Systems and Network Analysis Center
Information Assurance Directorate

Service Oriented Architecture Security
Vulnerabilities - Web Services

A Service-Oriented Architecture (SOA) presents new flexibility and capability for application
developers due largely to the fact that SOA components are loosely coupled and exposed as
independent services on a network. Therefore, application developers can access SOA services
in a standardized way and without understanding how the service is implemented. This
evolutionary concept in software architecture is popular because SOA reduces development time,
promotes software reuse, and reduces project costs.

SOA implementations exist in almost all industries. Developers tout the unprecedented
interoperability that exists between applications built with SOA. However, sometimes
developers fail to secure SOA services and architectures. When combined with protocols
allowed through security firewalls such as SOAP over port 80, as is common in Web Service
environments, SOA can be a security disaster waiting to happen. In practice, inaccurate vendor
implementations, configuration problems, and coding mistakes can lead to exploitable
vulnerabilities in web services. Developers and System Administrators must understand the risk
posed by these vulnerabilities and consider mitigations prior to deployment.

Some of the critical vulnerabilities that can be introduced by Web Services are listed below.
The vulnerabilities are separated into two groups. The first group contains vulnerabilities
specific to Web Services whereas the second group contains vulnerabilities that are more
general, but still important to Web Services security.

Injection Flaws — Injection flaws occur when software does not properly validate input.
An attacker could craft malicious input that causes the Web Service software to perform
operations on behalf of the attacker. Classes of injection flaws include Cross Site
Scripting, SQL Injection, and XPath Injection.

Mitigations - Developers must validate all web service parameters at the server prior to
using them and prior to generating output. The developer should not assume clients will
generate valid input or adhere to the Web Service Description Language (WSDL)
specifications. Web Service gateways are another possible mitigation that can detect
these types of attacks.

SNAC DoD,9800 Savage Rd Ft.Meade,MD 20755-6704 410-854-6632 DSN: 244-6632 FAX: 410-854-6604

SNAC@radium.ncsc.mil

Systems and Network Analysis Center
Information Assurance Directorate

XML Denial of Service Issues - XML is a versatile data-encoding standard. However,
parsing XML can be processor intensive and complex, which can lead to security issues.
One common issue is a denial of service (DOS) against a web service. If an attacker
crafts an XML message with very large payloads, recursive content, excessive nesting,
malicious external entities, or with malicious DTDs (Data Type Documents), a DOS can
occur.

Mitigations - When processing XML, use filters, XML Gateways, or XML parser
options to prevent parsers from processing malicious messages. Filters, gateways, or
parser options can restrict the rate of messages per second, the message size, the number
of nested XML elements, the number of XML attributes, the number of XML nodes, the
length of an XML node name, DTDs, and external entities. XML is hard to parse
correctly so only use proven, robust XML parsers. Developers and system administrators
sometimes use schema validation as a way to validate XML input. Schema validation is
of limited help with malicious XML because the parser must parse the XML before
validating the document.

Insecure Communications — Attackers can steal or modify information if not protected
while in transit.

Mitigations — Use the latest versions of SSL or TLS, version 3 and 4 respectively as of
this writing, to protect the content of messages in point-to-point transactions. Requiring
mutual authentication between the client and server raises the level of trust before
processing messages and generally decreases the attack surface of the service. Web
Services allow for messages to be routed though multiple intermediaries; one of the
intermediaries may terminate the SSL or TLS connection so the message may not be
protected between all of the intermediaries. In these architectures, use end-to-end security
mechanisms like XML-Encryption, XML-Signature, and SAML assertions (Security
Assertion Markup Language). End-to-end XML security mechanisms are complicated
and the implementation must be reviewed and tested to ensure the protection is adequate.

Information Leakage - Web Services that generate verbose fault messages are useful to

SNAC DoD,9800 Savage Rd Ft.Meade,MD 20755-6704 410-854-6632 DSN: 244-6632 FAX: 410-854-6604

SNAC@radium.ncsc.mil

Systems and Network Analysis Center
Information Assurance Directorate

developers and system administrators. However, the same messages can give away too
much information in operational environments. This issue also affects Web Services that
use a WSDL to provide a description of a service and its interface. A WSDL contains
server directory information, internal IP address information, available services and
methods, and other critical information valuable to an attacker.

Mitigations - System administrators should configure servers to minimize the leakage of
information by not advertising software specifics, removing WSDL's or authenticating
the user before sending the WSDL, and turning off all verbose error messages.

Replay Attack Flaws — Protecting a message against modification does not stop an
attacker from replaying the message to a server to invoke actions multiple times.

Mitigations - Encryption and digital signatures may provide protection against
eavesdropping and modification; however, if an encrypted or signed message can be
intercepted, it may still be vulnerable to a replay attack. Developers can mitigate replay
attacks in two ways: signed timestamps and nonces. Clients can include signed
timestamps in the messages and servers can implement time windows. In addition to
signed timestamps, clients can include signed unique message identifiers (nonces) so
servers can implement message tracking (sometimes called a nonce pool) to keep track of
the unique messages that have already been processed.

Insufficient Authentication - Web Services that perform sensitive functions should
require authentication.

Mitigations - For any sensitive transaction, each request should be associated with an
authenticated identity and each service or data provided should be associated with
authorization rules. Passwords are typically not appropriate with these technologies.
Instead, use PKI, multi-factor authentication, or the newer XML security based
technologies like XML-Signature and SAML.

These vulnerabilities are common in other technologies, but become more critical with Web
Services because of their interoperability and ability to circumvent firewalls.

Inadequate Testing — Unidentified coding flaws in Web Services can lead to a
compromise of sensitive information. Because SOA implementations typically connect

SNAC DoD,9800 Savage Rd Ft.Meade,MD 20755-6704 410-854-6632 DSN: 244-6632 FAX: 410-854-6604

SNAC@radium.ncsc.mil

Systems and Network Analysis Center @ =y
Information Assurance Directorate g« M

R — T
=

to backend servers, the consequences of a compromise are amplified.

Mitigations — Test all Web Service code for vulnerabilities; a developer’s mistake could
lead an attacker to sensitive information. Testing should include code reviews, internal
and third party penetration testing, and a quality assurance process. Project managers
should include testing as part of the software development process; not as an
afterthought.

Insecure Configuration — Web Services typically run on exposed, public facing servers,
outside an organization’s security perimeter. Mistakes in configurations and patch
management of these servers can be catastrophic.

Mitigations - Whenever possible, separate Web Applications from Web Services by
hosting each on different servers or ports. Because Web Services can be accessible to
unauthenticated users, systems administrators must understand all configuration options
and be diligent with configuration management and patch management.

Insufficient Logging - Logs are of great use if an intrusion or hacking attempt occurs.

Mitigations — System administrators and developers should log events such as
unsuccessful and successful authentication attempts, unsuccessful authorization attempts,
and application errors. It is also advisable to sign and encrypt the log files to protect their
integrity and confidentiality. Logging without having a human look at the logs is useless;
someone must review the log files at a regular interval or at least monitor them using
automated log scanning or audit reduction tools.

SOA and Web Service technologies offer many benefits and are revolutionizing the way
software interacts. However, with these benefits, comes additional risk. Organizations should
be aware of the risks to Web Services so they can make informed decisions before deploying
Web Services in a SOA.

References:

e OWASP Top 102007 —
http://www.owasp.org/index.php/Category:OWASP_Top Ten Project

e Shah, Shreeraj. Hacking Web Services. 2007.
e Kanneganti, Ramarao; Chodavarapu, Prasad. SOA Security. 2008.

SNAC DoD,9800 Savage Rd Ft.Meade,MD 20755-6704 410-854-6632 DSN: 244-6632 FAX: 410-854-6604

SNAC@radium.ncsc.mil

