value of n that satis�es (22). Since n(z) is strictly

increasing in z, buyer�s welfare is strictly increasing in z so that equilibria with higher values

for z Pareto-dominate equilibria with lower values for z. The �rst-best allocation is such that

qb = qs = q
� and n satis�es �0(n)[u0q� � c(q�)] = k. From (18) and (19) this requires z = u0q�,

and from (22),

1� � = �0(n�)n�

�(n�)
.
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