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PREFACE 

This paper constitutes a deliverable to Task T-R2-597.01, "SDI Battle Management/ 

C3 Studies" in accordance with Section 5.0, "Schedule," of the task order dated 1 October 

1988. It presents an overview of tracking methods and issues writen for the nonexpert, 

and an overview of tracking algorithm architectures. We summarize the algorithms 

surveyed to facilitate the understanding of survey responses and underscore the algorithms' 

general features, information flow, and calculational techniques. 

The paper endeavors to serve both the nonexpert and the expert. For the nonexpert, 

the survey of methods explains tracking problems and solutions to provide both a summary 

of the state of the art and the technical background for the algorithm survey. For the 

expert, the survey of algorithms provides a catalog of approaches and results in tracking 

and a community of designers with whom to interact. 
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EXECUTIVE SUMMARY 

A. ALGORITHM SURVEY 

Table 1 provides one· summary of the 19 algorithms surveyed in this report. The 

general information about an algorithm that we felt should be immediately available 

includes: What phase of a ballistic missile's trajectory does the algorithm track?; Does the 

algorithm use single or multiple sensors?; Does it track clusters of objects as well as 

individual objects?; Does the algorithm rely on track information being handed over by 

another source? and What is the status of the algorithm? Other information of a more 

technical nature is provided in Table 2: In what manner does the algorithm share 

information among multiple sensors?; Does the algorithm perform measurement-to-track 

association by assignment or multiple hypotheses? For a detailed description of these terms 

and summary of algorithms please see Chapters 2-4. 

The tables illustrate that tracking algorithm activities, at least those we surveyed, are 

concentrated in boost and midcourse phases, mostly multiple sensor tracking of individual 

objects. In addition, a few organizations are developing algorithms for tracking closely 

spaced objects or clusters. The manner in which the tracking information is processed 

varies, as can be seen from the different types of algorithm architectures implemented. 

Last, and most important, both major approaches to the association problem are being 

addressed. 

B . CRITICAL ISSUESl 

SOl tracking algorithms will face demonstration and evaluation milestones in the 

near future. Solutions to the most difficult tracking problems considered both in isolation 

and as part of a surveillance system remain to be successfully demonstrated. In particular, 

the future activities in SOl tracking algorithms must focus on five critical issues: 

1 This section draws h~vily on discussionS by the SDI Panels on Tracking and from Drummond, O.E., 
"Multiple Target Tracking Lecture Notes," 18 March 1988, Technology Training Corporation, 
Torrance, CA. 
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Table 1. 

Phase Sensor Number Subject Status 

boost 
rrid-

terminal single multiple Feasibility Extensive 
course object group Conceptual Testing Testing 

Advanced· Systems Architecture v v v v v v 
Alphatech v v v v 
Ball· Systems Engineering v v v v 
C'~tech/Jet Propulsion .Laboratory v v v v 
ESL v v v v 
Hughes Aircraft Company v v v v v 
Lockheed Missiles and Space Company v v v v v ~ 

Cll 
MIT Uncoln Laboratory ~ ~ ~ ~ v 

I .. 

t-.) McDonnell Douglas Space Systems ~ ~ v ~· 

MlndGate T echnoiQglee v v v v v 
MrrRE: Ballistic Tracker v v v { v 
MITRE: Boost-phase Tracker v v v ~ 

M~E:. Mu~lple Sensor!Target v v v ~ 

Raytheon: BMEWS Upgrade v v v v v 
Raytheon:. Ground-Based Radar v v v v .J 
Spac~ Computer v v v v " .J 
Systems Control Technology v v v v v 
TITAN Systems v 
TRW v v .J v v 

I 



en 
I 

\.1.) 

Advanced ·syst~ms Architecture 

Alphatech 
.. 

·Ball Systems Engine~ng 
.. 

C$1t~"'t Proputsion Laboratory 

Esl.' 

Hughes.AI~ft Company 
. . . 

Loc::kheed .Mi'ssiles. and Space Company 

MIT Uncoln·Laboratpry 

~Donnell Douglas Space Systems 

Mlnd~e TechnolOgies 

MITRE: Ballstic Tracker 

MITRE: Boost-phase Tracker 

MITRE: Multiple Sensor/Target 

Raytheon: BMEWS Upgrade 

Raytheon: Ground-Based Radar 

Space Computer 

Systems Control Technology 

nTAN Systems 

TRW 

Table 2. 

Track Initiation Track Initiation 
Algorithm Architecture 

cold warm I II Ill IV 

" " " " " " " ? 

" " " "' 
"' " 
"' " 

"' " " " " " " " " " "' 
"' 
"' I 

"' "' 

Track Maintenance Association Algorithm Architecture Track 

Multiple before 
I II Ill IV Assignment 

Hypothesis detect 

" " ? ? ? " " ? " " " v " " "' " "' 
? ? 

" " 
" " v " 

" " 
" v 

" " " " v " " " " " v: 
v· 

" " 
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• Ouster tracking 

• Scan-to-scan association 

• Performance evaluation and prediction methods 

• Testbed 

• Signal processing. 

1 • Cluster Tracking 

Ouster tracking methods are currently under development at a few organizations, as 

demonstrated by Table 3. 

Table 3. Cluster Tracking Activities 

Oroanization Description of Algorithm 
Advanced Systems Architectures Tracks spawned from a common ·source are combined to 

form a cluSter traCk. . CluSter tracks are also formed from 
.. objeCts with similar tracks. No mention of unresolved 

objects. 

Hughes Aircraft Company ~tate-of-the-art multiple sensor tracking of unresolved or 
resolved ·clusters ·of objects. Group-to-object transition 

.. --
included. 

Lockheed Missiles & Space~ company State-of-the-art multiple sensor ~racking of unresolved or 
resolved clusters of objects. Group-to-object transition 
included. 

MIT Uncoln Laboratory ·- · IndiVidual o~ject· tracks for members of a group of closely 
'~· . spaced objects (C_SO) are initiated from a cluster track that 

is generated· by th.e edges of the cluster. 

MindGate Technologies =·• Pattern matching pf clusters of co-moving objects. 

Space Computer Corporation · · Track-before-deteCt approach for determining clusters in 
velocity s~ce. Po~entially very useful as a method for 
performing computationally affordable individual object 
track initiation. 

TRW - Cluster tracking to implement a pattern-matching track 
initiation aloorithm. 

The many conceptual difficulties in approaches to cluster tracking are just beginning 

to be. addressed. Much more work in this area is needed. However promising they may 

be, none of the algorithms listed in Table 3 have been demonstrated to be a solution to the 

cluster tracking problem. The SDI Panels on Tracking are actively pursuing this issue. 
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Individual object tracking will be impossible, too difficult, or too expensive to be 

practical, or not necessary during portions of the ballistic missile defense engagement. 

Shortly after deployment from post-boost vehicles, reentry vehicles and decoys may be so 

closely spaced as to be unresolvable to tracking sensors presenting as point or extend~ ... 

objects. Even when resolved, RV s and decoys could be so closely spaced that the 

computational resources required for individual object tracking would be prohibitively 

expensive because of scan-to-scan association difficulties. A sensor's ability to resolve 

objects depends on more than its optical qualities and signal processing. Resolution is also 

a function of the viewing geometry and range. For this reason, as the sensors move along 

their orbits, the closely spaced objects may unresolve as well as resolve. Therefore, cluster 

tracking will play a very important role in any tracking algorithm architecture. 

There are critical operational requirements for maintaining tracks on individual 

targets, including discrimination of RVs from decoys, threat assessment, and attack 

execution. As the threat resolves, cluster tracks spawn individual object tracks, that is, 

individual object tracks are initialized from the cluster track. Therefore, cluster tracking 

should be evaluated, in part, on the quality of the initial estimates for th.e spawned 

individual object tracks. 

2 . Scan-to-Scan Association 

There have been no full-scale demonstrations and evaluations of the two principal 

competing conceptual approaches to this problem. Much more work is needed in this area. 

The great challenge of SDI tracking results from the high density of target and 

clutter observations reporting out ofthe sensor's signal processor. A high density means 

that the association of tracks to measurements cannot be made without significant 

uncertainty or error. At large but achieveable computational cost, tracks can be assigned to 

one scan's worth of observations in an optimal fashion. Incorrect assignments can lead the 

tracking system into estimating th~uality of track predictions as better than they ~ctually_ 

are. Since track prediction affects the assignment of weapons to targets and the ability of 

weapons to autonomously locate their targets, poor performance in this regard would have 

critical implications for the management of the ballistic missile defense engagement. 

Misassociations may also result in the loss of track as the filter follows an incorrect 

sequence of obsetvations. 

Misassignments that may occur in a high-density environment may result in tracks 

based on measurements from more than one target Impure tracks over the course of many 
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scans randomly mix measurements from several targets. In this case, any phenomenology 

used to discriminate between classes of objects, such as R V s and decoys, that depends on 

repeated measurements will be of limited usefulness. In other words, poor track purity 

performance because of misassignments limits multiple scan discrimination techniques. 

Assignment algorithms are computationally affordable but may not provide the 

necessary performance. On the other hand, multiple hypothesis algorithms should provide 

superior performance but their computational. requirements may not be affordable. 

Rigorous, full-scale testing is critical. 

3. Performance Evaluation and Prediction Methods 

Much more work is needed in developing methodologies for fairly scoring tracking 

algorithms that use different conceptual and mathematical approaches. Until recently, there 

was no such scoring methodology. One scoring methodology has been agreement 

developed by the SDI Panel. on Tracking Parameters. Development of a~~~_priate scoring 

criteria must keep pace with new approaches to tracking. 

The complexity of complete SDI tracking algorithms is such that analytic track 

performance predictions do not exist. More work must be done in this area. The only 

alternative is to run computer simulations, which are costly and sometimes difficult to 

interpret. 

Much more work also must be done on determining the required computational 

resources of tracking algorithms before expensive simulations are run. Computer 

throughput and memory demands will play a critic~ role in selecting tracking algorithms. 

4. Testbed 

There is a critical need for a portable testbed that can be used in the development of 

tracking algorithms, not just for evaluation purposes. Contractors are naturally reluctant to 

bring their algorithms to a central testbed facility during develop~ent to avoid revealing 

proprietary details and embarrassing algorithm performance, which is to be expected during .. 

development 

The portable testbed should consist of a complete set of library modules for those 

functions that support a tracking algorithm. Library modules would consist of accepted, 

standardized models for such things as possible threat trajectories and signatures, 
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background signatures, and signal processing. 2 The tracking algorithm designer should be 

able to select individual modules to plug into his sensor system in support of developing a 

tracking algorithm. 

A modest step in this direction is threat data developed by members of the SDI 

Panel on Track Parameters that has been distributed to 13 organizations by IDA. A second 

generation of threat data is nearly ready for distribution. An approved signal processing 

model could be used to supply measurements for the tracking algorithm. In particular, 

realistic, accepted models of background clutter in which tracking algorithms are expected 

to operate need to be made available as soon as possible. 

Currently, each algorithm design team must provide their own testbeds. This is 

done at great cost The government pays for the redundant effort of contractors developing 

their own testbeds with their own supporting models. 

The efforts of some contractors could be greatly handicapped by poor fidelity 

supporting models. This could, perhaps, prevent good ideas from getting adequate testing. 

In this case, the government would suffer the opportunity cost of losing a good idea. 

The government pays an additional cost in that low fidelity support function models 

used by tracking algorithm designers may lead to misleading performance results that might 

not be discovered until late in the development cycle and at the great expense of full-scale 

computer simulations. 

A portable testbed is critical for the ability to run full-scale simulations during 

development to provide tracking algorithm designers an opportunity to study the problems 

they face and to adequately exercise different approaches. 

5 • Signal Processing 

There may be large potential for tremendous growth in tracking performance by 

better or new, innovative approaches to signal processing. For instance, if a signal 

processor could greatly decrease the high density of observations passed to the SDI 

tracking system by removing stars, persistent background, and decoys, the processing load 

for a space surveillance and tracking system would be substantially lessened. Although 

such an approach has been hypothesized, we have seen no evidence of such a bulk filter. 

2 In addition, modules with alternative levels of fidelity will expand the usefulness of the testbed to 
various purposes and stages in the development process. 
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I. INTRODUCTION 

The Institute for Defense Analyses (IDA) was tasked by the Strategic Defense 

Initiative Organization (SDIO) to monitor, evaluate, and facilitate the development of 

tra~king algorithms. Among other things, IDA was asked to survey tracking algorithms 

under development for or applicable to SDI in order to ascertain the status of activities in 

this critical area. This paper reports the results of IDA's survey. 

As part of IDA's overall task, three working panels were established to provide a 

forum for addressing problems in tracking. These panels,3 which meet bimonthly for three 

consecutive days, are staffed by tracking algorithm designers from Federal Contract 

Research Centers, many companies, and each of SOl's sensor program elements. The SDI 

Panel on Critical Issues in Tracking developed a common survey ·format for describing 

tracking algorithms to ensure that key questions were answered in a succinct manner and to 

simplify the process of understanding the details of the activities. One part of that format 

was a decomposition of all tracking algorithms into architectures consisting of four-track 

initiation and four track maintenance generic processing chains. It was expected that all 

responses would conform to the survey format and algorithm architectures. 

To a large extent, the accomplishment of the survey was dependent on the tracking 

algorithm community responding to IDA's request for information. Given that replying to 

such a survey is not a contractual obligation, the number of answers received is gratifying 

and IDA expresses its appreciation to those who took the time to carefully and thoughtfully 

respond. This survey report does not contain algorithms for some SOl development efforts 

because of classification or proprietary restrictions. 

The survey benefited ·greatly from the collective expertise of the SOl Panels on 

Tracking. A list of the contributors from these panels is i~cluded in Appendix C. The 

3 The SDI Panel on Tracking Parameters, the SDI Panel on Critical Issues in Tracking, and the SDI 
Panel ·on Advanced Concepts. For a descripti.on·of their activities see the Proceedings of the SDI 
Panels on Tracking. 
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survey also benefited greatly from three useful expositions on multiple-target tracking.4 

The reader desiring more depth on this subject is directed there. 

The paper consists of an executive summary, four chapters, and three appendices. 

Chapter 2 presents an overview of tracking methods written for the non-expert. Chapter 3 

presents an overview of tracking algorithm architectures developed by the SDI Panels on 

Tracking. Chapter 4 contains summaries of the surveyed algorithms that are intended to 

facilitate the understanding of the unprocessed responses and underscore the algorithms' 

general features, information flow, and calculational techniques. The survey form and the 

• responses can be found in the appendices. Our conclusions and recommendations are 

contained in the Executive Summary. 

The paper endeavors to serve both the nonexpert and the expert. For the nonexpert, 

the survey of methods explains tracking problems and solutions to provide both a summary 

of the state of the art and the technical background for the algorithm survey. For the 

expert, the survey of algorithms provides a catalog of approaches and results in tracking 

and a community of designers with whom to interact. 

4 Samuel S. Blackman. Multiple-Target Tracking with Radar Applications; Artech House, Inc., 1986; 
O.E. Druimnond, "Multiple Target Tracking Lecture Notes,". UCLA October 1985, Revised 
18 March 1988, Te,chnology Training Corporation, Torrance, CA.; and Yaakov Bar-Shalom and 
Thomas E. Fortmann, Tracking and Data Association, Academic Press, Inc. 
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II. OVERVIEW OF TRACKING METHODS 

Before summarizing the results of the algorithm survey, it is worthwhile to provide 

the nonexpert reader with an overview of tracking methods. We begin by explaining the 

tracking process in a general, introductory fashion to acquaint the reader with terminology 

and fundamental concepts. The difficulties of SDI tracking are described next. Finally, the 

principal tracking approaches are described in depth but at a level appropriate for the 

nonexpert. 

A. INTRODUCTION 

1 • What is Tracking? 

A track is an estimate, based on sensor measurements, of the kinematic components 

(position, velocity, and acceleration) that describe the motion of an object. These 

components are collectively referred to as the state of the object; the state's evolution in 

time describes the object's motion. Therefore, ·a track is an estimate of the object's state 

derived from sensor measurements of it.S 

The tracking process as generally practiced today consists of the interrelated 

functions of association and estimation. A (radar, optical, acoustic) sensor system 

uses its observations of an object's reflections or emissions to derive measurements of 

the object's state. The portion of the state that is measured depends on the sensor type. 

For instance, a passive optical observation cannot provide range measurements because it 

relies entirely on emissions. In general, the measurements are some (not necessarily linear) 

function of the state. 

Association is the decision process of linking observations or tracks of a 

common origin. Links can be made observation to observation, observation to track, or 

track to track. Observations taken at (nearly) the same time by multiple platforms or from 

one platform's different sensor systems can be linked together as assumed to have a 

common origin for the purpose of s.ensor fusion. 

5 The state could also include quantities other than kinematic components, such as temperature. 
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A sensor's obsexvations can be linked across frames6 to form a time sequence of 

measurements. This sequence without further processing is a type of track, one that lacks 

the ability to predict the future and is limited to the measurements rather than the full state. 

A time sequence of linked obsetvations, however, can be processed, that is, statistically 

filtered, to transform a measurement sequence into an estimate of the full state's evolution 

as· a function of time. Statistical filtering is the estimation pan of tracking. 

In the ne~t section we will discuss in detail the Kalman filter, which currently is the 

most general andpowerful track estimation method commonly used. Here it suffices to 

note that the Kalman filter refers to the algorithm that produces the statistical estimate of the 

state and covariance. 

A major task in tracking algorithms is the linking of observations to tracks. A gate 

is a region in the sensor's field of view, determined in part by the prediction from the 

Kalman filter, where the subsequent track measurement is likely to fall. As a rule, only 

observations in the gate are considered for association with that track, thus greatly reducing 

the number of computations. Often in SDI applications there will be more than one 

observation within a gate and, therefore, several possible obsexvation-track pairings. _Since 

the output from a Kalman filter participates in determining the size of the gate, the 

association and estimation functions are interrelated. We will discuss this further below. 

Last, as with observations, tracks from multiple sensors can be linked as assumed 

to have a common origin, also for the purpose of sensor fusion. 

· 2. What are the Difficulties in SDI Tracking? 

The essential difficulties in SDI tracking are the large number of objects to be 

tracked, the high density of observations, and the inability of sensors to resolve individual 

objects from closely spaced neighbors. 

The massive number of objects that have to be tracked in SDI scenarios requires 

huge computing resources. To understand this, consider the computational burden from 

processing one Kalman filter for each object being tracked. Since all t~e tracks update on 

each frame, every few seconds the information processor must perform the necessary, 

highly nontrivial, update calculations of the Kalman filter. We see that this computer 

6 A frame is defmed as one data collection survey of the surveillance region. In this form, the definition 
is independent of whether the sensor surveils by mechanically sweeping the field of view with detectors 
or surveils electronically with staring detectors. 
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burden scales linearly with the number of tracks. Faster, more efficient Kalman fllters can 

mitigate this huge computer load Unfortunately, this is the least of the difficulties. 

In common SDI scenarios, the density of observations originating from targets and 

clutter is likely to be high. Recall from our discussion above, the observation-to-track 

association function establishes a gate in the sensor's field of view around where it expects . 

to find the observation for the track. A high density means that there is likely to be more· 

than one observation in a gate .. When this occurs, the tracking system cannot know with 

certainty which observation if any originates with the target. Handling this association 

problem is the most computationally intensive aspect of tracking. Incorrect 

observation-to-track association can lead to poor track performance, loss of 

track, and tracking errors far worse in reality than those predicted by the.; 

Kalman filter. This is the most critical SDI tracking difficulty. 

One approach to managing the high density threat is to temporarily forego tracking 

individual targets and rely instead on tracking the group or cluster in which they are 

traveling. There are substantial computational advantages to this approach. A track can be 

established for some carefully chosen parameters of the group, such as the group centroid 

and extent. This saves on the computer resources required when many targets are so close 

that it is not practical to process many individual tracks and circumvents _the problem· of 

large numbers of misassociations likely to occur if the individual tracks were maintained. 

Unresolvable closely spaced objects cause another major difficulty. The sensor's 

ability to resolve neighboring objects, of course, depends on the sensor, the range, and the 

viewing geometry. If unresolved, a group of closely spaced objects may appear as a 

relatively large (compared to the signal from individual objects) extended object on the 

sensor's detectors. A track, however, can be established on the extended object 

Another major tracking problem caused by CSOs is that the resolution can be 

unstable from frame to frame, e.g., two targets may be resolved on one frame and not 

resolved on the next and possibly resolved on the following. The instability of the 

measurements stresses the association and estimation processes. 
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B. ESTIMATION, ASSOCIATION, AND DECISION 

1. Estimation: The Kalman Filter 7 

A statistical estimation filter consists of three parts: models for the dynamics and 

measurement processes, statistical assumptions, and an optimality criterion. The result is 

an algorithm for transforming measurements of a state into an estimate of it. The model for 

the object's dynamics descri:bes its time evolution, which may contain elements, referred to 

as process noise, that are unknown or unpredictable, except for their statistics. One 

example is the random changes in acceleration typical of rocket boosters. A measurement 

model must both specify the relation betWeen the state and the measurements and account 

for the generally random inaccuracies, referred to as measurement noise, always present in 

measurements. For instance, we may wish to determine the object's position, velocity, and 

acceleration from noisy position measurements alone. The most simplifying assumption is 

that the system noises are statistically independent, white processes. 

Optimality criteria establish a measure for the "goodness" of an estimate. Once 

selected, an optimality criterion, such as maximizing the likelihood function or-minimizing 

the mean square error between truth and estimate, leads to a procedure for transforming a 

set of measurements into an estimate for the state. When the random processes in the filter 

are assumed gaussian, or we require the estimate to be linear in the data, all optimality 

criteria lead to the same estimator. 

The term filter can be thought of as a generic term for the process of recovering 

information from noisy measurements. Statistical filtering develops information from 

noisy measurements by assuming that the desired signal and unwanted noise can be 

distinguished by their statistical properties. 

The term filter also refers to a type of information processing that is distinct from 

two related types, smoothing and prediction. Filtering means the recovery at some 

particular time, tk, of information about the system using measurements up to and including 

that time. Smoothing differs in that the information about the system need not become 

available at tk, and measurements derived later than _tk can be used in obtaining information 

7 This section is based on material in the following publications: Andrew P. Sage and James L. Melsa, 
Estimation Theory With Applications to Communications and Control, McGraw-Hill Book Company, 
1971; Brian D.O. Anderson and John B. Moore, Optimal Filtering, Prentice-Hall Inc., 1979. 

ll-4 

..; 



about the system at tJc. Prediction is the forecasting type of information processing in 

which the aim is to obtain infonnation at tic about the state of the system at a later time. 

The Kalman filter is the mathematically optimal estimator for deriving at some 

particular time; tJc, an estimate of the-state and its covariance from measurements of the-­

states. 

The filtered estimate of the state is processed in two stages: a time update and a 

measurement update. The ~rrst step, the time update, is the filtered estimate of the state at 

the preceding time, tt-l, predicted ahead one step. The measurement update involves the 

difference between the associated measurement and the predicted measurement, referred to 

as the innovation, multiplied by the Kalman gain. Calculated by the filter, the gain 

determines the weight given to the new measurement information. The prediction of the 

state at some future time is computed from the present flitered estimate, without employing 

the innovation process. 

The filter also provides for the time and measurement update of the covariance of 

the state estimate. In addition, the algorithm calculates the covariance of the innovation 

process, which is the measurement prediction uncertainty, indicating the quality of the 

prediction. 

2 • Association: The Concept and Role of a Gate 

The innovation chi-square is derived from the innovation and its covariance 

matrix. It specifies an elliptical volume in measurement space known as a gate that is an 

indication of the track prediction uncertainty. The gate establishes an acceptance or 

validation region into which obsei'Vations considered for association with the track must 

fall. Landing within the gate is a necessary but not sufficient condition for an observation 

to be considered as having originated from the track because incorrect measurements may 

also fall in the gate or the target may not have been detected in the gate. The sole purpose 

of the gate is_to decrease the processing load by decreasing the number of possible 

observation-~ to-track association pairs by limiting the number of candidates. Observations 

within the gate are often called validated. 

The size of the gate is determined by fciing the ·probability that the correct .. 

measurement will fall within its volume. Since this probability is set to less than one there · 

is a nonzero probability that the correct observation will not be a candidate for association~ 

A larger ellipse enjoys a higher probability of capturing the measurement that originates 
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with the target but at the expense of possibly increasing the number of association 

candidates and thereby increasing the processing burden. 

If a gate is empty, there is no measurement to update that particular track. In this 

case, the Kalman filter,. which predicted the center of this gate, predicts ahead an additional 

frame but now without the benefit of measurement update information. The measurement 

prediction uncertainty is increased; thus, the gate is larger for the next frame. 

There is some measurement origin uncertainty even if there is one measurement in 

the gate because the target may not be detected in the gate and the observation could be 

from a different target or a false signal. When updated, the measurement prediction 

uncertainty of the Kalman filter typically decreases regardless of the true source of the 

updating measurement because it fails to account for its origin uncertainty. In other words, 

the measurement prediction uncertainty typically decreases after the update regardless of the 

origin of the measurement. 

For this reason, misassociations unless compensated for cause the filter to estimate 

the quality of its prediction as better than actual. Misassociations may also cau;e poor track 

performance, that is, a large gap between estimated and true tracks, and loss of track as the 

filter follows an incorrect sequence of observations. Discrimination and battle management 

is also adversely affected. 

3. Decision: Strategies for Managing Measurement Origin Uncertainty 

The fundamental multiple target tracking dilemma is deciding which measurement to 

use, if any, in updating a track. An observation has three possible sources: an individual 

target, clutter, or a set of unresolved targets .. Following Bar-Shalom and Fortmann, 8 we 

define clutter as observations . from background stationary objects, interference, 

environmental anomalies, false alarms, etc., that are generally random in number, location, 

and intensity. 

The difficulties caused by not knowing the source of a measurement are shown by 

considering the tracking situations in Figure 1. In the single-target case, there are two 

measurements within the gate, each, or none, possibly originating from the target. The 

correct decision is not obvious. In the multiple-target case, the gates overlap, with 

measurement 3 falling in both. It is usually assumed that one measurement cannot be 

8 Y aakov Bar-Shalom and Thomas E. Fortmann, Tracking and Data Association, Academic Press, Inc. 
p. 153. 

ll-6 



simultaneously assigned to more than one track, that is, each observation is uniquely 

assigned. If we decide that measurement 3 is associated with track 2, then measurement 1 

is the only candidate for association with track 1. Thus, associations over multiple 

targets are interdependent. 

The manner in which the problem of uncertain measurement origin is managed can 

be used to categorize approaches to multiple target tracking. Assignment methods make a 

definitive decision, typically at each frame, on the origin of the measurement. One 

measurement (or none) from those within the gate is selected as having originated from the 

target. 

Instead of selecting a single observation, the probabilistic data association (PDA) 

approaches avoid selecting by averaging over all decisions. The track is updated, using all 

measurements in the gate, weighted by the probability that they are correct. This is referred 

to by Blackman as an all-neighbors approach. 

Multiple hypothesis tracking (MHT) algorithms defer a decision on the origin of the 

measurement.. Multiple alternatives are retained as distinct tracks until later information 

improves the probability of the correct measurement-to-track association. 

C. MULTIPLE TARGET TRACKING APPROACHES: ASSIGNMENT, 
PDA, MHT 

1. Assignment 

The simplest association scheme, known as the nearest-neighbor algorithm, assigns 

a track to the measurement "nearest" to the predicted measurement, such as calculated by 

the innovation chi-square. All other observations in the gate are disregarded. 

One approach to multiple target tracking is to run a nearest-neighbor algorithm for 

each track, independent of all other tracks. This is referred to as uncoordinated nearest 

neighbor. In the situation shown in Figure lb, the processor would decide for track 1 

whether to update with measurement 1 or 3, or nothing, independent of track 2 

assignments. 

We have commented that this is unsatisfactory for high-density environments for 

the reason that associations over multiple targets are interdependent when we require 

unique assignments. This requirement is fundamental to simplifying the calculation 

ll-7 



I 
t 
f 

OK
0

j< 

'l' 

i.~ 

' . ·~ 

),,, 

; ::.~ : -~ 

,; 

, .11\ 1
, Predlctec:t"Me~sur~ment.for,Track 1 

1(:.~ ~-~ ~ -;. ~-·> ~ .~ t:.~ . ~·~· __ ~ . · .~ .. :. ;~" ·~. J ·r r.. 

· :cEJ .. Ao.tu~alt,JI~asurement 
J-r i' 

Figure 1. 

: t .· 

. ,. ! ~ -~ : ·~ ... , . . J • ~ 

). :: ;tl 

_::. 

).· 

~~ ... 

.~. •' I '2 

.. -.~ 

.:J 



because its effect is to make the different states statistically independent. Therefore, a 

nearest-neighbor algorithm is generally executed in a coordinated manner as follows. 

A cost matrix is defined by ·all possible track assignments, including that the 

measurement is-from a new target or false alarm, and all possible candidate measurements, 

including the case that the correct track measurement is not detected in the gate. The cost 

matrix entries are proportional to the probabilities of the assignments. These can involve 

the innovation chi-square for the measurement-track association pair; the probability of 

detection, the probability of the gate, the· probability that the observation is from a new 

e source, and the probability of choosing no observation for association with the track. 

An algorithm, such as the Munkres algorithm, is run that assigns measurements to 

tracks in a coordinated fashion by maximizing the sum of matrix entries subject to the 

constraints that no track is updated by more than one measurement and one measurement is 

not assigned to more than one track. The results of such an algorithm is a unique pairing of­

tracks to observations. 

Assignment algorithms are used not only to associate one list of observations with 

one list of tracks as just described. They can also be used to associate two lists of 

observations or two lists of tracks. Furthermore, there are assignment algorithms that can 

be used to associate data among ·more than two data lists, for instance linking several 

frames worth of observations to tracks. In this manner, assignment algorithms can 

generate multiple hypotheses, in the· sense that more than one viable alternative per track is 

retained over a number of frames. The general distinguishing characteristic, however, of 

assignment algorithms is that of a defmitive decision. For examples and discussion of 

multiple frame assignment algorithms see the Alphatech survey. 

2. · Probabilistic Data Association9 

The Probabilistic Data Association Filter (PDAF) applies to a single target and is 

strictly a method for handling the problem of multiple observations within the gate of an 

established track. The fundamental idea is to exploit the association probabilities of 

the complete set of observations within the gate for the target. 

In the PDAF~-each obsetvation in turn is considered as originating from the target. 

Also, the case that the observation originating from the target is not detected is considered. 

9 This section borrows heavily from Bar-Shalom and Fortmann, ibid. 
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An association hypothesis consists of assigning one observation (or none) to the track and 

considering all.others as statistically independent clutter. 

The PDAF pz:ocedure first multiplies the probability of each association hypothesis 

with the updated state estimate that assumes that hypothesis is true; thereby weighting that 

state estimate. Then the fmal PDAF state estimate is formed as the weighted average, that 

is~ the sum over the association hypotheses of the weighted average of the state estimates. 

for each hypothesis. The estimate can be shown to be equal to the predicted state plus the 

weighted average of the individual innovation chi-squares multiplied by the standard 

. Kalman gain. 

The covariance of the fmal PDAF state estimate follows immediately as the average 

over the covariances for each hypothesis. This can be seen to be equal to a sum of three 

terms. One term is the prediction covariance multiplied by the probability that no 

observation originated with the target A second term consists of the covariance of the state 

updated with the correct measurement multiplied by the probability that the target-originated 

observation is available. The last term increases the covariance of the total updated state to 

account for the uncertainty in the origin of the observation. 

The Joint Probabilistic Data Association Filter (JPDAF) extends the fundamental 

idea of the PDAF to multiple targets by computing the association probabilities jointly 

across all targets rather than for each individual track.. The fmal JPDA state estimate is 

calculated as before as an average over the association hypotheses. 

To summarize, the ·PDA state estimate is an average over observation-to-track 

association hypotheses. Each hypothesis consists of an unique assignment of the track to 

an observation. The total state estimate is an average over the many feasible assignments 

for the one track. 

The flve principal distinguishing characteristics of the PDA approaches are the 

assignment of one track to many observations, one per hypothesis, the exploitation of 

association probabilities, the calculation of state estimates as averages over association 

hypotheses, an adjustment to the covariance for source uncertainty, and a lack of organic 

track initiation logic. The association probabilities are calculated with Bayes Theorem from 

_·Probability Theory. For this reason, PDA approaches are one member of a class of 

tracking approaches referred to as Bayesian ·Tracking Algorithms. We will discuss 

other members of this class shortly. 
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3. Multiple Hypotheses Tracking 

An intuitive approach to managing multiple observations in a gate is to split the 

original track into many tracks, one for each validated observation. This process is known 

as track splitting. Each track is updated with the associated observation and carried. 

forward to the next frame in the standard fashion. The fate of these many tracks depends 

on whether the associated observations arise from clutter or targets. 

If the source of the associated observation is clutter, then subsequent observations 

for this track will be randomly detected and located. The quality of the track, therefore, is 

expected to decrease markedly. For this reason, a pruning mechanism is usually contained 

in track splitting algorithms to drop low-quality tracks. 

An observation originating from targets may have four sources. First, the 

observation could be from the original target. In this manner, this algorithm ensures 

maintaining the original track. "Extra" observations within the gate could be from objects 

just released by a conimon carrier vehicle, such as reentry veHicles and decoys released 

from a post-boost vehicle. Also, the new observations could be newly resolved, closely 

spaced objects from what had been a single unresolved CSO. In these two cases, -tracks 

are split, also referred to as spawned, by initializing the new tracks with the original 

track's state estimate on the previous frame. 

Last, the extra observations could be from new targets just moving into detection 

range or field of view that happen to fall within the gate. Track splitting may provide poor 

estimates in this case because the original state estimate may have very little to do with the 

newly detected targets, except for their location on the sensor focal plane. 

A track splitting algorithm has two limitations. First, the algorithm disregards all 

observations.that fall outside the gate. For this reason, a separate track initiation algorithm 

must be included in the battle management system that uses this approach. 

The second and major limitation of the track splitting algorithm is that association 

over multiple tracks is performed in an uncoordinated manner. There is no conflict 

resolution logic that manages the problem of observations within multiple gates. 

Track splitting algorithms are distinguished· by the assignment of multiple · 

observations in the gate to one track, the deferring of difficult assignment decisions until 

more information is generated, and the absence of association probabilities based on global 

hypotheses. 
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Deferring difficult assignment decisions is prototypical of multiple hypothesis 

tracking algorithms but other MHT approaches use association probabilities based on 

global hypotheses. Recall that PDA algorithms use the probabilities of the multiple 

association hypotheses, each one consisting of unique assignments of the latest set of 

observations to the tracks from the prior frame. 

Both the PDA and track splitting algorithms assign many observations to one track, 

but very differently. Track splitting generates one candidate track for each 

validat~d observation assignment. PDA yields a final state estimate that is 
averaged over all candidate hypotheses. 

Two avenues for generalization are suggested. First, use association probabilities 

based on global hypotheses but maintain individual state estimates rather than average state 

estimates. Second, extend the association hypotheses over many frames rather than just the 

most recent. An Optimal Bayesian Tracking algorithm would generate hypotheses across 

all frames from the first through to the current 

Bar-Shalom and Fortmann 10 relate the PDA single frame approaches to an optimal 

Bayesian algorithm as follows. Consider a time sequence of observations, one 'obser:vation 

per frame, from the initial to the present time. Such a sequence forms one possible target 

history, that is, one possible track. Consider all possible such sequences. The set of all 

possible assignments at the current frame can be decomposed into tracks at the previous 

frame associated with some observation from the current frame. A few moments thought 

reveals this is to be an abstract description of track splitting. 

An association probability for each observation sequence, that is, a probability for 

each track, can be calculated, conditioned on the entire set of observations. As in PDA, the 

conditional probability for each hypothesis multiplied by the state estimate that assumes that 

hypothesis is true is summed over all possible hypotheses. Thus, the updated state 

estimate for a track is an average over the different possible association hypotheses. 

Optimal PDA associates over all frames, not just the most recent. Its computational 

expense may be prohibitive .. A suboptimal approach looks back N frames, referred to as 

N-backscan, rather than all the way to the initial frame. The original PDA is the zero­

backscan suboptimal. version. 

10 Ibid. 
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The optimal PDA shares the four principal distinguishing characteristics of the zero­

backscan PDA approaches. It generates track-oriented hypotheses, that is, every 

obsexvation is considered for association with each track from the previous frame. This is 

the reason for the absence of organic track initation logic: no observation_is considered. ..for. __ 

association with a track that did not exist on the previous frame, that is, a new target 

Reid'sll multiple hypothesis tracking algorithm remedies the absence of organic· 

track initiation logic by generating 9bservation-oriented hypotheses. Each -

observation is associated with a false alarm, as a feasible continuation of a previous track, 

or as a new target, in the following manner. 

Start with the hypotheses generated on the previous frame. Consider the frrst new 

obsexva_tion. Generate a new hypothesis for each possible assignment of the observation: 

as a false alarm, as a feasible continuation of a previous track, or as a new target Take this 

new set of hypotheses and repeat this procedure with the second observation, except that 

more than one obsexvation cannot be assigned to one track. Continue in this way until 

every current obsexvation has been assigned. 

For instance, Reid's algorithm applied to Figure 1 would generate eight hypotheses 

in the single target case and 30 hypotheses in the- multiple target case. Reid refers to these 

as cluster hypotheses. See Table 4. 

Table 4. Results of Reid's Algorithm Applied to Figure 1a. 

Cluster Hypothesis Measurement 1 

1 FA 
2 T1 

3 T2 

4 FA 
5 T2 

6 FA 
7 T1 

8 T2 

-Notes: FA • false alarm; 
T1 • the original track; 
T2 • a possible new track originating with observation 1 ; 
T3 • a possible new track originating with observation 2. 

Me~surement 2 

FA 
FA 
FA 
T1 

T1 

T3 

T3 

T3 

11 Donald B. Reid, "An Algorithm for Tracking Multiple Targets," IEEE Trans. Auto. Control, Vol. 
AC-24, No.6, December 1989, pp. 843-854. 
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While the total number of cluster hypotheses generated can be quite large, the 

number of track assignment hypotheses is relatively few. _This is important because the 

number of computations in this approach can be greatly reduced, as we now demonstrate. 

Observe from Table 4 that a cluster hypothesis consists of one possible set of track 

assignment hypotheses. The original track; T1, is either associated with measurement 1 or 

2 or with no measurement. New track 2, T2, may or may not be generated by 

measurement 1 and similarly for new track 3 and measurement 2. This yields seven track­

oriented- hypotheses. A similar calculation shows that there are ten track-oriented 

hypotheses in the multiple target case in Figure 1 b. 

A particular track assignment hypothesis can appear in many different cluster 

hypotheses. Each ~ack assignment hypothesis is followed by a Kalman filter update 

computation. If the track update computations were performed for each cluster hypothesis, 

then the same filter update computation would be repeated many times. Instead, 

association probabilities are calculated over alternative target assignment hypotheses and 

then mapped onto the larger set of cluster hypotheses. It must be reemphasized that each 

association hypothesis assumes unique track assignments so that the -association 

probabilities are calculated over statistically independent states. 

The optimal implementation of Reid's algorithm would require ever-increasing 

computer memory as more hypotheses are generated on each frame. A practical version 

must limit the number of hypotheses. One method is to. divide the set of tracks and 

observations into independent groups, which Reid calls clusters, requiring conflict 

resolution. Hypotheses are also limited by pruning and merging. Hypotheses considered 

unlikely, say those below some threshold, are dropped while those that are "similar" 

according to some criteria are combined. These operations are suggestive of track splitting 

but in that case there were no association probabilities and there were multiple assignments 

of tracks to observations. The Reid algorithm generates individual state estimates that are 

scored by association probabilities. It is formulated in optimal and suboptimal versions, 

which can be well implemented. Clustering, pruning, and merging can be adjusted to fit 

hypothesis growth to track density and throughput and memory computer restrictions. 

The major limitation of Reid's algorithm· is that it does not include multiple 

assignments of tracks to observations, such as may occur in merged measurements, or 

observations to tracks, such as may occur in track spawning. The fundamental reason for 

this is the manner in which the association probabilities are calculated. One association 
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hypothesis consists of a set of unique assignments. The probability of the assignment 

hypothesis, calculated by Bayes rule, when the states are statistically independent, 

decomposes into the products of probabilities for the individual tracks. Unique 

assignments under each hypothesis ensure the statistical independence of the states. 

Kovacich of Lockheed Missiles and Space Company recently described a Bayesian 

multiple hypothesis tracking algorithm that remedies the defects in Reid's approach to 

produce the most advanced MHT algorithm to date.12 The key idea is to 11se a Bayesian 

network arChitecture (also known as influence diagrams) to provide a calculus to represent 

and manipulate joint probability distributions such as those that occur in multiple target 

tracking. Rather than decompose the association-to-track problem into assignment 

hypotheses, the fundamental unit in Lockheed's approach is the scene which is defined as 

the joint set of observation-oriented hypotheses, track-oriented hypotheses, and track 

spawning outcomes for different clusters. The probability for each individual possible 

outcome is calculated by the Bayesian network. 

D. GROUP/CLUSTER TRACKING 

Thus far the discussion has been limited to tracking of individual objects. In 

Section 2.1 of this chapter we pointed out that one approach to managing the high density 

SDI threat is to forego tracking individual objects and instead track groups. In this section 

we will describe the issues and methods of such an approach. 

1. Definitions 

To begin, we need to defme what we mean by group and cluster. In the previous 

section the term clustering referred to collecting interacting observations and tracks, that is, 

track clusters. .In the discussion of group tracking, the term cluster is defined differently 

and is used in reference to nearby objects, that is, target clusters. Before stating the 

defmition, a comment on what is to be included. Consider two simple examples that mark 

the extremes: (1) a long line of equally spaced objects; (2) a sphere of objects. Irt the 

second example, each object is within some radius of the center of the sphere. In contrast, 

each object in the first .example is within some metric distance of at least one other object 

12 Michael Kovacich, "Application .of .Bayesian Networks ·to Midcourse. Multi-Target Tracking," 
presentation to the SDI Panel on Advanced Concepts·in Tratking, Proceedings of the SDI Panels on 
Tracking, No .. 4, 1989. 
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Another issue that often generates confusion is whether the objects in the collection 

are based on truth or measurement data. 

We will follow the lead of the SDI Panels on Tracking in our defmiti.ons.13 

Cluster: 

Group: 

A maximal collection of objects each of which is within some metric 
distance of at least one other object in the collection. 

To be used at the author's discretion but to include a cluster. 

Group track: .Track established to represent a cluster of objects. 

Clump: A single observation arising from two or more objects. 

2. Types of Group Tracking 

Following Drummond14 we identify individual and group tracking as the endpoints 

of a spectrum: 

• Group tracking without individual target tracks 

• Group tracking with simple individual target tracks 

• Individual target tracks supplemented with simple group information 

• Individual target tracking without group tracks. 

This ordering is suggestive of a logical sequence of operations that might occur in 

midcourse tracking~ During deployment of reentry vehicles (RVs) and decoys from post­

boost vehicles (PBVs), the threat initially consists of closely spaced objects. The objects 

may resolve with increasing time from deployment as the threat cloud disperses. IS As the 

sensors move along their orbits, however, the resolution of objects is a function of the 

sensor resolution and the viewing geometry and range. For this reason, the threat could be 

resolving or unresolving during the course of the sensor's observations. 

These considerations lead to the conclusion demonstrated below that the 

information processing in group tracking algorithms must begin by deciding, pased on 

data, computational, communication, and operational considerations what combination of 

group and individual target tracking to execute. 

l3 Proceedings of the SDI P.anels on Tracking. 

14 Oliver E. Drummond, Hughes Aircraft Company, presen~tion to the SDIO Panels on Tracking, 
Proceedings oftheSDI Panels on Tracking. 

15 This is not to suggest that the threat density will not or cannot be increased later in the flight 
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It is not possible to establish individual object tracks on members of an unresolved · 

CSO. Extended object tracking must be executed. Only when the objects in a CSO are 

resolved is individual object tracking· possible. The density of observations and the high 

rate that new objects are resolved, however, may compel group tracking as the only 

practical alte~ative because of great computational expenses in track initiation and 

misassociation. If objects unresolve, the tracking architecture must extrapolate individual _ 

object tracks or establish group or extended object tracks. .· · ··· ... -J 

There are critical operational requirements for maintaining tracks on individual 

targets, including discrimination of RVs from decoys, threat assessment, and attack 

execution. Group tracking is performed when individual object tracking is impossible or 

too expensive. As the threat resolves, group tracks spawn individual object tracks, that is, 

individual object tracks are initialized by the group track. Therefore, group tracking should 

be evaluated based on its relatively inexpensive computation and communication 

requirements and the quality and the processing load required of the initial estimates for the 

spawned individual object tracks. 

3 . Single and Multiple Sensor Group Tracking 

Blackmanl6 describes a single sensor group tracking algorithm that tracks the group 

centroid position and velocity. A gating logic that is a generalization of the gate for an 

individual object track determines which observations will be considered for updating the 

group track. A conflict resolution logic is required for all observations that satisfy multiple . 

group track gates. All observations assigned to a group track are used to form a group 

observation consisting of a measurement centroid and dispersion ellipse. The measurement 

centroid updates the group centroid state in the stan~d manner of Kalman filtering. 

Tracks for objects splitting off the group are initialized by the group centroid state. 

Drummond, Blackman, and HeU,l7 have extended these ideas to multiple sensor 

group tracking. The principal difficulty in multiple sensor group tracking is that the size, 

shape, and composition of the group varies from sensor to sensor. For this reason, 

multiple sensor group tracking must have more information than just the location of the· 

16 SamuelS. Blackman, Multiple-Target Tracking with Radar Applications, Artech House, Inc., 1986, 
Chapter 11. · 

17 O.E. Drummond, S.S. Blackman, K.C. Hell, "Multiple Sensor Tracking of Clusters and Extended 
ObjectS," Technical Proceedings 1988 Tri-Service Data Fusion Symposium, Laurel, Maryland, May 
1988. 
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group. Drummond et al.'s approach is to model the group as an· ellipsoid in three 

·dimensions. Separate filters are established for the group centroid and the ellipsoid extent 

parameters. 

The group centroid s·tate estimate initializes· tracks for objects that split away from 

the group, as before. The ellipsoid extent state estimate permits sensors in different 

locations to associate groups and facilitates handing over group data to other sensor 

systems. 

E. CONCLUSIONS 

We have reviewed the major difficulties and methods in SDI tracking. We have 

chosen to organize the discussion around the critical problem of uncertain measurement 

origin that arises during the association of observations to tracks. This is sometimes 

referred to as the frame-to-frame association problem. We have not discussed other types 

of association, such as observation-to-observation and track-to-track, that are typically 

performed in sensor fusion, even though real-world SDI tracking algorithms involve 

multiple sensors. We have said little about filtering beyond defining it and developing its 

relationship with observation-to-track association. 

There are many components in a complete tracking system. Before tracks can be 

maintained by association of validated observations and updating they must be initiated. 

Track initiation refers to the formation of the frrst or initial estimate of the state of an object 

We have found that, for the nonexpert, following the information flow among these many 

components is often one of the most significant impediments to understanding particular 

tracking algorithms. For this reason, the next chapter presents an overview of tracking 

algorithm architectures developed by the SDI Panels on Tracking. 
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III. OVERVIEW OF TRACKING ALGORITHM 
- .. ~·--·· ·---~----·----··-··-- ~ 

ARCHITECTURES 

The· SDI Panels on Tracking. have standardized on a small set of algorithm 

architectures as high-level descriptions of the logical flow of information in tracking 

algorithms. It is expected that most algorithms can be decomposed in terms of these 

algorithm architectures, first identified by Drummond.18. 

A natural taxonomy of multiple sensor, multiple target tracking algorithms is 

organized by dividing the problem into track initiation and track maintenance algorithm 

architectures for individual objects and clusters. First consider the algorithm architectures 

for individual object track maintenance contained in Figures 2-5. 

Figure 2 establishes the basic functions of single sensor track maintenance 

algorithms. Figure 3 represents an architecture in which individual sensor tracks are_ fused 

together. Instead of combining tracks, a frame's worth of measurements from multiple 

sensors could be combined before being filtered, as in Figure 4. Figure 5 differs from 

Figure 3 in that the individual sensors no longer maintain individual tracks. The system 

uses only central track files. 

Figures 6-9 depict individual object track initiation architectures. Figure 6 

establishes the basic functions of single sensor track initiation algorithms. Figures 7, 8, 

and 9 are similar to Figures 3, 4, and 5, demonstrating that tracks or one frame's worth of 

measurements could be combined and that the system could use individual sensor tracks or 

centralized tracks. 

Cluster tracking algorithm architectures involve more than the basic individual 

object functions. The data emerging from the signal processor and requirements from the 

battle manager determine the type of tracking to be performed. This is depicted in 

Figure 10. Figures 11-18 are essentially equivalent to Figures 2-9. 

18 O.E. Drummond, "Multiple Target Tracking Lecture Notes," UCLA October 1985, Revised 18 March 
1988, Technology Training Corporation, Torrance, CA. 
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Figures 2-18 establish the- functions that make up tracking algorithms. The 

descriptions in the figures use terminology that is indicative of but not specific to 

techniques in particular architectures. This was done in order to remain at a sufficiently 

high level of generality so that these. architectures were applicable to most algorithms ... 

Hence, the terms association, filter, and track were used in their most general sense. 

There are two major areas of detail lacking in these figures. First, specific 

definitions· and descriptions of techniques for each function of the process. Second, the 

distribution and location of computer resources for carrying them out. 

The SDI Panels on Tracking have moved to describe some of the specific 

techniques, which are the fundamental tracking algorithms, most of which are described in 

-Chapter 2. For instance, Figure 19 summarizes track maintenance functions and Figure 20 

the elements essential to the description of measurement-to-track association. Finally, 

Figure 21 indicates specific algorithms for this purpose. Figures 22 and 23 repeat this for 

track initiation. 

The overview of methods and tracking architectures presented in ~he last two 

chapters should prepare the-nonexpert reader for the algorithm survey in the remainder of 

this report. 
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IV. SURVEY OF TRACKING ALGORITHMS 

This chapter contains a summary of the algorithm survey responses to facilitate the 

understanding of the responses and to succinctly point out the algorithms' general features, 

information flow-and calculational techniques. 

The SDI Panel on Critical Issues in Tracking developed a common survey format 

for describing tracking algorithms to ensure that key questions were answered in a succinct 

manner and to simplify the process of understanding the details of the activities~ One part 

of that fonnat was a decomposition of all tracking algorithms into a taxonomy consisting of 

four track initiation and four track maintenance generic processing chains. It was expected 

that most responses would conform to the survey format and processing chains. The 

survey forins and responses are contained in Appendix A and B, respectively. 

SUMMARY OF ALGORITHMS 

1. Organization: Advanced System Architectures Ltd. 

Algorithm: 

Submitter: 

Description: 

An Object-Oriented Architecture for Sensor Data Fusion/ 

Tracking in Dense Threat Environments. 

Edward J. G. Goodchild 

The algorithm is designed to perform multiple sensor, birth-to-

death, three-dimensional tracking of individual objects and clusters. Single sensor scan-to­

scan association and track-forming functions are excluded. Unassociated two-dimensional 

observations are fused across multiple sensors. Tracks are. initiated directly into three 

dimensions from three two-dimensional unassociated observations. New tracks are formed 

by track spawning of boost phase tracks and are assigned to members of a cluster. New 

tracks formed by spawning during the post-boost phase are assigned to members of the 

cluster. Cluster tracks are also formed later by association of a number of non-cluster 

member tracks, all having near identical trajectories. Cluster tracks determine rectangular 

gates that are used to partition new obseiVation data. A six-state Kalman filter is used for 

individual target track state estimation and a second six-state Kalman filter is used to 

maintain the cluster track trajectory and extent. Track pruning tests implemented and 
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observations are fused across multiple sensors. Tracks are. initiated directly into three 

dimensions from three two-dimensional unassociated observations. New tracks are formed 

by track spawning of boost phase tracks and are assigned to members of a cluster. New 

tracks formed by spawning during the post-boost phase are assigned to members of the 

cluster. Cluster tracks are also formed later by association of a number of non-cluster 

member tracks, all having near identical trajectories. Cluster tracks determine rectangular 

gates that are used to partition new observation data. A six-state Kalman filter is used for 

individual target track state estimation and a second six-state Kalman filter is used to 

maintain the cluster track trajectory and extent. Track pruning tests implemented and 
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planned include: consistent and sensible track behavior, behavior of the error covariance, 

and continued updating with new sensor data. The algorithm is in a concept-proving stage. 

2. Organization:_ Alphatech 

Algorithm: 

Submitter: 

Multiple Information Set Tracking Correlator (MISTC) 

Robert B. Washburn, Jr. 

Description: This work investigated eight different data association 

algorithms focused on the midcourse problem of multiple sensor individual object track 

initiation and track maintenance. Tracks are initiated as two-dimensional tracks until 

multiple sensor associations are made; three-dimensional tracks are then initialized. A 

single scan of observations from multiple sensors (two or three), containing an· assumed 

100,000 objects, was partitioned into spatially separated groups assumed to consist of 

about 100 objects. After partitioning, each data group was processed by the 

tracker/association algorithm. Of the eight association algorithms, three were zero-scan, 

pairwise approaches and five were N-scan, multiple hypotheses approaches_. The same 

association algorithm performed scan-to-scan and sensor-to-sensor association. Ten 

hypotheses were permitted per target, with each hypothesis scored by likelihood ratios. 

Extended Kalman filters for state estimation assume the targets travel along Keplerian 

trajectories. The algorithms did not handle track spawning. Algorithms have been 

implemented for sequential, off-line processing in FORTRAN. Plans include incorporating 

CSO tracking and resolution into the algorithms and implementing them on different 

parallel processors. 

3. Organization: Ball Systems Engineering (VERAC, Incorporated) and 
Daniel H. Wagner, Associates 

Algorithm: SDI Midcourse Tracker/Correlator Algorithm 

Submitter: Larry Filippelli 

Description: This single sensor, midcourse individual object tracking 

algorithm does not perform cold start track initiation. Instead, warm start track initiation of 

a six-state Kalman filter is accomplished by handover of boost phase information. The 

algorithm relies on the assumption th:1t objects tend to cluster into spatially inseparable 

groups to reduce the combinatorial explosion that results from high target density. Clutter 

is assumed removed by the signal processor and not passed to the information processor. 
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Multiple observation-to-track association hypotheses are formed by track splitting and 

scored using a Bayesian approach that takes into account probability of detection, 

probability of false alarm, false and new target densities, and observation-to-track 

association scores. Hypotheses are deleted if their score is below a percentage of the score 

of the best hypothesis. There is also a maximum number of hypotheses that can be saved. 

A second-generation algorithm has been completed and is in the testing phase. The 

algorithm has been installed at NRL and LANL. 

4 • Organization: CAL TECH Jet Propulsion Laboratory 

Algorithm: 

Submitter: 

Developer: 

Description: 

CAL lRAX: The Tracking Program for Simulation-88 

James Ortolf (Applied Research Associates) 

Thomas D. Gottschalk 

This algorithm tracks individual objects in the boost and post--

boost phases from multiple sensors. Single-sensor, two-dimensional tracks are initiated by 

a three-scan batch processor. Two-dimensional tracks are maintained by a four-state 

Kalman ftlter and track splitting. Tracks are deleted on the occurrence of a single empty 

gate (probability of detection is assumed equal to one) and merged if of common history. 

Mature tracks are propagated to a common time and exchanged with a stereo partner sensor 

to determine the three-dimensional state vector in earth-centered inertial coordinates. The 

two sets of tracks are associated by a modified nearest neighbor algorithm to initiate three­

dimensional tracks, which are used to solve for launch parameters according to a powered 

flight model. Once initialized, launch parameters are updated on subsequent scans by 

means of extended Kalman filters. Individual sensor observations are associated with 

three-dimensional tracks by a global modified nearest-neighbor algorithm. Any 

observations unassociated with a three-dimensional track on one sensor, if part of a mature 

two-dimensional track, are associated with those on the stereo partner sensor to initiate new 

three-dimensional tracks. The design of the three~dimensional tracker is based entirely on 

parameterized trajectories, with all updates of existing tracks done using extended Kalman 

filters for assumed trajectory models. The next generation tracker will perform parameter 

estimations on arbitrary flight models. 
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5. Organization: ESL 

Algorithm: 

Submitter: 

Tracking Algorithm for Project Swat 

JackLiu . 
.. 

Description: The algorithm, produced to evaluate the applicability of 

DARPA's MOSAIC architecture developed by ESL, performs single platform tracking of 

individual objects during midcourse. The survey response provides no specific 

information on track initiation procedures. Track maintenance is accomplished by a single 

target, multiple hypotheses scheme: nearest neighbor observation-to-track association in a 

rectangular gate updates the track; remaining observations in the gate are used to split new 

tracks; and detections within overlapping gates are utilized by all affected tracks. Tracks 

are scored by the log-likelihood function of the detection relative to the prediction plus 

maintenance bias. The scores are cumulative. When a set track redundancy is reachec:L the 

low score tracks are deleted. Tracks that are very close in terms of estimated object state 

and uncertainty are merged in a probabilistic fashion based on their track scores. A six­

state extended Kalman filter is the track estimator· with an earth gravity model selectable up 

to J6. Multiple platform tracking will be addressed in the near future. 

6. Organization: Hughes Aircraft Company 

Algorithm: 

Submitter: 

Developers: 

Description: 

Multiple Sensor Ouster Tracking 

Oliver E. Drummond 

Oliver E. Drummond and Samuel S. Blackman 

This algorithm, for use in the early midcourse phase, 

accomplishes multiple sensor tracking of multiple clusters. Ouster tracks can be used to 

initiate individual object tracks as the closely spaced objects become resolved, by track 

spawning based on the estimated PBV track. This permits a smooth transition from PBV 

cluster deployment to individual target tracking. The filtering segment of the algorithm 

estimates the cluster centroid position and velocity in inertial space and the cluster extent, 

the second central moment in inertial space, of the objects in the group. The extent, which 

establishes the cluster size and shape in inertial space, not just relative to a particular 

sensor, is used to determine which observation belongs to which group. Based on the 

projection of the predicted extent on to the field of view of a sensor, a gate is computed for 

a cluster. The filtering is composed of two filters, one for the state of the centroid and 
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another for the extent The filter for the 6-D centroid state is a simplified extended Kalman 

filter, the extent state has 6 elements and the filter is a pseudo-linear filter. Feasibility tests 

have been conducted successfully for cluster tracking under realistic conditions and further 

testing is under way. 

7. Organization: Lockheed Missiles and Space Company 

Algorithm: 

Submitter: 

SSTS Tracking and Association Algorithm 

Michael Kovacich 

Description: This algorithm accomplishes multiple sensor, birth-to-death, 

group-to-object, midcourse tracking of groups, clumps, and objects in the presence of 

clutter, including stars, nuclear redout, and a structured background. Initial coarse three­

dimensional track estimates are produced by each sensor after four-to-six updates using an 

iterated maximum likelihood passive ranging algorithm. Precision ECI tracks are initiated 

by multiple sensor triangulation. The track initiation process completes with the formation 

of precision tracks. Data association and track maintenance are accomplished by a multiple 

hypotheses approach known as a Bayesian network architecture. Pruning, merging, and 

clustering are used to control the combinatoric explosion. Hypothesis scoring accounts for 

clutter density, new track density, missed detections, and cumulative chi-squares. 

Thresholds based on a fraction of the best track score are used for track promotion and 

deletion. A variant of the A* search algorithm is used to find likely hypotheses. Tracks are 

merged and the covariance matrix adjusted accordingly, in a manner similar to PDAF. The 

Bayesian network approach includes the multiple assignment of observations to tracks and 

the multiple assignment of tracks to observations. An extended Kalman filter performs 

track estimation. The algorithm is currently being implemented in ADA in preparation for a 

1989 demonstration. 

8. Organization: M.I.T. Lincoln Laboratory 

Algorithm: 

Submitter: 

Developers: 

Description: 

A Mid-Course Track Initiation and Maintenance Algorithm 

MingJ.Tsai 

M.J. Tsai, K.P. Dunn, L.C. Youens, and C.B. Chang 

This midcourse, individual object and cluster track initiation and 

track maintenance algorithm accomplishes single sensor track initiation of clusters by 

forming track files for edges of clusters. Tracks on cluster members are then initiated by 
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assuming that targets within the same cluster travel in parallel. Tracks initiated by two 

sensors are merged and track maintenance performed in a sensor-by-sensor centralized 

fashion. Tracks are maintained by an extended Kalman filter and nearest neighbor 

observation-to-track association. The algorithm has been implemented, tested, and run in a 

number of simulated threat/sensor scenarios. Currently, it is being integrated with 

discrimination algorithms and radar tracking functions. 

9. Organization: McDonnell Douglas Space Systems Company 

Algorithm: Integrated Correlation, Track 

Submitter and Developer: Thomas R. Blackburn 

Description: This algorithm was developed for cold start track initiation and 

track maintenance of individual objects in the late midcourse phase of their trajectory, when 

objects are resolvable but not undergoing the influence of the atmosphere. Two sensor, 

sensor-to-sensor, observation association is performed before track in~tiation in order to 

initiate three-dimensional tracks. Sensor-to-sensor association is performed by matching 

the pseudo-elevation angle g~nerated from interpolated line-of-sight measurements taken 

from two frames of data. The track file is initiated with a square-root information filter. A 

nearest-neighbor observation-to-track association is used in track maintenance to provide 

measurement updates to a six-state Kalman filter. The algorithm is in the late conceptual 

development stage and has been tested and debugged running against threats consisting of 

about 600 objects. 

10. Organization: MindGate Technologies, Inc. 

Algorithm: Cluster Map Tracking 

Submitter and Developer: Lawrence M. Beyl 

Description: The crux of this midcourse ~acking algorithm is the supposition 

that there are patterns within a threat that are naturally formed by the objects dispersed from 

the same PBV and that are heading toward the same target. A collection of co-moving 

objects is termed a cluster. The pattern of angle mea~urements of objects in a cluster can be 

traced from one scan to another by using the previous scan's two-dimensional map of the 

cluster as a pattern for the next scan's data associations. Thus, this is a pattern-matching 

algorithm. The interlocking of the cluster to its source data permits each map to be used as 

a filter to remove the cluster's new measurements from the field-of-view for the sensor 

IV-6 



with the extracted data set then used to replace the existing set as the new cluster map. 

Each time a cluster map is updated, the associated cluster centroid state is updated via a six­

state extended Kalman filtering, where the data used in the update is a calculated pseudo­

measurement created from the collection of angle measurements that define the cluster map. 

The transition to individual object tracking is accomplished by forming an initial state vector 

and covariance for each object within the cluster through the centroid state, the angular 

separation of the objects within the cluster from the centroid, the cluster spread and spread 

rate, and the angular measurement accuracy. Splitting, merging, and other phenomena are 

handled within the individual object tracking environment, but are always restricted to the 

domain of the cluster. A cluster's centroid state can be estimated initially based on the PBV 

state at the time of deployment from boost phase information. 

11. Organization: MITRE Corporation, Bedford 

Algorithm: The MITRE Experimental Version Prototype (EVP) Ballistic 

Tracker 

Submitter and Developer: J. A. Krajewski 

Description: This algorithm performs individual object tracking during post-

boost and Inidcourse using sensor-by-sensor centralized track maintenance. There is no 

cold start track initiation capability. Instead, the algorithm relies on warm start track 

initiation from handover of boost-phase tracks and spawning of RV/decoy tracks (assumed 

distinguishable from PBV tracks). The data ~e partitioned based on a user defined angular 

distance threshold and a distance matrix calculated for each group. Hungarian and Greedy­

type algorithms are used for observation-to-track association. For each association pair; 

the distance is tested against a threshold and, when greater, the association is suppressed. 

A six-state extended Kalman filter is used to estimate the Keplerian three-dimensional 

ballistic tracks. The state is updated using two-dimensional observational data from one _ 

SSTS satellite at a time. All algorithms have been coded in FORTRAN and are being 

written in Ada. Test cases are currently being run and analyzed. 

12. Organization: MITRE Corporation, Bedford 

Algorithm: The MITRE Experimental Version Prototype (EVP) Boost­

Phase Tracker. 

Submitter and Developer: J. H. Latimer 
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Description: This is a boost phase, individual object, two sensor, track 

initiation and track maintenance algorithm that develops three-dimensional position 

estimates by associating observations from the asynchronous sensors before initiating and 

updating tracks.. Cold_ start track initiation is performed from a single three-dimensional 

position estimate and the a priori assumptions of a three-degree-of-freedom, reference 

rocket trajectory model.. A Newton's method iterative procedure is used to fit the reference ..... 
trajectory to the three-dimensional target position. The value of the reference trajectory 

velocity and acceleration at the point of the fit is used to initialize the track state estimate. 

The data from two sensors are paired by mapping the data from one sensor onto the focal 

plane of the o~er. The position estimate-to-track association is performed by a Greedy­

type algorithm. Tracks are estimated by a nine-state Kalman filter for the position, 

velocity, and acceleration in Cartesian earth-centered inertial coordinates. The algorithm 

does not handle stars, false alarms, or other forms of stationary clutter. All algorithms 

have been coded in FORTRAN and are being written in Ada. Test cases are currently 

being run and analyzed. 

13. Organization: MITRE Corporation, Bedford 

Algorithm: The MITRE Multi-Sensor, Multiple Target Tracker. 

Submitters and Developers: R. Varad and J. T. McKernan 

Description: This is a boost phase, individual object, three sensor, track 

initiation and track maintenance algorithm that associates two sets of stereo-associated data. 

Three sensors are divided into two pairs and observations are associated for each pair. 

Then the two pairs of associated observations are fused. Range is determined from the 

common sensor once target lists from each pair are formed and then associated based on 

hinge angles, in-plane angles, and estimates of the baseline ranges determined from each 

pair. A track is initialized when association can be obtained in hinge angle, in-plane angle 

and range for data from two consecutive scans .. After initialization, rates for hinge angle, 

in-plane angle, and range are calculated for each track and predictions of target coordinates 

for the next scan are made. The track state consists of position and velocity estimates in 

three dimensions. The algorithm is fully designed, developed, and implemented in Pascal. 

on a V AXNMS system. 

14. Organization: Raytheon Company 

Algorithm: BMEWS Phased Array Radar Upgrade 
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Submitter: FredDaum 

Description: This boost and midcourse singl~-sensor, cold-start track 

initiation and track maintenance algorithm processes phased array radar measurements of 

range, elevation, azimuth and target amplitude to estimate position and velocity vectors in a 

six-state Kalman fllter. A. multiple hypothesis track initiation scheme is used with pulse­

pair track initiation and track· maintenance. The observation-to-track association is 

petformed by a nearest neighbor chi-square test. 

15. Organization: Raytheon Company 

Algorithm: 

Submitter: 

Ground-Based Radar (GBR) 

FredDaum 

Description: This midcourse single-sensor cold or warm start track initiation 

and track maintenance algorithm processes phased array radar measurements of range, 

elevation, azimuth, target amplitude, and phase to estimate position, velocity, and higher 

order rotational dynamics (for discrimination). A multiple hypothesis track initiation 

scheme is used with pulse-pair track initiation and track maintenance. The observation-to­

track association is performed by a nearest neighbor chi-square test. Three Kalman filters 

are maintained: six state, seven state, and sixteen state. 

16 •. Organization: 

Algorithm: 

Submitter: 

Description: 

Space Computer Corporation 

Velocity Filter Algorithm for SDI Detection and Tracking 

William J. Jacobi 

Both boost and midcourse applications of this cold start track 

initiation algorithm have been investigated. Operating with either resolved or unresolved 

objects, the velocity algorithm performs a combina~on of signal-to-noise enhancement and 

scan-to-scan association functions utilizing a "track-before-detect" approach. A bank of 

filters matched to different vector ·velocities provides correlated object positions and 

velocities for track initiation. The vector velocities to which the filters are tuned are derived 

from cross-correlation of successive input image frames. When the data contains "velocity 

clusters," the algorithm is inherently robust against object proliferation, merging/crossing 

tracks, background clutter, and temporary loss of data. 
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17. Organization: Systems Control Technology 

Algorithm: Dynamic Programming Algorithm (DPA) 

Submitter: Kenneth Kessler 
) 

Developer: YairBamiv 

Description: Another "track-before-detect" approach, the dynamic 

programming algorithm is a practical and feasible alternative to replace exhaustive search 

techniques for detecting and locating entire target trajectories inside a sensor's field of view 

over some time interval. This is accomplished by batch processing data over a small 

number of frames through a bank of matched filters, where each ftlter represents a single 

possible two-dimensional trajectory. The algorithm produces simultaneous detection and 

two-dimensional tracking of targets because its output consists of detected targets and their 

associated hit strings·. The analysis and software development has been ongoing for over 

seven years. 

18. Organization: TITAN Systems 

Algorithm: 

Submitter: 

Description: 

Knowledge-Based Sensor Fusion (KBSF) 

Timothy E. Brockwell 

This is a tracking algorithm to the extent that it is not entirely 

possible to decouple tracking from discrimination. The program was initiated to determine 

whether rule-based techniques could be applied to strategic sensor fusion, specifically to 

demonstrate a rule-based approach to multi-sensor discrimination. The goal is to host and 

evaluate competing algorithms, primarily those designed for platform-to-platform 

association and track maintenance, by building a machine that automatically selects the 

"best" algorithm for fusing mUltiple or single platform, multiple sensor track data. 

~xperiments are being conducted with fuzzy techniques for determining "degrees of 

membership" in the· set of valid tracks that is maintained by the system, and for uncertainty 

management in general. Currently, a variation on the Sequential Probability Ratio Test for 

determining "degrees of membership" in the set of valid tracks is employed. 

19. Organization: TRW, Huntsville 

Algorithm: ADOP Scan-to-Scan and Track Algorithm Set 

Submitter: J. T. Lawson 
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Description: This is a midcourse, single sensor, individual object and cluster 

cold start track initiation and track maintenance algorithm that uses pattern matching in the 

data association and derives object velocity estimates from three-color correlation 

processing. In the track initiation phase, association is performed over six frames. The 

algorithm partitions the observations in a scan according to a distance separation threshold. 

For each partitioned set, the group centroid and group velocity are calculated~ as are the 

predicted centroid for the next scan, a centroid gate, and a group azimuth-elevation extent 

gate. The grouped observations are associated by pattern matching between scan 1 and 

scan 2 and between scan 2 and scan 3; thereafter the association is performed in an 

independent, nearest-neighbor manner. Objects are assumed to follow non-maneuvering 

Keplerian ballistic trajectories. During the angle-only phase of tracking, a cubic-fit least 

squares filter in azimuth and elevation is used. A precision track mode uses a six-state 

Kalman filter. An iterative batch filter is used to transition between the modes: an initial 

state estimate is obtained by the Gauss algorithm for orbit determination given three angle­

only sigh rings; the batch filter is then applied over the previous observation history to start 

the Kalman filter. A track is declared lost and no longer maintained after two consecutive 
. . 

empty gates. All clutter is assumed removed by the signal processor and not passed to the 

tracker. Versions of the algorithm's software (Pascal) are available at the USASDC 

Advanced Research Center for both the Honeywell and DEC VAX configurations. No 

significant improvements have been made since 1985. 
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TRACKING ALGORITHM SUMMARY 

Submitter's Name: _________________________ _ 

Submitta'sCompany/~gruri~on: _________________________________ _ 

Submitter's Phone: ----------------------------------
AdruressofSubnritta: _________________________________ ___ 

Author's Company/~grurization: ----------------------------
Author's Phone: _____________________________ _ 

AdruressofAuthor. -------------------------------

TITLE OF ALGOR.I1lllv1: 

SPONSOR: 

DEVELOPER: 

(Complete as appropriate) 

NOTES AND INSTRUCTIONS 

. (The Sqmmary/Abstract of the algorithm should be limited to half a page. The basic . 
answers to the questions below should be limited tq three pages. Additional information, 
referenced to the section num})ers, should be included in a separate appendix that should be limited 
to four pages. . Classified information should be included in a separate supplement. The total 
information including Abstract/Summary, basic answers, appendix, and classified supplement 
should not exceed eight pages. H some of the algorithiris or details are proprietary, indicate what is 
proprietary and discuss only the nonproprietary aspects.) 

ABSTRACT/SUMMARY 

(Describe, in general terms, how the algorithm works and, if applicable, provide a high­
level flow diagram.) 

1. CONTEXT 

(What processing chain ch~cteri~es your· algorithm? [see Figs. 1-4]. What functions 
within the chain are covered by yout·algorithm, e~g., Track Initiation, Track Maintenance, etc? To 
what phase(s) of SDl is your algorimm applicable- Boost, Post-Boost, Midcourse; Terminal? 
What are your inputs, e.g:·, ·single sensor· or mUltiple sensors, clustered data or not clustered data, 
etc.? What are your outputs, e.g., 2-d tracks or 3-d tracks, launch parameters?) 

2. 
.:I 

NOT ABLE FEATURES 

(List any features that distinguish the algorithm.) 
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3. SENSOR ARCHITECTURE AND THREAT SCENARIO 

(Characterize the scenario that drives the algorithm design. What is the threat size and 
density? What are the assumptions about background clutter? Is all the clutter removed prior to 
tracking? What is the constellation size and orbit? What are the measurement errors/biases? What 
is the target kinematic model? Does the target maneuver? Is its signature related to aspect angle?) 

4. SENSOR ·MODEL/PROCESSING 

(What is the model used for sensor/signal processing? What is the probability of detection, 
false alarm? What is the clutter density and.model for. the clutter density, e.g., uniform density in 
regions with ~ Poisson model for clutter returns? What is the sensor? Is it a scanning or staring 
sensor? What is the frame time? Is it variable? How many wavebands of data are available? 
What is the measurement noise, bias, resolution? How are CSOs modeled? What are the 
attitude/navigation errors/bias assumed? What is the precision of your input data? Specify the 
interface between the sensor/signal processor and the tracker, e.g., [time, az, el, snr, extended 
object indicator, covariance].) 

S. TRACK INITIATION 

(Specify the method used to initiate tracks. How does it work? Are tracks initiated as 2-d 
tracks or 3-d tracks? Is cold start initiation performed, i.e., is handover data assumed for all 
tracks? Are tracks processed individually or in a batch or both? How is the initial precision track 
state estimate generated? Is track initiation performed sequentially or in a batch mode or both? 
How long does it take to initiate a track (scans or seconds)? How are cluster tracks initiated? If 
applicable, provide a high-level data flow. If Track Initiation and Track Maintenance are not 
separable in the algorithm design, so indicate and describe the Track Initiation and Maintenance 
algorithms in Section 5 and omit Section 6.) 

6.1 TRACK MAINTENANCE· DATA ASSOCIATION 

(Specify the data association approach for scan to scan, s~lar sensor platform to platform 
association and dissimilar sensors. Are multiple hypotheses generated? How is the combinatoric 
explosion controlled: pruning, merging, clustering? What is the branching factor in the hypothesis 
tree? How deep are the hypothesis trees? How are hypotheses .scored: Bayesian, Likelihood, 
Heuristic, other? What search algorithm is employed to develop track hypotheses? Is an 
assignment algorithm used: Munkres, Brogan-Lemay, other? Does track spawning occur? For 

. satellite-to-satellite association, how is the resolution difference between the satellites accounted for 
in performing assoc~ation? How are stars and false alarms [stationary clutter] handled?) 

6.2 TRACK MAINTENANCE- STATE ESTIMATION 

. (Specify the approach used to estimate the state vector for the track. What is the coordinate 
system? What is the state vector? What type of filter is used? What assumptions are made in the 
filter, e.g., what is the dynamical model, what dynamics are· unmodeled and treated as noise, are 
noise measurements assumed uncorrelated, is the measurement noise assumed to be constant? Is 
~e filter nonlinear, iterated, batch, sequential? Are·weighted sums ofGaussians used to generate 
the state vector estimate as in PDAF or JPDAF? How does the filter account for biases due to 
targets becoming resolved [spawning] or become unresolved [crossing]?) 

6.3 TRACK MAINTENANCE· TRACK PROMOTION/DEMOTION 

. (Specify the criteria for promoting, demoting and terminating tracks. Specify the method · 
for maintaining the track status. [The track status indicates the degree of confidence that the track 
represents a valid ·target.] What is the criteria for pruning or promoting a track? What is the 
scoring method, e.g., Bayesian, Likelihood, heuristic measures such as m out of n?) 
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7. TRACK FILE MAINTENANCE 

(Specify the data that is maintained in the track file. Are extended objects, clusters, 
maneuvering objects, complete trajectories, threat corridors, etc. detected and maintained? What 
special data structure for datafile management have been used?) . 

8. OUTPUT TO BM/C3 AND USERS 

(Specify the interface to users of the tracking data, esp. BM/C3. What is the data in the 
interface? How often is the data sent? What is the reportirig criteria? How is the data computed?) · 

9. COMPUTATIONAL REQUIREMENTS 

(Specify the throughput and memory requirements of the tracking algorithm. What 
scenario is used? How .. are throughput ~d memory measured? What machine/language is used? 
Are the results scaleable? Are the results empirical or theoretical? Are·there performance bounds? 
What is the targ~t machine? Is the target machine special or general purpos~? Describe the degree 
of parallellism [e.g., 10 processors, 100 processors or more?] and the processor architecture. 
What are the sequential and parallel throughput requirements?) 

1 0. CURRENT STATUS 

(Describe the current status of the algorithm: conceptual development, design, 
coding/debugging, implementation, testing?· Has the algorithm undergone performance 
optimization? Has hardware been optimized to execute the algorithm? What are the future plans? 
Has real data from current sensors been used?) · 

11. PERFORMANCE MEASURES AND RESULTS 

(Specify the performance. measures used to characterize the tracking algorith·m. How are 
the performance measures defined? What scenario(s) were used to generate the performance 
values? What are ·the results? Are there theoretical performance bounds, e.g., Cramer-Rae 
bounds? What are the performance limits? Under what conditions does the algorithm perform 
poorly?) 

12. REPORTS 

(List report(s) that are relevant to the description and performance of the algorithm:· 
Additional data such as equation development should be referenced.) 
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GENERIC ALGORITHM PROCESSING CHAINS 

The panel on Critical-Issues in Tracking has·determined that 

there are four basic processing chains for track initiation and 

four basic processing chains for track maintenance. These chains 

are pictured below. 

The depictions of processing chains presented here are meant 

to be high level descriptions of the logical flow of information 

in algorithms. It is expected that any algorithm can be defined 

in terms of these chains. 

In order to remain at a sufficiently high level of 

generality so that these chains are applicable to all algorithms, 

it is important to use terminology that is indicative of but not 

specific to techniques in particular processes. Hence, the terms 

association, filter and track are used in their most general 

sense. 

There are two major areas of detail lacking in these 

depictions. First, specific definitions and descriptions of 

techniques for each part of the process. Second, the 

distribution and location of computer resources. 
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SUBMITI'ED BY: Edward J. G. Goodchild 7' II February 1989 
Advanced System Architectures Ltd. 
Johnson House, 
73 - 79 Park Street, 
Camber ley, 
Surrey, 
England, GU15 3PB. 

Telephone 011 44 276 682756 

AN <JJJB:r-<RIENTHD-~ Fm SBNSCR DATA RBI~/'I1WX~Kl 
IN D~ TAOOBT ~ 

SR)NS()RS: 

DEVELOPER: 

AUI'HCE: 

ADVANCED SYSTEM ARCHITEcruRES, 
SDIO BM/C3, Captain Johnson 

Advanced System Architectures, Data Fusion Del)e.rtment 

Edward J. G. Goodchild 

The "algorithm". is a target-oriented. sygtem designed to perform multi-sensor. 
multi-object data fusion and three-dimensional tracking In a caarutationall:v 
practical manner in dense target environments. It has been desimed to o"Derate 
with data from any mix of bearing-only and 3-D senSors. and tracks both 
individ.u8.1 targets and target ·clusters of arbitrar:v size. 

The algorithm is based upon an object-oriented sYBt.em arch i tecturP.. P.mhP.dcti nst 
the tracking filters and·data association ~t~ functions within rP-nli~AhlP 
iogiCal ObjeCts • Otie Such object t Or :f>rOceSS t . is asSi.aled to track P.Br.h 

perceived target, thus exploiting to the maximum the inherent parallelism in the 
data fusion ·task. ·A tracking process has the sole task of increasirut its . 
laiowledge about the body it is modelling by examination of sensor data. ard 
using any such reports that are releV&nt to that bod.v. 
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1. <nii'EXT 

1 • 1 PRt::O.SSING CHAINS 

The processing chain characterising the data fusion algorithm differs depending 
on the . type of data provided by the sensor. The system has been designed to 
accept data in the- form of hits or-.scan-to-scan correlated tracks in either two 
or three d.imensions. 

Track initiation from uncorrelated 2-D hits follows the processing chain shown 
in figure l, which indicates how new track hypotheses are formed from hits fran 
all available senSors wi tllout an intermediate stage of track fot'IIIRi'.; nn hy 
individual sensors. Track· initiation from sensor tracks or with three-dimension­
al hits follow variants of the "Centralised Sensor by Sensor" processing chain 
shOlom in figure 21 • Track maintenance follows variants of the "Centralised 
Sensor by Sensor" processing chain for all types of input. The principal 
variations from figure 2 concern the ·type of gating applied to the sensor 
inputs; this is dependant on the sensor data type. 

The algorithm covers the 3-D tracking functions and the gating and association 
of incoming data with the 3_;D track projections, but excludes any single-sensor, 
scan-to-scan correlation and· track forming functions. 

1 • 2 PHASES OF nrE SDI BA'ITLE 

The algorithm has been designed for birth-to-death tracking of balll.stic 
missiles, from launch all the way through to the terminal phase. Effort has been 

l 

1 

.I 

concentrated, thus far, on the transition from boost to mid-course phases, ~ll 
including the period of target proliferation during the post-boost ph~e. 

1.3 INPUrS 

The algorithm has been designed to accept any available sensor data with no 
prior assumptions on the number or configuration of sensors. Sensor d3.ta may be 
clustered or otherwise, and may be scan-to-scan correlated or otherwise. 

1 • 4 ourPt'fS 

The algorithm produces full thre~ional tracks ·or individual targets, of 
clusters of targets,· and of individual members of clusters where sufficient data 
has been received to. resolve them. Extensions. are planned, but not currently 
supported, to include target discrimination functions, and to provide extra­
polation of the tracks bOth forWard and backward to yield aim-points and launch 
parameters. 

the ability to handle any mix of sensor data, as described above. 

1Figure 1 in attachment 4 of IDA Memorandum dated December 27th 
from Gabriel Frenkel. 
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the ability to initiate full 3-D tracks from three uncorrelated 2-D 
observations on a target fran any- sensors ·(even a single sensor provided 
that its movement relative to the target is sufficient), and to prune 
swiftly the rapid proliferation of false track hypotheses. 

the scalability of the architecture to any conceivable threat size, with 
predictable growth with growth of the threat environment. 

The algorithm, although origi.nally concieved as a generic data fusion architect­
ure, has been. developed in the conteXt of the SDI. The scenario driving the· 
design has been that of a mass ballistic missile attack inclt.di.ng many launchers 
producing vast numbers of mid-course bodies ( >toe ) • 'lbese have been assumed to 
·travel in clusters of up to a few hundred objects each. 

The system has been designed to operate with any likely configuration and number 
of sensors. The algorithm has beerl designed to take account of ~t 
errorS and biasses (including sensor Ol.m-posi tion reporting, oointl.ru( accuracy, 
and bearing resolution) but performance measurements have not been made. 

Three kinematic models have been assumed for targets, a P.li'e ballistic model for 
the mid-course phase, a ballistic model with acceleration along the trajectory· 
for the boost phase, and a ballistic-model with-variable acceleration, pre­
dominantly along the trajectory for the post-boost vehicle. 'Ibis variable 
acceleration is included as a noise term in the kinematic model. 

At present, tracking is on target position and motion only. Versions of the 
design exist which include photometric pa.nuoeters in the target state vector. 
and it is plarmed to make use of these for target discrimination 'DlJI1X)ses in the 
future. 

No specific assumptions have been made, to date, as to the nature, auanti ty. or 
pre-filtering of background clutter. 

In principal, the algori_thm is not limited to operation with particular sensor· 
types. The evolution of the design in the SDI context has directed concentration 
towards operation with passive, focal-plane, m sensors. It will operate with 
both scanning and staring sensors, producing either geometric data only or ·bOth 
geometric and photometric d8.ta. Scan. rates and frame rates ma.v be fixed or·· 
variable. 

The algorithm requires data to be supplied on at least: observation time, sensor 
position, bearing of observed object in two orthogonal planes. No other limits 
have been aSsumed on sensor signal ·processing capabilities. 

5. 1 TARGET TRACKS 

Tracks are initiated directly in t.hree-diJDensional form even fran tm-correlated 
2-D hits. 'lbey are initialised by association of any sensor reports not 
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associated with existing .tracks to form new-track hypotheses •. 'nlese- are tested 
for realism and likelihood at every sta,ge, with hypotheses failing either test· 
being deleted. Association of three hits in a new-track hypothesis is suffici­
ent, in general, to allow its promotion to a full track. 

'lbere is no necessity to initialise the system with. tracks handed over from 
elsewhere following a cold-start. Provision for sUCh hand-over could be added-to 
the algorithm without difficulty, and could reduce the settling-time of the 
system under cold-start conditions. 

5. 2 CLUSTER TRACKS 

All launch vehicles are assuoed to produce clusters of mid-course bodies, thus 
cluster tracks are generated for all boost-phase tracks. At this stage they have 
a membership of one target, i.e. the booster itself. New tracks formed by ·' 
splitting during the post-boost phase are assigned as members of the cluster. 

Cluster tracks are also formed later by association of a nunber of non-cluster­
member tracks all having near identical trajectory behaviour. 

6. 1 DATA ASSOCIATION 

A multiple gating approach is used for data association. Firstly, new data is 
gated with the cluster tracks, using a simple rectangular gating strategy. A 
two-level gating strategy is then applied to the data by target tracks belonging 
to· clusters with which the data is successfully associated. 'Ihe first level 
comprises a rectangular ·gate; suCcessful association at this level leads to a 
more stringent, eliipsoidal gate. Only data passing all stages succesfully is 
used for track upiating. -

6 • 2 . STATE ESTIMATION 

A Kalman filter technique is employed for target track state estimation. 
Currently, this caoprises a six-degree of-fi-eed.an filter, tracking position and 
velocity. Plans exist to. extend the state vector to incltd.e aim-point, launch 
point, and photometric parameters with appropriate filters. 

A similar six-axis Kalman filter . is used to maintain the cluster track 
trajectory, ~ cluster extent. 'Ibe cluster track also Diaintains its target­
track membership list. 

6 • 3 TRACK P9:M>TION/DEMJI'ION 

Tracks are continuously monitored for validity. Pn.ming_ tests implemented and 
-planned include: consistent 8nd sensible track behaviour, behaviour of the error 
co-varianCe with time, and continued upiating with new sensor data. Qlnsistent 
failure of any of these tests would cause deletion of the track. 

Currently not implemented. 
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Currently, the output of the algorithm is all the track state vectors, as they 
are updated. 

9 CXKUrATIQW, ~ 

Tile algorithm has been designed to operate on a large, concurrent, message­
passing processing system, with i;Jle ability to distribute the system over a 
ntmber of platforms. Tile a..lgori thm has ·been designed explicitly to maximise 
processing· parallelism. 'Ibe number of· proCessors required in such a machine 
would probably exceed 1000, in a loosely-coupled architecture. 

The algori tbm has been developed with the Auto-G CASB tool, using the G 
notation, with autanatic code generation of Ada 81'd. the Ada-based SAlMI' language 
developed by the IDA. Simulations have been I"\m of part of the design coded in 
SAIMl' on SUN 3 workstations. 

10 CURRmll' .STA~ 

The algorithm is in a concept proving stage, with the. core part of the design 
. having been caupleted in Auto-G. A portion of it, the target tracking process 

has been converted to SAIMl' code. 

Only limited performance optimisation has only been carried out. 

11 ~ MBASURBS AND RBSULTS 

The target tracking process coded in SAlMI' has been I"\m successfully in 
simulations using the IDA SAlMI' Simulation Framework, demonstrating track 
initiation and maintenance. Performance metrics have not been produced. 

12 RBl'UltS 

ORIGINAL PRmmNTATION OF CONCEPI':- "An· Object Oriented Approach To Data 
Fusion"; Chapter 3, Section 3. 5 of "Application Of Artificial Intelligence To 
Coumand And Control Systems"; c. J. Harris (Ed); Peregrinus Press for the 
Institution of Electrical Engineers. 

INITIAL D~IGN OF AIDJRintM:- ASA Technical Report T88/001, dated 15' b 

MarcJ'l 1988, ·produced for the SDIO as the final report of the original DoD SDIO 
· contract SDI084-87 -c-0040, entitled "Demonstration Of Specification Methodology 
For SDI Data Fusion". 

DETAILED DESCRIPriON OF AIDJRintM:-. ASA Technical Report T88/009, dated 15' b 

Jtme i988, produced .for the SDIO as the First Rlase report under the extension 
to DoD SDIO contract SDI084-87 -c-0040, entitled "Data Fusion Architecture 
Refinement And Simulation". 

DF.VELO~ OF .SIMULATION AND FR&SBNTATIOO OF SIMULATIOO RBSULTS:- ASA 
Technical Report T88/014, dated 15t ll December 1988, produced for the SDIO as the 
·Final Report of the extension to DoD SDIO oontract SDI084-87-c-0040. 
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TRACKING ALGORITHM SUMMARY 

SUBMITTER'S NAME: Raben B. Washburn, Jr. DATE: March 27, 1989 

SUBMITTER'S COMPANY/ORGANIZATION: ALPHATECH, Inc. 

SUBMITTER'S PHONE:- (617)-273-3388 · ·- - --

ADDRESS OF SUBMITTER: 111 Middlesex Turnpike, Burlington, MA 01803 

AUTHOR'S COMPANY/ORGANIZATION: ALPHATECH, Inc. 

AUTHOR'S PHONE: (617) 273-3388 

ADDRESS OF AUTHOR: 111 Middlesex Turnpike, Burlington, MA 01803 

TITLE OF ALGORITHM: Multiple Information Set Tracking Correlator (MISTC) 

SPONSOR: U.S. Army Strategic Defense Comn1and CSSD-H-SBY 

DEVELOPER: ALPHA TECH, Inc. 

1. DESIGN SCENARIO 

The algorithm design was driven by midcourse scenarios after RV deployment and 

before re-entry. Total threat size before data partitioning was assumed of the order of tQS 

objects, group size after data partitioning was assumed of the order of 100 objects. A range of 

target densities were used for simulated scenarios in evaluation of group tracking and 

correlation. The threat SDC-I-1 was used for evaluation of data partitioning. All objects were 

assumed to fly Keplerian trajectories without maneuvering. Models for space-based, airborne, 

and ground-based sensors were used to allow representation of SSTS, GSTS, AOS, and 

MGBR. Handover track data could also be included. A variety of sensor architectures were 

used. Registration, calibration, etc. was assumed to be performed prior to tracking; only 

sensor noise errors were modeled. 

2. SENSOR MODEL/PROCESSING 

The sensor models included effects for detection (constant probability of detection 

within the sensor FOV, Poisson uniform false alarms in the FOV), measurement resolution 

(measurements within specified sensor resolution were combined- however, no algorithms 
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were developed to handle this during the MISTC project), measurement accuracy (additive 

Gaussian noise), and single sensor data processing (tracking in the single sensor's 

measurement coordinates - e.g., angle scan-scan correlation and tracking). Attitude, 

navigation, etc. errors and biases were not modeled. The sensor output to the tracking 

algorithm included time, CSO indicator (however, not used in algorithms), measurement track, 

measurement track error covariance, measurement track ID, measurement track probability 

distribution of target class, Il}easurement track time. The measurement track format varied 

depending on the type of sensor (e.g., four dimensional angle and angle rate state for angle­

only sensors). 

3. TRACK INITIATION 

Tracks are initialized as 2-D tracks until multiple sensor correlations are made (then a 3-

D track is initialized). Handover data can be used if available, but is not necessary. Tracks are 

l 

processed individually and sequentially. ll 

4. DATA ASSOCIATION 

Data association was accomplished in two stages. The frrst stage partitioned one scan 

of LOS data from multiple sensors (two or three) into spatially separated groups. Then each 

group of data was processed by the tracking/correlation algorithm. Within the group eight 

different data association algorithms were investigated, including three zero-scan, pairwise 

approaches (row-column, row-column with backtracking, and optimal RELAX assignment) 

and five N-scan, multiple hypothesis approaches (multidimensional, maximum, marginal 

return, branch and bound, and three new algorithms by Tsaknakis ). These algorithms are 

described in [2]. The same correlation algorithm p~rformed scan-scan and sensor-sensor 

correlation. Hypotheses were scored by likelihood ratios. Ten branches were allowed per 

target (five appeared adequate). The initial data partitioning was able to keep the group sizes 

fairly small so that gating and pruning were sufficient to keep the number of hypotheses from 

growing. 
B-12 



S. STATE ESTIMATION 

State estimation was accomplished using extended Kalman filters assuming Keplerian 

motion between measurement times. The algorithms developed did not handle track spawning. 

6. TRACK. FILE MAINTENANCE 

The track flle stored track time, track state type (e.g., 2-D or 3-D), mean, error 

covariance, ID, probability distribution of target class (e.g., RV, balloon, light replica), list of 

sensors correlated for that track and corresponding sensor track IDs. 

7. OUTPUT TO BM/C3 AND USERS 

Not applicable. Entire track file was assumed to be available to user systems. 

8. PERFORMANCE MEASURES 

Petformance measures included nun1ber of true tracks generated, number of false tracks 

generated, true track accuracy, track time to initialize, and life-time. These are detailed in the 

report [1]. Peiformance bounds were not computed 

9. COMPUTATIONAL REQUIREMENTS 

Computational requirements were obtained by partitioning realistic threat tapes to obtain 

a distribution for group size and then running the tracking/correlation algorithm on groups of· 

different size to obtain empirical estimates of run-time. Run-times on a VAX 11nso (using 

VMS FORTRAN) were transiated to MEAS (million equivalent floating point additions per 

second) and scaled to larger threat sizes. The details and results of this computational 

evaluation are contained in [3]. The rough requirements were 90~120 MEAS per 10000 objects 

for average throughput with about 80 MBytes for total memory. 

10. ·NOTABLE FEATURES 

The data panitioning algorithm proved effective in decomposing the sensor data into 

groups small enough for uniprocessor computation. The Tsaknakis algorithms exhibited near­
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optimal performance with processing not much greater than the simplest algorithm. 

Description of these algorithms and their tracking performance are contained in [2]. 

11. CURRENT STATUS 

Algorithms have been implemented for sequential, off-line processing in FORTRAN 

(VMS). Code was not optimized. Plans are to incorporate CSO tracking and resolution into 

algorithms and to implement on different parallel processors. 

12. REPORTS 

All reports are unclassified with the usual SDI limitation on distribution and are available from 

the U.S. Army Strategic Defense Command. 

1. . Catlin, R.A., and R.B. Washburn, Evaluation Methodology for Multiple 
Information Set Tracking Correlator (MISI'C), CDRL Item A009, ALPHA TECH 
Technical Report TR-385, Burlington, Massachusetts, March 1988. 

2. Allen, T.G., L.B. Feinberg, R.O. LaMaire, K.R. Pattipati, H. Tsaknakis, R.B. 
Washburn, W. Wren, P. Patterson, and T. Dobbins, Multiple Information Set 
Tracking Correlator (MJSTC) Final Report CDRL Item A007, ALPHA TECH 
Technical Report TR-406, Burlington, Massachusetts, September 1988. 

3. Washburn, R.B., Multiple Information Set Tracking Correlator (MJSTC) 
Processing Requirements, CDRL Item A006, ALPHA TECH Technical Repon TR-
348-2, Burlington, Massachusetts, September 1988. 
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StJEMITI'ER'S NAME: Mr. I.an:y Filippelli . Il\TE: 15 November 1988 
suEMITrER•s a:MPANY/OP.GANIZATION: Ball Systems ED;ineerin; Division 
StJEMITI'ER'S Bam: (703) 528-3337 .. . · _. · · .... ····-· · · · · ---
ADDRESS OF stJEMI'I',rER: 1100 Wilson Blvd. SUite 1710, Arlin;tcn, Va. 22209 
AI1IHOR' S Cx:MPAN'Y/ORGANIZATION: same as. above 

TITI.E OF AIOOlU'IHM: SDI Midcourse Tracker/Correlator Algorithm (TRC) 

SK>NSOR: Naval Researdl Laboratory (Dr. RUrt ·Askin, Mr~ steve McBJrnett) 

DEVEIDPER: Ball Systems Erl;Jineerin; Division ani Daniel H. Wagner; Associates 

The follaarln; responses are offered in response to questions posed in the 
SUl'lUllal:Y related to the ~ Tracker/COrrelator Algorithm un:!er development by 
Ball Systems En;ineerirg Division (VERAC, Inoo:rperate:l) ani Daniel H. Wagner, 
Associates. since sane responses could result :in len;thy algorithm 
·descriptions that exist in our Algorithm. Design Document, a reference to a 
pertinent section or sections of the doc::um9nt is provided in lieu of a mre 
definitive answer. A copy of the document. is enclosed for your convenience. 

1. DESIGN SCENARIO 

A. '!he algorithm design is. essentially scenario imeperx!ent except that it 
takes · advantaqe of the. fact that objects terid to :cluster into spatially 
inseparable ·groups in ortler to _reduce the cC:anbinatorial explosion· that results 
from the high tarqet density ani potentially high sensor obsel:vation rate. 

B. No assumptions about the threat size . ani density were made in the design, 
however the_ algorithm's ilrplementati6n on the StJN canputer provides upper 
practical limits due ·to prceessor Speed ani mem:)ey _availability. A· future 
implementation, currently · in ptogl:ess, ·on a parallel processor will exterx:l the 
utility of the algorithm to greater rrumbers of objects. 

c. 'Ihe alqprithm assumes_ some preprccessin; by the sensors to rerave clutter. 
It does however treat the case of false reports in its scorin; fol.'ltiU.lae. 

D.·. 'Ihe algorithm design is entirely iniepen:ient· of the sensor configurations. 

E. No ·fixed values are assumed for sensor measurement errors ·ani biases.· 
Algorithm· parameters may be adjusted to pennit use of a full ran;e of 
postulated sensor ·errors. · · : > · . · 

F. Post ·Boost Vehicles (PBV's) are assumed to urX!erqo raman accelerations 
durirg MIRV'in;. Ail Other objects are assumed to be in ballistic Keplerian 
orbits through· midcourse [Bee sections 3. 4 ani 3. 5. 2 ani Apperxtix A] • 

ENCI.OSURE ·1 
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G. We have selected attril:.utes which are in:leperxient of aspect· for association 
~- J 

2. SEmOR IDQEL/PEPCESSING 

A. Sensor configurations ani ~ are established by the NRL systems 
en;ineer. 'Ihe algorithm makes no assunpticns except theSe described in section 
1.2. J 

B. 'Ihe TRC. receives the followi.rg infcmnation. frcm the sensors: 

time, sensor position ani velocity, azinuth ani elevation ani errors 
IR only: ir.tadiances at three wavelen;ths, S/N 
Radar only: ran;e, radar cross section 

3. TRACK INITIATION 

A. OJrrently tracks are initiated by a boost-phase hanlcver report assumed to 
provide the 6-state estilnate of an object (presumably a PBV) plus an 18-element 
·covariance matrix. Enhancements to the algorithm, ·preseritly umer design, will 
initiate tracks frOm 2-0 ani 3-D sensor reports. 

B. Sensor reports are batch precessed as in:ilcated in Section 3 •. 2. 2. 

4. mTA ASSOCIATION , 

A. Reports fran ea.ch sensor scan are associated against current target space, 
i.e. the algorithm is a report-to-track correlator. 

B. '!he algorithm takes a multi-hypothesis approach. 

c. canbinatorial explosion is controlled in several ways: 
1. · local processors ani clusters [Section 3. 3 .1] 
2. . within a cluster, report-to-map associations must pass a retention 
test to be considered for inclusion in a Scene· (hypothesis) [Section 
3.5.5] 
3. only hypotheses which pass a retention test are passed on for . future 
use. others are pruned. [Section 3. 8. 4. 4] 

D&E. _We do. not -~e a fixed depth hypothesis algorithm. Hypotheses are deleted 
if they are· belCM (in SoC~). ari inPut perCentage of the score of the best 
hypothesis. ~ is also a maximum number of hypotheses which can be saved. 

F. Hypotheses are soore:l usin; a Bayesian approach ani . t:aki.rg into acccunt a 
probability of· detectien, probability of false alarm, false ani new target 
densities. ani. report-to-map asSoc:iation scores. [Section 3.8.4.2 ani- 3.8.5] 

G. A heuristic search . algorithm is. ·used to . fonaulate the hypotheses. '1he 
algorithm employs knowledge about taJ:get space ard a key_.assumption that no two 
reports in a sensor scan were generated by the same taJ:get. [Section 3.8.4.3] 
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H.· Tracks are spawned as described in Section 3.8.4.3 figure 3.8-2.. Tal:get 
maps are merged as. described in Secti:n 3.11. 

5. STATE ESTlMATICN_ 

A. - 'Ihe·- apprc)ach for state vector estimation for a track is describadt.' in­
Section 3. io .. arxl Appen:iix D. 

B. 'Ihe. state vector is a 6~ional position,lveloc:ity· vector· plus 
covariance matrix plus the tax'qet.· ~ture. estimate arxl. its .. associated 
error. 

c. 'Ihe algorithm uses a Kahl.mari filter with equations of ~on based on the 
nxxlified EUler method. · 'Ihe dynamical model is described in Appeniix A. 

D. For information on spawnirg 1 track soorirq . arxi pnmin; see Section 3 .14 as 
well as previously referenced sections on report-to-map as·sociaticn ani: scene 
scorirq. 

6. TRACK FilE MAINTENANCE 

As above, see section 3 .14. At each perio:iic snapshot 1 ccnstnlcted track 
complex data are output to the track file to up2te the state estimates. for all 
tracks. CIQ; which are not output have been deleted fran the 1;rack file.· In 
the NRL 'ISS, the track file data base will. be maintained by a separate CSCI. 
o..ttput CIQ; will include a flaq which in:licates if the object is a PfN. 

7. cxm:ur 'IO EMIC3 AND ·uSERS 

A. Snapshots of the current state estimate of objects which exceed a 
confidence (en: weight) threshold are output to the track. data base. [Section 
3.15.3] . 

B. Data are output pe.rio:iically1 (nominally every 12 seccnls). 'Ihe snapshot 
interval can be varied by changirq an input parameter. 

8. PERFORMANCE MFASURFS 

A. 'Ihe algorithm is measured in four areas: trac:ki.rg 1 tcu:get COlm't1 

correlation arxl .execution time. Please. refer to the Test Bed Design Document 
(Enclosed) for a detailed -description of all measures of performance. 

B. We are not usirq maximum likelihood estimation ani do not have a 
theoretical .pe.rfonnan::e measure. 

9. a::murATIONAL REX:VIEEMENI'S 

A. 'lbroughput arxl mellX)%Y requirements· - none have been established 

B. 'lbroughput is measured as ~ of reports prcx:essed .per seccn:i 1 where a 
report is a single observation of· a tcu:get or unresolvable group of targets by 
a sensor. 



c. 'Ihe algorithm·· is i:mplemented on a SON cx:mq;uter in FORmAN. 

D. Results can be conSidered scalable on a global, but not a local basis. l 
'!bat is, objects fran each missile are considered and processed. iroepemently 
of objects fl:an other missiles. Within the c:x:mq:)onent clusters of .. a local 
prc:cessor, the problem scales non-linearly with· the density of· the tan;ets. 
Problem shculd scale linearly with the rnnnber of missiles provided each missile 
prodl:tees' similar target densities. 

E •. '!he results to date are empirical basei on simple target scenarios. 

F. No CCIDpltational perfonnance bo\.lnjs have been imposed at this time. 

10. NOl'ABI.E FFA'lURES 

A •. 'Ule cambinatorial explosion resultin]_ from high target densities arx:l rep:>rt 
rates is limited by clustering ard use of retention thresholds. 

B. Constructed Track Complexes give a useful output to other battle manager 
functions. 'lbese are a set of maps judged to be· alternate representations 
(un:ler different report-to-track correlatiOn hypotheses) of the same target. J 

c. Hierarchical algorithm architecture is designed for eventual parallel 
precessing. 

D. Target non-kinematic attributes are processed and associated. currently 
the algorithm uses temperature derived from irra.diance measurements. t 

11. CURREN1' STA'lUS 

A. A sec:on:i . generation algorithm has been completed and is in the testing 
phase. It has been installed at NRL ard IANL. 

B. . Perfonnance optimization is cuinmt.l.y being investigated. 

c. Hardware has not been optilni.zed for this algorithm. 

D. future plans include: 

o eldlaustive testing ani behavior analysis urxier stressing scenarios 

o. continued enhancements un:lel:way or proposed: 

track initiation without han:iover 
- i:mp~ PBV motion m:x:lels 
- use of color iniices as association attrib.ttes 
- dynamic thresholding 
- dynamic. new· am false target density values for sc:ene scorin;r 
- · · .iinprcved report-W.·map ·assignment scheme for acx:elerated pnx::essing 

(mnCtonic logical grid) 
- ·~, improved scene processor 
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- improved scene proceSsor 
- parallel implementation . on Butterfly 

12. REfORrS 

Relevant algorithm description documents are enclosed. Perfonnance testin; 
reports are. pen:ij.n; carrpletion of testin; and will be available fran Dr. I<Urt 
Askin at NRL or Mr. Larry FilipPelli ·at Ball Systems Ergineeril'g Division. 
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(Complete as appropriate.) 

NOTES i INSTRUCTIONS 
(The Summary/Abstract of the algorithm should be limited to a half 
of a page. The basic ans~ers to the questions below should be 
limited to 3 pages. Additional information, referenced to the 
section numbers, wh_ould be included in a separate appendix that 
should be limited to four pag_es. Classified information should be 
included in a separate supplement. The total information including 

. Abstract/Summary, ba.sic a.nswer_es, appendix a.nd classified supplement 
shoulld not exceed ·eight pages. If ·some. of the algorithms or 
details are proprietary, indicate what is proprietary and discuss 
only the non-proprietary aspects.) 

ABSTRACT /StJ'WARY 
(Describe, in general terms, how the algorithm works and if 
applicable provide a high level flow diagram.) 

1. CONTEXT 
_l ___ ~hat pro.cessing chain characterize your algorithm? (See 
Figs. 1-4.) What functions within the chain are covered by your 
algorithm, e.g., Track- Initiation, _Track iiaintainence, etc? To what 
phase(&) of SDI is your algorithm applicable - Boost, Post-Boost, 
Uidcourse, Terminal? What are.your inputs, e.g. single sensor or 
multiple sensors, clustered data or not cluster-ed data, etc? What 
are your outputs, e.g. 2-d tracks or 3~d tracks, launch parameters? 
) 

2. NOTABLE FEATURES 
(List any features that distinguish the algorithm.) 

3. SENSOR ARCHITECTURE 1: THREAT SCENARIO 
( Characterize the scenario that drives the algorithm design. What 
is the threat size ana density_? Whar are the assumptions about 
background clutter? Is all.the _clutter removed prior to tracking? 
What is the constellation size and orbit? What are the measurement 
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Simulation88 Tracking 1\'lodc:l 

Thomas D. Gottschalk 

Callfomia Institute Of Teclwology 
356-48 

Pasadena, CA 91125, 818-356-6671 

ABSTRACT 

This note describes the tr..LCking module for Simubtioo88 - a boost/post-boost 

simulation of SDI functions for :w SS18/ASAT threat scenario perfonned on the Mar­

kill byperaabe. 1be simulation involves a owuber of separate tasks (envirowneol g~u­

eration. sensing, tracking and battle pl:umiog) each ruo.aWg on separ.ue subcubes of 

the Madd1I hypercu~. Within a given subcube, the particular SDI task is done ~ a 

concuaent fashion. Communications among subcubes :ue do~ asynchronously. nae 
Sim88 tracking· task involves sepamte ~ubc:ubes for sensiag and tr.&cking, with &he 

uaddog task of ao individual subcube/trtlcku in tum divided into 2D mono tacking 

(using only data from a single sensor) aod 3D precwoo tracking (using 2D ntouo 

tracks from itself and an additional tracker/subcube). While tbe details of the present 

tracker are rather tightly tied to specillcs of the Siru88 thre'-\t m0\1:1, the over.ill con­

current tracking prescription can be generalized to deal with a.lbicr.uy thre"' scenarios, 

and modifications along these lines have been begun. 
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Contut 

The tracking model for Simul.Won88 involves eight sepamte subcubes of the hia.d:.ill hypercube, 

pedonuiug MEO. and GBO seosmg and tracking ~ for boost ao,J post-buost phases oo lllulu-tar0~t. 

scenarios. Iu barest telDlS, the task. of the tr.acker is to proc:ess pixels from the s~'~cus :wJ ulwnatdy 

produce trajectory parameter estima~es for iodividual targeaa whi~h ate th:n passed on to the ba1lJc:.._. 

plaooing phase of the integrated Simulation88 demonsu-,uioo. 'The over.ill processing ch.Un is illustr.ucJ 

in Fig.(l). A1 the OEO level, each sensor develops pixel seu at iudividual sc;ws and p~s tbc:m to aa. 

associated uacking function. Tbe trackel'S develop 2D k.iuemaWc mooo lr.tcb from lhcse ~a. h1uno 

track; tiles are exchanged between stereo p~rs awl ~ochl&.ed to fonu JD kilk:u&atic t.r.lds (ECI po~i·. 

tioo ·aod velocity estimates) whiCh are lbeD used to solve foe launch pa.rame&el'S accordiag lO a powered 

tligbt modeL Traddng at the MBO level is conceptuiJly ideoticill to lha1 of the OEO system, wilh lhe 

addition of direct initiation of precision tracks from the OEO tracker. 

Figwe (2) shows the gener.sl processing suat~gy usc:d foe both liM: GEO ;wcJ ~lEO lr.lckezs during 

a single sc:an.. The 2D tracking is done using simple, 20 kiuc:matic: Kalman illters foe etleh of the two 

projections measwed by the sensor. Tracks are initiated using a 3-scan batch p~ssor and extend.:<! 

using a track-splitting fonnalism. Focal plane lracb of sufficient age (typically 4 oe S total scans) are 

propagated to a common reference time and coll~cted into a "Focal Plan~ Rcpon" which is exchan~ed 

with the stereo panner. The assOciation of 2D repons mto 3D tracks is done in Le1ws of projc:cteJ posi­

tions and velocities along a·conunoo reference line (~ 'iulaseclion' of liM: two focal pi~). 1Ue pr~· 

cision tracking task actually consists of two distinct pans. For precision tr.&ck Witiatioo, the ECI posi· 

tioo and velocity vectors from the stereo association are used to dc:tennine initial values foe the launch. 

~arameters. Once initialized, parameters are updated oo subsequent scans by means of exteuJ~d Kalman 

fillea. 

Tbe focus of the Simulation88 effort was the establisbmem of a fi~xilJI~, integrated framework for 

boost/post-boost SDI functions, and tbe demonstration thAt the computations for· d1ese tasks coukl be 

dooe concurrently in an efficient manner. l.o tb: interest oC meeting somewhat ambitious demonstration 

deadlines for the entire simulation, a number of •shortcuts' in &be tr~klng fonnali:lm b:ave been t:ak.en • 

most notably, the decisioo to design a tracker which is intiJnately tied 10 :a specific powered flight 

model aod the use of extremely sin1plistic sensor modc:ls. Present work is aimed at removing these 

defects, with the intent of producing a generalization of the Simulatiou88 tra~ker whkh ~au process 

threat tapes. 

Architecture Aad 'nlreat Scenario 

'Ibe generic sensor architecture for Simuladoo88 consists of a ring of LWIR sensors in geosta· 

tionuy orbits and two rings of SWIR sensoa in circular. polar orbits. 1be number and nature of sensor 

rings as weU as tbe number of seosors in DD individual ring a.re specified at run time through an archi­

tecture definition file. 
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While the environment gener.uion phase of Sim88 actu.Jly 'ilic:~· ilir.: entin: :;eu:;ing co~tcllaLioo, 

only subsets (typic:illy 2 GEO sensor/tracker pairs and 2 ~!EO pairs) are si&uul.&tcd in Wgb fidc:llty u 

separate subalbes· within the hypercube. Tbe choice as tu which partic.:ulu sensor/lr.L~rs are actually 

simubted is determined at run time-withio abe overall simulodion Craru~wod.:. 

The· threat scenario for Sim88 coosists of a distributed launch of 'gene1ic' SS18'£ togelher with 

some number of ASAT's. Trajectories for iOOividual SS18's and ASAT's are dc:sccibed using a simpL=, 

analytic powered Jligbt model ('Power88') which was dA:veloped spccliic.d.ly for LW: S1~88 tWc.. Au 

iodividuallauoc:h is described by the longitude and latitude of the bunch site, lhe hu:anch time, the ini­

tial launch azimuch and a final tluust angle for each stage. The SS18 moJel has two stagc.i (6 par.uuc:­

tets) while the ASAT model is single stage (S parametc:rs). The SS18 ~at typically has about 40 

boosters from e~ of six launch sites launched wilhin a two minute wave:. 11a! exa<.1 n:uure of the 

threat (Wcludiog targeting to specific sites) is ruo time recoofigur.tble. The ASAT threat is geoer.aled 

dynamically at the start of the simulation. with the actual ASAT launc~s detemliued by the nature nod 

kinematic properties of the CV architecture. 

· Seosor Muddiog . 
Sensoa for the cunent program are embarrassingly sintpUstic : 3D target positions an: projected 

onto sensor foc::ll plaoes giving a 2D data point. For the GEO sensors, the focal plane is divided into a 

number of rectangular pixels, and tile reported observation is simply tLI! center of an active pixel. 1U.= 

GEO sensor model does not have 01ulli-Wl disciliuinatioo wilWo indiviJu;J I>ixeb. For the h-'!EO ~us­

ing model, the tnJth position on the focal plane is simply smeared ~g Gaussi~ ilistributions. At 

presen~ P0 11 1 and there is no noise. In typical runs, lhe scau time for the: GI!O sy~teau 1£ S S4:couJs 

and that for the MEO sensor is 10 seconds. 

In the integrated Sim88 Cr.unework of Fig.(l), an entire subcube (typically 1 node) is ~J Cor 

each sensor. nlis is sufficient computing power to do a more rewtic ~scription of lhc: sensing pro­

cess. and this task will be included at soane l~vel in the ~xr gener .. tiou of th~ £imulatiou. n~ a<.1ual 

fidelity of sensor simulation remains to -be detennined. 

Trac.:k wUL.tioo 

Two types of track initiation occur within Sim88: 2D focal plane :wd 30 precision uxks. The 

initiation :algorithms are quite d.if!crent. 

For foc::ll plane tr.lcking, initiation is done using a 3-scan batch processor. AI auy tim~. the full 

sensor pixel lists for the present and two previous scans are maintained in memory. and the batcb initia­

tor constantly searches for provisional oew tracks_ subject to essentially only t!Jree constr.U.Ots: 

1) Tbe three data used in tbe tr.lck must not coincide wilh the: last three data in any existing 

track.. 
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2) The last datum in the track must not coincide whh ~ l~l datum in any esl~LlbLed tJa-.;1.: 

(defioed by NsCANs ~ No. wilb typical c:utoU N 0 = 7. 

3) The 3-scan segment must be sufficic:otly straight, as defiued by a uwu~r of simpl~. lk!uiis-

tic· .. cucs on the appareot acceleration. __ -·- ___ ... 

For the 3D trucker,. a precision tr.lck initiation is attempted wbeoever tu: ECJ position vector·d~&c:t'· 

m1oed by lbe kinematic stereo algorithm cannot be associated with any existiug precwou tr.&c:k. In such 

c:ases, the ECI position and velocity vectors or the target (together·whh c:ovariaoce estimates) are fust 

detenn.ined by a straigbllorward geometric algori11uu, aDd these v.UUes a.re tLeo used lO detemline ioilitd 

launch parameter and covariance values (within the Power88 framewolk) by a Newtoo-Rapbsoo inver­

sion of the equations of motion. 

Tbe correlalion of focal plane repons to form 3D ECI po:dtioo and velocity vectors is a ceotr.d 

part of the precision initiation process. As noted previously, the focal plane tracks from the two mono 

trackelS are Jim propagated to common reference times, and values of the fucal plane positions and 

velocities projected omo a common refereuce axis are computed. The two focal plane reports are then 

associaced by Conning assoc:iatious between these projections according to a modified nearest-neighbor 

algorithm. 

TrMCk 1\flli.uteoWlc:e 

For the focal plane trackers, track extensions are done wdog a track-splitting foouallsau. 20 tracks 

are extended to predicted positions using the system/measurement modds anJ ~soc:iatioo regions based 

on the position c:ovarinnce are fonned. Each observation with.Ui the ossoc:iatioo gate results ill a sepnr.att 

extension of the initial track.. Tracks are presently d&:kted on a single mlss&:d ~.:tectlon (lhis caul will be 

generalized to accorwnodate P0 ;t 1). Track pruu.ing is done by a simple 'common history' algocilhm: 

tracks are deemed equivalent if they usc the san1e seo:aor observations over tLc past. N£QUIY scans, wi&h 

typical value NEQUIY = 4. Swce tile klnerualic filLer is Wgh gain. ~ choice of wWcl1 tr..u::k is kept of an 

equivalent pair is incoosequential. 

For precision uacks, the association of uacks wilb data is doue usiug a Nearest-Nei~hbor global 

association scheme. Specific:ally, predicced d.lta positions are evaluate~ Cor each sensor, auJ a global 

association of predict~ aod actual data sets is done using a modified nearest·oeighbor scheme. The pre· 

cisioo track is then updaced using an Extended K:Wnan F&lter, wilh each projection processed scparatdy. 

Present Stutus and Future Geuerallzatiuus 

Tbe tracking model based on tbe prevision descriptions has been compl~ted and integrated within 

the entire Simuhuioo88 framework, nod was pan. of the successful full S~n88 dcmonstmtion for ESD ill 

January 1989. While the achievement of this milestooe was a non-uivial ac:c:omplisbment iu itself, there 

are a number of shortcomings in the present tracker. Specifically 
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1) The present U'aCker is tied too intimately to t.lMi asswned Powc£88 llue~ nuxh;l. 

2) The tracker does not do as good a job as it should in estimating target velocities dwing 

post-boost maoeuvea. 

Both problems have a common origin : lhe design of the precis.ioa tracker is based entirely on . 

parameterized ttajec::tories, with all updates of existing precision tracks do~ using ExtenJcd Kalman 

FJlters for assumed trajec::tory models. For boost phase, there is no ~ason to believe tlW lLe Power88 

model might deacribe a geoeric &hreat. During post-boost, Lhe 'noisy-Kcpleriao' ~ystcm model has ~n 

fouod to be inadequate. 

Tbe oext geoeratioo tracker will attempt to 'solve' both these problems. by using a 30 BCI 

kinematic state vector formalism as the basic pan of dle precision llack file. (for purposes of track-hit 

associations), with parameter estimations according to :ubltta.ry flight models c:otering ill a m:wner 

which is well-removed from the multi-target tracking logic. ~ essential opeu question Cor tbe new 

tracking scheme concerns the output of the tracker and the interpretation of this output by the Baule 

Planning module of Sim88. The present tracker produces trajectory parametca which are then used by 

the Baule Planner to predict positions a.ud select engageme01S. ~ assumed 'complete knowledge' 

predict ahead used in Sim88 will oeed to be replaced by something more fuzzy/reeawtic~ 
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TRACKING ALGORITHM FOR PROJECT SWAT 
Status: August 1988 

Submitted by Jack Liu 

Project SWAT is sponsored by DARPA with funding from SDIO. Phase 1 of this program· 
is an 18 month effon to eval~te the applicability of applying DARPA's MOSAIC architecture_· 
developed by ESL in· suppOrting the development and implementation of algorithms required for 
tracking and battle management for SDI. To demonstrate fe~ibility, the phase 1 project scope is 
limited to the problem of midcourse track maintenance with the. possibility of evolving CSO 
resolvability and low velocity object deploYment. One potential mechanization was developed 
based on the classical concepts of gating, track splitting, multiple hyppthesis track spawning and 
pruning, ~d extended Kalman ftl~r prediction ~d correction. To date (August 1988), scenarios 
consisting of huncire$ .of tracks bave been successfully n,tn with the algorithm. Single platform 
tracking has been demonstrated; multiple pl_atform scenarios will be addre,ssed in the near future. 
No claim is made regarding the optimality of the algorithm or its computational efficiency. This 
algorithm has been selected on the basis of being representative of the class of algorithms that . 
would need to be considered for development 

The key feature of the MOSAIC architecture is its ability to ~heterogeneous (different) 
processors to ad:dress a common problem. MOSAIC provides the cap~bility for extremely high 
data rates (80 Mbytes/sec in, 80 Mbytes/sec out) between each processor. This is an important 
feature because of the large number of objects that .must be tracked. Sixteen processors can be 
interconnected in a tightly coupled configuTation"tlsing MOSAIC. The processors can be parallel 
machines, algorithmically specialized processors, or general purpose computers and workstations. 
MOSAIC provides the capability to utilize the power of parallel machines and algorithmicaily 
specialized processors more effectively. MOSAIC has a programmable scheduler to control the 
data flows between processor nodes. The schedules are precompiled. 

The SWAT algorithm for midcourse tracking selected for the project utilizes classical 
concepts. There is a data source that generates the scenarios consisting of the objects to be 
tracked, the serisor platforms, uncompensated stars, and system error sources. The data/track 
associator allocates the sen~ed data to existing tracks and spawns arid prunes tracks when 
appropriate. The extended Kalman filter updates tracks and generates gates for use by the 
data/track associator. The track file maintains the databases of true object tracks and algorithm 
generated tracks, emulates the process of field of view extraction, and produces indicators of 
algorithm performance. These components are being allocated to separate computers connected to 
MOSAIC. The data source is being implemented on a Sun 4; the data/track associator, on a 
Convex; the trajectory estimator, on a Warp; and the track file, on an Encore. These computers 
were GFE for the project This configuration was chosen for convenient attachment to MOSAIC; it 
is not necessarily an optimal configuTation for an algorithm development test bed. 

. The data source consists of a scenario generator, a propagation model, and a sensor model. 
The scenario g~n~tor specifies the objects and their flight parameters and the sensor platform 
configuration.. The propagation model provides selectable dynamics propagation in a non­
spherical eanh gravity field of up to 16 . The se~sor model has the capability to implement an "all­
seeing" sensor, a staring sensor, and a coolie hat sensor. The data can be provided to the tracking 
algorithm in tenils of either. s·erisor focal plane azimuth/elevation coordinates or platform centered 
inertial right ascension/declination coordinates. 

The data/trac.k ~sociation algorithm selected utilizes a multiple hypothesis track spawning 
and pruning approach for niidcourse track maintenance. Therefore, it is a multiple scan approach, 
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the sean level being variable and affected by a redundancy parameter and the density of objects. 
Each track gate is determined by the p~cted track uncertainty projected on the sensor focal plane. (I 
The closest detection within the gate is processed for updating the track. Other detections within the 
gate are used to spawn new tracks. Detections within overlapping gates are utilized by all affected 
tracks. Rectangular gates are used. Tracks are scored based on the log likelihood function of the 
detection relative to the prediction plus a maintenance bias. The scores are cumulative. Tracks that 
have no detections are degraded. When a set track redundancy level is reached, the low score· -
trackS·are deleted:.· Tracks that are very close·in tenris of estimated object state and uncertainty are 
merged probabilistically based on their track scores. ·· · 

.. The track estimator is a standard extended Kalman filter predictor/corrector. The· state 
dimension is 6 (3 positionS and 3 velocities). Predicted state estimates for de terming the gate· · · 

. position are generated by Runge-Kutta solution of the differential eq~ations ofmotion. The·earth 
gravity inodel is selectable up to 1& The gate size is determined by propagating the state estimation ;,: 
errors using the filter dynamics partials, projecting this on the sensor plane, and adding filter 
assumed sensor jitter. 

The track file emulates two functions. The frrst is to perform trackfue database management 
. for the tracking algorithm, and the second is to evaluate tracking perf01mance by relating the 
algorithm generated tracks to the objects produced by the scenario generator. Algorithm generated 
tracks are kept in a geometrically organized database to enhance access of tracks in the sensor's 
field of view. Various tracking algorithm evaluation functions are being developed with a 
preliminary set currently in place. 
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Multiple Sensor Cluster Tracking 
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Abstract/Summary 

These algorithms provide a means to track multiple clusters of 
objects and take advantage of data from multiple· sensors •. 
Multiple sensor data is especially useful with passive sensors 
because clusters can appear to cross or overlap in the field of 
view of.a single sensor. 

The cluster tracks can be. used to initiate tracking of: the 
individual objects when the closely spaced objects are resolved. 
These algorithms use only a fraction of the computing resources 
normally required to initiate and maintain tracks on individual 
objects after deployment. 

These cluster tracking algorithms were conceived to overcome the 
difficulties and meet the unique needs posed by the SDI target 
threat. Cluster tracking is challenging because a cluster, as.-­
seen from different platforms will differ significantly. The 
apparent· size . and shape of a cluster varies from sensor to 
sensor. The apparent number of objects in a cluster can also be 
different for each sensor. 

These algorithms are based on new concepts that permit the. 
estimation of not only the cluster centroid position and velocity 
in inertial space but also the cluster "extent." The extent 
establishes the cluster size and shape in inertial space, not_ 
just relative to· a particular sensor. 

. . 

A major feature of· these algorithms is that data from multiple 
sensors is combined in a natural way. As. a consequence, the 
approach is quite general. It is applicable to passive or active 
sensors or a combination of both. This approach is also 
applicable to tracking extended objects, such as plumes, and may 
be useful in other applications such as tracking a salvo launch. 
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Multiple Sensor Cluster Tracking Algorithms 

1 . CONTEXT 

These algorithms were designed to provide a means to track -J 
clusters during the early midcourse stage of SDI, starting with 
deployment of clusters. In this context, a cluster might consist 
of a reentry vehicle and- attendant objects, including decoys.­
Immediately after deployment of a cluster, many objects will not 
be resolved_ because of sensor resolution limitations. Thus 
initially, the cluster might appear from the sensor data to be a -1 
single "clump" (unresolved closely spaced objects) or a small 
group, namely, a collection of clumps and individual targets. 

It would be difficult and too demanding of a processor to track 
each individual target or clump during the early midcourse phase 
of SDI after deployment of a cluster. After a cluster is ~-:! 
deployed, many new objects will continue to appear as more and 
more objects become resolved. As a consequence, the number, type 
and size of resolved objects of a cluster can change rapidly 
during this early phase. To compound the problem, the number and 
relative location of objects in a cluster would vary from sensor 
to sensor. In addition, the targets are initially so close that 
the high density can make individual target tracking impractical. 
See reference 1 or 2 for a discussion of these difficulties. 

These cluster tracking algorithms permit efficient tracking of 
cluster position, size and shape in spite · of crossing and 
overlapping clusters and the other difficulties outlined. This 
permits a smooth transition from post boost vehicle (PBV) to 
individual target tracking without overloading the processors. 
The algorithms are intended to be compatible with birth-to-death 
tracking, which has been conceived as a practical solution for 
the computationally intensive SDI midcourse tracking task (see 
reference 1 or 2) . However, -these algorithms should be useful 
with minor modification for other applications. 

While this approach could be used for independent sensor tracking 
as in the Type I processing chain, the best use is for multiple 
sensor tracking. This approach can be us~d eff~ctively in any of 
the multiple sensor processing chains, namely, Types II, III and 
IV. The four types of processing chains are defined in the 
appendix. ·· 

This approach should be most useful in the early midcourse phase 
of SDI, before almost all the targets are resolved. In .that SDI 
phase this approach would be useful in three ways: 1) to provide 
cluster handoff information from one sensor system to another, 2) 
to combine cluster data from different systems, and 3) to combine 
data from multiple sensors within a specific sensor system. Thus 
SSTS, GSTS, GBR and AOS are applicable sensor systems. 
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Multiple Sensor Cluster Tracking Algorithms 

The inputs to the tracking algorithms are assumed to be- the 
observations as provided by the sensor signal processor. Either 
or both active and passive sensor signal-processing data can be 
used effectively. For a passive sensor, the tracker could use 
simply angle location data (azimuth and elevation) for· ea-ch 
detected signal (observation) wit'hout any- indication of whether 
it is a resolved object, extended object or unresolved closely 
space object. 

On the other hand, additional information such as object 
intensity, multiple wavelength intensities, and object type and 
size could be used effectively and should improve tracking 
performance.· The outputs (during most of the midcourse clust·er 
tracking phase) include the estimated position (centroid 
location), velocity and extent of the cluster (group) in inertial 
coordinates. 

Certain aspects, phases and outputs of this approach are Hughes 
proprietary so some details have been omitted from this Tracking 
Algorithm Survey. Also, this is not the only approach being 
developed at Hughes. Because of the importance of cluster 
tracking to SDI, other alternative cluster tracking methods are 
also being explored. 

2 • NOTABLE FEATURES 

The critical issue that this approach addresses is the tracking 
of multiple clusters ·with multiple sensors. The use of multiple 
sensor data great·ly improves the tracking accuracy and the 
information that describes or characterizes a cluster. 

This cluster tracking is designed to provide an effective and 
efficient transition from cluster deployment to .individual target 
tracking. Through cluster tracking, the onboard processor size, 
weight and power can be substantially reduced. 

These algorithms accommodate the differences in the data obtained 
for a cluster by sensors at different locations. This approach 
is quite general and can be adapted to various types of 
applications and sensors. It is designed to process multiple 
clusters that overlap or cross in the field of view of passive 
sensors. It has been modified and tested for tracking extended 
objects, i.e. small targets larger than a point source. 

The way the extent is characterized, parameterized and processed 
in this approach is believed to be unique and novel. The extent 
estimate as formulated greatly facilitates both the processing· 
and the usefulness of the output. 
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Multiple Sensor Cluster Tracking Algorithms 

3 • SENSOR ARCHITECTURE ·AND THREAT SCENARIO 

The initial design of the algorithms was for SDI midcourse 
tracking. For initial feasibility testing, the simulation 
modeled an above the horizon infrared sensor system akin to SSTS 
with two platforms. The platform altitude was in the range of 
1000 to 5000 km, the sensor resolution was in the range of .001 
to .005 degrees and the angle measurement error standard 
deviation was from one-fourth to one-half the resolution. 

A typical cluster in the initial simulations was 40 targets (RV's 
and decoys) with a maximum dispersion rate of 2 meters/sec, 
nominally. The targets trajectories were generated using a 
ballistic model including the J2 term. See reference 4 for 
further details. Further testing with a range of simulation 
parameters in underway with limited funding. 

4. SENSOR MODEL/SIGNAL PROCESSING 

This approach can accommodate false and missing observations. 
For simplicity in initial feasibility testing, clutter and false 
signals were not included. A simplified signal- processing 
simulation was used that included missing observations ....:-due to 
unresolved closely spaced objects caused by finite-sensor 
resolution. Gaussian errors were first added to the- true 
position for each target in the field of view for a sensor. The 
resulting clumps and resolved objects were passed to the track 
processor. The worst case was modeled by not providing 
observation intensity information to the track processor, which 
received only azimuth and elevation angles and time for an 
observation. The range of frame times was from five to 100 
seconds. 

5. TRACK ~NITLATION 

For initial testing the cluster tracks were initiated by track 
spawning based on the estimated PBV track. The centroid 
covariance matrix was larger than that of the booster state and 
the time of cluster deployment was assumed known. The covariance 
matrix for the extent was set to the identity matrix multiplied 
by a large scalar value. These initial conditions were then used 
for track maintenance processing. A more advanced track 
initiation approach has been designed but requires further 
development. 
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Multiple Sensor Cluster Tracking Algorithms 

6 • TRACK MAINTENANCE 

In this approach, the cluster is modeled in inertial space as.an 
ellipsoid. This is modeled in two parts, the centroid and the 
extent._ The .. elements. of __ the_ centroid ... state. vector. are- the 
inertial position and velocity. In this approach the extent· is 
the second central moment in inertial space of the objects in the 
group. 

The extent provides information on the size and shape of.··· the 
cluster relative to the centroid. The extent not only describes 
the chara·cteristics of the cluster, but it has a very important 
function in the track processing. The extent can also play a 
vital role when making a transition from cluster to individual 
target tracking. 

6.1 TRACK MAINTENANCE - Data Association 

The extent is used to determine which observation (signal/object 
detected by a sensor) belongs to which group. This is a vital 
function for tracking multiple clusters, especially for crossing 
or overlapping clusters. Based on the projection ~f. the 
predicted extent on to the field of view of a sensor, _a gate 
(validation window) is computed for a cluster. 

For an isolated cluster, the first and second.central moments in 
2-dimensions of the observations in the gate-are computed. For a 
Type I, II or IV processing chain, these moments are passed to 
the filter described in Section. 6. 2 to update the established 
tracks. The four types of processing chains are defined in the 
appendix. For a Type III processing chain, the moments computed 
from multiple sensors must first be combined and then the 
resulting estimated moments in inertial space are passed to the 
filter. 

For clusters that are overlapping or crossing in the field of 
view of a sensor, association . processing is needed to resolve 
the ambiguities. Association algorithms have been designed but 
require further development. 

6.2 TRACK MAINTENANCE - State Estimation (Filters) 

This approach employs two filters, one for the state of· ·the 
centroid and another for the extent. The filter for the 6-D. 
centroid state is a simplified extended Kalman filter. The· 
extent state has been simplified to 6 element.s, which greatly 
reduces the processing load. The filter for the extent is· a 
pse.udo-linear filter. The details and unique approaches used in 
this filter are provided in reference 4. 
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Multiple Sensor Cluster Tracking Algorithms 

7. TRACK FILE MAINTENANCE 

The track files in the initial tests contained the two states and 
the corresponding covariance matrices. The advanced versions of 
this approach· retain some additional information for purposes of 
association. 

8 • OOTPOT TO USERS 

During early cluster tracking, the available data is the number 
of clusters, the number of objects in each cluster, the state 
estimates (centroid and extent) and corresponding covariance 
matrices. After many of the objects in a cluster are resolved, 
it is practical to transition from cluster to individual target 
tracking. At that time the available information includes the 
state vector and corresponding covariance matrix for each target 
and additional information as needed, such as predictions and a 
target object map. 

9 • COMPUTATIONAL REQUIREMEN'l'S 

With isolated clusters the reduction in throughput and memory is 
approximately a factor of 2/N, where N is the average number of 
targets per cluster. For example, with an ·average of only 20 
targets per cluster the savings in track processing would be 
roughly a factor of 10. With overlapping clusters the savings is 
not as much and would depend on the processing accuracy required. 
Further detailed analysis is required to determine the processing 
load for a specific application. 

1 0 • CURRENT STATUS 

Feasibility tests have been conducted successfully for cluster 
tracking under realistic conditions using practical values for 
sensor resolution arid measurement errors. Earlier testing 
results with finite sensor resolution but without measurement 
err6rs are reported in reference 4. Further limited development 
and feasibility testing is underway on Hughes IR&D . 

.. 

While single sensor cluster tracking is relatively mature (see 
reference 3), multiple sensor cluster tracking has only recently 
been addressed9 Accordingly, new ground is being broken, even in 
how to evaluate performance as well as how to track clusters. 
Substantial algorithm-development and testing remains to evaluate 
the various phases and aspects of the approach and then adapt· it 
to a specific sensor application. 
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Multiple Sensor Cluster Tracking Algorithms 

11 . PERFORMANCE MEASURES 

Measures of performance for the cluster centroid can be similar 
to the usual measures for an individual target. However as 
formulated, the · extent is new and therefore new meaningful_ 
measures of performance must be established. One identified 
measure of extent estimation performance is the ratio of the 
estimated to actual volume of a cluster. Another measure is the 
eigenvalues of the estimated relative to the actual cluster 
second central moment. These measures and some early test 
results are discussed in reference 4. 

12 . REFERENCES 

1. Drummond, O.E. and S.S. Blackman, "Multiple Sensor, 
Multiple Target Tracking Challenges of the Strategic Defense 
Initiative," Proceedings of the 1st National Symposium on Sensor 
Fusion, Orlando, FL, April 1988. 

2. Drummond, 0. E. and S. S. Blackman, "Challenges of 
Developing Algorithms for Multiple Sensor, Multiple Target 
Tracking," Signal and Data Processing of Small Targets 1989, 
Proc. SPIE Vol. 1096, Orlando, Fl, March 1989. 

3. Blackman, S. S., Multiple Target Tracking witli Radar 
Applications, Artech House, Dedham, MA (1986) . 

4. Drummond, O.E., S.S. Blackman, and K.C. Hell, "Multiple 
Sensor Tracking of Clusters and Extended Objects," Technical 
Proceedings 1988 Tri-Service Data Fusion Symposium, Laurel, 
Maryland, May 1988. 

13. APPENDIX - Types of Processing Chains 

Four types of processing chains have been adopted by the IDA SDI Tracking Panels for ease of 
reference. Reference 2 discusses these generic processing chains and summarizes the four types 
as follows. 

Type 1: Independent Sensor Processing - Tracks are processed for each sensor independently of 
the data from the other sensors. 

Type II: Hierarchical Processing - Sensor level processing is followed by track fusion. 
Frame-to-frame association and filtering are followed by sensor-to-sensor processing. 

Type ill: Observation Fusion - Multiple sensor, observation association and target position 
estimation is followed by frame-to-frame association and filtering. Sensor-to-sensor processing 
precedes frame-to-frame processing. · 

Type IV: Centralized Processing - Observation-to-track association is· followed by multiple 
sensor filtering. Association and filtering is performed on each frame of data from each sensor 
as it becomes available. -
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ABSTRACT /Stn.nlARY 

The algorithc processes measurements from a constellation of passive 
LWIR sensors to generate precision c~rtesian state vectors on 
midcourse ob;ects, clumps or groups. The algorithm performs birth 
to de~th tracking on RVs, penaids and PBVs. The algorithm also 
~erforms group tc object tracking. 

1. CONTEXT 

Track Initiation is performed using the Mono-the~ Stereo 
architecture. After Ste~eo track~ are initiated, track m~intainence 
is carried out using the Centralized architecture. The algorithm is 
applicable to M~dcourse. The i~puts are line of sight measurements 
:from multiple LWIR sensors. 'The line of sights may reference 
distinct objects or clucps of o~jects (CSOs). 

2. NOTABLE FEATURES 

The algorithm uses a Bayesian network architecture to carry out 
state estimation and association. The algorithm decomposes the 
a. s soc i at i on pro b 1 c! m into s c e: n e s . Each s c e n e i s a d i s t i n c t 
association problem, either a bontact-to-track or ~rack-to-track 
·problem. A variant oi the A* s~arch algorithm is used to generate 
:feasible scene hypotheses. The algorithm performs birth to death 
and group to object tracking. : 

3. SENSOR ARCHITECTURE at THREAT SCENARIO 

The threat scenario driving ~he· algorithm design is ~be-TSCBl 
threat. Background clutter is ~assumed to consist of stars, RSOs, 
structured background and nu~lear redout. All clutter is not 
assumed to be removed prior to t~acking. The constellation consists 
of 18 satellites inclined to 90 degrees. The RYe and penaids.are 
assumed to be in free £a.ll. ~he PBVs execute typical laydown 
trajectories. · 
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4. SENSOR MODE/PROCESSING. 

The sensor is a scanning, 3 color LWJR sen~or. The frame time 
varies f~om 5 sec to 30 sec. The scan ~peed can aleo vary. CSOs 
a~c ItC>delied "..l~ir:.g a i"'l:n~'tional model. TtH~ ir:t.~:-l"ac~c to t.bt·: t.rac:ker 
~ o n s i s t, ~ o f L t =. ::l e , a. z , e 1 , s n r , c o v a r i an c e , e x t. e u ci e d o b j e c t. 
indica~or, ex-:,ent. parameters] . J 

5. TRACK INITIATION 

Tracks are i~itia~ed as 2-d tracks. After 4 to ~ updates a passive 
ranging algorithc is executed to initiate a coarse cartesian track. 
Cold sta~t initiation and.warm start intitiation are performed. 
Tracks are pro~essed both individually and in a batch. False alarm 
and new track de~sities as well as chi-square scores are used to 
score new tracks. Tracks satisfying the firm track criteria are 
promotedj otherwise they are deleted. 

From a data association standpoint, the track initiation and track 
maintainence phases are n6t clearly separable since a variant of a 
multiple hypo~hese algorith= is used. 

6.1 TRACK MAINTAINENCE- DATA ASSOCIATION 

A track is considered to have completed initiation when a preci~ion 
cartesian state vector is created. This requires that individual 
mono tracks oe formed. Passive ranging creates coarse cartesian 
tra~ks and t~ack-to-track association forms precision cartesian 
tracks ccmple-:,ing initiation. · 

Pruning, merging and clustering are used to control the combina~oric 
explosion. In addition, scenes are managed to assure that they do 
not get too :arge. The hypotheses are scored U5ing a Bayesian 
approach. A variant of the A• algorithm is used to search the 
hypothesis -:.reo. Track spawning is managed. Resolution is 
accounted for in. ~rack~to- track associa~ion by allowing a contact 
to be shared by m~ltiple tracks. Stars are eliminated using a star 
catalog. 

6.2 TRACK YAINTAINENCE- STATE.ESTIMATION 

Triangulation is per!ormed to initiate the precision cartesian state 
vector. ECI coordinates a~e us~d. State vectors are co~bined when 
a merge action is declared and' the covariance matrix is adjusted 
accordingly in a manner similar to PDAF. The filter is an ex~ended 
Kalman filter. T~e passive ranging algorithm is an iterated ~aximum 
likelihood algorithm. Biases ~re accounted for by adjusting the 
system noise ~atrix or measurem~nt matrix. 

6.3 TRACK YAINTAINENCE- TRACK:PROYOTION/DEYOTION 

A Bayesian multiple hypothesis approach is used in data association. 
The hypothesis seores are.used to generate track quality scores £or 
each track. The t-rack quality 'scores account for clutter density, 
new track density, miss detection rates and· cumulative chi square 
scores. Thresholds are used to :promote or prune tracks. 
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7. TRACK FILE YA.INTAINENCE 

Essentially &11 ~:ack data is maintained in the Bayes]an ne~work. 
The network ~aintains singleton obj~ct tracks, single~on CSO tracks, 
~ingl~to~ ~rou~ ~~ack~ and fnrmA~iuus cf the~e tracks. Cri~ica: 
dep1oymen~ po~nt~ are also main~aiued. 

8. OUTPUT TO BM/C3 AND USERS 

St&te vectors for ~hreatening t~rgets are output to BM/03. 

g. COMPtrrATIONAL REQtrmEMENI§ 

Computational req~ire~ents are discussed in Reference 2. 

10. CURRENT STATUS 

The algorith= is currently being imple~ented, in ADA, in preparation 
for an algo1i~hm demo in the first half of 1Q89. The algorithm to 
be demonstrated .w~ll incorporate fra.me-·to-fra.me and tra.ck-to-tra.ck 
asso~iation, birth ~o death tracking ~nd group to object tracking on 
RVs a.nd penaic:ls. Future demos will.include PBV tracking. 

11 PERFOlWANCE MEASURE 1: RESULT§ 

The primary perf~~mance measures to be ~sed in the algorLthm demo 
are track accuracy, track resolution, track continuity, t~ck time 
to firm, track purity and track handover performance. 

12 REPORTS 

Pertinent informa~ion and performance d•ta can be found in 

1. Technical Operating Report. Processor Development Report. CDRL 
008A9. Volume II. Processor ·Prelimina.ry Development. Section III. 
Critical Algorit!l: Development. 31 July 1987. LMSC. Contract 
F04701-84-C-0102. (Secret) 

2. Technical Ope:-&ting Report .. ·. Processor Development Report. CDRL 
008A9. Volum.e II.·· Processor Preliminary Development. Section I. 
Processor Architec~ure Development. 31 July 1Q87. LMSC. Contrac~ 
F04701-84-C-0102. {Secret) 

3. Design Review Data Package! SSTS.Demonstration Design Review 
D a. t a Pack a.g e , · . T·r a c lC in g A 1 go r i thm s • . 12 0 c to be r 1 g 8 8 . LM S C . 
Contract F04701-87-C-0093. (Unclassified) 
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SUBMITTER'S PHONE: 617-981-2858 

ADDRESS OF SUBMITTER: 244 Yood St., Lincoln Lab., Lexington, MA 02173 

TITLE OF ALGORITHM: A MID-COURSE TRACK INITIATION AND MAINTENANCE ALGORITHM 

SPONSOR: SDIO 

DEVELOPERS: M.J. Tsai, K.P. Dunn, L.C. Youens, and C.B. Chang 

ABSTRACT 

The algorithm presented is intended to perform functions of track 

initiation and track maintenance in the exoatmospheric ballistic missile 

defense scenario, assuming LYIR sensors aboard·a set of mid-altitude 

satellites. The target density is effectively reduced by calling upon an edge 

tracker initially, which forms track files of edges of clusters. Track 

initiation is then accomplished by referencing to those edge track files, 

assuming that targets in the same cluster travel in parallel. The 

iterative-least-square (ILS) filter employed in the track initiation process 

is itself initialized in a special manner in order to handle conditions of . 

high target density and poor observability. Tracks initiated by two sensors 

are merged to provide precise state estimates to the extended Kalman filter 

that is used to carry out the track maintenance task. 
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1. CONTEXT 

The algorithm is applicable to the mid-course tracking problem. 

contains two major components: track initiation and track maintenance. 

track· initiation portion basically follows the functional chain of · 

It 

The 

mono-then-stereo and the track maintenance portion follows the centralized 

sensor-by-sensor approach. 

. Inputs to the algorithm are angle measurements from either a single or 

· multiple passive optical sensors. The outputs are track files and associated 

state estimates. 

2. NOTABLE FEATURES 

In the track initiation stage, track files are formed based on the 

assumption that targets within the same cluster travel in parallel. Reference 

trajectories are first established for edges of clusters using an e_dge 

tracking algorithm. The state associated with a track file is estimated using 

an iterative-least-square filter which is initialized in a special ma~er. 

In the track maintenance stage, a centralized extended Kalman filter is 

used to continue tracks based on angular measurements from multiple sensors. 

3. SENSOR ARCHITECTURE & THREAT SCENARIO 

The algorithm can handle satellite-borne or probe-borne sensors. Sensor 

parameters such as resolution, sensitivity, measurement precision, bias, and 

detection threshold, are adjustable. 

Structured background clutter and background stars are assumed being 

removed prior to tracking. The only noise effect considered is the additive 

Gaussian noisee 

CSOs exist in the threat. 

non-maneuverable. 

4. SENSOR MODEL/PROCESSING 

Targets in the threat are all ball!stic and 

A sensor functional model is used to generate angular measurements from 
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a scanning passive optical sensor. Included in-the functional model are 

effects of.random noise, bias, and CSOs. The CSO modelling is particularly 

elaborate. The scanning mechanism is also simulated. 

5. TRACK INITIATION 

Tracks are initiated from a cold start. An.edge tracker. is first used 

to establish track files for edges of clusters. All targets are then 

initiated in either a closely-coupled or a loosely-coupled parallel search 

mode, assuming targets within the same cluster travel in parallel. Five 

frames of data are usually processed in a batch mode. Tracks are split 

initially and then pruned based on the nearest neighbor rule or ·the criterion 

of minimum residual chi-square. A complete trajectory is generated for each 

track file by calling upon an angle-only tracking algorithm. 

6.1 TRACK MAINTENANCE - DATA ASSOCIATION 

A simple nearest neighbor rule is used for data association during the 

stage of track maintenance. 

6.2 TRACK MAINTENANCE - STATE ESTIMATION 

An EKF is used to maintain tracks. The filter recursively updates the 

state estimate of each track file using angle measurements from multiple 

sensors. The ECI coordinate is adopted. Only white Gaussian noise is 

considered for the filter. 

· 7. TRACK FILE MAINTENANCE 

A track file maintains three categories of data: (1) the current state 

estimate, its covariance matrix, and the chi-square value, (2) status of~ 

CSO's, and (3) intensity measurements from three color bands. 

8 . OUTPUT TO USEB.S 

The current algorithm does not explicitly provide outputs to users. 
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But, signature data associated with each established track file could be sent 

to discrimination algorithms, and metric data of all objects could-be sent· to. 

BM/C3 • 

9. COMPUTATIONAL REQUIREMENTS 

The algorithm was implemented in an IBM mainframe. computer. The 

computational requirement depends on the number of targets and the number of . .­

frames to be processed. 

10. CURRENT STATUS 

The algorithm has been implemented, tested, and run in a number of 

simulated threat/sensor scenarios. Currently, it is being integrated with 

discrimination algorithms and radar tracking functions. 

11. PERFORMANCE MEASURES & RESULTS 

Two scoring methods, the target oriented measure and the track-file 

oriented measure, have been used to evaluate the performance of the algorithm. 

The most critical factors which influence the performance are the target 

density and the sensor resolution. 

12. REPORTS 

1. C. B. Chang and L. C. Youens, "An algorithm for multiple target tracking 

and data association," Technical Report 643, Lincoln Laboratory, M.I.T., 

June 1983, DTIC AD-All31313. 

2. C. B. Chang, K. P. Dunn and L. C. Youens, "A tracking algor-ithm for dense 

target environments," Proceedings of American Control Conference, San 

Diego, CA, June 1984. 

3. M. J. Tsai, L. C. Youens, and K. P.· Dunn, "Track Initiation in a dense 

target environment using multiple sensors," Proceedings of SPIE 

conference on Digital Signal Processing, Association and Tracking of~­

Point Source, Small and Cluster Targets, Orlando, Florida, March 1989. 
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TRACKI·NG ALGORITHM SUMMARY 

Submitter's Name: Thomas R. Blackburn Date: March 8, 1989 

Submitter's Company/Organization: McDonnell Douglas Space Systems Company 

Submitter's Phone: 714/896-3626 

Address of Submitter:. 530·1 Bolsa Ave., Huntingto~ Beach, CA. 92647 
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Author: 

Title of Algorithm: 

Sponsor: 

Developer: 

Abstract/Summary 

Same 

Integrated Correlation, Track 

IRAD 

T. A. Blackburn 

The algorithm_.is applicable to two passive sensors tracking individual object~· __ in the 

late midcourse phase. It correlates observations between sensors "up front" -before 

attempting track initialization. 

1. Context 

The processing chain is Type lv (?). The algorithm assumes a cold start. It 

includes track initialization and maintenance. It is applicable to the late 

midcourse phase,· when objets are resolvable but before any atmospheric 

influence at reentry. It assumes two passive sensors in exoatmospheric ballistic 

trajectories are tracking the target objeds during the same time-period. The 

outputs are 3-D target track files. 

2. Notable Features 

The algorithm is much faster than a.lternatives we have pursued or heard about. It 

initiates track files relatively rapidly, and its correlation mistake ratios are low. It 

also correds for bias and navigation errors in the observers. 
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3. ~ensor Archjtecture and Threat Scenario . 

The threat consists of thousands of objects in ballistic trajectories. The incidence 

of unr~solved objects is low. The sensors are passive scanning infrared sensors 

deployed in exoatmospheric ballistic trajectories. .. _ -· .. _ 

.. 
4. Sensor Model/Processing 

The Uncoln Laboratory serisor functional model1 is used •. The sensor is a 

generic scanning lA sensor. The frame time is variable. One wave band is used. 

The sensor-signal proce~sor supplies line-of~sight, LOS-rate, observation time, 

and estimated measurement accuracy to the data processing function. Attitude 

bias errors and navigated position· and velocity errors are included. Detection is 

based on signal to noise ratio. 

5. Track Initiation 

Cold-Start Track Initiation i~ performed. The track files initiated are 3-D. A scan­

to-scan correlation is done on two frame cycles of data. These paired 

observations are interpolated to a common time. The interpolated angl~s are 

matched between sensors with a "pseudo-elevation" angle2. With this correlation 

four observations are now correlated. ·These are used to initiate a track file. with a 

square-root information filter. A Householder algorithm is used to solve for the 

· state vector. Multiple hypotheses are not generated. On the first two scan cycles 

scan-to-scan correlation is performed by estimating line-of-sight rate from the 

average LOS rate taken from a sector by the signal processing. Once one or 

more track files have been ·established the line-of-sight change between two 

frame cycles is estimated by assuming the object in track corresponding to the· 

observation nearest to the observation in question is at the same range and has 

the same velocity as the object corresponding to the observation to be correlated. 

Sensor-to-sensor correlation is performed by matching the pseudo elevation 

angle generated from the interpolated line-of-sight measurements taken from two 

frame cycles of data . 

. 1 C. B Chang and K. P. Dunn, "A. Funqtional Model for ~he Closely Spaced Object 
Resolution Process", Lincoln Laboratory Technical Report 611, 20 May 1982. 

· 2 Blackburn, .T. R., ·A Practical Correlation Test for Cooperative Passive Optical 
Sensors", AIAA Journal of Guidance, ·control and Dy.riamics, Vol. 6 .. No.1, Jan-Feb, 
1983, p. 62. 
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6. !tack Maintenance 

6·.1 Track Majntenance 

Data association in track maintenance relies on the apriori prediction of the next 

observation inherent in the structure of recursive (Kalman) filters. New 
~ . 

observa~io.ns "nearest" to the prediction are chosen for updating the track file. 

The nearest distance measure is weighted with the filter error residual 

covariance. 

6.2 Track Maintenance ~ State Estimation 

A U-0 mechanization of the Kalman recursive filter is used for state estimation in 

the track continuation phase. -Coordinates ate e·arth-centered inertial. The filter 

utilizes estimates of the measurement noise level generated in the signal 

processing.-. The object tracking. filter utilizes a 6-element state vector, containing 

object p~sition and velocity. A separate estimator is used to estimate the relative 

elevation angle bias between the two sensors. 

6.3 Track Maintenance - Track Promotion/Demotion 

If observations fail outside 3-sigma bounds on the error -residual four times in a 

row the track file is dropped. The dropped file is expunged from the inventory of 

track files. 

7. Track File Maintenance 

Individual or assumed-individual objects 7-D state vectors are maintained in track 

files, along with estimation uncertainty covariance matrices stored in upper 

triangular square-root formaf. 

8. ·. Output to BM/C3 and Users 

These questions haven't been addressed. The data of item 7 above is what's 

available now. 

·9. Comgytatjonal Requirements 

we·have done most development work on a CDC-860 machine which is rated at. 

about 2.1 mega-flops. It took 4.28X1 Q-3 sec per object per scan cycle. The 

computing load increases linearly with the number of objects and frame cycles. 

This speed is over tOO times faster than the WPe -II scheme we developed early 
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in the decade. Recently w~ have rehosted it on a VAX computer. It functions well" 
almost entirely in single precision on this 32-bit machine. 

1 0. Current Status 

The algorithm is in the late conceptual· development stage. There are stm·areas 
~ . 

for refinement. It has be.en tested· and debugged running against threats with 
slightly over 600 objects ·in them. It has not been integrated with bulk filtering for 
star and false alarm rejection, etc. 

~11. performance Measures 

The performance measure concentrated ·on has been correct observation 
assignment. The figure of merit is the difference between the number of 
observation assignments to· a file and the number of times the source object 
assigned to a file.the most was assigned to it. The difference between these two 
nu_mbers is the number of mistakes made. Our scores are running better than 
99o/o against threats furnished us. The tracking filter estimation accuracies reflect 
Cramer-Rae bounds when files are free of assignment mistakes. - _ 

12. Reports 

IRAD Program Description 1-221, Optical Sensor Technologies, Appendix-A, 
MDAC Report MDC00931-1, 1989 Independent Research and Development, 
McDonnell Douglas Astronautics Co., Huntington·aeach Division, March 15, 
1989 
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Developer:· Lawrence M. Beyl 

Abstract and Summary .. -
The Cluiter Map.Tracldng approach is design~ to treat the problems of multi-sensor, multi­
precisio~ and·mul~-coordinate sys~m tracking within a b~ttJ.e management system. This problem 
. is .reSolved be~g .wit~: .the_ w.lutiori to the .transition· of thNsted objeets into clusters, and their 
~ubsequent~iti.on into: single.obj~t track f.iles •. 11le_PrOCess by ~bien this is accomplished is 

· called .c/U$tet· mapping .lll14 the details of this concept ~ presente<i in the paper Cluster Map 
Tracking in a Battle Management System produced by this author for the battle management. 
program's design notes . 

. The crux of the idea is that there are patterns w,ithin a threat that are naturally formed by the objects 
dispersed from the sa.me PBV and .which are, heading .. ~wm-9 the same targeL This collection of 
.coi11oving .objects is· ~ed· a .chister. within this discussion.~ will. serve as the keystone to the 
uriderstaitding of the· data reduction and p8rallelization that can be gained.from the cluster mapping 
methodology. -

When ang_le meas~~en~ are .e. of the objects in a clus~.er, the patterns formed can be traced 
from one sean of the ~ociated sensor to another by_· using ~e previous scan's two-Oimensional 
map 9f the cluster as a P.a~ fcir the next scan's data: ~sociations. ~s simple technique leads to 

· . a l)~ttle sy~~~m that is capable of 1¢amirig as it evolv~ from singl¢ point source clusters, just 
b~~ tn;;ID a.~l.J.Y.19 fully pevelo~ cl~ters wi~ all objectS re$0lved. This learning 
phenonom.ena makeS ·me battle manager tracking system adaptive by nature and robust under a 
·variety of different threat scenarios. 

1Jtese patterns of angle data measurenrents are stored. fro~ one scan to the next as cluster maps. 
~ch cluster has a list of' the a5soci~ted .cluster maps,'-one (oreach.sensor that views the cluster. 
~otiee h~:th~t the explicit prob~ems.ofmwti-8ensorc~lation ~not, tackled until the clu8ter 
. maps have I?een extracted.· 'This. int~lcxkiilg ofthe cluster' to its source data permits each map to be 
· used as a fllter to remove the chister's .. new measurements from the· field-of-view for that sensor. 
The extraCt~ elida set, if d¢terrrimed: to. be vall~ ca!1 then be .used_to replace the existing set as the 

. _new ~Ius~ map~ This. ueW. map. continues i~to the::ext;raction process on the next scan, with. each 
new map defining more of the .clll,ster's de~l~ strUcture_~ .Each pme a clu~ter map is updated, the 
asSociated.cluster·centtoi9.state is. updated via.~xtende(l Kal~ ftl~Cring~ where the data used in 

. the upda~ ~·a ~~~wated p~udo-~easurem.en.~ ~~ from .. ~e .~ollecti~n of angle measure~nts 
that define. the cl~ter map.- The·se updates Pr.PVIde a mechailism by which the cluster centrotd state 
is improved continuously 'from the many different sensor views. . . 

Byu.sing.cluster ~sin. this. ~~r, tile multi7.sensor correl~on pJ;Obl~m is first indirectly solved 
. _at the c!u~!er .. Ievel, and.,m,en late~ .a~ th~,of)jee.t J~ve~ ·As.~~~ ~Ius~ map is ~ted, and if that 
cluste.r ts 4eeme<i by the ba~e sy·stem to be ~tJbJect _to obJ~ tracking, the estJ.mated measurement 

· ®ta is pas~ ·c;,n.to the _obJect, tracking .al_g()ritltm.- B~au~e .the clu$ter mapping process has already 
9iVided th~ thr~a(int() c~~sters,' this proeess ·cap be. accomplis.~ed ui'p~el with specialized .. 
hardware •. If it is the first 'time mat da~. is being passed to the object tracking system, then an initial 
state vectOr 'and covariaitce is fotmed for each object within the cluster. This is done through the 
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centroid state, the angUlar separation of .the objects within the cluster from the centroid, the cluster 
• spread and· spread tate, and the· angular measurement accuracy. 

. Once an initial state has been se~t, the object ~king algorithm \1~ that state as the initial track for 
. that obJect, updatirig .it ~dine progresses with ~e new ~uretD~nts as they appear~ Splitting, 

.. mergiitg, and other object track ppenmnena are ·handled within the·qbj~. tracking environment,.but.. 
are always restricted tO the do~ of th~ cluster~-on-s~bsequent'tipdates of the cluster map;·the· · 
~sociated o~ject'~fe.m.~ureMent data is ~itt to ~e obJect tnlC~g alg~thm, ~here it is. . 
correlated ~th the .limited list of tracks· assoetated wtth. the. cluster m quesnon. Thu process, as tt 
was conceived, will. automatica,lly generate multi-sensor oonelated ·tracks Jar each object within the 
cluster without &ctually perfOt'liliDg multi-sensor conelation. 

1.0 Context 
. The cluster mapping app1'98Ch ~s designed to cover the entire dotm,in of a battle scenario, from the 
· detailSofthriJsted boost.;phase ttackilig.to the specifics O,fengagement-level tracking and the · 
. reporting oftlie needed. ~~flightguidance ~pdates to. the kill vehicles. Because the-concept is 

applied over the entire scenario.of the battle, from the· binh of objects in the sensor view to their 
death from. a kill operation; it is necessary to specify the details of each phase to appreciate the 
context in which the method c~ be applied. 

. For the boost-:-phase, the approach requir,es that the thnJsted obj~ (boosters and PBVs) be 
tracked with a miriinlum of 9-12 .stat~ ~lements being developed maintained the PBV. This is 

· · l,lecessary so. that ~e deployment seed poiiits fm. the lethal objects can be calculated via thrusted 
flight algorithms .. The main requirement to track th~se thrUsted objeets is two-fold. First, by 
knowing the details of the PBV's track, it is possible.to determine the approximate location at 
which a cluster of ~bjects was released. This then gives the. cluste.r a tie-in to the PBV that 
'birthed' it.. Secon<; With knowledge of the b6o~ter track, the Iau~ch point can be determ1ned. 

·.This all9ws intelligence (a prion). iJ.l{onnation to be used in :the detennination of the vehicle type 
(SS18,.etc.). In additio~,.:\Yith expli~t knowledge c;>fthe booster~k, it is possible to make an 

··association between the .PBV arid the booster, rl)us providihg a relationship between all deployed 
objects in a cluster to their parent bOOster 'and suspected payload. . . 

. The details of the boost-phase operation are more critical to the battle plapning, engagement 
plaiming, and threat assessment aspects of a battle manager than they are to the tracking system. 
This is beeause it is. still possible ~o c:re~ue an ini~al track for a cluster without regard to its parent 
booster. This does .imply a. much more cOmplex system than is· currently envisioned for a battle 

. manage~4 Far this reason,· the details of how the a priOri information should be used in a battle 
management sysiem are not discussed in this paper. 

The contri~ution tQ tracking giyen by tile boost-phase is tha~ a cluster's. centroid state can be 
)ni~ally estimated based on the PBV state at the time of deployment This warm start approach 

· · greatly simplifie~ -the proC~s of traCk .U!~tialization. .If PBv·:.as~ation is not available, then the-
-·standard methodoftrack ini~tion .. is p¢rf6rtned, where several frames of sensor measutement data 
···must be g~ered· before. the track ·call be initialiZed. In doirig this however, the information 

specirfying the lethality content of the cluster is unknown. 

. In the post-boost phase, the boosters, PBVs, and clusters.are in a state of transition, with the 
· . boosters either completely· or riearly burned ou~ the .PBVs in the process of deploying their 
. payloads, ahd the clusters m the p~ess ()f being JC>fmed. In this phase~ the battle management 
. system must begin to deal with tlle multi~sensoicorrelation pro)Jl¢m. FirSt, all tracking performed 
.. on the thrusied obj~· must either be h8ndleci'througl!· a thrUsted track Kalman filter, where the . 
. . data input is either the raw angle mea8utcment data cB- pre-processeq six-state estimates. In either 
. case, the thrusted. StateS must be. updated to maintain the traCk OD· these objects. In addition, the . 
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sensor subsys~ in tile post~boost phase will begin to see clusters emerging from their associated 
PBVs as they lie seeded al6ng the fly-out path. 

These clu~tcr rCpons arrive in the foqn of single object angle measurements or CSO 
mca.surements. In tb~·later case, the· ·measureritents·report ensembles of objects that are too closely 
spa~ed to~ reSQlv~by th~ sensor_sign~ processing system. No ass~lnption is made here about 
the' re. solution o .. f the· d. ¢tectOrs.: . or r)teresolvmg capability ~f such_ a. syst~~ but a few well-known­
rules show.,d ~ ~eL f~. tJte sys_tem shouli;J_be capable _of. resolVIng. CSOs at the level of 4-5 
obj~ -per non-sepantble zan~ in the:.signai.domain. Seeo~ the info~tion repon regarding · 

. ~os·sJio~d in_clude qualitY qf_fit, estimati;d number ofobjcets, and sc?,~e amplitude estimate or 
e~mble t0 represent the in~sit)' of _the clu111p. A system using seDSQi• technology limited to · 
single and du81 objectl'esolution, With the renlaindefregarded aS a clump, will certainly lead to 
system-wide failures. (not oilly in tracking). 

The ang~e tnea5urements arriving from the sen5QJ: must also be specified in a useful fonn. This · 
fQ#n is dictated by wh.at the battle manag~~nfsy~t~ intends tQ.doWith the data in question, and 
not by .the simP.l~st ¢ethod for any one 8en5Q~ subsystem.· Since. ~e Jri~n goal is .to merge the 
multi.;. sensOr views, e_stablish .viable tracks~· ·and use· the collection 'Of irradiance data to discriminate 

. . the lethal object$, the system must be. cast iiuo a common -~e ()f reference. This is accomplished 
· by specifying,. as-~ requirement, .to each sensor subsystem,· that it render all of its angle 
measurements al)d all of its state calculations-into a selected Earth-Cen~-Inertial (ECI) 
coordiri'ate system' (no' specific definl.tion required; only tf.uit there, is unique defmition). This 

. rotation tO the global inertial frame is n~cessa:i"y fo.r'the battle manager;_ in order for it to eliminate 
the datais depeildenc(f_on the se.n.sor's Jx>inting, IMtJ, and other detaile.d se~s01; system operations. 
II1 rotating. the da~ to ·this common fr.ime, the 'sensor must ·correet for ijl of its known variances. 
This includes c~ges that would na~Iy result frOm a non-inertial coordinate system in-those 
sensors that'are iwl inertially directed. -

Now, with the dafa arriving from each sensor in a common ~ of reference, the cluster map 
· ·. tracking. syst~· is. equipped to deal With thi's data, Wbether--it be iil the .. (o.nn of angle measurements 

. or in the ·form. of six-s~tes. · It is more prodbctive ~d accurate,_ however, for the system to operate 
off of the' transformed raw ~ which has_ be¢n un'a!fected by ariy on-~ard sensor tracking 
8lgOrithJl1s. Ra~ data is important to the 9verall prlonnanee of ~e multi-sensor COITelation 
problem, as data ~tied by tracking tends to in-build non-liriearities that cannot always be 
overcome in stereo-viewing problems. 

As the system moves _into the _midcourse-phase, the angle measurement. data continues, but from·­
other sen~r sub_systems. I~ iS these sef1SQ~s that tend to supply ~e requiJ:ed infC!nnation n~ed !-0 
refine the-·assessments and unprove the gutdance updates of the mterceptors (which are typtcally m 
the air at this point in the scenario). 

In the cl~~ter map aPPIQach .. ~ tracking, the_ raw angle data is bon¢ at ~ach step of the way by the 
c:.Iuster's 2D cluster map (one· for each sensor view) ... Thi~ . .data ~uction method is based on the 
pt;zttern.matching_ofthis 2D image tO the subs¢que;ni data_S,Ct, ·and then using the selected objects 
frOm that 4ata .sci as _a rePl~ment w·age,· ~tuatin·g __ the o~tion ~til its conclusion. In 
~otming this ·pattern :matching, the systc:m ... naturally subdivides itself,. at the cluster level, into 
pamllel o~rations, gieady itlereasi~g 'the P.Qs.sibiJ.i.ty qf a trUe par8llel ~hitecture within the battle 
manager .. In addition~ as eaeh cluster map' set is :Selected.· it is passed 9n to the object tracking 
subsystem, where again it can· be operated UpOn, iri parallel, to render the deSired object track files. 

The overvjew of the cluster mapping appl'Qach_ is shown in Figure 1 ~ liere the diagram shows the 
inherently parallel natm.e of the apprqach, segmenting the sensor data pipeline into parallel paths 
~ the clustered object pi~line into parallel p~ths. Th~ diagrain is designed to demonstrate the · 
possible locations far specialized hafdware in the cluster mapping approach. 
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The detaijs of the·clus~ mapping.~thod as appljed ~o cluster. tracking is shown in Figure 2. 
Here, the diagram shd~s how ·the ·metllCxiology .~ones the data down from the full sensor's view to 
the, cluster maps, and .then to·· the. new clusters.· It 'ilsa derilonstrates how the data is parallel piped, 
by cluster, intO the object tracking system. . . 

The_ details of object tracking_ .l.Jilder the cluster mapping appll)8.Ch arc. shown in Figure 3. HCie, 'die 
proce·ss is demons~ed to be restricted to the.$ia as~ated.W,ith all the sensor views of a single 
clQster. The mechanis~ for-~te is .simple 2D _COrrelation; ·by which the algorithm is capable of 
updating the tracks and. simultaneously perfonn multi-sensor cOrrelation at the.clustered object 
level 

2.0 Notable Features 
The cluster mapping approach is capable of 

• Six-state_ tracking of clusters in a ~.(over multiple sensors), 
• Corre_la~~ ~ewly_ forined clusters to. their parent boosters/PBVs, 
• Creating wtial obJect track states, 
• UJ>4ating object track states, 
• ReducingJront~nd correlation by matching object data to clusters, 
•. Reducing front-end· eorrelation by l>aneminatching object groupings to 

existing clusters, and 
• Performing multi-sensor correlation as an automatic consequence of object track 

correlation. , . 

3.0 Sensor Architecture and Threat Scenario 
The assumptions made in the cluster mapping approach to a battle management system are that the 
sensor ha8 done.its best to reiiiove.~lutter, star fields, biases, etc. and that the sensor system is. 
capable of resolving riiore thanjust dual csqs (typically 4-5 object CSOs). 

No assumptions have ~n ~e abou~ the thr.eat density-, configuration, or individual vehicle 
capabilities. The number of objeets has· beeri estimated to be-above 100,000. 

~.0 Sensor·. Model/Processing 
The basic information expected is: 

. • The angle val~esassociated.with.the rotation of the azimuth and elevation into 
, the coin,lilOn E.CI coordinate system, 
..• The 3-element sYmmetric covariance associated with the errors in that 

coordinate system, 
• The time of measmement, 
• The irfadian~e data for the different colors of the focal plane array, 
• A··status to estimate the nature of the measurement (single, dual, triple, etc.), 

and 
• The sensor's unique ID number in the battle system. 

5.0 Track Initiation 
. Jbere. are two f~ of ~k.initiatio~ in th~ clu.ster ~pping methodology, cluster centroid track 
.·· initiation. and object track inidition. II)_ tlle .case of clu~ter centrOid. ttack initiation, there are also 

tWo methods by.which initialization occurs, PBV~seeding and cold stan. 
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5.1 Cluster State Initiation 
In g~iteral, ~e ~fetreq ~~od ofce11troid track initiation is to seed the track from a PBV at the 
time of th¢· <:lusters relc:Jse. It iS at this· .. poirit ii1 titrie that the PBV .s~ can be directly transferred 
as the· cenuoid state of th.e _iSsociatcd cluster. In &Ssigning.the PBV to· the cluster, other vital (to the 

· battle manager) information can ·also be· transferred for use by other algorithms. The associated · 
_ state initiati~n prOcess is ~omplished by one of ~o means. If ~e PBV can be flown directly to 
the point (to- witlilii sorile ~olenirice) ·at which ·the cluster is first observed; then the PBV state can be 
directly used· (Widfonly minor tilile adjustments to 'the state) as the cluster's centroid state. 

On the other hand, if the cluster,detection is sufficiently late, and the cluster cannot be associated .. 
· wid.t any lc;nown fBV ~k duririg itS_deployment cycle, then a C()ne of disperstment must be 

defmed to permit the ~eback of'the cluste(s angle position to an apprOpriate PBV parent. This 
CQne is defined by projecting the state at the estiniated time. of the. first deployment forward for a · 
fixed length of tin.le, and then projecting ·dte state at the estiniated time Qf the last deployment 
forward a ·related fixeci.length of time. These two projections form a corte-like structure, whose 
ape~ ang~e represents the deviation of the PB.V over its seeding cy~le, and whose height is related 

. . to an esQ.mated maxilnUin time-of-flight before the cluster will be observed. If the cluster lies 
·.within this eone and can be uniquelyassigiled to a PBV, then it is assigned to the associated PBV 

and its parent booster. 

If the cluster cann~t be assign~ to a cone or ~ a sensor's first viewing _of a cluster is sufficiently 
late to make assoqiating itWith a PBV inappropri~e~ then cold ·sta.rt initiation is used. In this 

.· a~ach, all_objecf da~ rejected from the basic pattern matching comlation is collected as potential 
- new·clus~ers. Th68e groppings which eannot be correlated to an existing PBV track are then 
· · comp~ to the eXisting cluster-centroid ·tracks. This comparison is made because it is p<?Ssible for 
. ·a newly arriving sensor to view, for die first time, a cluster, that has been seen by another sensor 

and is already in cluster track . 

If a correlation is mad.e~ ~en the associated track is 1Jpdated as a track maintenance operation. The. 
remaining .object meas~ents that could not be properly correlated ~ then collected over 4-6 
scans. of ciata. This i$ don_e on a per-sensor basis as there is-no s~ereo comlation applied to raw 
data After it is deteimined that a sufficient number of d~ta sets have beeii collected, windowing is 
used (there_are only a 'f~w objects to consider) to eliminate_obvio1is miscomlations, a 4-point fit is 

. calculated and· an initial state is estiniated. Once each state is created, that 6-state is re-checked 

. agairist possible centroid· states to detennine if a misclassification has occurred. This re-checking 
operation is· perfonned periodically to purge the system of remnant tracks that really belong to other 
clusters. 

If there are several object$ within grouping distance, ~en Plese o~ject5, and their new state 
estimates, are used to. form a new cluster and a new _,c;:luster centroid state. Although this later 
method will create a· vali4 cluster tnick, it does riot associ~~ the data needed from the parent 
bOoster to the cluster. This lack of detailed-fufonnation from a cold started track will affect the 
perftmn.arice of the remainder of the battle manager. 

5.2 Obj~~t State Initiation · 
The·<secand ~--of track initiation occurs. ~t the object tracking level. Here, the state estiniates 
ate initiated based on the cenuoid state estimates ofthe e.nc6mpassing cluster. This is 
accOmpliShed by first determining which ofthe chister map's (or sensor views) associated with this 
cluster contains ~e largest num~ of objects. This map, ~y d~.fi.nition, defines the view of the . 
cluster w~#e IDQst of the 9bjects are resolv~ ~d was chosen because it Will render the largest 
. number oflnitial traCks. This supparis the philosOphy ·that it is easier to dispense with old tracks 
thari create new ones from scratch. 
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It is this view of the cluSkl' that is used ~. the source definition of.the object states within the · 
~luster. The objeCt $tates are 'fmmecJ: by first mc)vijtg the aSsociated sensor swe and cluster· · , 
centroid. state to the tiine of tne8s\iranerii far the object: of intere~t. At this PQint, the centroid state ... 
has bee~ ien¥fed into the ~e angle sp~e as the angle ·meu.~ment.for the object. The change,·; .. · 
. in angl;e .reQui:¢d to-g~t frOm the ceri.t:roid to the object is ·.the~ calculated and· Used as a lever-arm to . .: . 
determine th~·deviation in positionfn.)m the .c;.enttm.d to tJt~ obje.ct..~ThiS deviation can only specify.~-

. !flier:r~':f0:1=!:ooar:s~;!fuJg·::n:~:~tlii:D:.:=::::: ~. 
range as found from the sensor tO ·the centroid swe. The velocity estimate is defined to be the.- .. · 
same as the centroidts state velocity. . 

With the six-state of an obj~ in th~ cluster determined, the error in. that estimate must also be .: 
c~eulatc:d. This etr¢ will ~nt the cavlri8nee of the object state and can be used in future . 
·track ntait.tterian~ filt¢ng operations.· 1bc. error in the.· cijre(:tio!i ·perpendicular to the line-of-sipt. . 
.is determined ~y the;eimr in the centroid:S~te in··that direetion:.apd the angul~·measurement error·: .. 
of the data as. 4Cfined by tbe ~nsor~: The eJl'()r in ttl~ range ~tiori is deterlnined by the enor in 
tl}.e centroid. state iii tha~ direction and the estimated spread rate of the cluster (a parameter calculated 
in the.cluster mapping process). Th¢ :error in velocity is determined based on the covariance of the . 
centroid state for-velocity and the estimated spread rate of the cluster~ 

Once the state for each object ~thin a cluster is estimated,it i$ not .re-calcW.ated by the cluster track-­
syste~. AlSo, newly, formed object tracks, resulting from splitting, are .seeded from the origin81.,~ 
. ~tate prior to the spl~t, ·thus eliminating the need to· perfmln cold~stari jnitialization on any new 
obj~ tracks ... The re~det of th~ opemti~ns perforri:led. o~ th!s ob)~t are determined _by the track. 
·nwntenance cycle~ This metbod of clustet-tnduced processmg guaran.tees that the required and . 
resulting track$ used during the operation are related only to the· cluster, thus allowing the- .. ' 
processing to be implemented in parallel. 

6.0 Track Maintenance · · · ·- ·- .. · 
ibe IIlaintenance P¥ of ~e ~k ~curs at tw«;)levels, the cluster track level and the object track 
l~ve~. Iri the cluster ttac" maiiltenance, there are two po~sible_.pl'Qblems·that must be dealt with:· 
the problem of simply updating an existing track file~ an.d the problem c;>f adding a new sensor's 

. Vi~w t<>"an ~xisting cluster's .ttackJile. This later problem is eqUivalerit to ·multi-sensor correlation 
at' the cluster level and is dealt with explicitly in the cluster mapping approach. This approach also < 

gtll'aDtees that .the mill~-sensor corre~ation .problem nevet 'aetually arises at. the object track level, .. 
where it occurs· as ·a natural consequence of the cOrrelation process. . . . '" ,-

6.1 Data Association~· ....... ~ _ 
. The assOciati()n of the new incoming data to ,existing ~ks can be broken into the association of . 

. .raw angl¢ ineasurerDent data to cluster tracks and the aSSOCiation of cluster mapped angle 
. :measurement dala to object tracks. 

In d,te case of clustet'$, the angle measurement qata arrives from the sensor, is queued, and is 
,eyentually processed to de~e t9 which cluster(s) the .. meastireme~t may belong. This is.. . 

· accomplished by rotating. the. cli!Ster centroid ~ta~ ·into the fraine of refe..ence of the sensor at.the.: .. 
'time 9f.tlie m~Uremen.t. I.n'doing $0,"the·centroid position i~ rende~ into the same angle -

.. ,coordiiiate sy~~. as the.~cotning data A ,quic~_.comparison is made a.nd a· separate 'vertical~-~ 
'linked list is.· built 'ot ~ch cluster that' an' object nreasurement co!Jl.d .be as~igned to. In doing this, 
. ~e system ~ creating ~e list of pc>ss.ble'matche~ dlat ¢an OCCur aS a result of trying to conelate~the 

· · . data witb·a giyen cluster. ~s.list is liinited to the extent of the ·numoer of clusters in the angle ... 
·data's immediate neighborhood (as determined by input). 
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Once ~hque11ed obj~.tneaSUmDent has i:)een correl~ed ~ i~ts JiSt off?ssiblc clus~ the queue 
of ~ta IS scann~ As lt.ts scanned, each mC3Suretl)Cilt 1S 'honzontally ,_correlated wtth the other . 

. · measurem=ts ~are ~so attached to a common clUster. These horizontal threads are woven '. 
. ttu:ougll the' node far the cluster und~ scrutiny, building • ~es of horzontontallists of virtual. 

chister"inapS. Once theSe listS have been COqipleted for eaCh object measurement in the QUCUC, they 
are ~itrated tO .determine a uni:que Set of assignments for. each object measurement. The method __ 
used to arbitrate' the comparisons is c8lled pattern matching. . . -- -- --- -· --

.. 

This ~hniquc begins with • trial measurement in dte horiZontal list of the associated cluster, and . 
stan5 ·by ... ~at;ing _th~ objc=ct mCaSui'emcri.t ~o the first element. in the cluster's cluster map (Note:, .. 
Both the horizontal ijst-and the ~luster map are org$ized in time order tO reduce the mis-match 
pQssibilitie5)~ If a valici correlation is found, bias is' removed and the next clement is considered. . 
A_ new bias. is_ c~culated from ~e neatest neighbor Within a Ptccie.termined tolerance window. If a 
oottelittion ~ be made, then the ~ttem of the cl\lster is adjusted-by one-half the calculated bias. . 
Once acComplislfed, th_c bias f~ matching the third clement to its ncm:est neighbor is calculated, . 
except that here -the Window is now smaller (owing to the concept that tJ1c pattern should be getting 

.. closet ·w a correct inatch). If an· object is found within thiS .$Dlallcr Window, the pattern is shifted 
ag~ 9nly ihis.-time by· one-third of the required bias. EaCh sucCeeding entry in the list is 
considered in this mariner, with smaller windows and smaller bias corrections (where the 

. COrrections applied are'invei'sely proportional tO the.numbcf that have been previously correlated). 
This process eontiliucs until either a predeteimined nmnber of matches· have been reached, the list 

· is exhausted, or there is·, no match within ·one of the target windows. 

If the process is_ unable to find a match, the algorithm shifts to the ne~t c~try in the list as the stan . 
and repeats the above steps. At the en~ eiP!er a_ ~tch w.~ found that satisfied the window 
reduction criteri()n, no_ matches were found~ ora list·of ~ matches was found that satisfied, the 
criterion up to some number of matches. In this 1*" case, if a minimu~ number of matcnes is 
satisfi~ the algorithril will declare this parti~ match list as the rorrect assignment list. In this 
case, Or in the case of a .liSt which did satisfy_ the. cri_terion, the rerilaining matches are processed by 
firs~ remoVing all unique matches,_ isolating all object meas~pts or ~luster map entries without 
a match, and 'then perf6rmiJlg a chi-square opt:imiZation on the reMaining mutiple matches to 
·.optimally resolve their multiple correlations. 

If there exists a situation where multiple horizontal lists of object measurements are uniquely trying 
to match tO a single cluster map,. then _that cluster map is scrutinized for the possibility of cluster· 
splitting. .One indication of .this might. be the.lack of any object· measurements near the calculated 
centroid. nus· can occur if, for ·example, a bimodal population farm~ and the centroid is calculated 
to be in the empty iegi()n between the two ~pulations. In·this·casc, the system assumes a split has 
~ured and then uses the centroid state, rotated appropriately to each of the new centroid. 
positions, to generate ihe new states for the split clusters. 

Once a ~que assignment is_ made, the list _of assigned object measurements is redirected from the. 
object measurement qilcuc to the cluster map pointer for iPat sensor and cluster. In doing so, the 
space alloeated ~o the existing cluster ·map is· freed ·and tlie ~xisting pojn~er. is set to point to the new 
list, whic~ now beCotn.es the new cluster map~ Futally,._~e data ~sociated with the new cluster . 
map is' merged fritO a p·seud~~e~urernent ~d this is uSed to up;late the cluster track with a 
extended Kalman filter. This process of update and replaeement continues for all new object 
measurements. 

·~en updating· an exi~g object_track,. the data must first be correlate4,to the existing object 
tta.cks. This is accomplished. very quic;kly .and in p~cl (for each cluster) in the cluster mapping 
apPrc:»ach to_ tricking. _first, because the tracks for the objects ~thin a cluster are initiated based on 
the object data m the cluster (~ section 5),-it means that ~e sysiem will never start a cluster with 
track files that eontain data outSide the cluster. Thus, each cluster is independent of the other . 
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clusters_ and can be~ as separate data sets.· ·As a clus~ map is updated (replaced) by the·: 
·new object ·measurements, its data is. collectively processed as a set of possible correlations to . . 
object track files. 

To acco~te this, the object traclcs as~ated with tbis cl~ter are transformed to the . . 
. associated sensors-view. ~-renders the obj~f.trac~ fi:lto a:~D image ~Y comparable to the .. 
object nteaS~~!lt data in the .cluster ~map. It is_· at this:-~iilt-~at a ~p~e ~lation operation is ·-

. pe.rfo~ed, Wlth smgle COl'l'elatio~s lie~g r.emoved and liQDl~ately proc~ssed mto updates •. Next, . 
. ·COrrelations invol~g equal listS of bbjec~ ~ilremCn~· _matched tO equal length lists of tracks are ... 
()ptip1ired via· ~y· qne of a ll~ of PP.tirili7$on algcn,itlmis (Muhlaes, e.tc.) to render these short 
lists into a resolvable seL These reSolved equal length matcb lists are then processed into updates.-

. 
The remaining possib~ties are: nmre object ~eas~ents than tracks~ or more tracks than object 
~uteinents. · .. In the· e..ase ofm~ object measurements_ than· tracks,_the sys~m must examine the · 
. nature of the measurements· to determine if. they represent the_splitting of n.cks. If this is the case, 

.. then a new track is developed to baridle the:split"object ~d the old ttaek iS" updated. If more than 

. . one track is as$igne9 io an objeCt ~mement,· then the best match should be taken and the 
remaining ttack(s) should bC left far later update attempts. . 

Y nder n.o circumstanc_e does the object tracking system ever c::old start a track from a sequence of 
· stored, ·or ·batcbed, <?bjeet mCas\lfCments .. T.Jlis capability may be ~onsidered as a last reson;- ~ 
. although it introduces similar heritage problems as discussed iii the cluster initiation problem. 

6.2 State Estimation _ . 
in ·the case of cluster p:acks, once the data list has been used to replace the _existing cluster-map, the 
object $ta in the cluster map is av·eraged (tinwei"gl)ted} to de.tennin,e ~ new· pseudo-measurement.~ . 
The pseudo-measurement covariance for this Calcula~. measure.ment is.~ calculated based upon 
the measum;nent C()Y~m.tCCS ·,of.eac~ object in"di~ cJuster mae and ·upan the _current spread rate of 
the clu~ter since lastupdate. This change represents the PQ~~tble en~ of IDls-matched 
measurementS into the data ·set. With. the· Calculated nieasurement and· measurement covariance in 
hand, ·the· cluster centroid state is updated ~cordillg .to. a extendCd Kailnan ftlter. Here, the 
precision is tnaintained at 7 digits and a inimeric. error plaitfnoise <Marquardt parameter) is used to 
~eight the diagonal covariailce elements. This helps maintain.·the"required cOnvergence of the. 
algOrithm at this ·precision level and improves the ·solution steering that occurs in the extended 
filter. 

In the case of object ~cks,- the obj~ measurement and ~variar.tce are directly applied according to 
. a extended ~filter .. · Here the precision is maintained at 15 ·digits to accommodate the . :·.----
requirements of the" angle changes and coordinate' transformations. 

6.3 Track Promotion and Demotion 
As ·the system maintail1s .track. it Jt~dles. Jhe birtQ: and. d~ath of a ~k differently depending on 
· w.hether the ~k is define4 for cluSters ·or. (or objeets.'. In the case pf cluster tracks, the only 
. m~ of tlie ~k'_s yalidity. js its existe~ce. ~or a ciU.ster is v~~ ·_~yen if it contains no lethals. . 
Ouster -tracks. are· maintained over the entire scenario of tit~ battle to provid~for the entry and exit 

. of new 8enso~ that maY View the· cluster. BecaUse ofthis, a cluster track is ~ot terminated until .it -
isdeterinined. that the centroid has impacted. 

However, clus~er U"a:Cks do undergo different stages of exis~nce .. WI) en a cluster is formed in the 
battle inaJ:tager, it is initially""Iilarked 'active' to indicate that 5o~ething is happening. However, 

. Jhis does· not activate "the clust~ for the remainder of the battle:'Irianager. When a cluster is properly 
associated with the parent booster and PBV, it is marked as 'available'. This marking is an ·. 
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in~cator tc:) ~e battle p~g systetn_ that a cluster ~th .valid her!ta~ is av~ble- for processing. 
Because ,of thiS,. the cluster u also assessed to determine us. potential unpact-pomt and the 
as·$0ciaied possible lethllity of the cluster mass. This asses$eQ value is also stored in the track file 

. f~~- the ptanning Opei'atic:).il. If the plarining function determines that this cluster contains objects of 
interest to- the battle mlnager, itdirects the traCking system to pickup object-level tracking on the· 
objects __ ~~~~~~~· 

At this PQint, tile tracking on this cl~t~ switches from its pure 'data-gathering' mode to the 'object 
tracking'· niod.e-and crea~s the initial object sta~ far the object tracking operation. Upon 
s~bsequent u~s to this clQster, the cluster tracking syst~ passes. the .accumulated object 
measurefxi.entS (in the ·¢-lister map l doWn to the object tracking system,_ where they are correlated. . 
The_ cluster trackiilg System maintains thiS· mode of operation on the clusters that it is tracking until 
the clusierS impact the Earth. 

e 

In the case ~f obj~ tracking, the initial status of a track a5 ~efined by the cluster tracking system is 
that the ttack is active ... · Qnce a track is activated, it must receive continuous update-measurements · 
from the cluster tracking system. If a specified (by input) number of reports are missed, then the 
object track is considered for termination. Ail object track can only be terminated from missing 
data under two circumstances, it is not lethal or it has been killed. 

Han obj~ track is de_tennined to be lethal during its ~ation pn;>cessing, and if engagement 
p~ing bas deemed the obj~ to be under engagemen~ then an expected kill should occur. The. 
track is therefore forcibly maintained. tin til such. time as $e expected kill does occur, or the 
expected, kill time ha8 elapsed •. , If an expected kill of the _lethal object d<;>es not occur, then a miss is 
declared and the.old track file fs deleted. If· a· kill did occur, then the track file will show a loss of 

· data at the· expected tUne of kill. If there is a data is loss, the tnick ·file is again deleted. The 
. ~-~asort for no~ deleting an engaged red.ial ~k no longer receiv~g._measurement aita is that 

this track infonllatioii must .be supplied to support in-flight guidance updates and homing views. 
11tis da~ and. the as~ied int.errogapQn of the track files wou14· _not be possible if the suspected 
object track and· itS cluster members_ were deleted. This preven~tiye medicine greatly simplifies the 
data management aspects of th,e 'Yeap~n conttollet algorithms at the expense of some minor 
additional file maintenance on the part of object tracking. 

If an object was not determined to be lethal, then the loss of data is sufficient grounds for the 
tennination of the track. · 

If at any .time d~g the o~tion,. ~ ~ck which has.not been upciated for a specified length of 
. time, receives ri¢w angle _measurements that can be used to update the track, then· the track is 
· ·reactivated and. the old discrimination data is purged.· This is done to eliminate the· possibility of 

old discriinination data polluting futUre discrimination. · -

. ~thality_ determ.ination is the primary .~easure by which objects are deleted. In the battle manager, 
· .an obj~t'_s lethality is firSt detenninc:d thi"ougli a batch discrimination process, where 10-20 

lneasurelnerits (f;rom any: sensor). of iiradiance data and state es~tes ~ used to detennine the 
lethality value .. $ubsequent lethality ca.lculations are perfonne(l on a 4-8 measurement cycle basis, 

~!;'ili::.::I;tf~~;~ t;=~ ~=ari~t~~ =:rtyinrs~: ~= 
as a mechanism·to determine when tracks can or cannot be dropped. 
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. 7.0 Trac~ File Maintenance 
The cluster track file contBins: 

• The CUll'ent six~state estimate of the centroid, 
• The as~tcd: 21-elemcnt sYmmettic covariance, 
•· The time at which the cluster was first seen, 
• 111¢.~ of the last update, 
• A.. _stattis. to indica~ ~e cluster's current mode of operation (normal, a member 

. ·. of~c 'o.bject tracking group, being _locally tracked, marked for deletion, etc.), 
• . 'Ibe *$esSed Y;81Qe, i~ assigned cluster ID, 
•_. The a$SOclated parent' boosters ID, and 
• Some battle plaimiiig infonnation maintained from one epoch to the next. 

In addition, a sister file is.~ to maintain pointers to the c1ata lists that make up the associated . 
clust~ maps for .that cluster. ·This second tile is acces~ by ~luster ID and by sensor ID. The 
actual _cluster maps. are maiittained as part of the queuemg·mechanism used to manage the input 
sensor-data to the battle management system. 

The object track file contains: 

• .1be CUITent six-state estimate of the centroid, 
··The associated 21-element symmettic covariance, 
•. The. time' at which the state was initialized, 
• .'nte tiq1e of the last update, 
• A sta~s to indicate the object's current mode of operation (normal, under 
· engagemen~ marked for deletion, etc.), _ 
• Its lethality estimate, 
~ _Its assessed value, 
•_ Pointers to the discrimination data (which is kept in another file), 

· • Po41ters to. the laSt discrimination state (which is kept in another file), 
•. The associated cluster's ID, • · ne· assigned track ID, and 
• The associated parent booster's ID. 

8.0 Output _to BM/C3 and Users 
Iri general, the ba~e _manag~ment system makes use of both the ~luster and object tracking data. In 

. the case of the clusters, the battle planning function has· direct acce·ss to the cluster track files of the 
_ cluster tracking._system. I(is ~ these_ftles th~t-the cluster centrOid states are maintained. These 

tracks are then used·at the b~ttle planning l~vel to facilitate the global battle planning operations and 
platform-t~cluster assignments . 

. Th~ object _tracks ~ used by the engag~ment planning and weapon controller processing. In 
engagement planning, .the lethal tracks are ex~cied aitd propagated tp' the estimated kill point, 

. _wQere proper la_tinchp3rairieter8 are ge_ne!at~ for the_ ~sign¢. _weap<)n (d~tails not given here). 
Once the weapon has been laQtlched and has reached burnout,_ the assOciated weapon controller 

· extracts from the object track files the guidance eotrections duu must be specified to intercept the 
· lethal object. 

. ;In addition, .~se. the object nacldng system maintain~ its tr.acks in a cluster organized manner 
)\thic~ is 6rg8Jlized by cluster, the associated weapon ~on~ller can inten'Ogate the file to determine 
which otherobjects_are likely t() be aaveliilg with..the designated object This list of comoving 
·objectS defilies the homing View of the.seeker as it moves into its ·tetmin~ phase of operation. 
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Thus, although no data is exp~citly outpu~ to BM/C3, the raw data maintained in the track files of 
r.h:e battle manager, itself, ate used by the· other partS of. $e system to determine which cluster to 
·shoot, which object in the cl\ister to shoot, how to correct for in-flight elTOI'S, and what the 
· ammgement of the objects will be dUring the terminal phase of the kill All of this is made possible 
by the data ·reduction technique in the cluster mapping approach. 

9.0 Computational Requirements 
The sh~U for this traCking approach.is written. entirely in Ada and has been implemented on a Vax 
8800. Tuning ~d peiforman~ curves are unavailable arid have. yet to implemented and 
· <ieteimincd on the tracking subsystem. The implicitly parallel nature of this approach must be 

. tested to determine what gains can be achieved in a specialized architecture that .will allow the full 
parallel·operation to be invoked. 

10.0 Current Status 
Currently, a truth ver.sion of the cluster mapping methodology, has been implemented. It performs 
the OV~ cluster birth, maintenal1ce, filteririg, ~d pa~ matching operations. However, track 
and correlation- operations are not currently implemented·at the level ofan algorithm, but rather are 
modeled at the truth level. FutUre implementations will substitute various track filtering and pattern -
matching schemes to define the best pos.sible combination of these elements . 

. 11.0 Performanc~ .. _Measures and Results 
_Individual-track perf6imanceis based on the·specific filtering algorithms used. Overall system 
perfomiance has not. been evaluated for this system. -

~2. Reports. 
The equations,_ methodology, and the. bulk of the discussion of details_ of the cluster map tracking 
approach. _are diSc~sed in the· paper Cluster Map Tracking in a Battle Management System (contact 
Gary Abercrombie, TRW, (205) 830-3302). 
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· The: MITRE Experimental. Version (EVP) 
;, .. -.. BALLISTIC TRACKER 

-- -· . ---- -.. ~ - -- --·---·· ... - .. --·- ·--·-- ~ . ···.~ .. -- ·- ... -· .. - -- -- -··~ -··- . 

POINT OF CONTACT: - J. -A. Krajewski-. 

ABSTRACT/SUMMARY 

··-(617) 271-4547 
The· MITRE Corporation 
Blirlington Rd. . 
Bedford. MA 01730 

. . The ballistic ttacker accepts as inp~~ handover data from the boost-phase tracker and 
observations from any number of SSTS sen5ors. It then a~mpts to maintain ·PBV tracks · 
and initi~te RV, dec·oy,. ·and debris tracks .. '11U'ee-diri)ensioal tracks are extrapolated into the 
future, and proj~cted_onto the. SSTS focal plane. The ·"expected observations" are then 
associated with the actual SSTS ·observatior1s using the Htiilgarl.an algorithm. The six-

. dimensional object state v~ctor. is th~ri'upcfa~ed ·\Vitb the ~nsional observations 
using an exi~rid~ ~ fu~r~ Objects, ii1cluding PBVs~ are modeled in the filter as 
b~tic_ objects." D\le to the ~1-tively· small magnitUde o( F,'BV thrustS, a PBV can be -
consid~ tO ~ a ballistic obj~t with ~- slilall pertUrbation. Additional process noise is 
added tO the fllter ~~. ~mpeo.sate for tJUs apProxirilation. ~ V /decoy observations that ~ail to . 
)}e a5~ated ~ith existing.~V/decoy.ttacks ... are usecf.to 5pawri ·new RV/decoy tracks using , 

· the nearest e~sting PBV ttack, if such ·a track is sufticicntJy rteu.by. After each update, the~­
. track library ·is· examined to diseover any ttacks thit. should be pruned, based on a user--
input number of failed updates. . 

CONTEXT 

. . lbis algorithm belongs to the Type .IV Sensor-by~Sensor Track Maintenance 
category.described by· the SDIO Panel on C~ti~al Issues in· Tracking. There is no cold stan: · 

· n.ck initi~tion capability ye~. TraclcS are initiated by handover frt>m tbe Boost-Phase 
. Trac~et.and by .. sp~wning w.hen a PBV deploys an RV or decoy.· This algorithm performs. · 
·track main~nence ·and. spawning 9f RVs..from PB~'":ttaeks~ Inputs .include booster 
handover data"from tlle b.oos~~pha5e i;racker, SSTS observations, and a set of algorithm 

··parameters. The outputs are object track estimates over time~··· 

NOT ABLE FEATURES 

· The ballistic .tt'aeker updates a six-state Kalm~ filter in Keplerian elements with one 
sensors azimuth and elevation data at a ·time.· It accomodates data from any number of 
sensors. 

SENSOR ARCHITECTURE AND· THREAT. SCENARIO 

The·EVP can examine tracking performance variations with threat characteristics, 
.. sensar co~gtirations, ~d s¢nsor c~pabilities .. The ~VP does not ereate threat data, but · 
·rather treats the threat as an·input. The EVP does model SCarining sensors for both the · 
BSTS and SSTS. · . · 

B-65 



SENSOR MODEL/PROCESSING 

. . . The sensor model is a ~ning sensor with user-selectable scan rate. The model 
includes quantization error i,n the ~uth ar;td ·elevation v~ues ·output and also the effects of 
platfonn attitude ettor. The sensor is assUillCd to be blinded_ifyiewing any object within a 

. planetary limb def~ed by the E8J.th's i-adius plqs a u·ser-mput value representing the height 
of the bright atmosphere .. The probability of detection is ·1.0, provided that the object is in 
a position whose geometry.pe~ts observation (above the limb and within range). The 
~bability of false alarm is 0. 1jle EVP d6es not attempt to remove clutter. The sensor 
model assumes that PBV a.nd RV/deeoy observations can be diStinguished, but docs not 
mOdel or report brightness to the. tracker beyond that dis~ction. Consideration of aspect 
angle of the viewed object relative to the_liJie!"Of-sigbt between viewer and viewed object are 
ignored. A single_obsCI'V~tion is genera.ted when t\vo or more objects fall within the same 
pixel. The SSTS has a tiser-input range limit for RVs. 

TRACK INITIATION 

. .. . PBV tracks are initiated when the b9ost-P.h.ase tracker produces a handover. The 
. b90s~-pbase track~ estimates a biunoui. tiine_ .. a biJri.tout pQsition, and~ bmnout velocity. 

The boost-p~ tracker also updates tl)e coyariance matrix in the bOost-phase Kalman filter 
. . . to reflect the_ uncertairity in_ the estimations .. The ballistic -~accepts the bmnout time. 
· . position, velocity ·and C()variance data, ~d W.tiates -~ track.··. The posi~on and velocity of 

the, estimated b_un,tout poin~ are transformed 'into Kepler_e!emenl$ .. ··The covariance matrix in 
positi~n and velocity is alsci transformc-A. into a coy.ariancematfi.x of Kepler elements. ""'The 
Kalrrtan filter in the ballistic tracker uses KepJer elements as S~te estimation parameterS. 
Thus, an estimated burnout state and covariance in the b~si-phase tracker are ttansfonned 

· . into: state and covariance estimates in Kepler elements to initialize the filter. 

. When an RV observation fails .to be associated with an existing RV track, the 
. distances between that.RV obsen'_ation and all existing PBV tracks are calculated. The 
closest PBV track is then found. If the·distance betWeen the unassociated RV observation 
and the nearest PBV track-is less thari a user-defined threshold, then the PBV track is used 

· ... to spawn anew RV trick. A copy of th.ePBV track piirameiers iS lnade and entered into 
. the track file. .Ibis copied PB V ·state_ is _then u¢.ated with the RV observation, and the 

original PBV state is updated with ~tS associated· PBVobservation. Thus, the :PBV track 
has been split into a continued PBV track and a new RV track. 

TRACK MAINTENANCE • DATA ASSOCIATION 

. . SSTS data are associated with ballistic tracks in a two-dimensional sense. The 
_three~dimensiona.l tracks are projected ·onto the SSTS ·focal p~ane and, using a scanning 
senSC?r model, a set of expected o~servations is c~culated. These,· together with the actual 
obserVations, are soned by anmum. .. _The u.imlith:values in the list are examined to check 

, fo~ any gap in azin1utb that may exist th~t is larger .d.ian a threshold. If su~h a gap exists, . 
then. !pe two _gro\lps of expe.cted. ~d _actUal observation on either sjde of the gap are treated 

· co~pletely separately._ .This is q~ne to take.advaritage of any structure within the data. and 
to redu~e,.o~ the pi()Cessing time requit~ for ,~~tion. In- this. way, potential 
asSociations between _an aC:tual·obsel'Vation on one side ·of the gap and an expected 
observation on the other side of the gap are not even considered. 
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. Each ~uth group of expected and ac~~ observations is then ordered by · · 
elev~tion angle~ Similarly,·: the elevaqons are eXamined to c:feteJmine if there are any gaps in 
elevation.anglc t11atare·greater.than a threshold. o·roups that ate sepaiated by sufficiently 
large gaps in elevation·angte are ·then treated separately. --- · -- - · ·· · ·· 

. A dis~ce ma¢.x for each. sep~te group is calculated. Each row corresponds to 
an expeeted observat.ion, and .each 't:olumn· correspO.nds to. an actual observation. Each 

., ·_ .entry in th~·matriX is the ·angular distance betwecn.thc eorresponding ~xpected observation 
· · · and actual observation. 1lte Hungarian alg0rithtl1 iS' then performed upon this matrix to 

determine ~c :~st ·set ~f assO.CiatiQns. If, after an irtptit number of iterations, the 
H~rigaPail algQijthm fails to detetmine the cbmpJetc solution, the subset of the solution that . 
has_been unambiguously associ~ted is kept,_ind the remaining objects are passed to a 

. ~y~type algoi;ithni ~o co~pJe~e. the associations. Mter this process is complete, the . 
asSQCiations are checked against a.threshold. If the· angular distance between the expected 
.o~servation and the actual obsetvation are great~r than a threshold, the association is 
suppressed, and the actual obsetvation and track arc considered io be unassociated in this 
scan. 

An opgon exists· to bypass the Hungarian algorithm, and rely exclusively on the 
greedy algorithm to perform ·the associations . 

. . · PBVs and RVs are treated separ~tely .. F~t, RYobserv~tions are associated with 
existing RV ~ks .. Then, ~nassoc~_atecl Rv· t:raeks are compared to· existing PBV tracks to .. · 
deteimine which tracks should be· spawned. Finally, PBV observations are associateQwith 
PBV tracks. 

TRACK MAINTENANCE· STATE ESTIMATION 

The estimation process .. utilizes an.~xtended Kahnan filter using Keplerian elements.· 
as the state vari~bles. The. six state v~ables are u·pdated ilsirtg 'two-dimensional 

· obsetvational data from one S STS ·at a time. Thus, azimuth and elevation data update the 
six Keplerian elements. 

. . All objects are modeled \ISing ballistic trajectorie~ .. To compensate for the fact that . 
PB·V s are ·not tiuly ballis~c objects,. more ptQCess .nqise is added to the filter for PBV tracks 

· than for RV ricks. we: believe the ballistic. formulation for PBV s ~o be a good one; since:. ... 
. PBV maneuvei"s,are small comp·m·ecfto the total velecicy of the PBV, the PBV's trajectory -

is nearly ballistic. 

TRACK MAINTENANC·E • TRACK.·PROMOTION/DEMOTION 

. . · Tracks ~ not promoted and demoted per ~e, but .rather~ all considered equally 
valid ijntil pruned. Ea,ch tirn~ a .track fails.U> be.11pdated,·eyen though it has been calculated 
that the traCk should have been visible to the SSTS,'a counter·in the track file is 
'i~cremented. . If the' track fails to bC updated for ~ input number of successive scans, the 
track is pJ.:Un~ ~d no l~ng_er is consider~ in any future associations. If a track is 
expected not to be visible to .. the SSTS, it is':hot included in the aSsociation, and its failed 
update,·couri.ter is·not.ineretriented· .. UnclusUied test cases.w.ith the current SSTS 

· architecture have shown periOds of time ·when some RV's are not seen by any sensor. 
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TRACK FILE MAINTENANCE 

.. The following information is kept in the track ftle for each track: 

Current state estimate: Keplerian elements: 

• - Semi-major axis 
• -· Inclination angle 
• ' Eccentricity 
• Mean Anomaly 

' • - Argument of Perigee 
• ~gument of the Ascending Node 

Six-by-six error-covariance estimate in the state variables 

• Tune of the most recent update 
• .Object type (PBV or RV/decoy) 
• -Ntlmber of successive missed updates 
• Track swus (active or pruned) 

OUTPUT TO BM/C3 AND USERS 

The output of the Ballistic Tracker to other BM/C3 algorithms and user includes: 

• Number of tracks maintained over time 
- .- Object state estimates for each ttack over time 

• Innovation sequences for each ttack over time 

COMPllrATIONAL REQUIREMENTS 

See CURRENT STATUS, below. 

CURRENT STATUS 

All algorithms described above have been cod~. Test cases are currently being nm 
an~ resultS are being ~alyzed. _The prel~ary softWare for the b~stic tracker was 

. written in FORTRAN and runs uoder the, VMS:o~tiitg system on a VAX 8700. In 
addition, this algorithm. is being written in Ada-~ _a component of the EVP Release 4.0 for 
the SDI National Test Bed (NTB). EVP Release 4 will be submitted to the NTB in'April 
1989. 

PERFORMANCE MEASURES AND RESULTS 

Performance Measures: 

• · Track purity over time (percentage of active tracks with m out of n consistent 
updates 

• Track accuracy over time on a track-by-track basis (distance between estimated 
state· and true object state) 

• SSTS ~ensor coverage over time on an object-by-object basis (which SSTS 
views a particular objeet during what time period 
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• Impact point accur.acy over time on a track-by-track basis (distance between 
estimated impact point and true impact point) 

Results: 

. . . . A very .. small, unclassified test case (20 RV. s) has been run using a notional 
unclassified SSTS architec~, architecture, primarily ~ a 'maiden voyage'. Results 
jndicate that SSTS coverage of RVs may be veiy sparse~· even to. the point where 0 or 1 
SSTs· is obs~g a particular RV at' times.· The test showed that the Ballistic Tracker can 
function even with such limited· data, but at a degi'aded level. 

. Larger tests cases involving the SOlO's Phase One Test Specification (POTS) threat · 
are currently being performed. 

RELE·V ANT REPORTS 

In progress . 
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The· MITRE Experimental Version Prototype (EVP) 
· . . BOOST -PHASE TRACKER 

POINT OF CONTAcr: 

ABSTR-ACT/SUMMARY 
. 

·- J. H. Latimer 
(617) 271-4553 

· The MITRE Corporation 
Burlington Rd.. 
Bedford, MA 01730 

·_ . The Boost-Phase Tracker uses the. inputs from two. simulated sensors;· associates 
the s~nsor reportS for each scan into f)uee~dimensional po~ition ~st:i.mates, and supplies 
those ·three-dime~sional estimates as iilp.ut to the ·aacking fi.Jter for associating with existing. 
tracks or initiating new tracks. Three-dimensional position esrimate_s are associated with 
existing a:3cks by a Qreedy-typ~ method baSed upon the ~tances between measured and 
expeCted poinis.- Trade~. are initiated f.rbm .a·.single th.ree-dilile~sional position using a priori­
assumptions abOut target trajectories. These algorithms _have been coded, and have been 

·.tested using subsets of the SOlO's Phase One Threat Scenario (fSCB1-A). 

CONTEXT 

. Tl:rls tracking-tool belo~gs to: the Type ID (Sensor-~Sensor then Scan-to-Scan) 
Track Initiatio~_ ·_category aod the Type m '(S¢nsor-to-Se.gsar th~il Scan~to-Scan) Track 

. Maintenance category' as· d~scribed by_,the SDIO Panel on Critical Issues in Tracking. The-· 
·, tracker pe!fo~. track initi~tion an4 'track ~ainteriance. Jor boost phase. When booster 
· targets are: obset'Ved .. to bum out, th¢ ·tool hands ·tracks _over to MITREts midcourse tracker .. 
(described separately), Inputs JO the ~ensor model ate model trUth target trajectories. 
Output consists _of a file 'pf sensor reports including sensor identity,· two angles (azimuth 
.~nd elevation}, ah epoch of observation, and (for analysis only) .model truth target identity. 
These·, tog~~her with sensotorbits, are inptU to the trilc~er, which outputs tracking data. 

· consisrlrig of W'get.suite estimates, covariance's, and auxiliary (status) data plus track 
estimates to hand over to the midcourse tracker. 

NOT ABLE FEATURES 

. This tracker combines sensor data to derive three-dimensional position data for 
__ targets before. associating .those·· points to tracks. this. algorithm iititiates tracks very 

··rapidly, tising·ogly_ori_e triangul~tecl:dtree-d,imensic)n8.1 posi~on·plus a priori assumptions 
· a_bout the target's veloeity and acceleration profile to initialiZe the nine-vector state estimate.: 
for the target track. · · . · 

SENSOR ARCHITECTURE AND THREAT SCENARIO 

. _: - The algorithm is designed to examine traclcing performance a) against various 
threats; b) _using various· seriSpr ~onfigumtions, and c) assuming various sensor capabilities . 

. (resolution, attitude erior, and ·sampling· ~te). 'l]e algorithm uses the sensor 
measurements from two· sensors of similar capability and in distinctly differing positions ... 
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The_ two_ sensors are expected to be located so as to view all the targets to be tracked. 
Although there are provisions. to detect and remove singly observed measurements from 
funher processing,. the._emphasis· is on the estim~tion p~ess for those targets that actually 
afford the possibility for stereo-:-opti~ ·tracking., The measurelllent errors and biases are of 

. two categQries: a quar1tization error'iil the individ~ trt.easurements in each of the two 
C()ordinates -- azimuth and-.elevation . .; .. arid an attitude error iri the orientation of the 
platform which,is constant over one frame, but which vanes nndomly with a given 
yariance.from one frame (Scan) to ·the next.· It is assumCd that·all background clutter is 
removed prior to tracking. 

The boost-phase trac~er was intepded to use externally supplied threat data. 
Therefore, there are few if any assumptions about target lcinematics embedded in the 
tracker~ The tool has been tested with roughly 50 targets from one silo complex and also 
with approximately 100 targets from a handful of launch fields. - . 

SENSOR MODEL/PROCESSING 

. . The model used for the sensor is a scanning sensor that repo.ns the two focal plane 
coordinates (azimuth and altitude) and the tinies of observations. Sensor resolution and · 
altitude error are assumed to be v¢able. Measurements reponed by the sensor are 
·quantized based on ~e. input resolution. Probability ofd~tection is ~sumed to be l.Q, 
provided the o~ject is ~n a position whose geometry p.enriits observation. The prob~ty 
of false alaim is_as$umed to be zero. -There is no provision to handle·clutter. The sensor 
emulator will report only o~ the fU"St occupant of a pixel, ·everi if there are two or more 
targets present There·. is no represe~tation of brighmess other .than the gross distinction 
. between the brightness of a burning ~ster, and th.e r~lativelylow~r brightness of 
_·anything else.·. (See the desCription of the Ballistic Tracker sensor for more discussion of 
the brighme·ss diStinctions between posi-l:x:)ost vehicles and RVs.) $ince there is no 
brightness calc;ulation,_ no relationship is assumed benv~n the target . signature (brightness) 

. ~d the aspect angle ... Frilme time is variable; tests have. been nui with frame periods from 
one to ten seconds. There is ito treatment of wavelength or closely~spaced objects (CSOs). 

TRACK INITIATION 

. Track initiation begins when an object is fli'St observed by two sensors. The · 
preliminary data association (seitsor-tcr.sensor) is identical to the method described below 
iri TRACK MAINTENANCE·- DATA ASSOCIATION~ Beeause.the sensor observations 
~ asynchronous, it is necessary to. allow for the· target motion :in the. time interval between 

· the two observations~ The velocity of the target is est:Unated by identifying the target as one 
. of the existing fnl.Cks, a.nd using the track vel6city. ~stiriiate. When an object is first 

observed. ·there is no c:oiTesponding ~ck, and therefore .an assumption is made that the 
· object is close to·tJi~ su_rface of ~e Eanh. The velOcity ofthe.object is taken to be that of 
. the Earth's spin at the point of intersection of the ·observ~tion line-of~sight with the surface. 
·once th~ velocity is estimated, a re(luced three-ditnensional position estimate and 
covariance are used to stan the track initiation process. 

. A reference trajectory i.s used,. together with the _redu~ three-dimensional position 
estimate and covariance desCribed abOve, to'·genera~ the_initial state estimate for traCk 
initiation. This. reference trajectory·is derived frOm a three:.ciegJ:ee-of-freedom rocket­
trajectory mod~l m use. at MITRE for abOut four years._· _The trajectory model allows for a · 
variable pitch .angle profile, as well as acceleration magnitUde proflle. A Newton's method 
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it~rative procedure_ is Used to fit "the ref~nce traJ~tory to the three-dimensional target 
pq~itiop. fligltt_azimuth is a5sumed .. The valu~ ·pf the ~ference trajectory velocity and 
_acceleration at the point of fitting iS ~sed to initialiZe th~ track state estimate. In this way, a 
three-di~~sio~ trajectory estimate is begun. This p~ure is perfmmed serially for 
e~h three~epsional position mat has no~ been associated with·.a track, using the data 
~sociatiori aigQiithm desCrib¢.d below. nus styl~ .. of rapid track ~tianon has the advantage 

· that only 'one _$Can is needed !O ge11e.rate a _traek.. Jlle t~~ique ·works well for those targets 
that are still relatively near the graun~ and with degraded perfonnarice for targets initialized 
at some altitude. 

. lliere is no fOrlnal method .of track promotion or demotion. Instead, the covariance 
· a.Ssocia~ witb. the track state esti~IUte, p~us ·the CQUnt of assOciated three-dimensional 
~easurement paintS, indicates the level of confid_ence io be ascribed to each track state 
e.stimate. There is no specific provisi.on for cluster track initiation, as in boost phase the 
closely-spaced-object problem_ is thought to be less· severe than in midcourse. 

TRACK MAINTENANCE • DATA ASSOCIATION 

. . . Two data association processes are perfemned as part of traek maintenance: 
associati(?ri of data fr.om tWo:·sirililar, but ·asynchronously scanriing, senson to gene~-atc 
three-dimensional objeet position ·arid covariance ·estimates; and aSsociation of those three-
dimensional positions with existing tracks.- . - _:_ 

_ In.this tracker, th~ association of images from two se~sors takes advantage of the 
fac~ that a ijne-of-sight from a sensor at a 1crto_wn ·position can be ·mapped onto the focal 
plaile ofanother·sensorand.intei'S~cte,d with imag~s on the second sensor. This is because 
~e positions of ijte t\YO seris~rs a.nd: the pasitioQ· ofth~ target at the (assume, for the 

. m()ment, .til}iqlie) epoch of o~seiVatioiJ d~fine a:plane~ 'Image, (lata from· each sensor, plus 
the direction to th~ other $~nsor deime_a·set ofp~anes. The dihetJral angles between these 
planes and some ~ference plane such as the plan¢ cpntaining the s~nsors and parallel to the 
Eanh's equator,- form scalar keys which are ordered and ·used to associate the images from 
each sensor (see Figure I). _When several· images lie on, or nearly on, the same plane, it is 
necessary to invoke fUrther, more involved logic~ which we tenn disambiguation. 

. Disambiguation is selectively performed on those groups of images not clearly 
· associated by the pl_ane-mappin-g technique discussed abOve. 1'his technique relies on the . 
ab~lity of the tt.:Bck libtary to·associate li:fies~f~sight from Sen~ at.known positions and 
·epachs With tracks in the track file ... Wbeila._lin~-of-sightis ~sociated with·a partie~ 
· tnlek, the height of the icientified a-ack. is iilter.sected wilh the ~ight.line to give a temporary 
wsiti()n estimate, which can the_~ be ·~sed ~0 ~orm a: pseudO-imag~ at the companion sensor . 

. · J\t the compan~<?n sensor, real arid pseudo-_ images are th~n associated with each other · 
·using .the ~gular positions in the ptan·e defmed by·_ ih~ sensors· confidently and the targets. 
WJlen, these in~ plane angles-~ too: close to as$()Ciate ·Jeai and pseudo- images, then a third· 
level of disCrimiitation is invok~ for those ambigu-ous aSSOCiations remaining. This 
method uses both coordinates of the real and pseudo-images and a Greedy-type method of 
associations. 

· The_ two-sensor data correla~on algorithm requires lists of target observations. The 
. as~umptiOil is that each list co~tains obserVation~ of the same targets. If the two lists are 

.. nQt ofequallength~ then the longer list must be examined to detennine which observations 
in the longer list··are withoufcorresponding observations in·the shoncr list We denote the 
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algori~ ~t dqes this examination the "Discard" algorithm. The algorithm is very 
simple, ~dis b~ed Qn the principle th~t the. two li~ts of hinge· angles are very similar. It 
loo~ for a diffetence.in hinge angle exceeding a threshold, and ascribes that difference to 
ari unequal population. . -

· Because: of the. asynchronou~ observatio~_s .resulting from the scanning sensor 
mC?del, it ~s nece.~sary 'o redq~e .the uiangulated p<>s~tioits .obtained from the correlated 
SCDSQI"_lin~s-of~~ight for the eff~t of the ta:rge~ vel,Ocity .. ·An estimate of the target velocity 
is· obtained by asSociating a sen~ line-of-sight with one of the estimated track positions at 
the epoch of observation~ 'fhe· relative figure of merit used is ~e statistical distance (or chi­
sq~~) ·t>etween ·~e ol)5ervation arid its asSQCiated cova$Dce and the track and its 

.. covarianee. Wi~ the· ~~nmated target displacement in th~.-inter\tal between observations, an. 
adju~unent (red~ction)·to the· triangulated position is perfOrmed to yield an unbiased 
estimate of the target position. 

For one .scan's wonh of paired sensor data, a batch of three-dimensional target 
positions is finally obtained, and the proce$S of asSociating these points with existing tracks 
is begun. A Greedy-type algorithm is used to a5sosiate points with tracks, with upper 
bounds for associatior:ts observed. Thus there· are:. no multiple hypothesis techniques 
employed ·and therefore no problem with any combinatoric explosion. 

We are not handling stars, false alarms or other forms of stationary clU:tter· 

TRACK MAINTENANCE • STATE ESTIMATION 

. The Kalman ftlter uses a nine-state model representing the target position, velocity· 
and·accele~on in ~siari_eanh.:.centered inertial (ECI),coorc:iinates. The model is 
represented as three ganged integrators,. arid the. state is the current output of the integrators. 

. There iS ·no input. to the i~te~tor pri;xiucing_ the ac·cel~tion, hence the model nies to 
l'l"Q9\lce cons~t acceleration. ·A~ the a_cceletation of a booster is cenainly not constant, we 
allow· the injection of process noise into the acceleration· integrator to permit the variable 
. acceleration of the target to be tracked. 

STATE VECfOR: [:r] 
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STATE1RANSffiON MATRIX <l>: 

1 --0 o_ & 0. o. .!.&2 
2 0- 0-

0 1 0 0 & 0 0 1&2 
!. 0 

0 0 1 0 0 & 0 0 1&2 
2 

0 0 0 1 0 0 & 0 0 
0 0 0 0 1 0 0 & 0 
0 0 0 0 0 1 0 0 & 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

Noise measurements are assumed uncorrelated, and the measurement noise level is 
a~sumed constant. Crossing _targets are not a problem unless one sensor sees the two 
targets in one resolution cell, in which case there is apt to be a phantom image for that 
frame. 

TRAC·K MAINTENANCE • TRACK· PROMOTION/DEMOTION 

Tracks are not promoted or demoted. Instead, the covariance estimate and auxiliary 
. information (such as 'the accumulated count of associated obserVations) indicate the 
~onfidence to be assigned individual tracks. Tracks are iermlnated when a user-specified 
·mterval of time has p_assed without the_assoc.iation of observations to a track. Typically, 
the user might specify three· to five scan intervals as the threshold 

·TRACK FILE MAINTENANCE 

Track files consist of the following: 

• Track file serial number (ID) 
• Track state estimate (9-vector) representing the three Canesian 

components of each of the ~e quantities: position, velocity and 
acceleration in Earth ..:Centered inertial coordinates 

· • · Track state ·estimate error~variance matrix corresponding to the state 
estimates (9 by 9 matrix) 

• . Tune of track establishment 
• Tline of last update 
• Accumulated count of associated observations (hits) 
• Root sum square (RSS) of last Kalman filter innovation value in 

position . 
• RSS of the three current error-covariance matrix diagonal elements in 

position 

COMPUTATIONAL REQUIREMENTS 

See CURRENT STATUS, below. 
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The MITRE MULTI-SENSOR, MULTIPLE TARGET TRACKER 

POINT OF CONTACT: R.Varad 
(617) 271-4555 

J. T. McKernan 
(617) 271-4546 

ABSTRACT/SUMMARY 

The MITRE Corporation 
Burlington Road 

Bedford, MA 01730 

MITRE's multiple-sensor algorithm performs sensor-to-sensor and scan-to-scan 
correlation to initialiZe: and maintain tracks of ballistic missiles in bOost phase. Three 
sensors are used in the current software implementation of the algorithm. 

As seen in Figure 1, the two main. sections of the algorithm are the multiple-sensor 
fusion and the scan-to.:.scan oorrefation and tracking .. The first section fuses data from the 
stereo association of sensor pairs AB and AC. Range is determined from the common 

. ~ensor, A, once target lists from each pair are foimed ~d the11 matched based on (1) hinge 
angles (the angle between each sensor~target-sensor plane and a previously defmed 
reference plane), (2)'in-plane angles (angles' at each' sensor fu the sensor-target:.sensor 
planes), and (3) estimates. of the baseline ranges determined from each pair. Figure 2 and 
Figure 3 show the geometry of the sensor-target-sensor layout 

The second section, correlation and tracking, perfcm.ns ~y track initialization 
and track maintenance.· The key e.Iement to the tracking scheme is calculating rate of change 

·. of hinge angles, in:.plane angles, and ranges. When these quantities are available for 
tracks, the rates of c.hange can be ~propagated aJ1ead to make predictions to be associated 
with the next set ofsensorrepons. The algorithm. assigns a statl.lS to each track based on 

. age and number of associations (see Section 5), and this status is the basis for 
upkeep/demotion and confinnation/deletion of tracks. Tracks are stored as state vectors. 

Since the algorithm's core processing consists of soning, rather than mathematical 
optimization, 'processing requirements are relatively low, on the order of n log(n), for n 
targets. 

1. CONTEXT 

The processing chain in MITRE's,multipl~-sensor ~gorithm most closely fits the 
general description of the·!'Staric then Dynarpic" .chain as defmed by the SDIO Panel on 
Critical Issues in Tracking~. The two main functions of the algorithm are sensor-to-sensor 
and scan-to-scan correlation.· The serisor-t9-sepsor ponion includes the functions of two-
. sen~r stereo ·assQ<;iation, ~n·equallist rn.atehing, and three sensor fusion- fusion of the 
'two sets of stereo ·a_s·sociated data. The scan-tO-scan portion's functions include track 

· initiation and track maintenance. 

The algorithm has, been implemented to operate on the SDI boost phase, but the 
· concepts are directly applicable to midcourse tracking with some modifications. The inputs 
are non-clustered observations from three scanning sensors. The outputs are 3-
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dimensional, unsmoothed tracks (state vectors). Provision is made for pre-clustering of 
targets, if feasible. 

2. FEATURES 

The multiple-sensor algorithm m~es ~se of a coordinate system that exploits the 
sensor-targe~-~ensor geom_etry. Figures 2. and 3 show the ~ee. components of the 
coordinate system: the hinge ·angle, the in.:.plan~. angle~ and ~tb~ baselfue range (as measured 

· from a sensor to a target). The algorithm ~soci~tes_ using two listS o~ targets soned by the 
. hinge and in-plane angles. The association technique, however, does not employ a priori 
information, mattix optiinization algorithms, or Kalman fllters. 

3. SENSOR ARCHITECTURE &·THREAT SCENARIO 

The software implementation of the multiple-sensor algorithm has been tested using 
several threats, including a subset of the SDIO's classified TSCB-l threat, and notional 
unclassified t~eats consisting of ·1 05 and 130 ballistic missiles in both spike and ripple 
launches. (The 105-missile threat is launched from six oomplexes, ~hile the 130-missile 
threat is launched from two launch sites.) ·The sensor model does not treat clutter, sun, 
stars, or clouds. 
The sensor models we ·use.are the notional B()()st Phase Tracking Syste~ (BSTS) sensors in a 
geosynchronous orbit. The thiee sensors are assumed to be centered over the Soviet Union, 
and separated by a variable amount (sensor separation b.etWeen40 and 70 degrees). Tests have 
been run using various representative estimates of sensor resolution and jitter. 

The unclassified ballistic missile threat follo\Vs a notional powered flight model 
from The MITRE·Corporation's simulation,. while the classified threat follows the TSCB-1 
powered flight models.· 

4. SENSOR MODEL/PROCESSING 

The mcx:ieling of the sensors is not a function of this panicular algorithm. 

The program can use either scanning ~r staring sensors with any user-specified 
frame time. Data are made available throughout powered flight Sensors repon azimuth, . 
elevation, and time of observation. 

S. TRACK INITIATION 

Scan-to-scan association consists of two processes, namely, track initialization and 
track ~ntenance. A track is ini~ialized for a ~ven target when correla.tion can be obtained 
. in hinge angle, in-plane angle and range for data from two consecutive scans for the chosen 
sensor. Gates are established commensurate with sensor resolution and noise 
ch~teiistics. The .. correlation. is perl'orrried independently and sequentially in the three 
coo~dirlates .. This method ofinitialiiatio~ is suitable for tBfgetS' with relatively small 
velocities. For targe·ts with. relatively higJi vel<;)citie.s, hin.ge· rates obtained from non­
simultaneous observations in the sensor-to-sensor correlation process are used to 
tentatively initialize tracks. 
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8. OUTPUT TO BM/C3 AND USERS 

Results are in the form of output flies with tracking statistics~ 'from which track 
purity, range accuracy compared with model truth, and other quantities can be derived. 
(Track purity is defined as: for a given set of updates to a track, in this case six scan 
updates, if five of those updates, in any combination~ have identical model truth IDs, then 
the last scan update to the track is pure.) 

9. COMPUTATIONAL REQUIREMENTS 

The algorithm is implemented in Pascal on a V AXNMS system. The memory 
reql$'ement for 109 targets is about 300 Kby(es, and should scale linearly for larger 
threats. Throughput resulting from analysis of runs with 100 ballistic missiles is less than 
one second ·on the VAX 8700, and though not explicitly tested~ the processing should be 
on the order of n log(n). 

10. CURRENT STATUS 

The algorithm is fully designed, developed, and implemented It has been 
debugged and tested with notional unclassified threats using as many as 130 ballistic 
missiles· launched from two complexes, and a subsetofthe SOlO's classified rsCB-1 
threat. No performance or hardware optimization has. been ~mpte4- The concept used in 
this boost-phase model is applicable to midcourse as well; rio midcourse model has been 
implemented, however. 

11. PERFORMANCE MEASURES AND RESULTS 

We characterized the efficiency and accuracy of this algorithm mainly by using track 
purity tests and by testing measured results against model truth for the calculated ranges, 
positions, and IDs·. Tracking results are highly dependent on the threat characteristics. In 
general the rippie-lauriched ballistic Inissiles were tracked very well; the spike launch 
performance was poorer. For the cas~ of the 105 boosters spike-launched from six 
complexes, the track purity (5 out of 6), ranges from 70 to 90 percent throughout. 

12. REPORTS 

Raj an V arad, The MITRE Corporati~n M87 -73, Scalar Correlation 
Algorithm: Multi-Target. Multiple Sen·sor Dina Fusion, December 1987. · 

Joseph T. McKernan, The MITRE Corporation Memorandum 044-M-337, 
"The Implemeritation of the Three Sensor Data Fusion Tracking Program in 
the Scenario Modeling System (SMS)", December 1988. 
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Project: BMEWS Phased Array Radar Upgrade 

Organization: Raytheon Company 

Sponsor: U. S. Air Force, Space Command 

Contact: Fred Daum (~-440-8734) 

Status: Operation since June 1987 

Reference: B-5 Spec. for CPCI-2 (Software Requirements) 

Simulations: Real-time detailed simulation of threat, radar and c3 available 
in JOVIAL on CDC 170-865 machine. 

Purpose: Process 3-D radar inputs to estimate position and velocity vectors 
and support discrimination 

Data Processing Architecture: General purpose digital computer (CDC 170-865). 

Threat: Dense multiple target environment; objects can be very closely 
spaced; measurements-are occassionally unresolved in range; threat 
density is approximately the same as the standard ·cso SDIO threat for 
LWIR; ballistic or boost phase. 

Sensor: Phased array radar which measures range, elevation, azimuth and 
target amplitud~. Data rate varies from 1 pps to 0.25 pps per 
cluster of ·targets with single pulses or pulse-pairs. Signal-to­
noise ratio is adaptive, but nominally 15 dB. Resolution is 
nominally 15 m. 

A Priori Information: None needed and none used. 

Implicit Assumptions: None 

Characteristics of Algorithms: 

• 6-state Kalman filter 

• Multiple hypothesis track initiation 

• Pulse-pair track initiation and tracking 

• · Nearest neighbor chi-square test for return-to-track correlation 

• Up-down chirp pulse-pairs are specifically designed to make track 
initiation and tracking easy 

• Recognizes unresolved returns using quadrature monopulse test and 
prediction of target ranges 
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Project: Ground Based Radar (GBR) 

Organization: Raytheon Company 

Sponsor: u. s. Army Strategic Defense Command (USASDC) 
~o'; 

Contact: Fred Daum (~~440-8734) 

Status: Under development and testing in simulation 

Reference: Software Requirements for Tactical Application Software for GBR 

Simulations: various pieces but no overall simulation currently available 

Purpose: Process 3-D radar inputs to estimate position, velocity and higher 
order rotational dynamics for discrimination 

Data Processing Architecture: General purpose digital computer. Immediate 
target machine is von Neumann type with vector 
pipeline, but can easily be adapted to 
parallel processing of various types. 

Threat: Dense multiple target environment; objects can be very·closely 
spaced; dense chaff; all ballistic trajectories. 

Sensor: Phased array radar which measures range, elevation, azimuth, target 
amplitude and phase. Data rate is adaptive to local environment 
and immediate requirements. Signal-to-noise ratio is adaptive as 
well. Resolution is adaptive to local environment. 

A Priori Information: Can use handover data (position and velocity with 
covariance matrix) or can search autonomously. 

Implicit Assumptions: None 

Characteristics of Algorithm: 

• Three Kalman filters (6-state, 7-state, and 16-state) 

• Multiple hypothes-is track initiation 

• Pulse-pair track initiation and tracking 

• Nearest neighbor chi-square test for return-to-track correlation 

• Weighted average of monopulse angular measurements over multiple 
returns from a given object 

• Pulse-pairs are specifically designed to make track initiation and 
return-to-track correlation easy 

B-89 



SCC-R-1001 1 August 1988 

$UMMARY DATA ON VELOCITY FILTER ALGORITHM FOR SDI 
DETECTION AND TRACKING WITH PASSIVE ELECTR0-02TICAL SENSORS 

Organization 
Space Computer Corporation 
2800 Olympic Boulevard, Suite 104 
Santa Monica, California 90404 

Projects and Soonsors 
1. Advanced Processing for Infrared Sensors (Army Strategic Defense 

Command) 
2. Integrated Track Acquisition and Discrimination Concepts (MIT Lincoln Lab) 
3. Object Acquisition, Tracking and Discrimination via Bulk ~recessing 

(SDIO/ONR) 
4. Velocity Filter A~proach to Boost/Midcourse Tracking (RADC) 

Contact 
Dr. William J. :acobi or Dr. William B. Kendall 
(213J829-7733 

Status of Algorithms 
Under developme~t and evaluation by Space Computer Corporation. The 

original concept is d~e to Prof. Irving S. Reed at the University of Southern 
California [1]. 

Additional Infcrmatio~ about Algorithm 
1. Purpose of Algorit~m. The velocity filter algorithm performs a combination 
of signal-to-noise ra:io enhancement and scan-to-scan correlation functions 
utilizing a "track-before-detect" approach. It utilizes an input sequence of 
image frames (or equivalent data list) which have been processed for detector 
gain/offset correction, TDI. radiation-hit suppression (gamma circumvention), 
etc. The filter output is an image (or equivalent data list) of objects 
having velocities within the passband of the filter. A bank of filters tuned 
to different vector velocities provides correlated object positions and 
velocities for track initiation. The vector velocities (and accelerations) to 
which the fi~ters are tuned are derived from cross-correlation of successive 
input image frames. 

2. Data Processing Architecture Assumed.· The velocity filter algorithm is 
_most efficiently implemented by a special-purpose parallel processor attached 
to a general-purpose host computer. Studies of alternative processor ar­
chitectures are being carried out by Space Computer Corporation. 
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ABSTRACT/SUMMARY 

TRACKING ALGORITHM SUMMARY. 

Kenneth Kessler 
Systems Control Technology 
415 494 2233 

Geng Road, Palo Alto, California 94303 

Streak Detection (Track before Detect) 

Dynamic Programming Algorithm OPA) 

DARPA/NOSC 
Yair Baarni v 

Dynamic Programming ~an provide an .alternative approach to the detection 
and tracking of dim target~ using returns fro~ a wide variety of sensors. The 
conventional (classical) approach to this problem is to obtain a detection of 
the target return from a single "frame•, then attempt to associate this single 
return with a "track file" previousl~ esta~lished on the object. 

Alternatively, the problem of detecting_and tracking dim targets in IR 
mosaic-sensor imagery (or other sensor data) can be thought of as one of 
detecting_ arid· locating wh~le targ~t traj~ctories inside the sensor's field of 
view over s~me interval. of tim~. sel~cted by the user. A batch processing 
algorithm is required in this case. Such·. an alg.orithm has the potential of 
obtaining superlor performance' over ~hat of the· c_onve~tional approach, because 
its, performance (mea'sured ~y its ''probabilfties of detection and false alarm) 

· wQuld be based on the· integrated energy of a ta.rget during its entire stay 
instde the senso~•s field of view rather than on the short sirigle-frame time. 

Conceptually, one candidate batch processing algorithm might use 
exhaustive search techniq~e,. The multi-frame data is recognized as being 
three-dimensional (3-D), where the third dimension is· associated with the 
fr~me number, or time of th~ frame. For ~he idealized white Gaussian 
uncorrel.ated noise case, the optimal detection consists of passing the 
"batched• data through a bank of matched-filters (HF), where each filter 
represents a single p6ssible 3-D trajectory. 

The Dynamic Programming Algorithm (DPA) is a practical and feasible 
technique to replace.th~ abqve exhaustive search technique over all possible 
trajectories· and· still ge_t similar performance. The main idea is to define 
any possible trajectory as a string of .straight~ line short segments. Each 
straight-itne segment is defined over a small number of frames which 
·constitute· a DP "'stage 11

• Exhaustiv·e search can ·now be performed over one 
stage at a time, and the principles of· dynamic programming used to •piece 
together• the·results of o~e st~ge with that of the next. The number of the 
possible short segments. which is user defined, is relatively small so that 
this single-stage filtering is feasible. 
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perfonmance is obtained when the target trajectories are separated by at least 
1/2 to 1/4 of a pixel and not parallel (in angle) over approximately 6 to 8 
frames of data. 

No specific clutter statistics are. assumed •. however the matched filters 
are designed for white Gaussian noise (other designs can be used). If the 
stan~ard design is used, the ·frame data should be differenced, so that the 
background approaches this statistical assumption. 

The target. model kinematic.s _is· assumed to be nearly straight, constant 
speed model. us·er inp_uts do. allo~. however, for the 0 target to deviate from 
this assumption. S9me curvature 'and ·acceleration is ·allowed by input specific 

_parameters of the algorithm. PtOces~ing tim~ can be minimized-as the target 
tharacteri'stics appro·ach those· used ·in the k-inematic ·model, by suitably 
modifying the input parameters. 

4: SENSOR MODEL/PROCESSING 

The algorithm was originally designed for a staring mosaic sensor, 
howeve-r in principle·. the development can be extended to other mosaics such as 
step starers and scanners'as well as radar. The fra~e time of the sensor is 
variable, but some preproce~sing i·s assumed in order to obtain •apparent• 
target motion of approximately one pixel _length per scan.· The algorithm 
processes· a single waveband of .data per batch; additional wavebands can be 
processed independently, then merged to obtain a single track, if desired. 

Error parameters_ or characteristics are not explicitly modeled within the 
tracki~g algorithm ... That is. ·measure~:~~ent.noise, biase.s e~c. are not modeled as 
in a conventional Kalman filter, whic·h explicitly or ·implicitly models all 
process and measurement errors. The Oynami.c Prograrrming _Algorithm implicitly 
assumes the following; that •~ch.pixel r~turn is associated with the center of 
each pixel, that th~ ~easur~~~nt noise i~ Gau~sian and untorrelated in space 
and time (o~ nearly: so), and.·that _th~ ~ss~~~d target motion is •nearly• 
straight and of constant ~peed. The performance of -the algorithm is optimal 
with these assumptions but degrades as -these assumptions become less valid. 

The precision of the input sensor data has been tested down to 4 or 5 
bits of precision with very small loss of performance. The interface between 
the sensor and the tracker ts·required to be multiple frames of data, stored 
for subsequent pro.cesstn·g. The numbers of frames used for processing are user 
defi rled and each frame coilta ins a s.i ligl e energy return per pi xe 1. Performance 
is improved if. first ·Qr s·econd -fr·ames differencing is employed, in an attempt 
to decorre late the backgr_ound c 1 utter and noise. 

The performance of the algorithm is largely dependent upon the signal 
strength of the target, back·grouild clutter'and noise levels, numbers of frames 
proc~ssed, etc. The.al~orithm has· been u~e~.to ~rocess HiCamp data at NOSC, 
and has demonstrated the ab~lity .to-detect·and track targets having a signal 
strength of 2·or so dB~ with probabilities· of detection of 0.9 or more, and 

·false alarms of lOE-5 to -6. 
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The algorithm has been tested against both simulated and actual sensor. data 
(H1Camp I and II). The algorithm has not been married to a specific hardware 
architecture. rather. it has been used to process post-mission data where the 
specific sensot data has gone through a apre-processing• _stage. typically 
single frames differencing. 

11. PERFORMANC[ MEASURES & RESULTS 

According_to staff at NOSC, the DPA has ~een tested to detect and track 
. dim· targets having a SNR of approximately 1-3 in magnitude. Test cases have 
~lso _dem~nstrated simultaneous track ·of 72 very dim, crossing targets, all 
within the field of view (simulated ~ata) ~nd actual data from the HiCamp I 
and II sensors. This latter set is with a variety of geometries and SNR's and 
targets • 

. There have been theoretical performance bound computed during the past 
several years·· and contained in several reports: and papers. The algorithm has 
not been sufficiently tested to determine under what conditions the algorithm 
performs poorly 

12. REPORT 

0980g 

The most recent project report is: 

Dynamic Progranrning Algorithm (DPA) Analysis 
Systems Control Technology, Inc. 
Final· Report under contract TLJ-5734-1866-87 for 
Titan Systems, Inc. 
Authors: Kenneth Kessler, Michael Sutphen, Thomas Holmes, Barbara 
McQuiston 
November 1988 
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3 April 1989 

Dr. Gabriel Frenkel, IDA 
IDA Tracking Panel 
Washington, DC 

. Subject: Panel Survey 

Dr. Frenkel: 

This letter is in response to the IDA Tracking Panel Survey. Before getting into 
the. actual ·surve.y items~ I want to provide you wi.th some background on the 
Knowledge-Based· Sensor Fusion (KBSF) program. It is. my desire to establish the 
proper context within which the survey was completed .. · I have tried to fit a description 
of our system · into your format, ·which is really designed for algorithm <iescriptions in a 
strict sense, so please bear these thoughts iii mind as you review the survey. 

As I indicated to you earlier, TITAN Sys~ems, Hu.nts.ville is not in the process of 
· . designing tr~cking algorithms pe.rse. ·The ~BSF · progr~m was initiated by the SDI to 

dete.rmine whether knowledge I rule-based t.echniques .·could be applied to the 
st.rategic sensor fusion problem are.na.. Specifi"cally, the intent is to demonstrate a 

·rule-based approach to multrsensor discrimination .. As you know, it is not entirely 
. possible to decouple tracking issues from discrimination issues, hence the KBSF 
·program's interest is in hosting and evaluating "competi~g" algorithms (primarily those 
designed for platform-to-platform association ·and·track· maintenance). While some of 
t~ese afgorith.ms may have been dt3sign~d for essentially the same track-related 
purpose, each· may contribute ·differentty to the discrimination process. Our goal is to 
build a niachine that automatically selects the "best" algorithm for fusing multiple I 
single platform, multipie sensor track data, given 'the peculiarities of the scenario at 
hand. 

Of particu.lar interest to our progr(im ~re the methods by which uncertainties in 
the tracking functions (and hence uncertainties in the radiometric 1 RF quantities 
importa·nt to cjiscririiin·ation) are chatact~ri~ed, propagated and dealt with at the Battle 1 
Se·nsor. Manage~ent leveL We·· are ·e·xperimenting with fuzzy techniques for 
determining ''degrees of membership~ in the set' of valid tracks that is maintained by 
the system, and for uncertainty· management in general. 
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5. Track Initiation 

Currently, a fuzzy variation on the Sequential Probability Ratio Test is employed 
to determine the degree of membership of each sensor report in the 
system-maintained set of "valid tracks". . . This· degree of membership effectively 
weights:. each report. ·The weight is propagated 1hrough the. system to the fusion and 
then to ··the· discrimination process, where ·it knpacts. lethality decisions. The same 
procedure is lised for track maintenance, ln conjun~ion with an impact point prediction 
routine for bqth single and multiple platfqrm association. ASS scoring is used. All 
target and se.nsor states are maintained in Earth-Centered Inertial coordinates. 

7. Track File Maintenance 

See attachment 1. for a description of the Fused Data Frame which is utilized by 
the KBSF machine. 

8. Outcut to BM I C3. and Users 

See attachment 2. for an example display screen which shows 
Platform-to-Platform association results and discrimination results. 

9. Comcutatlonal Requirements 

The current system is implemented in a multi-SUN workstation architecture. All 
· KBSF components are written in C~ However, algorithms written in other languages 
suppo~ed by SUN Unix may be called by the rule basses (the trajectory model used 
for impact point prediction· is an example written in FORTRAN). This feature provides 
a powerful testbed capability. 

1 0. Current Status 

A mLJitiple computer system has been demonstrated and· effort is underway to 
.enhance baseline ·alg.orithmic, rule -·base and uncertainty management capabilities. 
Simulated sensor data has been used to ex·ercise the system to date. Real sensor 
data is desired for system testing. 
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message; 
s a._ t i me_ t· e c ( 7 J ; 
c •:• r· _ t i rn e _ r· e c [ 7 J ; 
c •:•r _ t i rne_r·et [7]; 

fus_tirne_rec[7J; 
fus_tirne_ret[7J; 
dis_tirne_rec[7J; 
dis_tirne_ret[7J; 
sa_tirne_ret(7J; 

zulu_tirne la.unch_time; 
i t·erns_r e c vd; 
i t ern s _ p r· c• c d ; 
c I us t e r· _ n urn ; 
object_nurn; 
psn; 
c•bj_c at; 
d_target_type; 
c• b j _ ~ c• n f ; 
c •:• n t e ~-: t ; 
track_qua.l ityCZJ; 
ppsr.; 
w~ight; 

zulu_time obs_tirne; 
tirn(=; 
~-: _ e c i ' y _ e c i , z _ e c i ; 
x_dot' y_dot, z_dot; 

zulu_tirne imt; 
~--imt; 
1 ri;p_::·:, i rnp_y, i mp_z; 
taralt1 ta.rlat, tarlon; 
r·ange; 
t~ e p _ s e n :S •:• r· ; 

sid; 
sena:t, senlat, seni0n; 
ele~ation, azim~th, ~spe~t-ar.gle; 
r .. c. r, 3 ;· _ t- a. t e ; 
t• .::- t ?_ ; 

c: .:• r· _ m e a. =· _ e t· !·- o :-~ [ 1 ,_:. J ; 
o d e _ s e rt s o t~ ; 

t• o d €· _ s e n s .:• ~- ; 
i rt·a.d (4J; 
r· ad i n t [ 4 J ; 
temp, dif_temp' roc_temp, avg_ternp• avs_dJf_temp; 
e a , t· c:• c _ e a , a. v :3 _ g ;!. ; 

gb_ea' dif_gb_ea, roc-8b-ea; 
gb_temp, dif_gb_temp' r-oc_gb_temp; 
bode_a[4J, bode_b[4J, bode_c[4J; 
s i :3 rn a ' ·~· rn e 3 a. ' ~- .:c e ' am p I i t u d e [ 4 J ; 
signal_noise, vis_mag; 
Ires, res' roc_rcs; 
sp i n_r·a te; 

struct zulu_time current_time; 
struct zulu_time launch_time; 
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message is. senL Unassociated obseiVations (those not assigned to a track) are then 
submitted to Track Association, which attempts to form strings of obsetvations to generate 
new tracks over a period of several scan cycles. Successful strings of associations are 
reported to the Track process via ·New Track messages. Only unique assignments are 
reported. 

The Track process is responsibl~ for initializing. track filters, updating track fJ.lters and 
making predictions for the next sighting of the tracked objecL Two-types of track fJ.l~rs are 
supported: angle-only and six-state, The angle-only fllter is a five or six point cubic fit 
least squares filter in azimuth and elevation. The six-state filter is a Kalman filter in Eanh 
Centered Boresight Inertial (ECBI)" coordinates. ·The ECBI system axes are parallel to the 
fixed boresight coordinate system of the sensor and are a ftxed transformation from Eanh 
Centered Inertial (ECI) coordinates. 

1. CONTEXT 

The ADOP algorithm set addressed the problem of single sensor onboard acquisition 
and track for a ballistic.probe (e.g. GSTS) durin.g the midcourse engagement phase. The 
sensor is assumed to hold a fixed orientation along an inertial boresight for the duration of a 
mission and executes a racetrack scan pa~em with a slight overlap zone. Hence, each 
sensor "frame" consists of a top scan and a bottom scan wi~ the sensor frame time. 
Detections from sensor signal. processin·g in three ~ wm· bands are processed by ADOP 
Measurement ProCessing algo.rithms (not discusse4 here) to perform color correlation, 
velocity estitriation, irradiance calibration, bulk filtering of stars and scan smoothing, 
among other functions. The input to the Scan-to-Scan process from Measurement 
Processing co~sists· of a set of object observations from the latest scan. Each obsetvation 
record includes sighting time, .azimuth, elevation, estimated azimuth and elevation rates, 
standard deviations for the angles and rates, and irradiances measured in the three color 
bands. Each record is mar~ed as an isolated single or a CSO. For CSOs, azimuth and 
elevation extent data are also included. Outputs from the Track process to a ground-based 
·battle manager consist of threat reports that include object six-state and covariance, time of 
applicability, and estimated lethality. A threat report is provided every two to three frames 
for each object determined to ·be lethal by discrimination. 

2. NOT ABLE FEATURES 

The AI;>OP algorithm set was the fJISt, to our knowledge, to incorporate a pattern 
~tching approach to the midcourse track association problem. Moreover, both pattern 
matching algorithms and classical gating algorithms were used in a complementary fashion 
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of group members are written as a list to the PM_Ref_Members flle. Degenerate groups of 
o~e member (isolated singles) are discarded and their scan file record numbers are written 
to the Unmatched Initiators file. (Alternatively they can be retained for group matching and 
continue through· pattern matching as an option.) The Grouper also operates on the second. 
scan (Frame 2) of tlie scari-to-scan cycle when it ariives. For this scan the outputs are· 
written to the.Master_PM_Groups and Master_PM_Membel'S files. The Group Matcher 
task is then activated. 

Group Matcher: This task attempts to ~atch Frame 1 groups to Frame 2 groups. The 
primary criteria are that the Frame 2 centroid lies in. the predicted centroid gate and the 
extents of the groups are reasonably close. The comparative numbers of members in both 
groups could also be used. Where a unique match is found, information for both groups 
from the ... Groups and ... Members flies is written to the PM_Matched_Groups file for use 
in detection matching. Where there are either no matches or more than one match. to a 
Frame 1 group, the scan.rue·record nu~bers of the members of the Frame 1 group are 
written to the Unmatched_Initiators file. When all Frame 1/ Frame 2 groups have been 
processed, the Frame 2 Detection Matcher is enabled. 

Frame 2 Detection Matcher: This task operates in Frame 2 after the Group Matcher, hence 
its riame. ItS pul-pose is to match individual observations within the Frame 2 groups with 

those in the matched Frame 1 groups. An empirical multipass algorithm is currendy used 
to do the matching. This. algorithm seeks to.· ~stab~sh an initial match between one Frame 1 
group member and one Frame 2 group member, and use that match to narrow acceptance 
gates for matching the remaining members. Other techniques may give better performance 
with less effort. Exacdy .which detection matching technique is best under what conditions 
is still an open research issue. The ratio of successful matches to group size is used as a 
criteria to accept or reject th~ match data. Engineering evaluations during the ADOP project 
showed that when the.ratio slipp~ .below 0.34, the matches were usually incorrect When 
the ~tches are rejected, the scan record numbers far all members of the Frame 1 group are 
written to the Unmatched Initiators flle. When the matches are accepted for the group, the 
individual matches are wrltteri to the Track Candidates file for use by the Frame 3 Detection 
Matcher. 

Frame 3 Detection Matcher: This task operates during Frame 3 and attempts to match 
Frame 3 observations to the two-point candidate tracks established by the Frame 2 
Detection Matcher,· Candidate tracks are processed·by Frame 2 group. The group centroid 
and velocity ~ calculated and a Frame 3 extent gate is established. All Frame 3 
observations within this.pte·are processed in a manner similar to that used by the Frame 2 
Detection Matcher. For candidate tracks which pass the match criteria, a predicted position 
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Track Arbiter: This task is the last stop in the track association chain. Its job is to ensure 
that only one track claims each of the constituent observations in the chain of observations 
that result in a new track. The arbitratio·n scheme is siinple, but effective -- first come, first 
served. The Track Arbiter OP.erates first when the scan observations from Frame 5 are 
available, again immediately ·after the Frame 6 observations are available, and once again 
when all proposed tncks from the scan~to-scan cycle have been extracted and the system is 

. ready to begin a new cycie. Th~ ·Track Arbiter takes each instance in sequence from the 
Track Requests file, and propagates the candidate track to the most recent frame. If any 
ambiguities arise (more than one ·observation per acceptance gate) the nearest to the 
predicted sighting is chosen. At this point the Track Arbiter checks all observations from 
the previous scan files that ,belong to the candidate track being processed. If any of the 
observations have been previously been taken the candidate is discarded. If none of the 
observations have. been taken, ·the 1;'rack Arbiter removes (or marks as taken) the 
observations from the previous scan files and sends a New Track message to the 
appropriate Track process. This message contains all needed data from the string of 
sightings that is needed to initiate angle-only track. 

At the end of the scan-to-scan cycle (six frames) the Scan Manager task decides which 
frame will be Frame 1 of a new cycle. If pattern matching is to be employed, the new 
cycle must begin with the tirst.fuune following the cycle just completed. However, if use 
of the· gating algorithm alone ·is acceptable, the Scan Manager can designate either Frame 3 
or Frame 4 of the old cycle as Frame 1 of the new cycle. 

6. TRACK MAINTENANCE 

Most of the "track maintenance" functions are performed in the Track process shown in 
Figure 2. The exception is the Track Continue task in the Scan-to-Scan process. 

6.1 TRACK MAINTENANCE·· DATA ASSOCIATION 

The Track Continue task in the Scan-to-Scan process associates scan observations with · 
predicted object positions forwarded by the Track process(es). A simple gating technique 
was used, with gat~s computed by the· Track process. If no observations lay in the gate, a 
Missed Track message is returned to the Track process. When one or more observations 
lay in the gate a·Track Update message is rennned to track with the angular measurement 
data for the·chosen observation and the track id with· which it has been associated. When 
more than one observation is in the gate, the one closest to the predicted position is chosen. 
All predictions are processed sequentially and independently. Optimiu.tion across multiple 
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7. TRACK FILE MAINTENANC~ 

The data maintained in the track fue is dependent on the track mode. Owing angle-only 
tracking an observation history of up to fifteen sightings is maintained.. For each sighting, 
the time, azimuth, elevation, az-sigma, el-sigma,. class (single, CSO), and irradiances are 
maintained. In the precision track inode, the tiine, six-state, covariance, lethality, next 
predicted sighting, last measured sighting, and a radiant intensity history are maintained. 
In both modes additional flags and counters· are used to indicate track status. All track 
records are considered ·independent and there was no attempt to organize them by group, 

., cluster, etc. Several improvements could be made to support more sophisticated track 
continuation techniques, but none have been implemented. 

8. OUTPUT TO BMJC3 AND USERS 

Outputs from the Track process to a ground-based battle manager consist of threat 
reports that include object six-state and covariance, time of applicability, and estimated 
lethality. A threat report is provided every two to three frames (i.e every twenty to thiny 
seconds) for each object determined-to be lethal by discrimination. Each threat report is 
formed by extracting information from the object'S track file when the object id is passed to 
the Threat Reporting task by the Track Update task. 

9. COMPUTATIONAL REQUIREMENTS 

.The ADOP software was implemented in Pascal to run on a distributed network of 
Honeywell ADOP processors. Each node consisted of three 1-MIP MIL-STD-1750A 
CPUs sharing up to one megabyte of memory. A development test version, also in Pascal 
executes on D~C VAX hardware. The design goal was to support 300 to 400 objects per 
MIP with one·of the ADOP nodes whether it be Scan-to-Scan or Track. A 1000 object test 
case was executed in real time on a three-node ADOP network,. but detailed internal data 
were not logged as it was. primarily a hardware test A 65 object test case has executed 
successfully in real time on a single VAX 11nso. 

10. CURRE~T STATUS 

Versions of the ADOP software are available at the USASDC Advanced Research 
Center (~C) for both the Honeywell and DEC VAX. co~figurations. No significant 
improvements to the implementation have been made since 1985. A number of 
performance and capability improvements were identified under the APIRS program, but 
could not be implemented due to funding constraints. Some of these upgrades may be 
made under the GSTS program if an option is el~ to convert the software to Ada for use 
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INTRODUCTION 

• BAYESIAN NETWORKS (INFLUENCE DIAGRAMS) HAVE EVOLVED OVER THE 
LAST DECADE INTO A POWERFUL TOOL FOR PROBABILISTIC INFERENCE: 
- HOWARD & MATHESON (1981) (SEMINAL PAPER) 
- SC~ACTER (1986) (DISCRETE INFLUENCE DIAGRAMS) 
- KENL~Y (1986) (NORMAL INFLUENCE DIAGRAMS) 
- PEARL (1986) (BAYESIAN NETWORKS) 

• INFLUENCE DIAGRAMS PROVIDE A FRAMEWORK TO REPRESENT AND 
MANIPULATE JOINT PROBABILITY DISTRIBUTIONS FOR COMPLEX 
NETWORKS OF RANDOM VARIABLES 

• INFLUENCE DIAGRAMS CAN BE USED TO IMPLEMENT WITHIN THE SAME 
FRAMEWORK 
- STATE ESTIMATION (LINEAR GAUSSIAN) } 
- DATA ASSOCIATION (DISCRETE) TRACKING 
- TRACK PROMOTION (DISCRETE) 

• LMSC HAS BUll T A LIBRARY OF INFLUENCE DIAGRAM UTILITIES TO PROTO­
TYPE MIDCOURSE TRACKING ALGORITHMS 
- ALGORITHM PERFORMANCE 
- THROUGHPUT/MEMORY (NONOPTIMIZED) 

K9-7246/061 
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INTRODUCTION 

This presentation discusses the application of Bayesian Networks or Influence Diagrams to the 
Implementation of mldcourse tracking algorithms. The Influence Diagram Is used to represent and 
manipulate probabilistic Information In complex networks of random variables. The generic capabilities 
of the lnftuence Diagram are used to carry out the major tracking fundlons, including linear gaussian 
State estimation, data association hypothesis scoring and track promotion scoring. 

LU~ has built a library of Influence Diagram utilities to construct, scan and manipulate an Influence 
Diagram~ Thes8 utilities are used In lmplelrientlng the mldcourse tracking algorithm 1'1 9r~~r 1t;~ a~~s. 
algorithm performance and to begin to estimate throughput and memory requirements. The throughput 
and memory requirements are upper bound estimates at this stage since the algorithms are executing 
within a generic environment which Is not tailored and optimized for a specific· hardware environment. 
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AGENDA 

• INFLUENCE DIAGRAMS USED TO REPRESENT 
UNCE.RTAIN KNOWLEDGE IN COMPLEX 
SYSTEMS 

. )I - GENERIC REPRESENTATION 

- APPLICATION TO MIDCOURSE TRACKING 

• OPERATIONS ON INFLUENCE DIAGRAMS TO 
PERFORM INFERENCING 

- GENERIC OPERATIONS 

- APPLICATION TO MIDCOURSE TRACKING 

K9-7246/033 
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AGENDA 

The agenda will cover both the generic aspects of Influence Diagrams and their application to the 
mldcourse tracking problem. Furthermore, 1he agenda will be partitioned Into a discussion of the 
capability of the lntluence Diagram to represen~ uncertain or probabilistic Information In complex 
systems, and the operations used In manipulating the Influence Diagram. 
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BAYESIAN NETWORK/INFLUENCE 
DIAGRAM DEFINED 

• ACYCLIC DIRECTED GRAPH REPRESENTING THE JOINT PROBABILITY 
DISTRIBUTION FOR A SET OF. RANDOM VARIABLES 

- NODES = RANDOM VARIABLE 
- ARC = PROBABILISTIC CONDITONING 

EXAMPLES 

P (A, B) P (A, B) P (A, B, C) 

®---® &-----@ 

P (A) P (B/A) P (B) P (AlB) P (A) P (B) P (C/A,B) 

• OBSERVATIONS 
- A JOINT PROBABILITY DISTRIBUTION CAN BE REPRESENTED 

BY MANY INFLUENCE DIAGRAMS - ONE FOR EACH DECOMPOSITION. 
- LACk OF AN ARC REPRESENTS CONDITIONAL INDEPENDENCE. 

K9-7246/002 
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BAYESIAN NETWORK/INFLUENCE 
DIAGRAM DEFINED 

This chart defbles ~he Influence Diagram as a device to represent a joint probability distribution of 
. a set of random variables. Each random variable Is represented as a node and conditional 
dependence between random variables Is represented as an arc between the corresponding 
nodes. 

A joint probability· dlstr1butlon can be factored In many ways. ·In the example, the joint distribution, · 
P(A,B) can be written as·P(A)•P(B/A) or as P(B)•P(AIB). Each factorization or decomposition, 
Is represented by a specific Influence Diagram. 

The lack of an arc between two nodes Indicates that the corresponding random variables are 
conditionally independent of each other. 



NORMAL INFLUENCE DIAGRAM 

SCALAR NODE EXAMPLE 

• N = { 1 , 2, . • • , n} 

• X N = (X1, ••• , X n) X I IS A SCALAR NORMAL RANDOM VARIABLE 

E [X N ] = ~N (n x 1) 

Cov [XN] = l:NN (n x n) 

• CONDITIONAL DISTRIBUTIONS 

E (X I I X cOl= Xc(J) I= Jll :e~(J) bkl (xk. Jlkl 

Var [X J I Xc(j) = xc(J) ] = v1 

C (j) = CONDITIONAL PREDECESSORS OF NODE j K9-7246/003 
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NORMAL INFLUENCE DIAGRAM 

This chart presents an example ol an Influence Diagram for the Joint probability density for a set of 5 
normal random variables. 

Each random variable Is a scalar random variable with an unconditional mean, mu, and conditional 
~ variance, v. 1he arc strengths, bij, represents the Influence of the hh random variable on the jth 
-.~ ----·- ···--- __ ...... -· ..... _ ~~~-.!·~~~~~ ~~II!!_~_~.!' .. ~~ !~pression for the conditional mean of fth random variable. 
~ "·--·--- -----------------·-··--------------·----·-·---------·----.. ·-··· ...... -- -
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NORMAL INFLUENCE DIAGRAM 

VECTOR NODE 
EXAMPLE 

b13 (n3 x n1) 

b12 b23 

(n2 x n1) (n3 x n2) 
n1 n2 n3 

Jl1 (n1 x 1) Jl2 (n2 x 1) Jl3 (n3 x 1) 

v1 (n1 x 1) v2 (n2 x 1) v3 (n3 x 1) 

~ b1 (n1 x n1) * b2 (n2 x n2) b3 (n3 x n3) 
I 

0) 

l.TI 

• N = { 1 , 2, .... , n } 

• X N = (X1, ... , X n> Xi IS A VECTOR NORMAL RANDOM VARIABLE OF LENGTH N i 

E[XN]=~N (mx1) m= f"i 
CCV [ X N] = I: NN (m x m) 

• CONDITIONAL DISTRIBUTIONS 

E [X j /X c (j) = Xc (j)J = ~j+ Ke~(J) bkj (xk- ~k) 

*NOTE: bt HAS n1 x (nt·1) 12 INDEPENDENT COMPONENTS K9-7246/004 
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NORMAL INFLUENCE DIAGRAM 

This chart presents the inftuence diagram for 3 normal random variables in which each normal random . ... . 

variable Is a vector~ 

Each vector variable is represented by the unconditional mean vector (mul), the conditional variance 
vector (vi) and the Internal arc strengths (bl). · 

The conditional dependence between the vector vart~es Is represented by the external arc strengths 
(biJ). 

. --··-· -~-----·-·-····-······· ··--·------------ ··- . ·--- ···-···- . ··--·---- ········---- ______ ., __________ . ····· ·····-· ----------------. -·-

H should be noted that the Internal arc strengths (bl) have nJ'(nl-1 )/2 components 



DISCRETE INFLUENCE DIAGRAM 

DISCRETE SCALAR NODE EXAMPLE 

P(a1) P(a2) 

OUTCOMES __.. C1 

" P(c1/a1 ,b1) 

P(b1/a1) 

• JOINT DISCRETE RANDOM VARIABLE S = (A, B, C) 
A, B, CARE DISCRETE RANDOM VARIABLES 

• CONDITIONAL PROBABILITIES 
P(A) P(B/A) P(C/A, B) 

', VERSION 
' TREE 

K9-7246/015 
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DISCRETE INFLUENCE DIAGRAM 

This chart shows an example of an lnftuence Diagram lor 3 discrete random variable, (A,B,C). The 
joint probability density, P(A,B,C), Is factored Into P(A)•P(B/A)*P(C/A,B) which Is represented In 
the diagram. 

Variable A has two outcomes: (a1,a2) The associated probabilities are P(a1) and P(a2). 

These two outcomes tor A become versions for variables Band C. Assuming A::a1, then 8 has the 
single outcome b1 and conditional probability P(b1/a1) which would equal1.0. Assuming A::a2, 
then B has two outcomes: (b2,b3). The associated probabilities are p(b21a2) and p(b3/a2). 

Variable C has a 2 level version tree, that is, an outcome from both A and B must be specified before 
the outcomes lor C can be defined. For example, lor A=a1 and B:b1, C has two outcomes: 
(c1,c2). Their probabilities are P(c1/a1,b1) and P(c2/a1,b1). For A=a2 and B=b2, C has one 
outcome: c3, and for A = a2 and B:b3, C has one outcome: c4. 

It should be noted that the lnftuence Diagram Is represented by the three root nodes (A,B,C) and the 
directed arcs. The other nodes represent data internal to the root nodes such as outcomes and 
versions. 



DISCRETE INFLUENCE DIAGRAM 

DISCRETE VECTOR NODE EXAMPLE 

_.. -... 
~ I I 
0"\ \ \.D 

\ -....... 

\ / 

' / 

' / 

......__ 

S IS UNELABORATED S IS FULLY ELABORATED 

• S = {A, B, C} IS A VECTOR DISCRETE NODE 

~1 

I 
I 
I 
I 

K9-7246/042 
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DISCRETE INFLUENCE DIAGRAM 

This chart s~ows an example of a single discrete vector node. The vector node represents the )oint 
random·variable for a set of three scalar nodes. (A,B,C). The outcomes for S are joint outcomes 
for the three scalar nodes. 

On the left side ol the dlagran, S Is shown connected by 'and' arcs to the three nodes. The 'and' arcs 
l~lcate that S consists of A and B and C. The right side ol the diagram shows the S node fully 

-----·---·- -·- --· ··-----~~~~-~,~-~~-)Q.Jm_~~~~~ ~~~~-~-~-~~~-~~---·-- --· --- ------------·-·--·----- ------------------ -----···-·-·-. --. 



MIXED OISCAETE PLUS NO·RMAL 
INFLUENCE DIAGRAM 

P (a1) P (a2) 

VECTOR 
NORMAL 

• THE INFLUENCE OF THE DISCRETE RANDOM VARIABLE "SPLITS" 
THE NORMAL RANDOM VARIABLE INTO VERSIONS ("OR" SPLITS) 

K9-7246/041 
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MIXED DISCRETE PLUS NORMAL 
INFLUENCE DIAGRAM 

This chart shows an example ol a scalar discrete node influencing a vector normal random variable. 
Each oUtcome of A becomes a version for X. Each version for X has an uncondHional mean 
vector, conditional variance vector and Internal are strengths. 

..... The.dlscreta.noda can. be vlewed.as spllttlng.lhe.nonnal n~_.into Ytr~IP-ns._Jhl~ $PII"to.g '~ t''m~ ... 
an 'or' spiH to Indicate that the X node Is X1 (under A::a1) or X2 (under A:a2). 



AGENDA 

• INFLUENCE DIAGRAMS USED TO REPRESENT 
UNCERTAIN KNOWLEDGE IN COMPLEX 
SYSTEMS 

- GENERIC REPRESENTATION 

)I APPLICATION TO MIDCOURSE TRACKING 

• OPERATIONS ON INFLUENCE DIAGRAMS TO 
PERFORM INFERENCING 

- GENERIC OPERATIONS 

- APPLICATION TO MIDCOURSE TRACKING 

~--· 
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INFLUENCE DIAGRAM NODES USED IN 
MIDCOURSE TRACKING 

NAME TYPE, SIZE OUTCOMES 

FOCAL PLANE CTNS* VECTOR (AZ, EL, INTENSITY, EXTENT (3)) 
CONTACT (2 X 1) 

FOCAL PLANE CTNS VECTOR • •• • •• 
(AZ, AZ, AZ, EL, EL, EL) 

TRACK (6 X 1) 
CARTESIAN CTNS VECTOR • • • 

{X, Y , Z, X, Y, Z) 
TRACK (6 X 1) 
EXTENT CTNS VECTOR 

(BAZ, BAZEL, BEL)/(aX, BXY, •••• ,SZ) 
(ELLIPSE/ELLIPSOID) (3 X 1/6 X 1) 

CONTACT DISCRETE SCALAR CONTACT TO TRK I NEW I FALSE 
I I 

ASSIGNMENT ASSIGNMENT 1 TRACK 1 ALARM 
TRACK UPDATE DISCRETE SCALAR/ TRK TO CONTACT 1 MISSED 

ASSIGNMENT VECTOR ASSIGNMENT : DETECTION 
TRACK PREDICTION DISCRETE SCALAR/ NO : SPLIT : SPLIT 

ASSIGNMENT VECTOR SPLIT IINTO 2 1 INTO 3, ••• 
SCENE DISCRETE VECTOR JOINT SET OF CONTACT, UPDATE 

AND PREDICTION ASSIGNMENTS 

*ALL CONTINUOUS NODES ARE ASSUMED NORMAL 

K9-7246/008 
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INFLUENCE DIAGRAM NODES USED IN 
MIDCOURSE TRACKING 

This chart shows the nodes used in the mldcourse tracking algorithm at this stage of development. 
The char shows the node symbol, the node name, Its type (continuous or discrete), Its size 
(scalar, discrete or both) and the outcomes for the n~e. 

The focal plane contact is the random variable representing the estimated line of sight lor a target 
or false· alann. (Note1hat the outcome column erroneously Includes the Intensity and extent.) 

The.focal plane track Is thQ 6 ~ernffflt stale vectQr for a ~"-'~k on~~ tq~l pll.lne . 

The cartesian track Is 1he 6 element state vector for a track existing In 3-d space. 

The extent can be either 3 state or 6 state and represents the parameters of an ellipse or eUipsoid, 
respectively of a cluster ol objects. 

The contact assignment variable Is a discrete random variable that Identities the possible 
assignment outcOmes for a contact. A contact can be an update to an existing track, the start 
of a new track or a false alarm. 

The track update assignment random variable Is a discrete random variable that Identifies the 
possible assignment outcomes for a track.· A track can be updated by one or more contacts or 
not be updated ar all (missed detection). 

Thhe track prediction assignment random variable Is a discrete random variable that ldentlftes the 
possible dynamical models for the track. The models entertained for ballistic targets are that 
the track does not split or splits Into two tracks or splits Into 3 tracks or etc. These are 'and' 
splits. 

The scene Is a vector discrete random variable that represents the Joint outcomes of a set of c, t+ 
and t- nodes. 



CONTACT LINE 
OF SIGHT 

0 
J.1. = (az, el) 
v (2x1) 
b (2x3)/2 

CARTESIAN 
EXTENT 

® 
J.1. = (~x, Sxy, •..• Sz) 
v (6x1) 
b (6x7)/2 

NORMAL RANDOM VARIABLES 
USED IN MIDCOURSE TRACKING 

FOCAL PLANE CARTESIAN 
TRACK TRACK 

0 0 
J.1. = (az, az, az, el, el, ei) J.1. = (x, y, z, x, y, z) 
v (6x1} v (6x1) 
b (6x7)/2 b (6x7)/2 

FOCAL PLANE 
EXTENT 

® 
J.1. = (Baz, Bazel, Bel) 
v (3x1) 
b (3x4)/2 

CONTACT STATE TRACK STATE 

0------® a. F E3 

b. X Ea 

c. X Es 

K9-7246/040 
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NORMAL RANDOM VARIABLES 
USED IN MIDCOURSE TRACKING 

This chart details the normal randoni variables 
I . .. 

The contact state combines 1he z and E3 node. The track state combines the F and E3, X and E3 or X 
and E& nodes. 



. I 

TRACK TO CONTACT 
ASSIGNMENT 

_en 
~ 

a. ASSIGN c 1 TO t 
b. ASSIGJ'1 c 2 TO t 
c. ASSIGN MISS TO t 

DISCRETE RANDOM VARIABLES 
USED IN MIDCOURSE TRACKING (1 OF 2) 

SHARED CONTACT 
ASSIGNMENT 

X 
0 

t2 X 

a 

TRACK SPAWN 
ASSIGNMENT 

,-
0 •o', 

\ O' 
' I -+--X ,.., 

'o-, 
I ' \QQI 

a. ASSIGN 1 c TO 1 t Atm2 t a. DO NOT SPAWN TRACK 

b. ASSIGN 1 c TO 1 t Atm2 t b. SPAWN TRACK INTO lWO 

TRACKS 

c. SPAWN TRACK INTO 

THREE TRACKS 

CONTACT TO TRACK 
ASSIGNMENT 

X 
0 

t2 X 

a. ASSIGN c1 TO t1 . 
b. c 1 IS A NEW TRACK 

c. ASSIGN c1 TO t2 

d. c 1 IS A. FALSE ALARM 

e. ASSIGN c1 TO t1 AND t2 

·. 

K9-7246/039 -~--
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DISCRETE RANDOM VARIABLES 
USED IN MIDCOURSE TRACKING {1 OF 2) 

This chart sho~ va~ious examples for the discrete random variables. 

The first column shows the case ot two contacts In a track gate. The update assignment node, t+, has 
three possible outcomes: c1 Is assigned to the track (c1-t), c2 Is assigned to the track (c2-t) or the 
track has a miss (miss). 

The second column showS the special case of a shared contact. -A single contact lies In the··overlap ·region 
of two tracks and it has been determined that the contact should be assigned to both tracks at the 
same time. The shared outcome Is represented as a set of contact to track asslgnements: c1-t1 and 
c1-t2. 

The third column shows ... ~ ol track spa~nlng ('and' splits). The example shows that the track can 
split Into 3 tracks or ·~nto 2 track or not split at all. 

The fourth column shows the case of a contact falling into ~he overlap region ot two track gates. The 
contact assignment node has 5 possible outcomes: assign the contact to 11 only,.asslgn the contact 
to t2 only, assign the contact to t1 and 12, consider the contact to be the start of a new track or 
consider the contact to be a false alarm • 
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' 00 
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DISCRETE RANDOM VARIABLES USED IN 
MIDCOURSE TRACKING (2 OF 2) 

SCENE ·JOINT SET OF ASSIGNMENTS 

--m t 
0 

~· .. 

3 JOINT OUTCOMES 

K9-7246/038. ··-
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DISCRETE RANDOM VARIABLES USED IN 
MIDCOURSE TRACKING (2 OF 2) 

This cha~ shows Qle outcomes for the scene node for the case. of two contacts In the gate lor a 
single track. the s-node represents the Joint probability of the t+ node and the two c-nodes. 

In this example, three Joint outcomes are feasible,. The first one assigns c1 to the track and 
declares that c21s a new track. The second outcome assigns c1 to the track and declares 
thai c2 Is a false alarm. The third outcome assigns c2 to the track and declares that c1 Is a 
new track. 
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EXAMPLES OF TRACKS (1 OF 4) 

The next set of 4 charts show examples of the nodes ma~ing up various tracks In the case of a 
; :· . . 

single satellite. 

The first track is a new track. A c-node Is given a new track and false alarm outcome which 
· Influences the traCk's ftrst t+ node. The 1+ eonslders the contact assignment outcome for the 
new track version alii false track outcome for the false alarm version. The t+ node lnftuerices 
the F node which Is spiH • 

The second track Is a~ uramblguous track with no spawn or update ambiguity. The first I+ node, 
which Is~! from th8'.pjevlous frame, has a single contact assignment. The t- node has one . 
outcome for the sln"e assignment. The I+ node for the current frame has a single contact 
update~ 

The third track has an update ambiguity on the current frame. The track can be updated by one of 
two contacts. The X·node Is split Into 1wo versions. 



EXAMPLES OF TRACKS (2. OF 4) 

.... ____ / 

TRACK 

- NOSPAWN 
AMBIGUITY 

-NO UPDATE 
AMBIGUITY 

K9-7246/046 ·:-~ 
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EXAMPLES OF TRACKS (2 OF 4) 

This chart sbows a track which has no ambiguity but shows how a spawn Is handled. 
. ·._ : . . ' ~ 

The t- node has a single outcome which specifies that the track should be split into two tracks. As a 
result the t+ node generates a vector version, represented by the 'and' arcs coming out of the 
version node, s2-t. The vector version consists of two scalar t+ nodes one for each split track. 
In tills case each scalar node has a single update asslgnmenL The X-node Is shown with the 

.... two .. track.1ormatton.ShownL (tl.lhOYid bf_not~ that there should be an 'and' arc ~Q~O~Ir-g the 
lines connecting the X-node with X2 and X3. ) 



EXAMPLES OF TRACKS (3 OF 4) ~--· 

. ...--

.~ :. ··· .. 

• TRACK 

- SPAWN AMBIGUITY 

- NO UPDATE AMBIGUITY 

K9-7246/045 



. 
Q_ 

X 
<I 
LL 
<I z 
<I 
Q_ 

u 
(/) 
E 
_J 

\0 
1"1 .. 
..-t 
..-t 

(J'I 
m 
(J'I 
..-t 

' ['-
(S) 

' (J'I 
IS) 

~ 
I 

Q.) 

......) 

EXAMPLES OF TRACKS (3 OF 4) 

This chart s~ows a track with a spawn ambiguity bu t no update ambiguity. 

The t- node has ~o spawn outcomes: s1 and s2. The s1 outcome specifies that no spawning 
. should take plaCe. The s2 outcome sPecifies that the track should be split Into two tracks 

thereby crea,lng a two track formation. Each version of the t+ node has unambiguous update 
asslgnlnents leading to the X·node shown. 



EXAMPLES OF TRACKS (4 OF 4) 
~··· 

COMPLETE· TRACK HISTORY ····-~--..,-

FRAME 1 FRAME 2 FRAME3 FRAME 4 

• A MOVING WINDOW OF THE t NODE CHAIN IS MAINTAINED ,.. . . 
- WHEN THE FIRST NODE IN THE CHAIN HAS A SINGLE OUTCOME, 

IT IS DELETED AND THE CHAIN IS 'CLEANED UP' 

K9· 7246/044 -. =·. 



t.D 
...... 
0... 

(S) 
0') 
N 
...... 
...... 
r­
"Q" 
...... 

* * * * 
lSI 
lSI 
til 
I 

lL 
:J 

X 
<I 
lL 
<I z 
<I 
(1.. 

u 
01 
E 
_J 

t.D 
n .. 
...... 
...... 

0') 
0) 
{J\ 
...... 

' ('-
(S) 

' 0') 
(S) 

~ 

I 
OJ 
\L) 

EXAMPLES OF TRACKS (4 OF 4) 

This chart ~ho~ ~e general conliguratl~n ol disc~te nodes and the continuous node for a 
track. ·If the c-riode arid t-nodes were not cleaned up, there would exist a chain of nodes 
begln~lng with the c-node and Initial t+ node and continuing with at- and t+ node pair on 
each frame. The t- and t+ nodes on the last frame lnluence the continuous node. The 
conthiuous nOde has a two level verSion tree with singleton track or formation track 
.versions. 

The chain is not allowed to grow indellpltely. As data Is received, the outcome probabilities for 
the firSt node "in .the chain are updated and decisions are made to prune or select an 
outcome. When a single outcome remains for the first node In the chain, Ills deleted and 
the chain Is cleaned up. In this way, a moving window of 1 nodes Is maintained. 



AGENDA 

• INFLUENCE DIAGRAMS USED TO REPRESENT 
UNCERTAIN KNOWLEDGE IN COMPLEX 
SYSTEMS 

- GENERIC REPRESENTATION 

- APPLICATION TO MIDCOURSE TRACKING 

• OPERATIONS ON INFLUENCE· DIAGRAMS TO 
PERFORM INFERENCING 

- GENERIC OPERATIONS 

- APPLICATION TO MIDCOURSE TRACKING 
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INFLUENCE DIAGRAM OPERATIONS 

CONSTRUCTORS (1) SELECTORS (2) 

INITIALIZE IS-EMPTY-THE-DIAGRAM GET-OUTCOMES 
ADD-VERTEX ITEM-OF-VERTEX VERSIONS-OF 
DELETE-VERTEX IS-DISCRETE IS-VERSION 
DUPUCATE-VERTEX IS-CONTINUOUS VERSION-BOUNDRY 
REPLACE IS-NULL-THE-VERTEX VERSION-PART 
COPY-VERTEX IS-A-MEMBER TOP-VERSION 
SET -ITEM-OF-VERTEX ATTRIBUTE-OF-ARC BOTTOM-VERSION 
ADD-OUTCOME NUMBER-ARCS-fROM DIRECT -PREDECESSORS 
REMOVE~UTCOME SOURCE-OF IS-PREDECESSOR 
SINGLE-OUTCOME- DESTINA nON-OF IS-SUCCESSOR 

CLEANUP IS-NULL-THE-ARC DIRECT -SUCCESSORS 
ADD-ARC IS-OUT-ARCS WEAK-PREDECESSORS 
DELETE-NON- IS-IN-ARCS COMMON-PREDECESSORS 

RELEVANT -ARC . 15-REVERSIBLE IS-ROOT 
DESTROY-ARC IS RELEVANT IS-LEAF 
BEllEBSE AB~ ARC-EXISTS-BETWEEN GET-LEAFS 
BEMQllE AB~ OUTCOME-PART GET-PATH 
SET -ATTRIBUTE-OF- TOP-OUTCOME LEAF-VERSIONS-OF 

ARC BOTTOM-OUTCOME CHILDREN-OF 
DESTROY-TREE IS-OUTCOME SIZE-OF 
COPY-TREE IS-EQUAL ROOT-OF 
PRUNE-PATH GET-UNIQUE-OUTCOMES RANDOM-VARIABLE-OF 
PROPAGATE 
IHSIAHDAIE 
NORMAUZE 
SEQUENCE 
PBOJECI. 
INCORPORATE 

lHEEB 

(1) CONSTRUCTORS ALTER THE STATE OF THE INFLUENCE DIAGRAM 
(2) SELECTORS EVALUATE THE CURRENT STATE OF THE INFLUENCE DIAGRAM 
(3) ITERATORS VISIT DIFFERENT PARTS OF THE INFLUENCE DIAGRAM 

ITERATORS (3) 

DEPlli-FIRST -SEARCH 
BREADTH-FIRST-SEARCH 
LOCATION-OF 
FIND-PATH 
FIND-THE-ARC 
VISIT -VERSIONS 
VISIT -VERTICES 
VISIT-ARCS 
PARENT-OF 
SUBTREE-OF 
TREE-OF 
ROOT-OF 

ERROR CONDITIONS 

VERTEX-NUMBER-OVERFLOW 
VERTEX-IS-NULL 
VERTEX-IS-NOT-I~RAPH 

VERTEX-HAS-REFERENCES 
ARC-IS-NULL 
ARC-IS-NOT-IN-GRAPH 
ARC-IS-RELEVANT 
GRAPH-HAs-ciRCUIT 
ITEM-NOT-DEALLOCATED 
IS-NOT-REVERSIBLE 
IS-NOT-A-ROOT-VERTEX 
IS-NOT-A-DISCRETE-VERTEX 
IS-NOT-A-CONTINUOUS-VERTEX 
IS-NOT-A-OUTCOME-VERTEX 
IS-NOT-VAUD-VERTEX-LABEL 
PATH-NOT-fOUND 
BAD-SATELUTE-NUMBER 
BAD-VERTEX-NUMBER 

K9-7246/013. ~ 
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INFLUENCE DIAGRAM OPERATIONS 

This chart shows the set of utilities created to construct, evaluate and scan the Influence Diagram. 
These :utilities repr8sent about 2 manyears of efiort and are wriUen in ADA. 

The main r~utJnes used In the mldcourse tracking algorithm are Reverse _Arc, Instantiate, Infer and 
Project. These wtll be discussed In the following charts. 

The utility, ls_Relevent, should be mentioned. The routine examines arcs between continuous node 
to detennlne If their arc strengths are strong enough to be maintained., Thus, a tradeoH 
between the processing cost of maintaining arcs and the reduction In performance by deleting 
arcs can be attained. 
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REVERSE ARC 

• REVERSE ARC IS THE INFLUENCE DIAGRAMS INPLEMENTATION 
OF BAYES' RULE 

BEFORE REVERSAL 

( C(Y) \ C(X) ) 

AFTER REVERSAL 

• EACH NODE INHERITS THE PREDECESSORS OF THE OTHER NODE 

-· 
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REVERSE ARC 

Reverse _Arc Is an Important uUIIty since It carries out Bayes' rule. In carrying out the arc reversal, 
each node lnhents.the predecessors of the other node. Reversing the same arc twice does not 
get back to the same diagram unless the arcs are tested for relevancy and the irrelevant arcs 
deleted. 

Note that C(X) represents the set of condHional predecessors for the node X. 



INST A.NTIATE 

• INST~fiiiATf.i UflPATES THE DIAGRAM AS A R~SULT OF A MEASUREMENT OF A 
RANDOM VARIABLE , 

1 BEFORE INSTANTIATION 

f.i\ bzx f.:\ bxy f.:\ 
~~------~----~·~~OLD .. \!)OLD 
Jlz Jlx Jly 

Yx vy 

_______________ y~---------~-----
2 AFTER INSTANTIATION 

0~)---~ .. 0 
NEW OLD ~ 

Jl X = J.1 X + b ZX ( z - Jl Z ) 

Yx 
bx 

• THE INSTANTIATE ACTION FLOWS THROUGH THE DIAGRAM UPDATING THE CONDITIONAL 
MEAN OF THE SUCCESSORS, THE SUCCESSORS OF TtiE SUCCESSORS, ETC. OF THE 
INSTANTIATED VARIABLE 

• AFTER INSTANTIATION, THE INSTANTIATED VARIABLE CAN BE DElETED 

K9· 7246/036 
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INSTANTIATE 

lnstantl~ !~ ~~ !JII~ty which incorporates a ~sure~ va~ue for a continuous random variable. 
. In ~ c~rt, dlcigram Is shown before and after the variable z ls Instantiated. 

When z Is Instantiated with the measured value, the unconditional mean of X Is updated. 
· Fu"hermore, because the uncon~onal mean of X Is update then the unconditional mean 

of Y Is also updated. The other parameters In the diagram are unchanged • 

After z Is lnstantlaed, It can be deleted since It Is no longer a random variable. 
• • ! ~ • 
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2 

INFER 

• INFER IS AN ORDERED SEQ~ENCE OF ARC REVERSALS TO 
STRUCTURE THE INFLUENCE DIAGRAM TO REPRESENT A 
DESIRED CONDITIONAL PROBABILITY . 

BEFORE INFERENCE OF { Xi , Xi} ONTO { Xl , x2 } 

~FTER INFERENCE OF { Xi , x2 } ONTO { X1 , x2 } 

. . ..... -
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INFER 

Infer Is a major function used In the midcourse tracking algorithm. It carries out an order 
' ~·. ····, ' • -I . • • ' •. ·. 

sequence ol arc reversals to structure the Influence Diagram into a desired form .. 

In the example, Ills desired that the set {X1-, X2-J.Influence (X1+, X2+}. The Infer utility 
carrtes· out an ordered sequence of reversals. The order to determined to assure that 
no loops exist In the diagram. 

The diagram Is shown after Inference. Note that an additional arc from X2· to X1 + is 
generated. 



PROJECT 

• PROJECT CALCULATES THE PROBABILITIES OF THE OUTCOMES 
OF RANDOM VARIABLES IN A SUBDIAGRAM GIVEN THE 
PROBABILITIES OF THE JOINT OUTCOMES Of·THE SUBDIAGRAM 

1 BEFORE PROJECTION ONTO A 

2 

' \ 

3 LEVEL 
OUTCOME TREE 

\ 

AFTER PROJECTION ONTO A 

P (a i) = L L P (a1 , bJ , ck) 
ck bJ 

• PROJECT 'SUMS OUT' THE UNWANTED OUTCOMES IN THE JOINT 
RANDOM VARIABLE 

_,.· 
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PROJECT 

Project Is the uti'~ that takes the jolnJ outc~me probabilities for a set of random 
variablesand ·ealculates the marginal probabiUtles for a given random variable in the set. 

In the example, the variable S represents the variables (A,B,C}. H is assumed that the Joint 
outcome probabUHJes exist, P(al,bj,ck). Next. the marginal probability p(al) Is desired. 
The ProJect operator carries out the summation as shown In the chart to calculate P(al). 



AGE~DA 

• INFLUENCE DIAQRAMS USED TO REPRESENT 
UNCERTAIN KNOWLEDGE IN COMPLEX 
SYSTEMS 

- GENERIC REPRESENTATION 

- APPLICATION TO MIDCOURSE TRACKING. 

• OPERATIONS ON INFLUENCE DIAGRAMS TO 
PERFORM INFERENCING 

- GENERIC OPERATIONS . 

-··~ - APPLICATION TO MIDCOURSE TRACKING 
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INFLUENCE DIAGRAM OPERATIONS 
APPLIED TO MIDCOURSE TRACKING 

~ STATE ESTIMATIO"' 

KALMAN FIL TEA PROCESSING 

- FORMATION TRACK UPDATE 
. i 

- TRACK SPAWNING ('AND' SPLITS) 

- SHARED CONTACT UPDATE 

• ASSOCIATION 

- TRACK UPDATE/MISS PROCESSING (t + NODE) 

TRACK SPAWN PROCESSING (t- NODE) 

- CONTACT UPDATE/NEW TRACK/FALSE ALARM 
PROCESSING (C NODE) 

- SCENE PROCESSING (S NODE) 
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INFLUENCE DIAGRAM OPERATIONS 
APPLIED TO MIDCOURSE TRACKING 

Thli chart swn"*lzes the agenda for the remaining part of the presentation. It shows four maJor 
state estlniidlon and four major association functions to be described In terms of Influence 
Diagram operadons. 



DISCRETE - TIME FILTERING 

MATHEMATICAL MODEL 

DYNAMIC PROCESS: 
1 ' 

X (k + 1) = ~ (k) X (k) + r (k) W (k) k = 0, .•. , N. 

MEASUREMENT PROCESS: z (k) = H (k) X (k) + v (k) k = 0, ••• , N. 

PROBABILISTIC STRUCT~RE: E (x (0)) = llo. 

DIMENSIONS OF VECTORS: 

CCV [x (0)] = P0. 

E [w (k)] = 0 FOR k = 0, ••• , N. 

COV [w (j), w (k)] = Sjk Qk FOR J = 0, ... , N AND k = 0, ••• , N. 

Q k ARE DIAGONAL FOR k = 0, ... , N. 
COV [x (0), w (0)) = 0. 
E [v (k)) = 0 FOR k = 0, ••• , N. 

COV [v 0), v (k)) = Sjk Rk FOR J = 0, ..• , N AND k = 0, ••• N. 
Rk ARE DIAGONAL FOR k = 0, .•• , N. 

COV [w 0), v (k)) = 0 FOR J = 1, ••• , N AND k = 0, ••• , N. 
COV [x (0), v (k)) = 0 FOR 0 = 1, •.. , N. 

x (k) £ R0 , w (k) ERr, z (k) E RP, AND v (k) E RP. 

K9-7246/009 



DISCRETE - TIME FILTERING 

This chart presents the assumptions made In the discrete-time Kalman filtering model. 
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0 
c.·. 

1 

KALMAN FIL TEA PROCESSING CYCLE 

PREDICTED TRACK 2 

0 

AS~IGN TRACK TO 
MEASUREMENT 

3 UPDATE TRACK 

• REVERSE (X-, Z) ARC 
• CONSTRUCT DIAGRAM • INSTANTIATE Z 

• ELIMINATE Z 

s- ---~~~~~;~-i~-N~ffi~-----rsr--~~E~~T~R;c~-5~~~~----EJ--;~~~~~~~~~~~~~-~~~--

• REVERSE(W,X.)ARC • REVERSE (X .. , x+ ) ARC e CONSTRUCT DIAGRAM 

• ELIMINATE W • ELIMINATE x+ 
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KALMAN FIL TEA PROCESSING CYCLE 

This chart shows the cycle of Influence Diagram operations used to carry out the Kalman filter 
proceSsing cycle. 

111 The state vect~ is ~recucted to the next measurer-ent update. 

(2) A measurement Is assigned to the state vector. An arc from X- to Z In constructed and the 
measurement matrix, H, Is placed on the arc. 

[3) The track Is updated. First the arc is reversed which updates the covariance rnatrx for the 
state vector. Next1he Z node is Instantiated which updates the mean of the state vector. 

f4] The trac~ is set up lor prediction to the next frame. First, a construction phase Is carried out 
in which an arc is created between the updated state vector, X+, and the (to be) predicted 
state, X-. Also, an arc from.the system noise vector, W, to the predicted state is also 
construct~. The propagation matrix rs placed on the X+ to X- arc, and the Gamma matrix Is 
placed on the W to X· arc • 

[5) The track ls predicted. The X+ to X- arc Is reversed which calculates the predicted covariance 
matrx .. (Note that the predicted state Is calculated outside of the Influence Diagram for the 
case of the extended Kalman filler.) 

(6) The system noise is Incorporated. The W to X- arc Is reversed which has the eHect of adding 
the Q matrix to the predicted covariance. 
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DISCRETE • TIME FILTERING 

WEIGHTED OPERAT,ON COUNTS FOR PROCESSING A VECTOR OF p MEASUREMENTS._,·-

ALGORITHM WEIGHTED OPERATION COUNTS OPERATION WEIGHT 

INFLUENCE DIAGRAM (3.6n 2 + 12.3n) p + 1 

CONV~NTIONALKALMAN (3.6n 2 + 7.8n + 4.5) p X 1.4 

U-D COVARIANCE (3.6n 2 + 15.7n) p + 4.5 
' i 

(4.3n 2 + 40.9n) p SQUARE ROOT COVAAI"'NCE 
: . : " 

21.4 

POTTER SQUARE ROOT (7.2n 2 + 8.6n + 30.~) p 

KALMAN STABILIZED (10.1n2 + 16n + 4.5) p 

SRIF, A TRIANGULAR (2.4n 2 + 6.2n} p + 4.3n 2 + 37.1n 

NORMAL EQUATION (1.2n 2 + S.On) p + O.~n 3 + 3.1n2 + 30.3n 

SAIF, A GENERAL 2.4n2 p + 1.6n3+ 2.6n 2 + 31n 

K9-7246/011 
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DISCRETE-TIME FILTERING 

This chart shows the weighted operation counts for the update phase ol the Kalman filter 
processing cycle. H can be seen that the lnluence Diagram Implementation compares 
favorably with the conventional Kalman Implementation wblch Is the most efficient. The 
Influence Diagram Implementation requires less throughput than the other versions shown. 

One other advantage of the Influence Diagram Implementation Is that It guarantees a positive 
semidefinite covariance matrix since the variance terms are calculated by summing positive 
quatHies. Subtractions, which can cause numerlcallnstablitles, are not required. 



DISCRt:tE - TIME FILTERING 

WEIGHTED OPERATION COUNTS FOR TIME UPDATE 

ALGORITHM 

INFLUENCE DIAGRAM 

CONVENTIONAL KALMAN 

U-D COVARIANCE 

WEIGHTED OPERATION COUNTS 

2.8n 3 + ~.95n 2 -11.55n + 10 + (6n 2 + 2.7n- 4.9) r + (2.4n- 2.4) r 2 

3.6n 3 + 4.1n 2 + O.Sn + (1.2n 2 + 2.6n) r 

3.6n 3 + 4n 2 + 3.1 n - 4.5 + (2.4n 2 + 4.2n - 2.8) r 

SQUARE ROOT COVARIANCE 4n 3 + 4.8n 2 + 26. 7n + (2.4n 2 + 2.4n) r 

K9-7246/010 
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DISCRETE-TIME FILTERING 

This cha~ s~o~ ~·weighted operatlo~ counts for lhe lime update portion of the Kalman filter. 
Again, the Influence Diagram Implementation performs well against the Implementations 
shown. 



/~ I , ... TRACK SPAWNifiG {'AND' SPLITS) 

1 

~ SPLITT~~~~ ~ !~TO X 1 AND X 2 
• X1 & X2 BECOME A TWO-TRACK FORMATION 

SPAWN TRACK 
SETUP 

• CONSTRUCT DIAGRAM 

2 SPAWN TRACK 

• INFER (X1 ,X 2 } ONTO X 
• ELIMINATE X 

3 

D ESTIMATED STATE · 
X PREDICTED STATE 
0 CONTACT 

SPAWNED 
FORMATION 
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TRACK SPAWNING ('AND' SPLITS) 

i 
·This chart shows the '"fluence Diagram operations Involved In performing a splitting of a track Into 

r 

two tracks. SUppose two contacts fall Into the correlation gate for the track and It Is determined 
that the track has spiH Into two tracks. 

(1] The Influence Diagram for a Track Spawn is constructed. Two new state vectors are created and 
an arc from the previous state vector, X, to the two new states, X1 and X2, are constructed. 
Next, the appropriate arc strengths are placed on 1he arcs. Likewise, the. data In the X1 and X2 . 
vertices are set. The data Includes the unconditional means, conditional variances and Internal 
arc strengths. 

[2) The arcs between X1 and X2 and X are ~eversed. As a result, and arc from X1 and X2 Is created. 
Thus a two track formation is created. The strength of the arc between the tracks depends upon 
the conditional variances set In X1 and X2 and the arc strengths from X to X1 and X2. The term, 
'formation', Is used whenever an Influence arc exists between the tracks. 

[3) The X node Is deleted leaving the spawned formation. 



1 

SHA~EDCONTACTUPDATE 

• TWO TRACKS SHARE THE SAME CONTACT. BOTH TRACKS ARE 
UPDATED WITH SAME CONTACT 

Xr-t _. 
0 

X 

D ESTIMATED STATE 
X PREDICTED STATE 
0 CONTACT 

ASSIGN TRACKS TO 
ONE CONTACT 

2 UPDATE TRACKS 3 TRACK FORMATION 

• INFER Z ONTO {X1, Z,) 
• ELIMINATE Z 

• CONSTRUCT DIAGRAM 
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SHARED CONTACT UPDATE 

i 

This chart shows the Influence Diagram operations involved In updating two tracks with the .same 
1 contaCt. This s~atton occurs when the 5ensor has less resoluUon than the track file or the 

tracks are crossing from the senso,.s perspective. 
I 

111 The contact Is assigned to both tracks. The Influence Diagram is construct~ with arcs from the 
tracks, X1 and ~ to the contact, z. The meaSurement matrices are placed on the arcs and the 
approprl~le data Is set In the Z node. 

I • • l 

(2) Inference of the Z node onto the X n~es is carrted oui and the Z node instantiated and then 
eliminated. This stage updates the covaiiances and state vectors of the tracks. 

13] A two track formation Is created. 

H Should be noted thai one of the advantages of the Influence Diagram Implementation Is that aU 
relevent probabilistic Influences are maintained automatically as part of the Influence Diagram 
operations. 



1 

FORMATION TRACK UPDATE 

• UPDATE FORMATION TRACK WITH A SET OF CONTACTS 

--------+-m~--------

----t--teX~ I 
ASSIGN TRACKS TO 

CONTACTS 

(X2 ~AS MISS) 

• CONSTRUCT DIAGRAM 

UPDATE TRACKS 

• INFER {Z} ONTO (X} 
• INSTANTIATE (Z} 
• ELIMINATE (Z} 

3 

D ESTIMATED STATE 

X PREDICTED STATE 
0 CONTACT 

UPDATED FORMATION 
TRACK 
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FORMATION TRACK UPDATE 

This chart shows the Influence Diagram opera1ions Involved in updating ~ formation track. 

The example shows a 3 track formation In which two of the tracks have an update and the 
third track has a miss. 

[1] lhe contacts are assigned to the tracks and the Influence Diagram Is constructed. 

f2) The tracks are updated. Inference of the measurements onto the state vectors Is carried 
out; the measurement nodes are Instantiated and then eliminated • 

. ' 

(3] The formation track is updated. Note that the track wHh the miss maintains the 
propagated covariance and slate vector. 
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t+ TRACK SPLITTING ('OR' SPLITS) 

1 

This chart shows the Influence Diagram operations Involved in splitting a track into alternative 

! 
1rackS due to mUltiple contacts In the gate. In this example, two contacts fall Into the gate. 

(1) Before the update processing, a single state vector, X-, and an unelaboraled update 
assignment node, 1+, exist. 

(2] The contact assignments are added as outcomes lo the t+ node. An arc Is added from the I+ 
node to the X· node which causes the outcomes to flow to the X- node, thereby creating two x 
node versions. (An error exists In the charl X1+ should be X1- and should have an arc to 
Z1.) The update assignments are also placed under the C nodes and arcs created from the C 
nodes to the Z nodes. Finally, In order to start the update process, a continuous arc from X1-
to 21, and X2· to Z2 are created and the measurement matrices placed on the arcs. 

[3) The arcs •e reversed; the Z nodes instantiated and then eliminated. 

(4) The track after the update shows two updated versions of the tJack state vector • 
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t- NODE PROCESSING 

.•. . . 

This cha" ~flows th~ l~fluenc:8 Diagram operations lnv.olved with track prediction processing. This 
proceSS consld8rs altemailve spawn hypotheses In which a track splits Into more than one track 
thereby cieatlng a formation. 

[1] ~efore the prediction processing, ~n !Jpdaled state vector exists and an unelaborated t- node. 

(2) h Is determined that the track either spawns a 2 track formation or remains a singleton track. As a 
result, an S2 · assignment and an 51 assignment are added as outcomes to tbe t- node. An arc Is 
added from t- to the X+ node and the outcomes ftow to the X+ node creating two alternatives. 
likewise, a predicted state vector, X-, lscreated and an arc from t- to X-Is created and tbe 
outcomes flow to create two versions lor X-. The S2 version creates 2 state vectors. Finally, arcs 
are added from the X+ versions to the X- versions and the data set on the arcs and In the nodes. 

[3) The arcs are reversed and the predicted state vectors are calculated. The X+ node can 1hen be 
deleted. 

(4) After predlcU~~ ~rocesslng, a predlc1ed 2-track version and a singleton track version exisL 



/0 C NODE PROCESSING . ·.· 

• CONTACT FALLS IN GATE BUT IS NOT A GOOD FIT TO TRACK SO NEW TRACK 
AND FALSE ALARM ARE FEASIBLE ALTERNATIVES I K ~ 
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C NODE PROCESSING 

This chart shows the Influence Diagram operations involved with processing a C node. In this 
example, the c:Onlact fell Into a track gate but fell near the edge of the gate. Therefore, 
there Is a reasonable likelihood that It may be a new track or false alarm. 

. . 

[1) Before processing the C node, the update assignment was added at the time the t+ node 
was processed. (See the chart on t+ node processing.) 

(2) The new track and false alarm outcomes are added and flow to the Z node creating new 
versions. A Z node state vector Is not created for the false alarm version. For the new 
track version, at+ node lscreated and an arc from the C node to the I+ node Is created. 
Ukewise, an X node Is created and an arc from the t+ node to the X Is created. Finally, an 
arc from the new track version for the X node to the new track version for the Z node is 
created and the data Is set. 

(3) The arc Is reversed; the Z node instantiated and the arc then eliminated. 

(4) After C node processing In this example, a new track is created • 
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S NODE PROCESSING 

• S NODE TRAVERSAL USES A* TREE SEARCH TO FIND ALL JOINT OUTCOMES (PATHS) 

SUCH THAT f path~~~- a) /best 

__,_____. 
} 

COMPLETED 
PATHS 

------- ----.... .,fill" -., 
, ' ,' ~ ',, t@-.@ \31 \ 

I ·~I 
\~ (§) / 
' ~ ,, , 
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....... __________ ~ 

· NUP . NMISS NFA NNT 
g = 1t (B up1 PO I) 1C (I-PD1) (BFA) (1\.JT) 

l . . 

............ I 
h* .................. ... 

PATH SCORE 

• f = g * h* =PATH SCORE 
• g = SCORE SO FAA 
• h*= SCORE TO GO 

(UPPER BOUND) 

h*= UPPER BOUND ON SCORE FOR REMAINING TRACKS AND CONTACTS K9·7246/027 
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S NODE PROCESSING 

. This chart summarizes the processing associated ~ith lhe scene node. The scene node, 5, is a 
vector discrete node the represents the Joint oUtcomes of a set of t+, I· and c nodes. The S node 
processing atterilpts to generate ·all feasible joint outcomes by using a search strategy based on 
the A* tree search algorltbm. 

The A• algorithm tries to find the best path In a tree by calculating the score so far, g, for a path and 
., upper bound on score to go, h". The scores are combined to create a score for each path, f, 
In the tree. The path with the highest score is then used for continuing the search for the best 
complete path • 

The score so far, g, Is a function of the number of updates and their llkeUhoods, misses, new tracks 
and new track density, and false alarmS and false alarm density on the path so far. 

The A* approach is used to find all complete paths, I.e. joint outcomes, that have scores within a 
certain distance to the best path. 

In lhls exampl&y the S node represents the a sete of seven random variables. 



S NODE PROCESSING 

SCENE PROCESSING (S) UPDATE TRACK PROCESSING (t+) 

LOOP 1. GET FEASIBLE OUTCOMES 
1. ~ELECT BEST INCOMPLETE 2. PERFORM ACTION FOR EACH OUTCOME: 

PATH ABOVE THRESHOLD I I 
UPDATE 1 MISS I FALSE TRACK 

2. IF NULL, EXIT • UPDATE STATE I • UPDATE DATA I • NO ACTION 

3. GET NEXT NODE • PRUNE ACTION 1 • PRUNE ACTION I 

4. ELABORATE NODE 
SPAWN TRACK PROCESSING (t•) 

1. GET FEASIBLE OUTCOMES 
5. EXTEND PATH 2. PERFORM ACTION FOR EACH OUTCOME: 

I I 
' ~· 

END LOOP NO SPAWN I SPAWN INTO K I FALSE TRACK 
• NO ACTION I • SPAWN ACTION I • NO ACTION 

I I 

CONTACT PROCESSING (C) 

1. GET FEASIB~E OUTCOMES 
2. PERFORM ACTION FOR EACH OUTCOME: 

I I 

UPDATE I NEW TRACK I FALSE ALARM 
• MERGE ACTION I • INITIATE TRACK I • NO ACTION 

K9-7246/026 



S NODE PROCESSING 

This chart outlines the process flow In elaborating the S node. A search loop is executed which carries 
out the A • search algorithm. Once a node Is selected for elaboration, then the node Is elaborated. 
Three elaboration routines exist: Elaborate I+ node which performs update track processing, 
elaborate t- node 'which carries out track spawn processing, and elaborate C node which performs 
contact processing. 

. . 
The basic algorithm architecture decomposes Into a global search which controls a localized 

elaboratlo·n proCesS. · · 
For each node and for each outcome added to the node an action is performed that is specific to the 

outcome added. 
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SCENE PROCESSING EXAMPLE - 0 

In the "ext 9 ~~' 1118. •ps In Scene processing are IUuslrated. The example chosen consists of two . 
tracks with overlapPing gites. Three contacts fall.in the gates with one contact In the overlap region. 

The S node consists ot 7 nodes~ and the S node and all 7 nodes are shown unelaboraled. For the 
following charts, the best path Is llustrated with the up arrow and the node udergoJng elaboration is 
highlighted. The order In which the nodes are visited are numbered . 
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SCENE PROCESSING EXAMPLE • 1 to 9 

This sequ~ce of ~arts show the step by step elaboration o' the Scene node and the nodes within 
\ • ' • • J • 

the sCene. At 8ach stage, the best path In the S node joint outcome1ree Is detennlned. The 
next node to be elaborated Is selected and the node Is elaborated~ During the elaboration , 
process, the continuous nodes are managed. When all paths are generated that are wHhln a 
certain tolerance of the best path are generated the S node elaboration process halts. 



t1 

SCENE PROCESSING EXAMPLE - 2 
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SCENE PROCESSING EXAMPLE- 3 

t = BEST PATH 

NOTE: HIGHLIGHTED NODE IS 
UNDERGOING ELABORATION 
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t = BEST PATH 
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SCENE PROCESSING EXAMPLE- 6 
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SCENE PROCESSING EXAMPLE- 8 
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SCENE PROCESSING EXAMPLE- 9 

NOTE: HIGHLIGHTED NODE IS 
UNDERGOING ELABORATION 

t = BEST PATH 

COMPLETE 
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SCENE PROCESSING EXAMPLE 

This chart shows the complete processing for the Scene node for the example of two contacts in the 
track gate·~· 

[1) The Scene node Is deftned as consisting of the update node for ihe track, t+, and the two contact 
nodes, C1 and C2. 

(2) The traversal algorithm based on A* search Is carried out to elaborate the S node and the l+, C1 
and C2 nodes. · 

[3) n The likelihoods calculated tor the joint outcomes In the Scene node are projected onto the 1+, 
C1 and C2 nodes. A Bayes' decision test is performed to select an outcome and prune the 
other outcomes. Pruning outcomes also removes versions on the continuous side of the 
Influence Diagram. 

(4] After the scene decision process, one outcome remains In this example: C1 updates the track 
and C2 begins a new track. 



SUMMARY 

• SHOWED HOW THE INFLUENCE DIAGRAM CAN BE USED TO: 

- REPRESENT PROBABILISTIC INFORMATION GENERATED 
IN MIDCOURSE TRACKING 

- CARRYOUT: 

• STATE ESTIMATION (UPDATE, PREDICTION, SPAWNING) 

• DATA ASSOCIATION (HYPOTHESIS GENERATION, SCORING 
AND SELECTION) 

• TRACK PROMOTION 

• CURRENTLY, TRACKER IS IMPLEMENTED USING INFLUENCE 
DIAGRAM UTILITIES, AND IS UNDERGOING EVALUATION 

K9-7246/062 
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SUMMARY 

This prese~~~ s~~ the charcteristlcs of the lnflu~nce Diagram and Its applicability to . 
Implementing mldcourse tracking algorithms. The coll~llon of Influence Diagram utilities pe~orm 

· lhe probabUisllc calculations associated with Kalman filler processing, track spawning, shared 
contact update and formation update processing, as well as association hypothesis scoring. 

Other advantages of the Influence Diagram Implementation are the following: 

** The Influence Diagram implementation automatically maintains all releveni Influences as part of the 
lnlerenclng process • 

•• The Kalman Fitter Implementation Is efficient and guarantees a positive semidefinite covariance 
matrix. 

** The lnfiiJellce Digram provides a useful means to organize and manage the track database. 


