

Report # I733-004R-2010

Date: 02/14/2011

BIND 9 DNS Security

Enterprise Applications Division

of the

Systems and Network Analysis Center (SNAC)

Information Assurance Directorate

National Security Agency

Attn: I733

9800 Savage Rd. Suite 6704

Ft. Meade, MD 20755-6704

(410) 854-6191 commercial

(410) 854-6510 facsimile

 Author(s)

I733

 DERIVED FROM: NSA/CSS 1-52

 DATED: 08 January 2007

DECLASSIFY ON: 20320108

BIND 9 DNS Security

Prepared by:

I733

Released by:

Chief, I733

Distribution:

1 – I7 Library

2 - Vital Records

3 – DJP2 STINFO Library No. S-252,608

4 – I73 Technical Reports web page

 (https://snac.cyber.iaevals.nsa/Technical_Reports/)

https://cyber.iaevals.nsa/Technical_Reports/

BACKGROUND

BIND is an open source Domain Name Server (DNS) software package from the Internet

Systems Consortium (ISC) commonly used to resolve host names to IP addresses and vice versa.

As a key element in the Internet's infrastructure, DNS servers have often been targets of attack

by hackers, spammers, and phishers. By taking a few simple steps, you can help protect your

networks and help protect the Internet as well.

Attacks on DNS servers fall into several categories …

 BIND software bugs – a number of vulnerabilities have been found and fixed in the

BIND software over the years. The total rewrite with BIND 9, along with the code

scanning funded by the Department of Homeland Security makes it a fairly reliable

package, but no software is perfect.

 System intrusion attacks – a DNS server is only as secure as the operating system it runs

on. This risk include attacks on other network services that are running on the same

machine. Once the underlying server has been compromised, the DNS server can be

subverted and used for various malicious purposes.

 Denial of service attacks – since so many functions depend on having a responsive DNS

service, anything that markedly affects its performance is going to have a major impact

on your infrastructure.

 Network attacks – these attacks are based on the DNS protocol itself. The highest profile

of these is Cache Poisoning, where a DNS server is convinced to cache an incorrect IP

address, resulting in users of the server being sent to the wrong site. DNS zone transfers,

dynamic updates, and notifies are also subject to attack. Access to unrestricted DNS

information can be used to leverage other attacks.

This paper is intended to contain the minimum information needed to help a BIND 9

administrator minimize the security risks to their DNS server. It is assumed they have some

familiarity with DNS and computers. For a more full coverage of the topics involved, the reader

is directed to the book “DNS and Bind, Fifth Edition” and the NIST online guide “Secure

Domain Named System (DNS) Deployment” listed in the references.

There are, of course, a number of issues outside the scope of this paper. They include securing

the computer system that the BIND server is running on. By far, the most important thing is to

not run the BIND server on the same machine as a web server, mail server, or other

commonly attacked network services.

Firewall Issues

These days a BIND server will usually sit behind some sort of firewall. This raises some issues

that need to be mentioned prior to discussing how to secure BIND 9.

 UDP vs TCP - without a doubt the number one rookie mistake with DNS and firewalls is

not understanding that DNS is not a UDP only service. Most query requests will be sent

using UDP by default, but if an error occurs or if the UDP packet size is exceeded, BIND

will shift to TCP. When someone only enables a UDP port on their firewall this typically

causes randomly appearing problems that are very hard to diagnose .

 Random Query Port – this is a side effect of trying to harden against DNS query response

spoofing. Basically, a DNS query response is verified by using a 16 bit field. This was

adequate in the early low-threat days of the Internet, but is now fairly easy prey for

attackers. In the past, BIND and other DNS implementations used port 53 for queries

(responses always return on the same port) which made setting up the firewall easy. Now,

a random query port is assigned each time by BIND, which adds a small amount of

power to the 16 bit field. The problem is that this now requires the entire UDP and TCP

range be opened to the BIND server at the firewall. Clearly this results in a security

tradeoff . The alternative here is to use some sort of active firewall technology like

CISCO Context Based Access Control (CBAC) which opens a hole in the firewall only

long enough for a query response to return.

 Large packet lengths - between DNSSEC and IPV6, DNS packets are getting quite

sizable. Besides the UDP packet length issue mentioned above, long DNS packets can

cause a problem for some firewalls, especially more advanced ones, which needs to be

considered. A related problem is that the increased delay in processing queries may

exceed the default timeouts in some firewalls. For example, in a CISCO CBAC-based

firewall, you may need to increase "ip inspect dns-timeout".

BIND 9 Security – Network Attacks

The key here is to restrict the various network operations to just the people you really need to

talk to, or block them entirely if not needed. Even the sites you allow to access your DNS server

should only be able to see the portion of the data they really need. This section assumes some

basic knowledge of configuring BIND. If you need some background first, consult one of the

references or the online BIND 9 Administrators Reference Manual at ISC

(http://www.isc.org/software/bin/documentation).

1. Restrict Queries - A surprising number of DNS servers are configured to allow ANYONE to

use them for name look-ups. Aside from performance and DOS issues, open DNS servers are

targets for attackers looking to set up shop. To keep your DNS server from being an open

recursive name server, options can be set in the /etc/named.conf file. Basically, you want to

restrict two things:

 outsiders making recursive queries on your DNS server

 outsiders making queries against look-ups currently cached by BIND

There are two separate paths for applying these measures.

In BIND versions before 9.4, the "allow-query" option is used. For example, in /etc/named.conf

options {
 allow-query { 192.168.100/24 };
 allow-recursion { 192.168.100/24 };
}

zone "foo.com" {
 type master;
 allow-query {any};
 file "foo.com";
};

will prevent recursion and access to cache by outsiders while still leaving the zone data visible.

Beginning with BIND 9.4, a new option "allow-query-cache" has been added. The defaults for

the relevant commands are now.

allow-query-cache {localhost;localnets;};
allow-recursion {localhost;localnets;};
allow-query {localhost;localnets;};

where localnets is defined as networks physically attached to the box running BIND. In many

cases, you would specify an access control list defining your local networks that you want to

allow recursive queries for, i.e.

acl "mynets" {
 127/8; 192.168.100/24; 192.168.120/24;
};

allow-recursion {mynets;};

Essentially, the new "allow-query-cache" lets you control access to already cached data with a

global option, rather than having to put an extra "allow-query" in every zone. The above example

would become

options {
 allow-query-cache { 192.168.100/24 };
 allow-recursion { 192.168.100/24 };
}

zone "foo.com" {
 type master;
 file "foo.com";

};

In fact, by default, starting with BIND 9.4, if you only set one of the three options, the other two

automatically take the same values.

2. Restrict Zone Transfers

You want to minimize the number of sites that can transfer the entire contents of your DNS

zones. Zone transfers should be restricted to only the servers that need to maintain a copy of your

zones. The "allow-transfer" option controls this. In BIND 9, "allow-transfer" works as a global

option, i.e.

options {
 allow-transfer { 192.168.100.56; 192.168.100.132; };
}

or as a zone option

zone "foo.com" {
 type master;
 file "foo.com";
 allow-transfer {none};
};

with the zone invocation overruling the global "allow-transfer", if there is one.

3. Restrict Dynamic Updates and Notifies

The best way to restrict dynamic updates is to not use them at all. They open up a lot of ways for

attackers to compromise your DNS server. If you must use dynamic updating, then restrict it as

much as possible with allow-update and allow-update-forwarding. You should also seriously be

thinking about using some sort of cryptographic protection, like transaction signatures (TSIG).

zone "foo.com" {
 type master;
 file "foo.com";
 allow-update {192.168.100/24};
};

The allow-update-forwarding command is used on the BIND server that is been granted

permission to send dynamic updates to your BIND server.

zone "foo.com" {
 type slave;
 file "fum.foo.com";
 allow-update-forwarding {192.168.133/24};
};

As for notifies, they are by default only accepted from your master DNS server. If you want to

permit notifies from other DNS servers, then explicitly list them with allow-notify, i.e.

options {
 allow-notify {192.168.100.12};
};

4. Views

Views provide separate virtual DNS servers in BIND 9 that can be used to isolate different

zones. Most commonly, it is used to divide internal zones from external zones, on a firewall for

example. The relevant commands are "view", "match-clients", "match destinations" and “match-

recursive-only". Basically, the match statements define who can access a given virtual zone.

Note - there are some ways to make mistakes when using views. For example, the order that

views are listed in /etc/named.conf matters. Also, some commands, like "acl" cannot be defined

inside views (but can be defined outside a view and then used inside it).

acl "mynets" {
 127/8; 192.168.100/24; 192.168.120/24;
};

view "localnets" {

 match-clients { "mynets";);
 /* Place internal zones here */
};

view "outside" {
 match-clients { any; };
 / * Place external zones here */
};

The "match-destinations" variant is used with multi-IP DNS servers and the "match-recursion-

only" is used to select recursive queries

BIND 9 Security – General

Keeping your DNS server secure is an ongoing process. If you install the latest version of BIND,

update it when security issues arise (as they are guarenteed to do), and log the BIND audit data,

you will be well on your way to prevent compromise of your server.

1. Version - Run the latest stable version of BIND available at ISC (http://isc.org). If you are

operating a BIND 4 or BIND 8 server the time to upgrade is NOW! BIND 9 is a complete

rewrite which is a major improvement over the old deprecated BIND 8 server both in security

and functionality. Ideally, at least BIND 9.3 should be used, as that includes full support for

DNSSEC.

2. Stay Current - Keep up to date on breaking security issues relating to BIND via the ISC

security site http://www.isc.org/sw/bind-security.php and the Google bind newsgroup

http://groups.google.com/comp.protocols.dns.bind as well as security announcements at CERT

(http://cert.org)

3. Syslog

Event data from BIND 9 should be sent to a syslog server on a secure log server. This is handled

by the "logging" command in /etc/named.conf. There are two parameters, the syslog facility and

the debug level or severity. Use the syslog facility to keep DNS logs separate from other logging

streams. Debug is a good severity level. If that produces too much audit data, then you can drop

down to "info".

logging {
 channel default_log {
 syslog local3;
 severity debug;
 };
 category default { default_log; };
 };

Unfortunately, the are a lot of misconfigured DNS servers in the world. Many of them are

http://www.isc.org/sw/bind-security.php
http://groups.google.com/comp.protocols.dns.bind
http://groups.google.com/comp.protocols.dns.bind

"lame." These happen when a DNS server delegates a sub-domain to another DNS server and

that server is not authoritative for the sub-domain. Alas, these are logged by default. If this is a

bother, then you can turn off the logging of lame servers by adding

 category lame-servers {null;}

to the logging section.

Note that beside the default logging categories, there are a slew of other categories. For example,

you can log all queries processed by BIND, or all DNSSEC transactions. This mechanism can

also be used to seperate the different type of log events into different files.

BIND 9 Security – Limiting the damage

Even if you do everything perfectly, BIND 9 is still a network service and hence has a chance of

being compromised. There are a few steps you can take to limit the spread of the damage if it

does happen.

1. Run BIND 9 as non-root user

First, you create a "named" user and "named" group. The choice of "named" is arbitrary but

traditional. Make sure the “named” user can read the zone files (usually in /var/named). Then

change your start-up script to invoke BIND 9 as

 named -u named -g named

Note that if you are using DNS dynamic updates, the zone files will have to be writeable by the

named user as well. Also, if you are syslogging to a file, that will have to be writeable by

named.

2. Chroot BIND

BIND 9 can be chrooted into it's own little world. This can be slightly tricky, but it's not hard if

you take it a step at a time. It's certainly much easier than it was in BIND 8. The main issues are

 making sure you put everything into the chroot area that BIND needs to live

 if your version of syslog does not support the "-a" argument then you can only syslog to a

file inside the chrooted environment.People have developed tricks to work around the

syslog issue over the years, but they are somewhat system specific

So, the process is

Make a directory structure for chrooting

mkdir /chroot
 mkdir /chroot/dev
 mkdir /chroot/etc
 mkdir -p /chroot/usr/bin
 mkdir -p /chroot/var/named
 mkdir -p /chroot/var/run

Copy the BIND configuration file to the chroot

 cp /etc/named.conf /chroot/etc/named.conf

Check out the device numbers of /dev/null on your system and create one

 ls -l /dev/null
 mknod /chroot/dev/null 13 2

Copy your zone and other data files from /var/named to the chroot /var/named directory

Start BIND with the "-t" option to point to the chroot area

 named -t /chroot

There are reports that it is sometimes necessary to also move the system's zoneinfo file into the

chroot area to avoid a GMT time-stamp on syslog entries. If you are maintaining all your other

syslog entries in GMT then this is not an issue.

NOTE - A couple more things may need to be done here, like creating /dev/random, on some

operating systems.

BIND 9 Security – Cryptographic solutions

There is no question that adding cryptography to the DNS structure adds complication and life

cycle costs. These should not be underestimated. Fundamentally, though, it is the only way to

really solve some of the basic security problems of DNS. Of the two solutions, TSIG and

DNSSEC, the latter is much more powerful, but it requires a supporting infrastructure of signed

root servers and a coordinated process for distributing and maintaing keys. TSIG is more useful

when that infrastructure does not exist and you have control of all the BIND servers in an

enclave.

1. TSIG

Before DNSSEC, a simple symmetric key system was designed into DNS (RFC 2845) to provide

security in a pairwise manner between two servers for zone transfers. In certain enclave

situations it can still be useful.

Start by generating a public/private pair of HMAC-MD5 keys using the dnssec-keygen program

that comes with BIND. While key lengths of 128 and 256 are often used for TSIG, on principle

you might as well use the maximum of 512.

 dnssec-keygen -a HMAC-MD5 -b 512 -n HOST foo.bindkey

This generates 2 files

Kfoo.bindkey.+157+34764.private

Kfoo.bindkey.+157+34764.key

Add the information from those files to /etc/named.conf on both servers.

key tsigkey {
 algorithm "HMAC-MD5";
 secret "<insert the secret key from the private file>";
};

The standard way to do this is to create a file readable by root only in /var/named, "keyfile", for

example, and then include that in named.conf by reference, i.e.

include "/var/named/keyfile";

Then on each server, add an entry telling BIND to use that key with the other server, i.e.

server 192.168.12.4 {
 keys {
 "tsigkey";
 };
};

on host 192.168.12.5 and

server 192.168.12.5 {
 keys {
 "tsigkey";
 };
};

on host 192.168.12.4.

To restrict zone transfers you change your zone entry to

zone "foo.com" {
 type master;

 file "foo.com";
 allow-transfer {key tsigkey};
};

on the master server.

TSIG can also be used to secure dynamic updates. The BIND bind update-policy construct is

used in complicated cases like granting partial access to a zone, but most bind sites will do fine

with just allow-update, i.e.

zone "foo.com" {
 type master;
 file "foo.com";
 allow-update {
 key tsigkey;
 };
};

2. DNSSEC

The topic of implementing a DNSSEC infrastructure is very complicated and out of the scope of

this paper. For background, you can read the NLnet Labs DNSSEC HOWTO at

http://www.nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf but we will just sketch out the

DNSSEC elements that impact the BIND server.

First, some versions of BIND do not have DNSSEC enabled by default, so it's best to add that to

your options. Releases of BIND 9 beginning with version 9.3 support DNSSEC.

options {
 dnssec-enable yes;
 dnssec-validation yes;
};

Then, a private key Zone Signing Key (ZSK) and Key Signing Key(KSK) are generated with

dnssec-keygen for each zone, i.e.

 dnssec-keygen -a RSASHA1 -b 2048 -e -n ZONE foo.com

 dnssec-keygen -f KSK -a RSASHA1 -b 2048 -n ZONE foo.com

This will generate the keys

Kfoo.com.+005+43161

Kfoo.com.+005+24022

The algorithm and key length will be determined by the overall DNSSEC infrastructure plan.

Another possible alternative is HMAC-SHA256 at 256 bits.

The two keys thus generated are included into the zone file in /var/named with

$include Kfoo.com.+005+43161.key ; ZSK
$include Kfoo.com.+005+24022.key ; KSK

http://www.nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf

Finally, the actual zones are signed with dnssec-signzone.

 dnssec-signzone -o foo.com -k Kfoo.com.+005+24022.key \
 -N 1 db.foo.com Kfoo.com.+005+43161.key

This outputs into db.foo.com.signed and so you need to change the pointer in

/etc/named.conf

zone foo.com {
 file “db.com.signed”;
};

After this, either restart BIND or run the commands:

 rndc reconfig
 rndc flush

Note that the zone must be resigned at least once a month.

BIND 9 contains an alternative mechanism for doing DNSSEC called DNSSEC Look-aside

Validation (DLV) which is not discussed here. It is of limited importance now that the Internet's

root zone signing is in progress.

References

Cricket Liu and Paul Albitz, DNS and Bind: Fifth Edition, O'Reilly, May 2006, ISBN

0596100574

Ron Aitchison, Pro DNS and BIND, Apress, 2005, ISBN 1590594940

Jeremy C. Reed, BIND 9 DNS Administration Reference Book, Reed Media Services, 2007,

ISBN 0979034213

Ramaswamy Chandramouli and Scott Rose, Secure Domain Name System (DNS) Deployment,

NIST Special publication SP800-81, May 2006

http://csrc.nist.gov/publications/nistpubs/800-81/SP800-81.pdf

Ramaswamy Chandramouli and Scott Rose, Open Issues in Secure DNS Deployment, IEEE

Security and Privacy, vol. 7, no. 5, pp. 29-35, September/October 2009

Eric Osterweil and Lixia Zhang, Interadministrative Challenges in Managing DNSKEYs, IEEE

Security and Privacy, vol. 7, no. 5, pp. 44-51, September/October 2009

Relevant DNS RFCs

RFC 1034 - P. Mockapetris, Domain Names - Concepts and Facilities,

 IETF RFC 1034, November 1987

 http://www.ietf.org/rfc/rfc1034.txt

RFC 1035 - P. Mockapetris, Domain Names - Implementation and Specification,

 IETF RFC 1035, November 1987

 http://www.ietf.org/rfc/rfc1035.txt

RFC 2845 - P Vixie, et. al. Secret Key Translation Authentication for DNS (TSIG),

 IETF RFC 2845, May 2000

 http://www.ietf.org/rfc/rfc2845.txt

RFC 3833 - D. Atkins and R. Austein, Threat Analysis of the Domain Name System (DNS)

 IETF RFC 3833, August 2004

 http://www.ietf.org/rfc/rfc3833.txt

RFC 4033 - R Arends et al., DNS Security Introduction and Requirements

 IETF RFC 4033, March 2005

 http://www.ietf.org/rfc/rfc4033.txt

RFC 4034 - R Arends et al., Records for DNS Security Extensions

 IETF RFC 4034, March 2005

 http://www.ietf.org/rfc/rfc4034.txt

RFC 4035 - R Arends et al., Protocol Modifications for the DNS Security Extensions

 IETF RFC 4035, March 2005

 http://www.ietf.org/rfc/rfc4035.txt

