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Abstract

The large shift of U.S. employment from goods producers to service producers has

generated concern over future income distribution, because of perceived large relative

pay differences.  This paper applies a nonparametric density overlap statistic to compare

the sectors� distribution of full-time, weekly wages at all wage levels.  To counter

problematic features of Current Population Survey data--sampling variation at infrequent

wage rates and extensive rounding at common wage rates--we employ nonparametric

density-estimation procedures to isolate the underlying shapes of the densities.  The

validity and accuracy of these two approaches when combined is supported by Monte

Carlo simulations.  Standard errors and confidence intervals indicate that our results are

statistically significant.

Broad similarity between goods and services wage distributions is found

throughout the period from 1969 to 1993; however, the densities slowly diverge until

1980, after which they tend to converge.  By the 1990s, the estimated densities are more

than 95 percent identical.  The breadth of this similarity and steady recent convergence

are not easily identified by typical comparison statistics. Furthermore, the wage densities

are most comparable in the central deciles, a finding that disputes the bimodal

characterization of service-sector wages.  Two potential explanations for the time pattern

of the overlapping coefficient are considered by forming hypothetical distributions, but

neither of these explanations removes the pattern.
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I.  Introduction

The dramatic expansion of the share of U.S. workers employed in service-

producing industries has provoked much controversy.1  Judgments regarding the

desirability of this transformation often imply assumptions about the relative distribution

of wages in the two sectors, and about changes in the nature of the distributions over

time.  The shift toward service-producing employment is often credited with changing

certain features of the overall wage distribution -- Bluestone and Harris (1988)stress this

explanation for growing wage inequality.  One version of this story contends that the

service-sector wage distribution is somewhat bimodal relative to the goods-producing

distribution.2  Consequently, the growing service sector is blamed for a perceived

replacement of manufacturing and construction jobs at the middle of the overall wage

distribution with low-wage and high-wage service positions.3  Furthermore, differences in

industry wage structures represent an important element in foreign trade explanations of

rising earnings inequality, like Borjas and Ramey (1995).

Academic research on industry relative wage levels has mainly focused on

differentials between narrow industries.  While the research in this area (for example,

Krueger and Summers [1987, 1989] and Helwege [1992]) does not necessarily contradict

the results of our analysis because of methodology differences, it reinforced the belief of

                                                

1 Barlett and Steele (1992) and Bernstein (1994) are two recent books which warn about wage consequences of the shift away

from goods-producing employment.  Newspapers and other popular publications are also a recurring source of similar opinions, for example,

Johnson (New York Times, 1994) and Hoagland (Washington Post, 1993).  The 1994 Federal Reserve Bank of Dallas annual report, titled

�The Service Sector: Give It Some Respect� is fairly representative of the other side of the debate.
2  See Kassab, 1992, p. 4.  This view also crops up in newspapers: according to Johnson (New York Times, 1994), �As the

Millers [a family supported until recently by  manufacturing jobs] gaze into the future...they see an employment landscape shaped like a barbell.

At one end are bankers and lawyers...; at the other end are countermen at fast-food franchises....�
3  Barlett and Steele (1992) stress this thesis.
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large sectoral wage differences.  Most analyses of sectoral wage differences focus on

averages (perhaps derived from a regression with controlling variables), which ignores

differences in wage distribution to the extent that they fail to alter the mean difference.4

The statistical tools available to compare two unknown distributions typically rely

either on strong distributional assumptions (for example, equivalence of parameters for a

normal or lognormal distribution), or do not provide estimates of the level of similarity

between nonequivalent distributions (such as the Kolmogorov-Smirnov equality-of-

distributions test).  These tests also require exacting confidence levels to reject the

hypothesis that the distributions are distinct when sample sizes reach the thousands of

observations available in the Current Population Survey (CPS).  In order to examine the

relative shapes of the sectoral wage distributions, this paper uses a nonparametric

measure of density overlap to examine wage differences between the two sectors over

time.  While the statistic has long existed in the literature, it rigorously developed only

with respect to normal distributions and has rarely been applied.  We also modify this

statistic in order to identify the locations within the distribution that account for the non-

overlap in each year.  The statistical significance of all overlapping statistics in this

analysis is evaluated using bootstrapping techniques.

This statistic is applied both to empirical densities and to �smooth� densities

estimated using a kernel density estimation procedure.  The estimated densities have  the

advantage of reflecting the shape of the densities without the large amount of rounding

                                                

4  An exception is Lawrence (1984) who compares distributions, in terms of low, middle and high income ranges at two points of

time.  This approach would be complicated if extended over the full time period as sectors because of need to choose appropriate cutoffs and

differing business cycles in the sectors.  While similar in focus, this analysis is much less general in its coverage and lacks measures of the

statistical significance of the results.
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evident in the raw data.  Rounding lowers the apparent overlap of densities by allowing

economically insignificant variations in pay levels to lead to substantial nonoverlap at

clustered wage levels.  Monte Carlo simulations demonstrate two major advantages of

applying smoothing prior to calculating the overlapping coefficient:  sharply reduced bias

in the measure and improved small sample estimation.  These simulations are based on

controlled samples from commonly used CPS wage data.  The combination of these two

techniques enables us to reliably measure broad sectoral wage differences and should be

broadly applicable to other comparisons of wages between groups.

Our results chronicle substantial sectoral wage convergence over the last decade,

and also indicate that overlap has been consistently strongest over the middle quantiles of

the distributions  These results reflect secular trends easily distinguished from sampling

variation.  We extend these results to show that more narrowly-defined industries and a

hypothetically constant education distribution do not disrupt these trends.

II.  The Data

The results in this paper are based on weekly wage data drawn from 25 years of

the March CPS--1970 to 1994.  Our weekly wages are constructed from weeks worked

the previous year and total earnings from the previous year, resulting in wage data that

span the period from 1969 to 1993.  Annual earnings are corrected for Census Bureau

topcoding procedures that cap reported annual wage and salary earnings at $50,000 to

$199,998, depending on the year.5  While not necessary for most of the analysis in the

                                                

5  The topcoding correction assigns all topcoded wage observations the mean of a Pareto distribution truncated at the topcode,

according to the formula reported in Shryock, et al. (1971).  The steepness of the distribution prior to the topcode is measured from the 90th

percentile to the topcode.
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paper, wages are inflated (using the GDP Personal Consumption Expenditures Deflator)

into constant 1993 dollars to allow readers to compare figures across years.

Our sample includes noninstitutional civilian adults who usually worked full time

(at least 35 hours per week) for at least 39 weeks in the previous year.  Part-time workers

are not considered, partially because hourly wage data are not available prior to 1985, but

also because we want to consider comparable workers and jobs in each sector.  The

differences between full-time and part-time wages, while potentially relevant due to the

higher part-time employment rates in the service sector, reflect a wide variety of factors

(many of them unrelated to employment opportunities) that are not the focus of this

study.  The majority of part-time workers choose their hours for noneconomic reasons

(see Dupuy and Schweitzer [1995]).  Furthermore, Blank (1990) finds that the lower pay

accorded to part-time positions primarily reflects the workers� lower observed and

unobserved skills. We exclude workers listed as reporting less than half of the real 1993

minimum wage to avoid a small number of problematically low wage observations.6

For the sake of comparison with published figures, the difference between sectoral

median weekly wages for our full-time sample are presented in Figure 1.  The most

striking feature is the convergence of median wages between 1979 and the early 1990s.

In 1993, the median service job paid $19 per week less than the median goods-producing

job -- down from a 1979 difference of $83.  The relatively small differences between

sectors throughout the period are due to focusing on full-time workers.

                                                

6  The minimum full-time workweek of 35 hours is used to calculate the weekly earnings implied by this cutoff.
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However, even for 1993, the wage distributions for the two sectors are statistically

distinguishable from each other.  Kolmogorov-Smirnov tests indicate that the null

hypothesis of equal sectoral wage distributions can be rejected with great confidence

(higher than 99.9 percent) for each year in the sample.  Furthermore, for both sectors in

each year, Kolmogorov-Smirnov tests reject the hypothesis that wages are distributed

lognormally (again with greater than 99.9 percent confidence).

III.  Measuring the Closeness of Distributions

While any number of summary statistics can be used to compare distributions, our

approach focuses on comparisons of probability density functions.  The overlapping

coefficient (OVL) compares the frequencies throughout the range of a variable between

two samples.  Direct application of the OVL provides an easily interpreted, substantive

measure of the closeness of two samples, drawn from a population of an arbitrary

functional form, when a suitably defined histogram is an adequate representation of the

populations.

The OVL is a straightforward, but seldom used, measure.  Bradley (1985) and

Inman and Bradley (1989) promote the use of OVL as an intuitive measure of the

substantive similarity between two probability distributions.  Graphically, OVL is the area

where the densities of the two distributions overlap when plotted on the same axes (see

Figure 2).  This representation allows a simple hypothesis--that workers in one group are

more likely to earn a particular wage than workers in another--to be expanded across all

possible wage levels.
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In the discrete case, appropriate for empirical distributions, OVL is formally

defined as

[ ]OVL f X f X
X

= ∑ min ( ), ( )1 2 ,

where f1(X) and f2(X) are the empirical probability density functions or simply proportions

of the sample.  With continuous distributions, OVL is defined analogously with

integration replacing the summation.7  While Inman and Bradley�s (1989) development of

OVL focuses on the coefficient�s estimation and properties assuming normal distributions,

the value of the OVL in this application is due to the fact that OVL is defined without

regard to any distributional assumptions.  Furthermore, OVL is invariant to

transformations that are one-for-one and order-preserving (like a price deflator), when

applied to both distributions.

One limitation of OVL was noted by Gastwirth (1975) in the case of income

comparisons:  Potentially meaningful changes in income for individuals do not necessarily

alter OVL.  In particular, referring again to Figure 2, if one of the observations beyond the

intersection of the densities (v) is given more X (which could be wages), OVL is

unchanged.  More generally, for xi the value of X for observation i adding or subtracting D

to i�s holdings of X such that sign[ ] sign [ ]f (x ) - f (x ) =  f (x + ) - f (x + )1 i 2 i 1 i 2 i∆ ∆  leaves

OVL unchanged.  While Gastwirth considers this a serious problem for evaluating the

effects of affirmative-action programs on the wages of whites and minorities, in

comparing the wage distributions of industries there is no sense in which it is preferable

for particular workers in one industry to get larger salary increases than in another.

                                                

7  Inman and Bradley (1989).
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On the other hand, we may wish to know what wage ranges cause the distributions

to differ substantially.  An example of a hypothesis easily framed in this context is the

following: �While wages are quite similar for top earners in both sectors, the service

sector is dominated by good jobs and bad jobs, lacking the midlevel wage opportunities

available in goods production.�  To address these issues using OVL, we can split OVL

into the overlap associated with a range of wages.  Defining qa as the wage rate at the ath

percentile of the full sample (both sectors) and g as a constant percentage, OVL can be

split into quantile ranges:

[ ]{ }
OVLQ =  α

α α γ

γ

min ( ), ( )

[ , ].
( , ]

f X f X
X q q

1 2

0 1
∈ +

∑
∈

For the same reason that OVL is generally unaffected by changes in wages for

specific observations (location doesn�t matter), the choice of a does not alter the possible

values that OVLQa may take.  In the case where at each wage level between qa and qa+g

the observed frequencies f1(x) and f2(x) are always equal, OVLQa equals the sum of the

frequencies of f(x) (the density of the full sample) between qa and qa+g, which by

definition of the percentiles equals g divided by g, or one.  The other extreme is defined

by the case where wages in the two sectors are completely disjoint in the range defined by

qa and qa+g; thus the minimum of the two densities is always zero in this range.  This

could occur in a variety of ways; for example, when no workers in a sector are paid

wages in the range, or when workers in one sector are paid in even dollar amounts while

the other sector pays in odd dollar amounts.
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OVL allows intuitive comparisons of the degree of similarity between empirical

distributions across years.  OVLQ allows the similarity or dissimilarity to be located

within the distribution of wages.

IV.  Nonparametric Density Estimation

In cases where the discrete jumps of frequency (a feature of histograms) are not

an acceptable description of the underlying density, a nonparametric estimate of the

empirical density may be favored.  Nonparametric density estimation has been

recommended for exploratory data analysis in the statistics literature because features of

the distribution are often readily visible in the density (Fox [1990] and Révész [1984]).

Nonparametric density estimation can easily be thought of as sophisticated histograms.

The appearance and implicit interpretation of histograms are strongly dependent on the

number of bins.  As their binwidth increases (the number of bins is reduced), potentially

interesting details of distribution are lost.  However as the binwidth is decreased,

discontinuities due to sampling may arise.  Nonparametric density estimation attempts to

strike a balance between these effects when the underlying density is assumed to be

�smooth.�

In the case of U.S. wage data there are two clear reasons to believe that some

smoothing may be needed:  sampling and rounding.  The CPS, while an unusually large

survey, is still subject to noticeable sampling errors at the level of detail needed for

empirical density functions.  For example, at the fairly common wage of $400 ($10/hour

for 40 hours) only 294 goods-producing workers were surveyed in 1993.  Year-to-year

variation in the sample could lead to surprising differences between sectors at a given
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wage level.  If the underlying densities of wages are smooth, then the surrounding wage

rates may yield information that ameliorates this phenomenon.

A very prominent feature of CPS wage data is the high frequency of wage

observations at round numbers.  This could be due to recall bias favoring round numbers

on the part of survey respondents or a tendency for employers to round pay to round

numbers.  Regardless, the spikes evident in the raw data may not be relevant features for

the purposes of the comparison.  For example, a smaller tendency to round in one

industry would alter the measured OVL without implying large or relevant differences in

the underlying wage densities.8

A kernel density estimator smoothes out the discrete jumps in the histogram by

applying a kernel function in place of the frequency of observations at each wage level.

Kernel functions, K(z), are simply probability density functions integrating to one, so a

variety of options exist.  Given a selected kernel, the estimated density function is:

)
f K ( )x

nh
K

x X

h
i

i

n

=
−



=

∑1

1

where n is the number of observations in the sample and h is the bandwidth, which

corresponds to half of the range observations assumed relevant for frequency at x.  The

choice of a bandwidth can greatly alter the apparent features of the estimated density,

much as the number of bins alters the characteristics of the histogram.

                                                

8  Actually, tendencies to round that vary differently over the wage distributions could be equally damaging.
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A variety of bandwidth selection rules exist in the kernel-density estimation

literature (Jones, Marron, and Sheather, 1994).  These rules are typically implementations

of minimizing the Mean Integrated Squared Error,

( )MISE(h) =  E f - fh
$∫ ,

where f is the actual density estimated by $fh , which is dependent on the bandwidth h.

While this approach has yielded some interesting new bandwidth rules, it does not address

directly the critical need of this analysis--removal of the spikes caused by rounded wage

rates.  Further, a single bandwidth is needed for each sector in all years because a given

bandwidth implies a degree of smoothness for the estimated density.  OVL estimates can

depend on the degree to which spikes are smoothed, as noted in section II.

In this light, we applied three rules of thumb to provide guidance on what ranges

of bandwidths might be reasonable, but based our final choice on visual inspection.  A

critical variable in all bandwidth rules is the number of observations:  As observations

rise, the bandwidth goes to zero.  Table 1 shows the results of our three rules of thumb for

both sectors in three years:  an early year with a small sample with nearly equal sectoral

employment levels (1969); a middle year with a larger sample size, but a smaller goods

sector (1980); and the last year (1993).  These rules vary substantially, with Scott�s

(1992) oversmoothing rule, designed to be conservative in finding potential modes,

always the largest.

The visually selected bandwidth turns out to be in the middle of the bandwidth

rules of thumb across all of these classes.  Specifically, we found that the Gaussian kernel

with a bandwidth of $50 yielded the most complete reduction in rounding without
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smoothing out local frequency differences in the wage distributions.9  Other bandwidths

were explored with little change in the qualitative results.

Figure 3 shows the remarkable degree to which the CPS data are clustered.  The

smooth plot is the Gaussian kernel estimate, which on this scale shows little of the shape

of the kernel (see Figure 7 for a clearer view of this estimate).  In this particular case (the

goods sector in 1993), over 77 percent of the weight of the histogram is in spikes above

the smooth density, which represent about 22 percent of the possible wage rates.

Once the densities have been estimated using these techniques, the estimates may

be used to calculate OVL.  In this case, OVL is a function of the estimation procedure

and reflects the degree of similarity of the two densities, given underlying densities that

are believed to be smooth.  Even without assuming that the population densities are

smooth, the OVL applied to the smooth density indicates the degree of similarity evident

in basic shape of density.  This number will typically be higher than the OVL calculated

from the raw sample, due to reduced sampling variation and rounding differences which

can increase the estimated OVL.  OVLQ can also be calculated, although the quantile

estimates for the full sample should reflect the same procedure applied to sector

distributions.

V.  Diagnostics of the OVL Measures

OVL is a straightforward, visually oriented statistic that we augment with a well-

established technique for estimating densities; however, the statistical characteristics of

                                                

9  Other popular kernels tended to reproduce discrete jumps associated with larger wage clusters at all but the largest bandwidths.

OVL estimates based on these estimated densities would continue to reflect differences in the rates of clustering between the comparison

groups.  A similar problem with non-Gaussian kernels was noted by Minotte and Scott (1993) in a similar context.
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this combined measure as applied to earnings data are not known.  We approach this issue

by simulating direct analogues of characteristics of interest using samples based on the

dataset used in this analysis.

Bias of the Overlapping Coefficient

As a statistical measure, OVL is fundamentally biased.  This is because any

sampling variation in the two density estimates results in the statistic being strictly less

than one, even when the samples are actually drawn from the same population.  Thus,

OVL estimates near 1.0 may indicate that the densities actually are drawn from the same

population.  The most obvious solution is to apply an unbiased test like Kolmogorov-

Smirnov, to determine whether the samples are potentially drawn from the same

population. However, this test does not inform us on the closeness.

To address the issue of bias in OVL, we estimate that bias in the context of CPS

earnings data by fabricating samples that are drawn from the same population.  Two basic

tests are applied:  1) The actual wage density for one industry is sampled with

replacement to simulate a population with substantial rounding of earnings levels, and 2)

Samples are drawn from a lognormal distribution with the empirical mean and variance of

the wages used in the first test, which eliminates the rounding in the CPS data.  These

tests are applied at both large (»25,000 per sector) and small (»10,000-13,000 per sector)

sample sizes.  These simulations are repeated a thousand times to estimate the distribution

of bias for each case.

Table 2 presents the results of the simulations for both the OVL as applied to the

empirical density and the estimated OVL along with its quantiles for each scenario.  The
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starkest conclusion of this analysis is the large degree to which OVL as applied to

empirical density (OVL [raw]) is biased away from 1.0.  The OVL of the kernel density

estimates (OVL [sm]) is biased much less (1.0 to 1.6 percent on average), but still

noticeably.  The simulations underlying Table 2 also indicate that the bias does not vary

substantially relative to its average level in any given sample:  For either OVL, the

standard deviation of the bias simulations is always under 0.5 percent.  In all cases,

reducing the sample size increases the bias; however, the bias estimates for OVL (sm) are

increased only by about half a percentage point for a sample reduction of approximately

50 percent.

The quantile bias measures indicate that the bias in the estimated density OVL are

concentrated in the tails of the density.  These differential biases must be accounted for

when the OVL is broken into OVLQ.  These biases blunt one conclusion of our analysis,

but having been recognized, they can be easily accounted for without losing the ability to

address the location of the differences in the densities.

The Role of Sample Size

OVL being calculated at all wage rates implies that reducing even the large CPS

sample can increase the measured overlap.  To estimate the role of sample size across a

broad range of samples, simulations on the 1993 data are run for both OVL measures with

sample sizes from 4,907 to 196,270.  In the smaller samples, 90 to 10 percent samples

were drawn from both sectors� wage distributions, prior to estimating the full set of

overlapping coefficients.  A new sample is drawn for each sample size.  Larger sample

sizes are created by adding samples drawn with replacement of the size of the original
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dataset to yield datasets from double to quadruple the size (49,069) of the original 1993

sample.  In order to estimate the sampling distributions of the simulations, these

procedures are repeated 100 times.

The results of the sample-size simulations are shown in Figure 4.  OVL (sm) is the

mean of the simulations on the OVL of the estimated density, and OVL (raw) is the mean

of the simulations for the empirical density.  The dotted lines indicate one-standard-

deviation bounds around the simulation means.  The key conclusion is that OVL (sm) are

roughly constant at any sample size.  On the other hand, OVL applied to the raw data

deteriorates rapidly.  A 90 percent reduction in the sample lowers the OVL estimate from

the raw data from almost 0.85 to 0.69, while the OVL of the estimated densities declines

only a third as much, from 0.95 to 0.93. This characteristic is very important, because the

CPS sample size has nearly doubled over the period, and some of the comparisons that

will be made in the extensions section involve even smaller samples.  Both statistics are

only slightly affected by expanding their sample size through sampling with replacement.

VI.  The Evidence for Convergence since the Early 1980s

The substantial amount of wage variation in any year is evident from the

estimated densities, shown in Figures 5 to 7.  Further, while the distributions of earnings

have changed over time, the two sectors� earnings distributions have generally been

reasonably similar.  The most notable distinction between the wage distributions is the

higher frequencies of goods workers in the range from $700 to $1,100 in 1980.  The

sectoral densities are visually more similar in 1969 and 1993 than in 1980.  These
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qualitative dimensions of relative earnings, while potentially derivable in a more

traditional approach, are obvious from the estimated density.

Quantifying these comparisons with OVL allows fine distinctions to be identified

and the statistical reliability of these observations to be tested.  As section III showed,

both OVL and OVLQ estimates are bounded by zero and one.  The perfect overlap bound

of one is approached in certain ranges of Figure 7, but can only be obtained if the

employment frequencies in the two sectors are identical at every wage rate.  Because

both the calculated statistics and the bootstrapped confidence intervals reflect these

bounds (they never equal one), it is useful to keep a level of effective equivalence in

mind.  Given estimated distributions that reflect only variation in the location and the

general shape of the distributions, this level should be high: we will use 0.95 (nearly

equivalent) and 0.98 (effectively equivalent).  These numbers imply that, for wages in the

relevant range, 100 workers in the more prevalent sector would typically be matched with

at least 95 or 98 workers in the other.  It is helpful to keep cutoffs (though not necessarily

ours) in mind, but the actual estimates are, of course, reported.

While the nonparametric density estimates do not alter the basic character of the

wage distributions, they do significantly alter the implied OVL.  Figure 8 shows that the

gap between OVL (sm) and OVL (raw) is substantial, sometimes exceeding 0.1.  As noted

above, sampling variation and differences in rounding would tend to increase the OVL

measured in raw data.  The other factor in the gap between the two measures is the

summarization of wages implied by the smooth density.  To counter the potential problem

of variation in smoothness driving our results, we have also varied the parameters which

affect the smoothness and found similar qualitative results.  It should be noted that the



16

estimated densities do show notable features after smoothing, and that the estimated

densities are easily rejected as normal or lognormal.10

The upward trend in OVL since around 1980 is visible in either OVL (sm) or OVL

(raw), although the estimated densities show more convergence.  That these trends are

statistically significant can easily be verified in the first two columns of Table 3.  The

standard errors derived from a thousand repetitions of the bootstrapping algorithm

described in the appendix are reported in the parentheses for each of the statistics.  The

standard errors for both of the OVLs of both the empirical and estimated densities are

quite small--generally less than 0.005; thus, the larger changes of both OVLs are typically

statistically significant.  Unfortunately, the bootstrapped standard errors cannot be taken

to imply exact hypothesis tests in this case.  One bias already discussed and estimated is

the degree to which the OVL estimates differ from 1.0 when the populations are, in fact,

identical.  This bias is not picked up in the bootstrap because each bootstrap sample yields

estimates which also have the same problem.  The other bias to be concerned with is the

tradeoff between estimator variability and bias in kernel-density estimates.  While this

bias is also picked up by all bootstrap samples, the OVL (raw) estimates give us reason to

suspect that this bias is small, because their standard-error estimates should overstate the

ideal smoothed density errors by virtue of being undersmoothed.  Given the known bias,

estimated in Table 2, we expect that the confidence intervals reported here are

conservative reflecting the unconstrained side, with no bias adjustment applied to the

mean, and that the standard errors may be somewhat underestimated.

                                                

10  While visual features of these estimates appear to violate the parametric densities, we applied both Kolmogorov-Smirnov tests

and a test based on skewness and kurtosis to verify this statement.



17

In the most recent years, OVL (sm) is approaching levels where we could easily

question the importance of the distinction; however, the choice of cutoffs between

substantial and trivial differences depends on personal interpretations.  While the

bootstrapped standard errors are useful for characterizing the variability of our estimators,

we apply bootstrapped confidence intervals to test whether these estimates pass our

hypothetical cutoffs.11  The confidence interval approach is favored, because bounded

statistics tend to result in asymmetric estimation errors as the bound is approached.  Again

in Table 3, estimated OVLs that exceed, with 90 percent certainty, the 0.95 cutoff are

indicated by one asterisk, 0.98 by two asterisks, and 0.99 by three asterisks.  No full-

density OVLs exceed the cutoffs with this degree of confidence, but they certainly are

getting close.  As measured by our bootstrap analysis, the OVL (sm) estimates in 1993

exceed 0.95 with a probability of almost 0.5.

One of the advantages we noted for OVL is that it can be easily split into quantile

components.  Table 3 also shows the decile OVLQs for the estimated densities.  While

only in recent years has the convergence of wages for the full distributions reached the

nearly identical cutoff, the middle deciles have frequently exceeded this and higher

cutoffs.  Even when the wage distributions were most distinct (1980), the sixth and

seventh deciles qualify as at least 95 percent overlapped, with 90 percent confidence.

These decile OLVQ statistics clearly demonstrate that the wage distributions in the goods

and services sectors of the economy have always been closest in the middle ranges,

belying the oft-made criticism that the services provide only high- and low-paid work

                                                

11  We follow the approach and guidance of Efron and Tibshirani (1993) on applying bootstrap techniques to confidence-interval

estimation.
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relative to goods production.  The reality is that the frequencies of middle salary deciles in

the two sectors are highly similar in most years.

The growing convergence in wage distribution in the 1980s and 1990s can also be

allocated according to deciles by the same statistics, because the components average to

the overall.12  Comparing 1980 with 1993, virtually every decile is more similar in 1993,

but the largest changes have been in the second through the fourth deciles and in the top

two deciles.  These increases put the fourth through eighth quantiles beyond the 95

percent level of comparability.  Wage frequencies are substantially different only in the

lowest two deciles, where service-sector jobs continue to be more frequent, and in the

topmost decile.

What wage ranges led to the peak disparity between distributions seen in 1980?

Again, wages were much more similar in the second through the fourth deciles, along with

the top two deciles, in the early 1970s relative to the early 1980s.  In the second through

fourth deciles, it is generally service-sector jobs that are more frequent, whereas the

upper deciles have greater frequencies of goods-sector jobs.  Thus, the late seventies and

early eighties were a period when the relative frequencies of employment in the two

sectors became more distinct by shifting towards the wages that are viewed as

conventional for each sector.  But the surrounding periods show that the more typical

wage patterns in the two sectors might be more equal.

                                                

12  The reported statistics do not average exactly, because the discrete approximation implies variability in the realized quantile sizes,

which are adjusted for in the formula.
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VII.  Further Comparisons

The preceding analysis takes an extreme view of wage comparability that runs

counter to regression analysis:  Wages reflect a mixture of investments and compensating

differentials that, while not controlled for, are largely offsetting.  While this assumption

has allowed the analysis to focus on the full distribution in ways that are not possible in a

regression framework, this technique does not necessitate a complete lack of controls.  In

this section, we consider two simple hypotheses that can be analyzed in the same

framework:  1) that the very broad sectors used in the analysis hide the real wage

differences; and 2) that wages are converging because service-sector workers have

pursued more education, which is rising in value.

Narrower Industries

At the limit, it is self-evident that narrower industries should be more distinct:

Wages in transportation equipment (which includes both automobile and airplane

manufacturers) must be and are different from fast food-restaurants.  The workers

employed by the industries are clearly different.  Nonetheless, comparisons may be made

at the intermediate categories; for example, manufacturing and narrow services.13  This

particular comparison is relevant because much of the sectoral shift has occurred in these

divisions.  Manufacturing employment has been shrinking rapidly, while the narrow

services have been among the most rapidly expanding industries.

                                                

13  Manufacturing includes both durable and nondurable components.  Narrow services includes:  Hotels and Other Lodging;

Personal Services; Business Services; Auto Services; Repair Services; Motion Pictures; Amusement and Recreation Services; Health Services;

Legal Services; Educational Services; Social Services; Museums; Membership Organizations; Engineering and Management Services; and

Private Household Employment.
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Figure 7 shows that these narrower industries have paralleled the development of

the broader sectors.14  After starting at a relatively high overlap (and with more workers in

manufacturing) wages become more dissimilar, until they reach a minimum in 1980.  By

the 1990s wages are nearly as similar in these narrower industries as they are in the

broader sectors.  The change is all the sharper in the narrow services, because OVL for

the narrower industries started lower in the early years.   For the sake of brevity we did

not report the quantile estimates, but they also repeat the patterns seen in the broader

sectors:  Wage frequencies have typically been comparable in the middle deciles, and the

convergence has occurred in the surrounding deciles.

Education

Formal (that is, reported) education levels are higher in the service sector and

have been rising.  This fact, combined with the widely observed rising returns to

education, suggests another interpretation of the convergence.  Rising education levels

have pushed up the wages of service-sector workers as workers have chosen more formal

education in lieu of high-paying jobs in goods production.  While the structural details of

this description are not easily described in the framework, a modified shift-share analysis

is possible.  We can ask, �What might wages look like if the distributions in both sectors

reflected the education levels of an earlier base year?�15

Without the regression analysis to summarize education returns, the hypothesis

must be built in by adjusting the observed frequencies to the base year frequencies.  A

                                                

14  1969 is not shown because substantial changes in industry coding disrupt comparisons to 1970 and later at this level of

disaggregation.
15 The groups are:  Less than a high school diploma, high school diploma, some college but no four-year degree, four-year college

degree, and some graduate school.  We use these rough categories in order to compare education over the entire sample.
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simple approach is to modify the population weights already used in the CPS to reflect the

education distribution of the base year:

edwgt wgt
edfr

edfr
i

y

i

i

y

i

y
=







* ,

where wgti is the CPS supplement weight assigned to the individual, and the education

frequency terms (edfri) refer to the population frequency of the individual�s education

level in the base and current years. This reweighting implies an assumption that lower

education levels for an individual result in pay comparable to that of current workers at

that education level.  Unlike a regression shift-share analysis, it does not assume that

returns to education can be summarized by a single figure for each education level.

While the hypothesis is limited by its assumptions, the results should indicate the

direction of these effects.  Even though the education shifts are large in wage

distributions, altering the composition of the labor force to reflect lower education levels

in both sectors affects wages in the sectors fairly evenly.  Only in the latest years does

any real distinction develop between the previously estimated OVL and the OVL

constrained to early education levels (see Figure 10).  This startling result negates what

seemed to be a fairly credible hypothesis.

VIII.  Conclusion

Wages in the goods- and service-producing sectors are much more comparable

than the existing policy literature suspects.  The broad-based similarity of wage

frequencies in the two sectors has not previously been examined; rather, economists have

focused on statistically significant average differences, typically in a regression setting
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with a variety of controls.  For many policy applications these controls may not be

relevant  (for example, in estimates of the increase in the tax base implied by recruiting

firms from a particular sector).  Similarly, our results suggest that policies intended to shift

employment back to goods production from services will not meaningfully alter the

overall distribution of earnings.  In fact our results indicate that there is less and less room

for income inequality in the economy to increase due to the goods sector employing a

smaller fraction of the workforce.

This paper proposes and applies an alternative approach to comparing a variable

in two sub-populations that focuses on the similarity of the frequencies over the full

distribution. While we clearly want to support an approach that does not focus so heavily

on the central tendencies of variables, as both means and regressions tend to do, this is

not to suggest that regressions have little value in comparing variables like wages in

subpopulations.  Regressions allow the simultaneous summarization of varied controls

which can become impractical in our approach.  Nonetheless, we strongly recommend the

use of our techniques to clarify the nature of differences or the location of diminished

differences between wages in related sectors.  Our approach allows detailed, statistical

comparisons without making distributional assumptions which are not generally supported

by wage data.
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Technical Appendix: Algorithms

 The Overlap Statistic by Quantiles

This algorithm is exact, given a rounding factor and a smoothing algorithm.  While
exact, the choice of these components can alter the estimates.  Larger bin sizes increase
the measures overlap.  Smoothing can reduce the impact of the rounding factor by
limiting the discrete jumps that typically occur with greater regularity with narrow bins.

1.  Collect data into bins according to the rounding factor, R.

2.  Assure that within the range of wages in the full sample, frequencies exist for
each bin for both sectors, by assigning zeroes where necessary.

3.  Smooth frequency distributions for both sectors, if desired.

4.  Calculate and identify the quantiles associated with each wage bin, from the
weighted sum of the sectoral densities.

5.  Calculate the overlap at each wage rate, then sum by quantile and over the full
distribution, according to equation .

6.  Adjust quantile overlaps for size variation in the quantiles.

Bootstrapped Standard Errors and Confidence Intervals

We apply simple bootstrapping wherever standard errors or hypothesis tests are
reported for overlap coefficients.  Most estimates are constructed from a thousand
bootstrap replications to allow reasonably exact confidence intervals.

1.  Resample, with replacement from the original dataset, a bootstrap sample of
equal size.

2.  Calculate the overlap statistics (smoothed or raw) from the beginning.  Store
the results.

3.  Repeat steps 1 and 2, until the replication dataset reaches the desired size.

4.  Calculate the standard errors from the standard deviations of this dataset, and
confidence intervals from the percentiles of this replications dataset.



Figure 1:  Difference Between Goods- and Service-Producing Median Weekly

Wages
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SOURCE:  Authors� calculations from Current Population Survey data.

Figure 2:  Graphic Representation of Overlapping Coefficient

SOURCE:  Authors� drawing.



Figure 3:  Extreme Rounding Reduced by Kernel Density Estimation

SOURCE:  Authors� calculations from Current Population Survey data.



Figure 4:  The Effect of Sample Size on OVL Measures
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SOURCE:  Authors� calculations from Current Population Survey data.



Figure 5:  1969 Estimated Wage Densities

SOURCE:  Authors� calculations from Current Population Survey data.



Figure 6:  1980 Estimated Wage Densities

SOURCE:  Authors� calculations from Current Population Survey data.



Figure 7:  1993 Estimated Wage Densities

SOURCE:  Authors� calculations from Current Population Survey data.



Figure 8:  Overlapping Coefficients
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SOURCE:  Authors� calculations from Current Population Survey data.

Figure 9:  OVL for Narrower Industries
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Figure 10:  OVL When Workforce Education Composition Is Held Constant
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Table 1:  Bandwidth Selection Rules

1969 1980 1993

Goods Services Goods Services Goods Services

Number of 

Observations 13702 15191 19116 36583 13484 35644

Silverman�s 42.2 41.1 42.7 31.5 50 37

Härdle�s Better 49.7 48.4 50.3 37.1 58.9 43.6

Scott�s Oversmoothing 76 75.2 72.1 51.9 82.4 61

SOURCE:  Authors� calculations from Current Population Survey data.

Table 2:  Bias Simulation Results

Distributions

Lognormal 1994 Goods Sector

Large Sample Small Sample Large Sample Small Sample

Avg. Observations 

per sector 24915 9966 25000 13484

OVL (raw) 0.862 0.788 0.893 0.880

OVL (sm) 0.990 0.984 0.987 0.985

OVLQ (sm)    

10 0.990 0.984 0.988 0.985

20 0.993 0.990 0.992 0.990

30 0.994 0.991 0.991 0.991

40 0.994 0.991 0.993 0.991

50 0.994 0.991 0.992 0.990

60 0.993 0.989 0.992 0.989

70 0.993 0.987 0.988 0.988

80 0.990 0.985 0.982 0.986

90 0.988 0.981 0.985 0.981
100 0.973 0.955 0.967 0.961

SOURCE:  Authors� calculations from Current Population Survey data.



Table 3:  Estimated Overlapping Coefficients

YR Raw Estimated First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth

Overlap Overlap Decile Decile Decile Decile Decile Decile Decile Decile Decile Decile

69 0.84189 0.92242 0.83134 0.90418 0.93550 0.95562 0.98433 * 0.95910  0.92184 0.90620 0.91575 0.90991

(0.0048) (0.0055) (0.0147) (0.0110) (0.0101) (0.0093) (0.0052) (0.0098) (0.0101) (0.0120) (0.0137) (0.0151)

70 0.84833 0.93989 0.76956 0.91962 0.97382 * 0.99587 *** 0.99153 ** 0.98371 ** 0.96230 * 0.93118  0.93353 0.93648

(0.0041) (0.0044) (0.0140) (0.0109) (0.0096) (0.0043) (0.0055) (0.0068) (0.0077) (0.0087) (0.0105) (0.0119)

71 0.84983 0.93113 0.75886 0.90440 0.96332 * 0.99556 ** 0.99790 *** 0.98570 * 0.95129 0.92387 0.92132 0.90904

(0.0042) (0.0047) (0.0150) (0.0114) (0.0100) (0.0058) (0.0048) (0.0059) (0.0079) (0.0089) (0.0105) (0.0126)

72 0.85061 0.92256 0.77289 0.90306 0.94133 0.96244 0.98389 * 0.97005 * 0.93365 0.92092 0.93839 0.89887

(0.0043) (0.0049) (0.0148) (0.0116) (0.0104) (0.0103) (0.0083) (0.0068) (0.0076) (0.0086) (0.0102) (0.0132)

73 0.86147 0.92575 0.80608 0.90018 0.93624 0.94873 0.97471 * 0.97313 * 0.93158 0.92503 0.92857 0.93241

(0.0044) (0.0049) (0.0152) (0.0118) (0.0108) (0.0108) (0.0094) (0.0067) (0.0075) (0.0090) (0.0105) (0.0120)

74 0.84496 0.92177 0.78113 0.87077 0.93602 0.96738 * 0.98482 * 0.97244 * 0.94071 0.92710 0.91085 0.92545

(0.0043) (0.0049) (0.0154) (0.0117) (0.0108) (0.0102) (0.0079) (0.0070) (0.0078) (0.0088) (0.0101) (0.0115)

75 0.81478 0.91748 0.74071 0.88423 0.94822 0.95583 0.97444 * 0.97356 * 0.94975 0.92807 0.90569 0.91315

(0.0045) (0.0048) (0.0145) (0.0117) (0.0107) (0.0107) (0.0094) (0.0066) (0.0076) (0.0085) (0.0098) (0.0111)

76 0.82309 0.91464 0.76109 0.87912 0.92665 0.94440 0.96037 0.98508 ** 0.95690 0.93329 0.89577 0.90168

(0.0045) (0.0048) (0.0147) (0.0111) (0.0102) (0.0105) (0.0107) (0.0038) (0.0074) (0.0083) (0.0100) (0.0113)

77 0.83285 0.91376 0.76308 0.86711 0.90888 0.93481 0.98297 * 0.97404 * 0.95695 0.93395 0.90168 0.91260

(0.0043) (0.0048) (0.0147) (0.0113) (0.0107) (0.0104) (0.0057) (0.0069) (0.0074) (0.0083) (0.0096) (0.0109)

78 0.82796 0.90666 0.77577 0.86862 0.90674 0.91944 0.94708 0.98896 ** 0.96228 * 0.92738 0.87332 0.89539

(0.0045) (0.0047) (0.0138) (0.0111) (0.0102) (0.0103) (0.0107) (0.0037) (0.0079) (0.0078) (0.0094) (0.0108)

79 0.83214 0.89732 0.77139 0.84616 0.88190 0.91086 0.94671 0.98604 ** 0.95834 0.91912 0.84852 0.90410

(0.0042) (0.0047) (0.0137) (0.0104) (0.0098) (0.0098) (0.0107) (0.0031) (0.0070) (0.0081) (0.0092) (0.0109)

80 0.82422 0.89642 0.74909 0.83831 0.88134 0.91747 0.95746 0.99021 ** 0.96256 * 0.93490 0.87368 0.85778

(0.0042) (0.0045) (0.0137) (0.0104) (0.0092) (0.0097) (0.0103) (0.0040) (0.0068) (0.0074) (0.0093) (0.0097)

SOURCE:  Authors� calculations from Current Population Survey data.



Table 3 (continued):  Estimated Overlapping Coefficients

YR Raw Estimated First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth

Overlap Overlap Decile Decile Decile Decile Decile Decile Decile Decile Decile Decile

81 0.82744 0.91072 0.75720 0.86065 0.91322 0.93798 0.96208 0.98904 * 0.96670 * 0.93265 0.89831 0.88825

(0.0044) (0.0048) (0.0146) (0.0113) (0.0104) (0.0103) (0.0110) (0.0035) (0.0069) (0.0080) (0.0096) (0.0104)

82 0.82059 0.90795 0.79182 0.85896 0.89329 0.91778 0.94246 0.98712 * 0.96985 * 0.93895 0.88389 0.89454

(0.0043) (0.0048) (0.0149) (0.0109) (0.0102) (0.0104) (0.0112) (0.0045) (0.0069) (0.0081) (0.0093) (0.0106)

83 0.82813 0.92179 0.81349 0.88049  0.89926 0.91747 0.96332 0.98481 ** 0.98384 * 0.96363 * 0.90463 0.90463

(0.0045) (0.0047) (0.0156) (0.0121) (0.0111) (0.0110) (0.0106) (0.0054) (0.0065) (0.0077) (0.0089) (0.0089)

84 0.84207 0.93812 0.82018 0.92411 0.94633  0.95219 0.97129 * 0.98254 *** 0.98924 ** 0.95226 0.90992 0.93242

(0.0044) (0.0045) (0.0155) (0.0122) (0.0107) (0.0108) (0.0114) (0.0108) (0.0042) (0.0075) (0.0090) (0.0097)

85 0.83519 0.92795 0.76212 0.86795 0.93105 0.96323 0.99197 ** 0.98937 ** 0.98941 ** 0.95457 0.91087 0.91744

(0.0046) (0.0047) (0.0150) (0.0119) (0.0114) (0.0113) (0.0042) (0.0055) (0.0055) (0.0076) (0.0089) (0.0106)

86 0.84146 0.92657 0.81874 0.87455 0.90842 0.94615 0.97463 * 0.99657 ** 0.99441 ** 0.94915 0.90549 0.89662

(0.0045) (0.0048) (0.0156) (0.0122) (0.0114) (0.0122) (0.0117) (0.0055) (0.0050) (0.0080) (0.0089) (0.0118)

87 0.85491 0.93622 0.82613 0.90135 0.92847 0.93723 0.97747 * 0.99193 * 0.98516 * 0.96154 * 0.92595 0.92616

(0.0043) (0.0050) (0.0162) (0.0131) (0.0116) (0.0119) (0.0102) (0.0048) (0.0062) (0.0073) (0.0090) (0.0100)

88 0.84514 0.93603 0.81095 0.90585 0.93325 0.96935 * 0.99513 ** 0.99061 ** 0.99013 ** 0.95304 0.92855 0.88192

(0.0048) (0.0048) (0.0166) (0.0131) (0.0125) (0.0122) (0.0082) (0.0099) (0.0059) (0.0078) (0.0094) (0.0126)

89 0.85023 0.94056 0.82125 0.89311 0.94566  0.97787 * 0.99000 * 0.99716 * 0.98335 * 0.97096 * 0.92345 0.90172

(0.0044) (0.0047) (0.0164) (0.0129) (0.0122) (0.0112) (0.0089) (0.0049) (0.0061) (0.0074) (0.0086) (0.0115)

90 0.84752 0.94935 0.82713 0.90458 0.95985 0.98594 * 0.99356 ** 0.98860 * 0.98633 * 0.97077 * 0.94375 0.93207

(0.0047) (0.0049) (0.0164) (0.0131) (0.0125) (0.0094) (0.0041) (0.0055) (0.0060) (0.0074) (0.0085) (0.0110)

91 0.85320 0.95108 0.83366 0.90985 0.96489 0.97598 * 0.99428 ** 0.98465 * 0.98148 * 0.98003 * 0.95068 0.93415

(0.0045) (0.0050) (0.0170) (0.0128) (0.0124) (0.0117) (0.0044) (0.0058) (0.0064) (0.0069) (0.0082) (0.0131)

92 0.84708 0.95525 0.83426 0.91591 0.97210 * 0.99570 ** 0.99606 *** 0.99642 * 0.98676 * 0.97405 * 0.95241 0.92845

(0.0044) (0.0046) (0.0175) (0.0135) (0.0122) (0.0068) (0.0044) (0.0047) (0.0055) (0.0074) (0.0082) (0.0120)

93 0.84848 0.94949 0.80731 0.92038 0.96772 0.98009 * 0.99249 ** 0.98510 * 0.97186 * 0.97315 * 0.95660 0.93899

(0.0046) (0.0050) (0.0176) (0.0139) (0.0124) (0.0124) (0.0068) (0.0054) (0.0065) (0.0074) (0.0083) (0.0131)

SOURCE:  Authors� calculations from Current Population Survey data.
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