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1. Experiment Design 
Applications

3

Example 1:  WTC Impact Core Damage Assessment
Q. After the plane impact of the WTC South Tower, there was no recorded data as to how 
many of the interior 47 columns of the building were damaged.  A finite-element analysis 
(FEA) program was written to simulate the impact. The plane was modeled by 1.4 million 
elements.  What factors most affected the performance of this FEA code?  What factors f ff p f f f
could be eliminated as unimportant?

3560

FEMA Report, pp. 2-17, 2-29

Q. How many internal columns were destroyed?
Q. What factors affected the FEA code?
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Construction: 1.4 Million Elements for Entire Plane 
(Labor Intensive)

Applied Res. Assoc.
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Sensitivity Analysis Experiment Design: 
List of Factors (Component = Engine)

Factors Under Study (k):Factors Under Study (k):
1. Flight Speed

2. Flight Impact Location (Vertical)

3. Flight Impact Location (Horizontal)

4. Engine Assignment Set

5. Engine Strength

6. Engine Failure Strain

(k = 13, n < 50)

DEX = g(k,n)

g

7. Engine Strain Rate Effects

8. Perimeter Column Strength

9. Perimeter Column Failure Strain

10. Perimeter Column Strain Rate Effects

11. FEA Model Erosion Parameter

12. FEA Contact Parameter

13 FEA F i i C ffi i

(Design and data based on 
research carried out by  

contractor: Applied Research 
13. FEA Friction Coefficient

Affordable Number of Runs: n < 50

pp
Associates)

Y = # Core Columns Damaged



4

6

Experiment Design: ?

k = 13, n < 50

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 Y

1

2

3

4

5 ?
Factors

6

7

8

9

10

11

.

?Runs

.

.

(50)
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Experiment Design: 1-FAT
k = 13, n = 1+13 = 14

X1    X2    X3    X4    X5     X6    X7    X8    X9    X10  X11  X12  X13    

1

2

3

4

5

6

7

Baseline - - - - - - - - - - - - -

- + - - - - - - - - - - -
- - + - - - - - - - - - -
- - - + - - - - - - - - -
- - - - + - - - - - - - -
- - - - - + - - - - - - -

+ - - - - - - - - - - - -

8

9

10

11

12

13

- - - - - + - - - - - - -
- - - - - - + - - - - - -
- - - - - - - + - - - - -
- - - - - - - - + - - - -
- - - - - - - - - + - - -
- - - - - - - - - - + - -
- - - - - - - - - - - + -

14
- - - - - - - - - - - - +
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Example 2:  Bullet Casing Forensics
Q. If a casing is collected at a crime scene, is it possible (by comparing the markings 
on the casing to national image data bases of such casing markings) to identify the 
type of gun that was used in the crime?  Is it possible to identify the individual gun 
that was used? 

Q1. Is a national casing image database feasible?
Q2. Is a casing traceable to an individual gun?

9

Example 3:  Lifetime of CDs
Q. Compact Disks (CDs) do not have an infinite lifetime.  The information on all CDs
will eventually degrade.  How did NIST carry out an accelerated testing program 
(with accelerants temperature and humidity) to most accurately estimate/predict the 
failure time at ambient conditions for commercial CDs? f f

Q. How estimate the lifetime of a CD?
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Example 4:  Scatterfield Optical Microscopy
Q. As computer chips get smaller and smaller, their line widths also proportionately 
decrease.  It is important to be able to measure such line widths accurately—it directly 
affects chip performance.  Scatterfield optical spectroscopy is a convenient and relatively 
inexpensive method for doing such.  How can NIST determine the critical parameters that p f g p
affect the quality of output from this method, and how can best settings be determined for 
this method so as to make this an optimal metrology tool? <With thanks to Rick Silver, 
MEL>

Q. What are optimal settings for Scatterfield Microscope?

11

NIST 
Physics

Plutonium Troubleshooting (SURF)
Am 241/243 Peal Deconv. Alg. Acc.
Cesium 137 Detection
Efficiency of Gamma Ray Emitters
Remote Radiation Detection  (SURF)
Sonoluminescent Light Intens.(SURF)
ASP (Adv. Spectrosc. Portal) Monitor.
PRD (Personal Radiation Detectors)

Chemistry
Carbon Nanotube Water Pollution
SRM 2396: DNA Base Biomarkers
Gate Dialectrics: SiO2 HRTEM Error
Microarray Sensors for Toxic Gas
DHS: Bio-Agent Detection
Radiocarbon C14 Albuq. CO Pollut.
(Cu-AU) 3D Nanoscale Chem. Imaging
Dual Rotor Turbin Fluid Flow

Material Science
MALDI TOF Spectrometry
Nanocantilever Atomic Force Mic.
Dental Polysac Adhesion
Bio Knee Cartilage Regeneration

Example 5

PRD (Personal Radiation Detectors)
Maritime Radiation Detectors
Soil Leeching Seq. Extraction Prot.

Elect. & Elect. Eng.
OLES: Bullet Proof Vest Reliability
Eddy Current Probe
IACP/OLES: Safety/Speed Devices Acceptance Samp.
DAC (Digital-to-Analog Converter) Calibration
OLES Fi fi ht I f d I i D i

SO2 Permeation Tube Mass Loss
KC (Key Comparison) Fluid Flow 

Build.& Fire Res.
World Trade Center FEA Core Damage
Cigarette Ignition Propensity
FHWA Highway Concrete Strength (COST)
Tall Building Deflection Safety Codes
HHS CONTAM H P ll ti Di i ti

Bio Knee Cartilage Regeneration
Ceramic Machining Strength
Comb. Chemistry Tape Peel

Manufacturing Eng. 
Scatterfield Microscopy

Genetic Alg. for Machine Tooling
SMS: Smart Machining System
NIJ/OLES: Forensic Imaging of Gun Casings

OLES: Firefighter Infrared Imaging Devices
OLES: Metal Detector Acceptance Sampling

HHS CONTAM Home Pollution Dissemination
Solar Sphere Testing of Polymeric Sealants
Optimization of Hot Plate Gap Parameters
Interlab: Thermal Hot Plate  Conductivity
Tomographic Flow Detection in Polymer-Bonded Concrete
HUD Lead Paint Test Kit Accuracy
HUD Lead Paint Extraction
Hospital Energy Consumption
Evaluating Strategies for Fire Safety
Paint Peel Strength

Information Tech.
Abilene Network Loss Rate
Motion Imagery Quality Metrics
RAVE Visualization Facility Calibration
Accelerated Testing of Compact Discs
Apache/Linux Web Processing Time
FEA NanoCantilever Sensitivity

Aerosol Spray Flow Rates
Asphalt Roofing Vertical Peel Testing
Remote Detection of Pre-Mold Moisture in Building Mats.
WTC FDS (Fire Dynamics Simulator) Sensitivity
WTC FDS Validation
WTC Impact Sensitivity
WTC FEA Insulation-on-Steel Thermal Propagation
WTC Structural Sensitivity
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Example 6:  Bobcat PRD Testing
Q. Personal Radiation Detectors (PRDs) are devices that can be worn by law enforcement 
and other public safety personnel to alert them to the presence of radioactive material and 
are fast becoming standard equipment.  The primary issue associated with the use of PRDs 
by law enforcement and public safety personnel is the performance of a PRD in detecting y f p f y p p f f g
radioactive sources in certain operationally relevant environments.  Given a group of PRD 
models, evaluate their performance over a range of conditions and uses.

Q. Are all PRD models equivalent?

1313

Example 7:  International General Aviation 
Radiation Detection
Q. Handheld and portable radiation detection systems are used by Customs and Border 
Patrol (CBP) officers to scan general aviation aircraft entering the country from abroad. 
Compare the performance of the currently depolyed equipment to multiple alternatives.

Q. Are the considered portable radiation systems equivalent?
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2. Problem 
Solving 

FrameworkFramework

15

1. What Problem are We Solving?
1. Every problem a question
2. If we cannot formulate our problem in the form of 1 or 2 

discrete questions, then we do not yet have the specificity
and/or the consensus to construct a focused experiment design 
to solve the problem

3. A problem without a question is not a problem--it is a 

Problem

p q p
“problem area”

4. Experiment designs attack specific problems--not general 
problem areas

Problem
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1. What Problem are We Solving?
1. Every problem a question
2. If we cannot formulate our problem in the form of 1 or 2 

discrete questions, then we do not yet have the specificity
and/or the consensus to construct a focused experiment design 
to solve the problem

3. A problem without a question is not a problem--it is a 

Problem

p q p
“problem area”

4. Experiment designs attack specific problems--not general 
problem areas

Problem

Question = ? 

17

2. What Constitutes a Solution?
1. Much discussion and specificity is needed to define precisely 

what constitutes a solution to the problem at hand 
2. This solution/deliverable is much easier to define if a specific

question has been crafted that encapsulates the problem being 
attacked.

Problem S l iProblem Solution

Question = ? ...
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2. What Constitutes a Solution? (cont.)
3. Examples of solutions/deliverables:

yes/no
#   +- #
(ranked) list of factors (and interactions?)
fitted function f
k b b i ( 1 2 3 k)

Problem S l i

k numbers: best settings (x1,x2,x3,...,xk)
go/no-go

Problem Solution

Question = ? ...

19

3. How Do We Get to the Solution?

Given a question …

Expert

?
Problem Solution

Question = ? ...
Data
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Expert
5 Steps ...

General Problem-Solving Framework/Structure

*
Problem Solution

Expert

1
2 3 4

5

Data
1. Characterizing

2. Sensitivity

3. Optimizing

4. Modeling 

1. #, Distribution

2. List: Ranked Factors

3. Vector: (x1,…,xk)

4. f
1. Principles
2. Techniques

1. Principles
2. Techniques

3
(k,n)

5. Comparing

6. Predicting 

7. Uncertainty

8. Verifying

9. Validating

5. Y/N 

6 # 

7. SD(#)

8. Y/N, Vector: (x1, …,xk)

9. Y/N, Vector: (x1, …,xk)

1. Estimation
2. Testing

1. Graphical
2. Quantitative

1. Classification
2. Translation
3. Construction
4. Execution
5. Recording

21

Virtue of Experimental Design

Assures that the data has the capacity to 
unambiguously answer the Scientific/ 
Engineering question at hand.

Assures also that the experiment is asAssures also that the experiment is as 
rigorous as is statistically and scientifically 
possible, and is above reproach by the 
scientific and legal community.
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3. Experiment Design
Definitions

23

Experimental design is a systematic rigorous

1. Experiment Design

Experimental design is a systematic, rigorous, 
data-based approach to scientific/engineering 
problem-solving. 

Th l f l dThe goal of experimental design is to generate 
valid, crisp, unambiguous, and reproducible 
conclusions about the scientific/engineering 
process of interest--and to do so in a time- and 
cost-efficient fashion. 
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2. Scope

1. The scope of an experiment is a set { ...} of factor 
di i hi h l i h l f hconditions over which we claim the results of the 

experiment are true/valid.

2. If we vary no factors (that is, every factor is fixed at a 
setting), then our scope will be narrow; if we vary many 
factors our scope will be broadfactors our scope will be broad.

3. The scope is dictated by usage--who will use the 
conclusions of our experiment, and under what 
conditions will our conclusions be utilized.

4. If a primary factor exists, there will be a tradeoff between 
primary factor discrimination and scope of conclusions.

25

2. Scope (continued)

5. Step 1 is do decide/declare what factors Xi should be p
included so as to achieve the desired scope--this 
requires brainstorming and initially yields a superset.

6. Step 2 is to loop through each of these factors Xi and 
decide what the population is over which we want our 

l i b lidconclusions to be valid.

Sample (Xi)

Population (Xi)

R t ti

Thus for each factor Xi ...

N = ∞n = finite

Representative

Inference/DEX
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3. Robustness

1 Th i ifi d i h “ l l i ”1. The scientific desire to have “general conclusions”--
conclusions in which we do not have to attach 
qualifiers--leads to the property termed “robustness” 

2. To achieve such robustness, expand the scope of your 
experiment by collecting data over a wide a range of 
(additional) factors as “reasonable” & affordable.

3. These additional robustness factors also must be 
handled with care – i.e. balance, coverage, etc. 

27

4. Factors & Levels

• Factors
• Levels
• Settings ?• Settings
• Parameters
• Variables
• Treatments

?
• Treatments 
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4. Factors, Levels & Response

• Factors = Parameters = Variables (Xi)

• Levels = Settings = Treatments (x )• Levels = Settings = Treatments (xi)

• Response (Y)

29

4. Factors, Levels, Response & Runs

Y = f(X1, X2, X3, ..., Xk)

k factors

nature’s f unknownresponse f

(k,n): k factors, n runs

(k,l,n): k factors, l levels per factor, n runs

p

(k,l,n): k factors, l levels per factor, n runs

A “run”: y = f(x1, x2, x3, ..., xk)
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Science: Cause & effect
A factor (ball size) has an effect if ...

5. Effect

A factor (ball size) is significant if ...

31

5. Effect (continued)

1. By default, “effect” by definition means shift in 
____________

2. Our ability to detect an effect  depends on the               
_______ ________ __ __ _____

location

intrinsic variability of the data
3. “Effect” could also mean shift in ____________
4. We conclude: “a factor has an effect” by 

computing a minimum statistical significant 
difference (via statistical hypothesis testing). Of 
equal importance is the minimum

variation

equal importance, is the minimum 
________________ significant difference.engineering
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6. Confounding

• Confounding occurs when levels of one factor are 
directly correlated with levels of another factor

Ball Size    
X1

Operator 
X2

Result 
Y

Ball Size - Operator 
Confounding:Y

Small Ernest 7.24
Small Ernest 8.15
Small Ernest 6.98
Small Ernest 7.40
L G d 10 23

Confounding:

The observed 
difference in the results 
Y cannot be 
unambiguously 

ib d i h hLarge Gordon 10.23
Large Gordon 11.05
Large Gordon 10.78

Large Gordon 10.11

attributed to either the 
ball size or the operator 
factor

33

6. Confounding (continued)

• Confounding is a curse to any experiment as valid, 
crisp and unambiguous results cannot be drawn

• Confounding factors may not always be obvious:g y y
– Environmental factors (Pres, Temp, Humi)
– Time (radiation sources decay over time)
– Time (mechanical wear)
– Time (learning curve)Time (learning curve)
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6. Confounding (continued)

• Five PRDs, Five operators.  Each PRD is operated by a 
single operator who takes 10 measurements

• Twelve maritime monitors are submitted for a one month 
test program against a single source.  
– Monitors 1-3 are tested in week 1; ;
– Monitors 4-6 are tested in week 2; 
– Monitors 7-9 are tested in week 3; 
– Monitors 10-12 are tested in week 4

• A portal monitor test explores runs at 5 mph and 2 mph.  
The runs at 5 mph have a source inside a  NORM p
container, The runs at 2 mph have a source behind a  
NORM container

35

• A technique for drift protection (insurance) recall learning effect

7. Randomization

• A technique for drift protection (insurance) – recall learning effect

• Basis for statistical estimation and inference:
– Allows one to infer from sample to population
– Key: Representativeness
– Fundamental tool: randomization
– Better tool: blocking (stratification)
– “Block what you can, randomize what you cannot”Block what you can, randomize what you cannot

Sample (Y) Population 
(Y)

Inference
N = 
∞

n = 8
Representative
Randomness

Blocking

Inference

Inference
Summarization
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• A technique applied to robustness factors to assure anti-

8. Blocking

confounding.

• A robustness factor is a blocking factor if each & every 
level of the robustness factor has each & every level of the 
primary factor occurring the same number of times p y g
(within-block balance).

• A robustness factor is a blocking factor if each (and every) 
level of the robustness factor has each (and every) level of 
the primary factor occurring the same number of timesthe primary factor occurring the same number of times 
(balance).

37

8. Blocking (continued)
(k=3, n=16, l=4)

 Car 
 I II III IV 

A B C D 

A B C D ra
nd

 
ut

io
n 

Design 1 X

X3

Cell Entry =
A B C D 

Ti
re

 B
r

D
is

tr
ib

u

A B C D 

 Car 

Blocking Factor

Design 1 X2

X3

y
Additive Type =X1

 I II III IV 
B D A C 

C C B D 

A B D B 

Ti
re

 B
ra

nd
 

D
is

tr
ib

ut
io

n 

D A C A 

Design 2
X2
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• A factor is balanced if every level of that factor occurs the 

9. Balance

same number of times over the n runs.
• Balance is a technique which 

1. minimizes the SD(effect estimates) and 
2. maximizes the Prob{concluding: an effect exists | the

reality : an effect exists}reality       : an effect exists}
• Balance is intuitively done when have a 

single factor (k = 1)
• Balance should be done regardless of the number 

of factors (k >= 1).( )

39

(k=1, n=6, l=2)

9. Balance (continued)

X1
(Ball)

-1
(Small)

+1
(Large)

X1
(Ball)

-1
(Small)

+1
(Large)

X1
(Ball)

-1
(Small)

+1
(Large)

X1
(Ball)

-1
(Small)

+1
(Large)

… … …
6&0 5&1 4&2 3&3 2&4 1&5 0&6

X1                Y
1                 5.15
1                 6.00
1                 6.85

9

8

7

x
x
xx

2                 7.15
2                 8.00
2                 8.85  

7

6

5
1            2

x
x
x
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9. Balance: Min SD(Del)
Del = y2bar - y1bar = 8 - 6 = 2
SD(D l) ?SD(Del) = ?

SD(Del) = Sqrt(Var(Del)) 
= Sqrt( Var(y2bar - y1bar) )
= Sqrt( Var(y2bar) + Var(y1bar) )
= Sqrt( (sigma**2 / n2) + (sigma**2 / n1) ) Sqrt( (sigma 2 / n2) + (sigma 2 / n1) )
= sigma * sqrt( 1/n2  + 1/n1 )
= sigma * sqrt( 1/n1  + 1/n2 )

n1           n2 = 6 - n1      sqrt( 1/n1 + 1/n2) )

(k=1,n=6)

6                    0                      infinite
5                    1                       1.20
4                    2                       0.75
3                    3                       0.67

41

9. Balance: Optimize the t Test 
t = Del / SD(Del)
= (y2bar - y1bar) /  [s * sqrt(1 / n1 + 1 / n2)](y y ) [ q ( )]

To determine if a statistically significant difference in location 
exists, the t-test may be employed:

21

12

11
nns

yytstat
+

−
=

t i d t t h t i th ti l l t ktstat is compared to tcrit where tcrit is theoretical value taken 
from tn1+n2-2 distribution

n1 n2 tstat tcrit=t4, 0.975 Shift?

3 3 2.88 2.78 Yes=
+

−
=

+

−
=

11850

68
11

12

s

yytstat

4 2 2.72 2.78 No

5 1 2.15 2.78 No=
+

−
=

+

−
=

1
1

5
185.0

68
11

21

12

nns

yytstat

=
+

−
=

+

−
=

2
1

4
185.0

68
11

21

12

nns

yytstat

++ 3385.0
21 nns
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9. Balance: Optimize the t Test

Balance provides optimal statistical discrimination

43

• A pair of factors is orthogonal if each of the 2 factors is balanced and if 
every combination of levels of the 2 factors occurs the same number of

10. Orthogonality

every combination of levels of the 2 factors occurs the same number of 
times over the n runs.

• Orthogonality is a DEX technique which 
1. minimizes the SD(effect estimates) and 
2. maximizes the Prob{concluding: an effect exists | the

reality       : an effect exists}
3 minimizes the SD(2-term interaction estimates)3. minimizes the SD(2 term interaction estimates)
4. maximizes the Prob{concluding: a 2-term interaction effect exists |

reality       : a 2-term interaction effect exists}
5. allows for effective usage of highly efficient fractional factorial

designs--especially for sensitivity experiments
6. with robustness factors, allows for an optimal “fair sampling” of

the robustness factor space especially for comparative and

*
*

the robustness factor space--especially for comparative and
robustness experiments
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10. Orthogonality (k = 2, n = 4)
Design Geometry(k=2, n=4, l=2)

X1 +

_

X1

X2

X1
_

X1

X2

X1
_

1

X2

-1

+1

- -
- -
- -
- -

- -
- -
- -
+  -

- -
- -
+  -
+  -

+

_

X1 X1 +

_

X1 X1 +

_

X1

X2

_

X2

_

-1 +1

- -
- -
+  +
+  + 

- -
+  -
- +
+  + 

X1 +

_

_

X1X1 +

_

_

X1
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10. Orthogonality (k = 2, n = 4)
(k=2, n=4, l=2)

X1 +

_

X1

X2

X1 +

_

X1

X2

X1 +

_

X1

X2

_ X1   X2

-1     -1

-1     +1

+1    -1

1 1+

_

X1

X2

_

X1

X2

_

_

X1 +1    +1

1-Dimensional Balance
2-Dimensional Balance

X1 +

_

_

X1 X1 +

_

_

X1

22 Full Factorial Design
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10. Orthogonality (k = 2, n = 3 or 4)
(k=2, n=3) (k=2, n=3)

2
(k=2, n=3)

X2

_

1FAT

4

X2

_4 15

X2

_4 5

22 22

X1 +

_

X12 3 X1 +

_

X12 3X1 +

_

X12 3

47

1-FAT Design 23-1 Orthogonal Design

10. Orthogonality (k = 3, n = 4)
(k=3, n=4) (k=3, n=4)

1-FAT Design

+
X2

X3

+

+

23 1 Orthogonal Design

+

X2

X3

+

X2 X2

X5

X4

X1

X3

+

_

_

_

_

_
X4

X1

X3

+

_

_

_

X1

X3

X1

X3

X1    X2    X3
- - -

X1    X2    X3
- - +

+       - -
- +      -
- - +

+       - -
- +      -
+       +      +
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10. Orthogonality (k = 3, n = 4)

(k 3 4) (k 3 4)
1-FAT Design 23-1Orthogonal Design

(k=3, n=4) (k=3, n=4)

For a given number of factors (k = 3) 
and a given number or runs (n=4),

not all experiment designs are equally good

49

5 2

10. Orthogonality (k = 5, n = 6 or 8)

1-FAT Design
X1  X2  X3  X4  X5
- - - - -
+     - - - -
- +     - - -

25-2Orthogonal Design
X1  X2  X3  X4  X5
- - - +     +
+     - - - -
- +     - - + 

- - +    - -
- - - +     -
- - - - +     

+    +     - +     -
- - +    +     -
+     - +     - +
- +     +     - -
+ + + + ++    +     +     +    +
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5 2

10. Orthogonality (k = 5, n = 6 or 8)

1-FAT Design

+

25-2Orthogonal Design

+

X5

+
X2

X3

+

_

_

_

X5

+
X2

X3

+

_

_

X5

X2
X3

X4

X1 +
_

_
+

X4

X1 +
_

_

_
+

X4

X1
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1-FAT Designs 27-4 Orthogonal Design

10. Orthogonality (k = 7, n = 8)

1-FAT Designs
X1  X2  X3  X4  X5  X6  X7
- - - - - - -
+     - - - - - -
- +     - - - - -

2 Orthogonal Design 
X1  X2  X3  X4  X5  X6  X7
- - - +     +     +     -
+     - - - - +     +
- +     - - +      - +

- - +    - - - -
- - - +     - - -
- - - - +      - -
- - - - - +     -
- - - - - - +

+    +     - +     - - -
- - +    +     - - + 
+     - +     - +     - -
- +     +     - - +     -
+    +     +     +    +     +     +
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1-FAT Design 27-4Orthogonal Design

10. Orthogonality (k = 7, n = 8)

1 FAT Design 2 Orthogonal Design

X
5

+

X1

X2
X3

+

+

_
_

_

+

X
5

+

X1

X2
X3

+

+

_
_

_

+

X
5

+

X1

X2
X3

+

+

_
_

_

+

X

X
5

+

X1

X2
X3

+

+

_
_

_

+

+

+

X
4

_ + X
4

_ +

X
4

X
5

+

X1

X2
X3

+

+

_
_

_

_

_

+

+ X
4

X
5

+

X1

X2
X3

+

+

_
_

_

_

_

+

+

X
4

_ + X
4

_ +

X
4

X
5

+

X1

X2
X3

+

+

_
_

_

_

+

+ X
4

X
5

+

X1

X2
X3

+

+

_
_

_

_

+

+

X7

X4

X5

+-

-

+

-

X6

X4
- +

53

1-FAT Design 27-4Orthogonal Design

10. Orthogonality (k = 7, n = 8)

1 FAT Design 2 Orthogonal Design
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For a given number of factors (k = 7) 
and a given number or runs (n = 8),

not all experiment designs are equally good
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Index X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
2 +1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
3 1 +1 1 1 1 1 1 1 1 1 1 1 1

10. Orthogonality (k = 13, n = 16)
World 
Trade
Center 3  -1 +1  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

4  -1  -1 +1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
5  -1  -1  -1 +1  -1  -1  -1  -1  -1  -1  -1  -1  -1
6  -1  -1  -1  -1 +1  -1  -1  -1  -1  -1  -1  -1  -1
7  -1  -1  -1  -1  -1 +1  -1  -1  -1  -1  -1  -1  -1
8  -1  -1  -1  -1  -1  -1 +1  -1  -1  -1  -1  -1  -1
9  -1  -1  -1  -1  -1  -1  -1 +1  -1  -1  -1  -1  -1

10  -1  -1  -1  -1  -1  -1  -1  -1 +1  -1  -1  -1  -1
11  -1  -1  -1  -1  -1  -1  -1  -1  -1 +1  -1  -1  -1
12  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1 +1  -1  -1
13 1 1 1 1 1 1 1 1 1 1 1 +1 1

Index X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
1  -1  -1  -1  -1  -1  -1  -1  -1 +1 +1 +1 +1 +1
2 +1  -1  -1  -1 +1  -1 +1 +1  -1  -1  -1 -1 +1
3  -1 +1  -1  -1 +1 +1  -1 +1  -1  -1 +1 +1 -1
4 +1 +1  -1  -1  -1 +1 +1  -1 +1 +1  -1 -1 -1
5  -1  -1 +1  -1 +1 +1 +1  -1  -1 +1  -1 +1 -1
6 +1  -1 +1  -1  -1 +1  -1 +1 +1  -1 +1 -1 -1

1 1 1 1 1 1 1 1 1 1 1 1 1

13  -1  -1  -1 -1 -1 -1 -1 -1 -1 -1 -1 +1 -1
14  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1 +1

7  -1 +1 +1 -1 -1 -1 +1 +1 +1 -1 -1 +1 +1
8 +1 +1 +1  -1 +1  -1  -1  -1  -1 +1 +1 -1 +1
9  -1  -1  -1 +1  -1 +1 +1 +1  -1 +1 +1 -1 +1

10 +1  -1  -1 +1 +1 +1  -1  -1 +1  -1  -1 +1 +1
11  -1 +1  -1 +1 +1  -1 +1  -1 +1  -1 +1 -1 -1
12 +1 +1  -1 +1  -1  -1  -1 +1  -1 +1  -1 +1 -1
13  -1  -1 +1 +1 +1  -1  -1 +1 +1 +1  -1 -1 -1
14 +1  -1 +1 +1  -1  -1 +1  -1  -1  -1 +1 +1 -1
15  -1 +1 +1 +1  -1 +1  -1  -1  -1  -1  -1 -1 +1
16 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

55

(k = 13, n = 16)

10. Orthogonality (k = 13, n = 16)

- +
8           8

Xi

All 13:

Orthogonal (n = 16)

Xi

+ 4 4
XjAll       :

13
2

- +- 4
Xi

4
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4. Experiment Design
Principles & Techniques

57

Expert

General Problem-Solving Framework/Structure

Problem Solution

Expert

1
2 3 4

5

Data
1. Characterizing

2. Sensitivity

3. Optimizing

4. Modeling 

1. #, Distribution

2. List: Ranked Factors

3. Vector: (x1,…,xk)

4. f
1. Principles
2. Techniques

1. Principles
2. Techniques

3
(k,n)

1 Cl ifi ti5. Comparing

6. Predicting 

7. Uncertainty

8. Verifying

9. Validating

5. Y/N 

6 # 

7. SD(#)

8. Y/N, Vector: (x1, …,xk)

9. Y/N, Vector: (x1, …,xk)

1. Estimation
2. Testing

1. Graphical
2. Quantitative

1. Classification
2. Translation
3. Construction
4. Execution
5. Recording



30

58

(k,n)

Every design has a  k and an n.y g
k = number of factors being varied
n = number or runs

k dictates the scopek dictates the scope
n dictates the affordability

necessary: n >= 1 + k
b 1 + k + C(k 2)better       : n >= 1 + k + C(k,2) 

59

DEX Principles & Techniques

dexprinciplesandtechniques.ppt     dexprintech.dp
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Framework Step 2: DEX:  5 Steps Unto Itself

2 1 Classification2.1 Classification

2.2 Translation

2.3 Construction

2.4 Execution

2.5 Recording

61

Expert

2.1: Problem Classification

Problem Solution

Expert

1
2

3
4

5

Data

3

1. Classification

2. Translation

Q. …?

3. Construction

4.  Execution
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Most Important Factors?Is this Factor Significant? 

Problem Classification

Y = f(X1, X2, X3, …, Xk)

2. (Screening/Sensitivity)( 1. Comparative Robust Inference)

Y  f(X1, X2, X3, …, Xk)

Best Settings of the k Factors?

4. (Optimization)
Good Approximating Function?

3. (Regression)

63

Comparative Screening/Sensitivity

Problem Classification
p

Focus: 1 primary factor

Q1. Does that factor have an effect (Y/N)? 

Q2. If yes, then best setting for that 

that factor = ? (vector)

Constraint: Want conclusions to be robust

over all other factors

Designs: CRD, RBD, LSqD,TPD

g y
Focus: all factors

Q1. Most important factors (ranked list)

Q2. Best settings (vector)

Q3. Good model (function)

Designs: 2kD, 2k-pD,TD

BHH, Ch. 5-6

g , , q ,

BHH, Ch. 4

Regression
Focus: all factors

Q1. Good model (function)

Continuous factors

Designs: BBD,XOD

Optimization
Focus: all factors

Q1. Best settings (vector)

Continuous factors

Designs: RSD, CD, BBDg ,

BHH, Ch. 10-11

g , ,

BHH, Ch. 12
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Problem Classification

Critical: The choice of design is dictated

by the problem classification

Comparative/Robust: CRD RBD LSD TPDComparative/Robust:  CRD, RBD, LSD, TPD

Screening/Sensitivity: 2kD, 2k-pD, TD

Regression:                 BBD, XOD

Optimization:              RSD, CD, BBD

65

Comparative Screening/Sensitivity

Problem Classification
p

Focus: 1 primary factor

Q1. Does that factor have an effect (Y/N)? 

Q2. If yes, then best setting for that 

that factor = ? (vector)

Constraint: Want conclusions to be robust

over all other factors

Designs: CRD, RBD, LSqD, TPD

g y
Focus: all factors

Q1. Most important factors (ranked list)

Q2. Best settings (vector)

Q3. Good model (function)

Designs: 2kD, 2k-pD, TD

BHH, Ch. 5-6

g , , q ,

BHH, Ch. 4

Regression
Focus: all factors

Q1. Good model (function)

Continuous factors

Designs: BBD, XOD

Optimization
Focus: all factors

Q1. Best settings (vector)

Continuous factors

Designs: RSD, CD, BBDg ,

BHH, Ch. 10-11

g , ,

BHH, Ch. 12
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Most Important Factors?Is this Factor Significant? 

Problem Classification (Revisited)

Y2 = g(Y = f(X1, X2, X3, …, Xk)) =

2. (Screening/Sensitivity)( 1. Comparative Robust Inference)

0
Y2  g(Y  f(X1, X2, X3, …, Xk))  

Best Settings of the k Factors?Good Approximating Function?

1

g f

4. (Optimization)

pp g

3. (Regression)

Worst
Accept/Reject this Product/System?

5. (Acceptance)     

67Problem Classification (Revisited)
Comparative
Focus: 1 primary factor

Q1. Does that factor have an effect (Y/N)? 

Q2 If yes then best setting for that

Screening/Sensitivity
Focus: all factors

Q1. Most important factors (ranked list)

Q2 Best settings (vector)
*

Q2. If yes, then best setting for that 

that factor = ? (vector)

Constraint: Want conclusions to be robust

over all other factors

Designs: CRD, RBD, LSqD,TPD

Regression

Q2. Best settings (vector)

Q3. Good model (function)

Designs: 2kD, 2k-pD, TD

Optimization

Acceptance
Focus: all population points 

Focus: all factors

Q1. Good model (function)

Continuous factors

Designs: BBD,XOD

Focus: all factors

Q1. Best settings (vector)

Continuous factors

Designs: RSD, CD, BBD

Many real-world problems

h ld b d i 2=> all t-tuples of settings

Q1. Accept the product/system as safe?

Q2. Points failure

Q3. t-tuples of settings failure

Q4. Factors affecting safety?

Designs: 2k-pD,CD

should be done  in 2 stages:  

1. exploratory (= sensitivity analysis) 

2. ultimate objective
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Problem Classification

Critical: The choice of design is dictated

by the problem classification

Comparative/Robust: CRD RBD LSD TPDComparative/Robust:  CRD, RBD, LSD, TPD

Screening/Sensitivity: 2kD, 2k-pD, TD

Regression:                 BBD, XOD

Optimization:              RSD, CD, BBD

Acceptance: 2kD, 2k-pD, CD

69

Sc/Eng Stat

2.2 Translation: Sc/Eng Stat

Sc/Eng
Problem

DEX

Stat
Problem

Data

Stat

Sc/Eng
Solution

Stat
Solution
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For one’s own project/problem:

2.2 Translation: Minimal Info for an Experiment
Specificity is the key ...

For one s own project/problem:

1. Title = _______________________________

_____________________________________

_____________________________________

2. Problem/Question = ____________________

_____________________________________

_____________________________________

3. Number k of Factors to Vary = ______

4. Sample Size n                          = ______

712.2 Translation: DEX Worksheet
Experiment Design Worksheet:   

 
  1. Project/Problem Title: 
 
  2. Researcher: 
  3. Project Background & Importance: 

Date:

 
 
  4. General Project Question: 
 
 
 
  5. Specific Project Question (This Experiment Only): 
 
 
 
 
  6. (Generic) Stat Goal(s): 
 
 
  7. Scope of Conclusions:p
 
 
DEX Essentials:               Generic Stat Model: Y = f(X1,X2,...,Xk) + e 
  8. Response Variable Y            :  
  9. Current Typical Value for Y           : 
10. Project Target Value for Y           : 
11. Project Min. Eng. Significant D for Y    : 
12. Project Min. Eng. Residual SD for         : 
 
13. Run Time & Cost per Observation     : 
14. Total Available Experiment Time & Budget:  
15. Constraint: Max Affordable Number of Runs              n  <=  
16. Number of Factors to Vary/Investigate            k    =  
17. Factors & Factor Levels:
    Factor                           C/D            Range          #Levels                 Levels 
      X1 
      X2 
      X3 
      X4 
      X5 
      X6 
      X7 
 
18. General DEX Category (Pred&Unc, Comp, Scr/Sens., Regr., Optim., Robust/V&V): 
19. Specific DEX: 

dexworksheet.doc
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2.3 Construction

1 C t ti i ( l ti l )1. Construction is (relatively) easy

2. Having multiple designs “on the table” is useful

3. 2-level designs (especially 2-level fractional

factorial designs are very powerful forfactorial designs are very powerful for

doing sensitivity problems.

4. Many tabulated designs

(e.g, Box, Hunter & Hunter, p. 410/272)

73

2.3 Construction (How to start)

St t ( t ll ) ith th f ll f t i lStart (conceptually) with the full factorial 

design with all levels of  all k factors

If affordable (n), then design may be done.If affordable (n), then design may be done.

If not affordable (n), then ...
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2.3 Construction (4 ways to reduce n)

1 R d th b f f t (k) *1. Reduce the number of factors (k)

2. Reduce the number of levels (l)

3. Reduce the number of replications (r)

4. (Orthogonal fractional factorial designs)4. (Orthogonal fractional factorial designs)

75
2.3 Construction (orthogonal fractional factorial 
designs)

Benchmark Problem
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20

5 Factor Model (“Truth”)

Benchmark “FEA” Problem for 
Comparing/Evaluating Designs

Y = f(X1, X2 X3, X4, X5) =        65.5 +

0.5 { -1.375 X1 + 19.5 X2 - 0.625 X3 + 10.75 X4- 6.25 X5 +

1.375 X1X2 + 0.75 X1X3 –0.875 X1X4 +0.125 X1X5 +

0.875 X2X3 + 13.25 X2X4 + 2 X2X5 +

1.125 X3X4 + 0.975 X3X5 – 11X4X5 +

1 5X X X 1 375X X X 1 875X X X

ME

2TI

C

1.5X1X2X3 + 1.375X1X2X4 – 1.875X1X2X5 –

0.75 X1X3X4 –2.5 X1X3X5 + 0.625 X1X4X5 + 

1.125 X2X3X4 + 0.125 X2X3X5 – 0.245 X2X4X5 +

0.125 X3X4X5 +

0.0 X1X2X3X4 + 1.5 X1X2X3X5 + 0.625 X1X3X4X5 +

1 X1X3X4X5 – 0.625 X2X3X4X5 –

3TI

4TI

5TI0.5 X1X2X3X4X5} 5TI

Box, Hunter, & Hunter, p. 377

Q. Most important factors = ?

77

(k = 5, n= 32/16/8/6)

Benchmark “FEA” Problem for 
Comparing/Evaluating Designs(4)

25

Full 
Factorial
Design

n = 32

Experiment Design
Problem: Determine Most Important Factors in a k = 5 Factor Experiment

5020ˆ =β
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00.11ˆ
25.13ˆ
50.19ˆ

3

1

5

4

45

24

2

−=

−=

−=

=

−=

=

=

β

β

β

β

β

β

β

YX5X4X3X2X1

98-++++
95-+++-
60-++-+
66-++--
93-+-++
94-+-+-
61-+--+
69-+---
61--+++
54--++-
56--+-+
53--+--
61---++
63---+-
53----+
61-----
YX5X4X3X2X1

82+++++
81++++-
42+++-+
49+++--
77++-++
78++-+-
45++--+
44++---
65+-+++
67+-++-
55+-+-+
59+-+--
65+--++
70+--+-
63+---+
56+----
YX5X4X3X2X1

Design Name Design Tableau              Design Geometry     Effect Estimators
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Conclusions: 1-Factor-at-a-Time Designs are Poor. Orthogonal Designs are Excellent.
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2.4 Execution

RandomizationRandomization

Blocking

79

2.5 Recording

The best of designs can be negated by poor recording /The best of designs can be negated by poor recording /

database practices
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5. Statistical Analysis
Principles & Techniques

81

Expert

General Problem-Solving Framework/Structure

Problem Solution

Expert

1
2 3 4

5

Data
1. Characterizing

2. Sensitivity

3. Optimizing

4. Modeling 

1. #, Distribution

2. List: Ranked Factors

3. Vector: (x1,…,xk)

4. f
1. Principles
2. Techniques

1. Principles
2. Techniques

3
(k,n)

1 Cl ifi ti5. Comparing

6. Predicting 

7. Uncertainty

8. Verifying

9. Validating

5. Y/N 

6 # 

7. SD(#)

8. Y/N, Vector: (x1, …,xk)

9. Y/N, Vector: (x1, …,xk)

1. Estimation
2. Testing

1. Graphical
2. Quantitative

1. Classification
2. Translation
3. Construction
4. Execution
5. Recording
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Stat Analysis Principles & Techniques

83
10 Step Graphical Analysis of 2-Level Designs (Dataplot)

1. Ordered Data Plot 2. Scatter Plots 3. Main Effects Plot 4. Interaction Effects Matrix

5. Block Plots 6. Youden Plot 7. Pareto Plot 8. Half-Normal Plot 

9. Cumulative ResSD Plot 10. Contour Plot
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WTC Impact Core Damage Assessment
Q. After the plane impact of the WTC South Tower, there was no recorded data as to how 
many of the interior 47 columns of the building were damaged.  A finite-element analysis 
(FEA) program was written to simulate the impact. The plane was modeled by 1.4 million 
elements.  What factors most affected the performance of this FEA code?  What factors f ff p f f f
could be eliminated as unimportant?

3560

FEMA Report, pp. 2-17, 2-29

Q. What factors affect quality of FEA code predictions?

85

2. Sensitivity Analysis Experiment 
Design: List of Factors (Component = 

Engine)
Factors Under Study (k):

Factors ...

Factors Under Study (k):
1. Flight Speed

2. Flight Impact Location (Vertical)

3. Flight Impact Location (Horizontal)

4. Engine Assignment Set

5. Engine Strength

6. Engine Failure Strain

(k = 13, n < 50)

DEX = g(k,n)

g

7. Engine Strain Rate Effects

8. Perimeter Column Strength

9. Perimeter Column Failure Strain

10. Perimeter Column Strain Rate Effects

11. FEA Model Erosion Parameter

12. FEA Contact Parameter

13 FEA F i i C ffi i

(Design and data based on 
research carried out by  

contractor: Applied Research 
13. FEA Friction Coefficient

Affordable Number of Runs: n < 50

pp
Associates)

Y = # Core Columns Damaged
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 Y

Experiment Design: 1-FAT
k = 13, n = 1+13 = 14

Design ...
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(k = 13, n = 17+)

Design ...
Experiment Design: 213-9 Orthogonal Fractional Factorial wcp

 
Run IS ILV ILH EAS ES EFS ESRE CS CFS CSRE MEP MCP MFC Core Damage 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 Y 
1 1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 0.313 
2 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 0.154 
3 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 0.162 
4 1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 0.449 
5 -1 1 1 1 1 1 -1 -1 -1 -1 1 -1 -1 0.295 
6 -1 1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 0.015 

( , )

7 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1 1 0.019 
8 -1 -1 1 -1 1 1 1 1 -1 -1 -1 1 1 0.424 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28 
10 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 0.08 
11 1 1 1 -1 1 -1 -1 1 -1 1 1 1 -1 0.035 
12 1 -1 1 1 1 -1 1 -1 -1 1 -1 -1 1 0.043 
13 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 1 0.095 
14 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 1 0.288 
15 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1 0.067 
16 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 0 063 16 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 0.063 
17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.301 

 
"Figure" 1.4  Data from 213-9 (with center point) orthogonal experiment design  

 for engine/core-column impact study 
Y = .175
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(k = 13, n = 17+)

Data ...
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16 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 0 063 16 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 0.063 
17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.301 
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1. Ordered Data Plot 2. Scatter Plots 3. Main Effects Plot 4. Interaction Effects Matrix

10 Step Graphical Analysis of 2-Level Designs (Dataplot)
Analysis ...

5. Block Plots 6. Youden Plot 7. Pareto Plot 8. Half-Normal Plot 

9. Cumulative ResSD Plot 10. Contour Plot

DEXPLOT.DP
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5. Data Analysis (Graphical):  Most Important Factor, “Best” Setting

Ordered Data Plot

Analysis ...
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5. Data Analysis:  Most Important Factor, Best Setting

Ordered Data Plot

Analysis ...
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5. Data Analysis:  Estimation of Factor Effects

Halfnormal Probability Plot of |Effects|Main Effects Plot

Analysis ...

.175

Least Squares Estimates
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5. Data Analysis:  Estimation of Factor Effects

Halfnormal Probability Plot of |Effects|Main Effects Plot

Analysis ...

.175

Least Squares Estimates
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5. Data Analysis:  “Best” Settings

Main Effects Plot

Analysis ...

.175

+ + +- - - - + - + . - - . + .
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5. Data Analysis:  Confounding

Interaction Effects Matrix

Analysis ...

X10
X1*X9
X2*X4

*X3*X6
X7*X12
X8*X13

1 + 13 + 78
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6. Conclusions

10 21 ( 120%) ( i C l S i ff )

Analysis ...

X10 -.21 (-120%) (Perimeter Column Strain Rate Effects)
X3 -.10 (-57%)  (Impact Location: Horizontal)
X9 -.08 (-46%)  (Perimeter Column Failure Strain)  
X5 +.07 (+40%)  (Engine Strength)  
X2 -.04 (-23%)  (Impact Location: Vertical)

with least important factors being

X13  .00 (0%) (FEA Friction Coefficient) 
X11  .00 (0%) (FEA Erosion Parameter)  
X8  .00 (0%) (Perimeter Column Strength)

FEA for plane: 1.4 million elements

Additional ARA Runs: LHC => f
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6. Conclusions
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Conclusions
1. Approach: A structured problem-solving approach exists,

with generic and relevant questions, issues, & methodologies

2. Design: Design is more important than analysis

3. (k,n): Every design has a (k,n) (specificity)

4. Problem Categories: Scientific problems often generically fall into 4

categories--these categories have corresponding designs

5. Designs & Conclusions: Designs makes a difference in terms of the

quality of estimates  and validity of conclusions

6. Orthogonal: 1FAT designs are poor; orthogonal designs are excellent

7. Fractional: If the number of runs n is an issue

then orthogonal fractional factorial designs are excellent

8. 2k-p: 2-level orthogonal fractional factorial designs are

remarkably insightful and extremely n-efficient
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