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In this paper we will be estimating risk-neutral densities (RND) for the largest euro area stock market (the 
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have two main results.  First, we have recorded strong negative skewness in the densities.  Second, we 
find evidence for significant difference between the actual density and the risk-neutral density, leading to 
the conclusion that market participants were surprised by the extent of both the rise and the fall of the 
DAX. 
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1 Introduction

It is a well known fact that a sufficiently rich market in options will imply a state-

price density for the underlying instrument. In the event of risk neutrality, these

state-price densities correspond to the probabilities that the market assesses to its

forecast state. This so-called "risk neutral density" (RND) describes the probabil-

ities that market participants assign to all possible price levels of the underlying

instrument. A detailed literature review is given by Jackwerth (1999); some recent

studies include Bliss and Panigirtzoglou (2002), Coutant et al. (2001), Galati and

Melick (2002), or Jondeau and Rockinger (2000). The entire risk neutral density

offers a wide range of information about the price forecast. The volatility, or second

moment of the forecast, measures its dispersion. Skewness, or the third moment,

measures whether traders in the option markets expect large stock price increases or

decreases to occur over the maturity of the corresponding contracts. Kurtosis, the

fourth moment, indicates how frequently market participants expect extreme price

changes of either sign to occur.

The purpose of our paper is to evaluate the forecasting performance of these

option-implied densities for the German stock index, the DAX. We add to the exist-

ing literature on option-implied risk-neutral densities in two ways. First, our data

concerns the DAX, a market that has not been analyzed before. This market is the

largest options market within the euro area, and it is the stock market behind the

largest economy in the euro area. Furthermore, our sample is quite comprehensive

as it starts in December 1995. The data span the period before and after the boom

period of the ”new economy”, a time of completely different expectations about the
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future of the economy. The data themselves show this to be a period of great volatil-

ity, more so than the data from US stock indices during this period. The data are

measured well and provide perhaps the most precise measurements of an important

European market during this time.

Secondly, the probability density functions based on option prices are derived un-

der the assumption of risk neutrality. Therefore, there may be differences between

the options-based estimates and the actual statistical density of returns. The litera-

ture contains many studies on the information content of the (risk-neutral) variance

extracted from option prices. As the detailed review by Figlewski (1997) shows,

there is valuable information in the implied volatility, which is absent in the vari-

ances estimated from the time series of stock returns. However, despite the growing

use of the risk neutral density as an indicator of financial market uncertainty (see,

for example, Söderlind and Svensson 1997), evidence on the overall informational

content of this measure, a fit of goodness for the RNDs, is so far rather sparse.

Therefore, we investigate how the realisations of the DAX index deviate from the

probabilities estimated by market participants as these are represented by the risk-

neutral densities. We are using a new test procedure, so far applied only for the FX

market, that is able to detect whether the density forecasts extracted from option

prices in a mixture of lognormals specification possess significant errors.

Our main results are as follows. Firstly, we report strong negative skewness in the

risk-neutral density which indicates that the probability of a large decrease in stock

prices exceeds the probability of a large increase. Our second result concerns the

tests that are used to assess the accuracy of the forecasting densities. In line with

Ait Sahalia et al. (2001), we document that the risk-neutral density for the S&P 500

deviates significantly from the density of actual outcomes. We, too, can reject the

hypothesis of correct densities for most of the period. This is in contrast to Craig and

Keller (2002) who report that these densities forecast exchange rates well. Hence,

the results so far seem to be rather contradictory, though there is a major difference

between the stock exchange and the FX market: Since a negative rational bubble

ultimatly leads to a zero price, rational agents know that the bubble will eventually

burst and therefore - by backward induction - nobody will pay a "bubble premium"

in the first place. However, in the FX market, a positive rational bubble from the

perspective of an agent of one currency area is necessarily a negative rational bubble

from the perspective of an agent from the other currency area. Therefore, in contrast
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to the stock exchange, in the FX market the occurrence of a rational bubble can be

ruled out.

However, the test begins to accept the same hypothesis toward the end of the

period. We conjecture that this is because the market missed long-run tendencies

in the market level. This omission was reflected in the poor forecast densities. In

some sense, these missed long-run tendencies cancelled each other out, but this took

a very long time.

The rest of this paper is organised as follows: The second section discusses the

methods used to estimate the implied densities and describes our sample. In section

three, we report the estimation results and then test the forecasting performance.

Section four contains a summary of our main results and a conclusion.

2 Specification and Sample

When traders price options, they use forecasts of the probability of different asset

prices for the period until the contract expires. The perception of market partici-

pants about the movement of the asset price, in particular the probability density

until expiry, is thus incorporated into the market prices of the derivatives in the

process of trading. Therefore, the observed prices of the options convey informa-

tion about the market operators’ assessment of the price process of the underlying

instrument, in our case the DAX index.

Among practitioners, the seminal model of Black and Scholes (1973) is commonly

used to price options. It assumes that the dynamics of the asset price follow a geo-

metric Brownian motion (GBM). In this case, log returns follow a normal (Gaussian)

density. Our specification of the density, the mixture of risk-neutral lognormals, is

a generalisation of the Black and Scholes (1973) framework and was introduced by

Melick and Thomas (1997).

bπh,t(.) = θLogN(a1, b1, Xt) + (1− θ)LogN(a2, b2,Xt) (1)

ai = lnXt +
¡
µi − 0.5σ2i

¢
(h)

bi = σi
√
h

where

Xt := current price of the underlying asset,
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h = (Θ− t) := time to maturity of the option,

Θ =: expiry date of the option,bπh,t(.) =: extracted risk-neutral density from observed market prices at t, for

realisations h days ahead,

i =: index of state (i = 1, 2),

θ =: weight on the log-normal distributions (0 ≤ θ ≤ 1),
µi, σi =: mean and variance of the normal distributions,

ai, bi =: location and dispersion parameters of the log-normal distributions.

This stochastic process is based on two states with different first and second

moments, governed by the weights θ and 1 − θ. In each state, the stock price is

lognormally distributed. The numerical estimation of the risk-neutral density is

based on the nonlinear least squares method. So the squared pricing error, ie, the

squared distance between the theoretical and observed prices is minimised with the

data set for each trading day. Moreover, to asses to what extent a mixture of two

lognormal distributions - instead of a simple lognormal distribution - reduces the

squared pricing error, we consider the case of θ being 0 (or is 1).

Our sample consists of the daily trade statistics of the options and futures on the

DAX index from 12. December 1995, to 15. May 2002, and comprises 1,613 trading

days. Index options on Eurex are defined as European style contracts; hence we do

not need to consider the impact of early exercise. Every day maturities of up to

two years with at least five strike prices are traded. For contracts with a maturity

of up to six months, there are at least nine strikes. The contract value is EUR 5

per index point. The minimum price movement is EUR 0.5. The payment of the

option premium is due on the first trading day after the transaction has taken place.

Options expire every third Friday in each month.

In order to eliminate the impact of a time-to-maturity effect from our estimates,

we require a risk-neutral density with constant maturity. If this effect is neglected,

the problem is that parameters change as the expiry date approaches; the volatility

decreases with each time increment as the uncertainty about what the asset price

will be on the day of maturity is reduced. This effect makes the evaluation of the

density forecasting performance impossible, and hence we construct risk neutral

densities with constant horizons by means of a linear interpolation.

Our interpolation is based on the put and call prices for all the strike prices

sampled each trading day that mature within the next three months. As options
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expire each month for the next three months, we can always cover horizons of 42, 49

and 56 calendar days. For example, on a given day we construct the 56-day horizon

by interpolating linearly between the options which expire in 40 and 70 days. Our

choice is determined by the availability of data: We are unable to construct shorter

horizons, because the first pillar of our interpolation would have a horizon shorter

than two weeks. In this case, the prices become erratic due to the approach of the

expiry date. Because the six-month horizon is not covered in every month on account

of the quarterly cycle, we cannot construct constant maturity risk-neutral densities

with longer horizons. For each trading day and for each horizon, we select those

strikes that are available for both the next relevant expiry date and the relevant

expiry month after that. We implement a linear interpolation of the Black-Scholes

volatilities of these parallel strikes. We choose the volatilities and not the option

prices as input and output because the narrower scale of the variance makes the

interpolation more tractable (see Clews et al. (2000) for a similar methodology).

After the interpolation across the set of parallel strikes, we transform the constant-

maturity volatilities back into option prices and estimate the parameters of the

mixture model.

To measure the risk-free rate we have used the FIBOR rate before the introduction

of the euro and EURIBOR rates thereafter. We match the 42-, 49-, and 56-day

horizons of the options with the maturity of the sampled interest rates by means of

a linear interpolation.

For sound testing of the fit of the risk-neutral densities, data quality is a key

concern. As a first step, we discarded all options with a price below EUR 0.5 and

all those where the numerical routine failed to generate an implied volatility. Then,

we also discarded all options with moneyness below 0.7 and above 1.25.

Based on the 1,613 daily data sets, we estimate the densities for the three maturity

horizons with a rolling-window technique. For the price of the underlying instrument

on each day, we take an estimate based on the DAX future. Depending on the state

of the maturity cycle, there are three cases: a single future, DAX index and future,

or two futures. These values enter as a starting point in the procedure to compute

the at-the-money point. This point is obtained as the average of calls and puts for

two strikes above and two strikes below the current value using the put/call parity.
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2.1 Test procedures

We have applied two test procedures to evaluate the forecasting accuracy of the

mixtures of our lognormal densities, where forecasting horizons of h (= Θ − t)
days, with h ∈ {42, 49, 56}. Both tests rely on the so-called probability integral
transformed realisations zh,t. (In other words, each forecasting horizon, h, has a

separate value zh,t associated with it). In general, zh,t is equal to the probability

value of the estimated cumulative distribution function, bΠh,t (.) , h days ahead at
the realization Xt+h, where Xt+h is the realization of the underlying asset on day

t+ h.

zh,t =

Xt+hZ
−∞
bπh,t (u) du = bΠh,t (Xt+h) , (2)

where bΠh,t (.) is the estimated cumulative density for DAX realisations h days ahead,
based on information available at t.

In the special case of the forecasting density being a mixture of lognormals, the

integral transform equation equals

zh,t = θ

lnXt+hZ
−∞

N (a1, b1, u) du+ (1− θ)

lnXt+hZ
−∞

N (a2, b2, u) du (3)

= θ

lnXt+hZ
−∞

N

µ
u− a1
b1

¶
du+ (1− θ)

lnXt+hZ
−∞

N

µ
u− a2
b2

¶
du, (4)

where N is the standard normal distribution. 1

The first test is based on deviations of the empirical density from the individual

quantiles of the outcomes. It consists of testing whether the sequence of integral

transforms {zh,1, ...zh,t, ...zh,T} is uniformly distributed ({zh,t}t=1,...,T ∼ U(0, 1), with
h ∈ {42, 49, 56} and T being the last observation in the sample), as they would be
if the true forecasting densities coincide with the estimated densities. This result is

1 If Xt has a (m ixture o f ) log nor mal d ist ribut ion, then t he n atur al lo ga rit hm of that var iabl e,
lnXt , is ( mixed) nor mal ly dis tr i buted.
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robust to a time varying-behavior of the estimated densities, as long as the sequence

of estimated densities consists of correct densities. This idea goes back to Fischer

(1930) and Rosenblatt (1952) and has been recently applied by Diebold et al. (1998),

Clements and Smith (2001), Craig and Keller (2002), and de Raaij and Raunig

(2002). For a detailed survey about goodness-of-fit methods see Quesenberry (1986).

For a graphical representation of the integral transformation see Craig and Keller

(2002).

Figure 1 depicts the density function (df) and the cumulative density function

(cdf) of a U(0, 1) distributed random variable. Under the null, a sequence of correct

densities, and therefore of correctly transformed realizations, {zh,t}t=1,...,T , can be
represented by the cdf of the U(0, 1), which is equal to F (y) = y, for 0 ≤ y ≤ 1 and
yields the proportion of zh,t’s that is less than y. Graphically, the null hypothesis

corresponds to the 45 degree line that connects the origin of the upper graph with

the upper right corner.

The empirical cumulative distribution function (ecdf), bF (yn), is equal to the actual
proportion of zt’s resulting from the estimated densities, which is less than yn and

is calculated (for different values of yn in the interval (0, 1)) as

bFh(yn) ≡
TP
t=1

I(zh,t ≤ yn)
T

, (5)

where I(zh,t ≤ yn) is the indicator function, equal to 1 if true and 0 otherwise. For
simplifying notation we drop the subscript h of bFh(yn). If there are N separate values

of yn, the empirical proportion bF (yn) can be represented graphically by the nth bin
of a total of N bins. If bF (yn) 6= yn the ecdf deviates from uniformity which violates
the null hypothesis. To test whether the distance bF (yn)− yn 6= 0 is significant at an
individual yn, we need to estimate the standard deviation of bF (yn). Note however,
that in the case where the sampling frequency (in our case daily) is higher than the

forecasting horizon (h ∈ {42, 49, 56}), the forecast errors can overlap by up to h
days and then follow a moving average process of order h. Therefore the confidence

intervals for individual bF (yn) have to be calculated by taking into account the time
dependency up to the theoretical forecasting error overlap of h. The variance of an

individual bF (yn) equals:
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Figure 1: The integral transformation
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dvar( bF (yn)) = bσ2( bF (yn)) = 1

T

"bγn(0) + 2 hX
j=1

µ
1− j

T

¶bγn(j)# , (6)

where the sample autocovariance of order j is defined by

bγn(j) = 1

T

TX
t=j+1

¡
In,t − In¢ ¡In,t−j − In¢ . (7)

Under the null hypothesis, the ratio t = (yn − bF (yn))/bσ( bF (yn)) has a t distribution
with N − 2 degrees of freedom. These tests have the advantage of indicating where
the outcome density is missing in a systematic way in the estimated forecasting

density during the time period under review. For example, if the option implied

densities had thicker tails in general than the “correct densities ”, it would show

up graphically as bF (yn) < yn for values of yn close to 0 or 1 and as bF (yn) > yn for
values close to 0.5. However, this test fails to account for the departures of bF (yn)
from yn jointly for all N bins and is therefore not very powerful.

As a remedy for this shortcoming we propose a second, more powerful test based

on the Cramer-von Mises statistic, which is defined as the squared distance of the

ecdf, bF (yn), from the null hypothesis and which is represented by the theoretical

value F (y) = y.

dCvM ≡ Z 1

0

(yn − bF (yn))2d(yn). (8)

Unfortunately, this test relies on independence of the data, a condition which is

clearly violated by the overlapping-forecasting error embedded in the zh,t’s. To derive

a test statistic for dCvM in the presence of data dependency we use the stationary

bootstrap approach, suggested by Politis and Romano (1994), that is based on a

resampling procedure, which uses samples of blocks of random lengths (for details

see Craig and Keller (2002). To assess whether the distance from the 45 degree line

is significant we calculate the bootstrapped distribution functions, Fb(yn), for each

bootstrapped sample. One observation of the CvMb statistic is calculated as

CvMb ≡
Z 1

0

(yn − Fb(yn))2d(yn). (9)

9



We computed CvMb for 100,000 replications and report a number, CvMb, which is

the proportion of bootstrapped distances, CvMb, that are greater than dCvM, the
distance between our sample distribution function and the null, the uniform distribu-

tion function. Because the sample distribution function, dCvM, and all bootstrapped
sample distribution functions, CvMb, are step functions, the sum expression inCvMb

is calculated directly. A value of CvMb less than some critical value, α0, rejects the

hypothesis of zh,1, ...zh,t, ..., zh,T being drawn from a uniform distribution at the α0
level.

3 Empirical results

First we discuss the estimated risk-neutral densities, and then we study their per-

formance. Figure 2 summarizes the information from the daily density estimates

by plotting the median together with the 5 percent and 95 percent estimated per-

centiles for the 49-day horizon. Results for the 42 - and 56-day horizons are similar

and have been omitted for reasons of space. During our sample period, the median

of the estimated risk-neutral densities moved between 2,000 and 8,000 points, and

the allocation of the probability mass between the centre and the tails changed. In

1996, the distance between the 5 percent and 95 percent percentiles was compar-

atively small so that the densities had more probability mass around the median.

From December 1997 onwards, the width of the interval increased, corresponding to

rising uncertainty about the future behavior of the German stock market. In the

first half of 2000, the bands widened as market operators were expecting an ever

larger range of possible values for the DAX index.

During the tumultuous periods of autumn 1998 and autumn 2001, the distance

between the two tails of the distributions increased. Figure 2 also shows that the

distance between the median and the upper and lower percentiles varies over time,

and in some periods the lower percentile is more distant from the median. This

asymmetry reflects the fact that the left and right tails of the risk-neutral distri-

butions do not contain the same amount of probability mass, ie, the risk-neutral

perception about directional moves differs according to the sign of the stock market

move.

Figure 3 depicts the estimated risk-neutral densities in yearly intervals from May

1996 until the last estimate in May 2002. The graph clearly reflects the up and
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Figure 2: Median and 5%, 95% RND confidence bands for mixture of lognormals
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down movements of the German stock market. The shift in the allocation of the

relative probability mass manifests itself quite clearly in the estimated densities.

Because the probability has moved from the centre towards the tails, the densities

have become flatter. This shift implies that a wider range of index values is now

considered likely. Furthermore, the upward and subsequent downward movement in

the probability of given index values is visible. The primary cause for this movement

is the general fall in the value of stocks contained in the DAX index since the end

of ”irrational exuberance” in spring 2000. At that time, the right tail was above

9,000 points, and the probability of an index at 4,000 points was almost zero. In

May 2002, the right tail was situated at 6,500 and the left fail at 3,500. Thus, the

risk-neutral densities estimated for May 1999 and May 2002 are remarkably close,

because within these three years, the DAX had lost all of its gains.

This view is corroborated by Figure 4 which depicts the same densities as above,

now however centred at the (annualised) expected percentage change of the DAX

index value. The mean of the percentage changes, the risk neutral discount factor,

is close to 3%. This depiction facilitates the comparision of the densities, since the

”width” of the densities does not depend upon the level of the index value.
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Figure 3: Yearly RNDs
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Figure 4: Yearly RNDs (percentage changes)
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Another perspective on the information contained in the estimated density is

given by the risk-neutral probability of certain percentage changes in the DAX in-

dex. A rise of the probability mass located in the lower tail of the density indicates

that market participants expect the German stock market to become more prone

to crashing. Figure 5 plots the level of the DAX index, the implied volatility (the

VDAX)2, and the risk-neutral probability of a fall of at least 10 percent. The Fig-

ure indicates a similar development of the probability and the volatility. For both

series, the peaks coincide in 1998 and in 2001. In both measures, the highest level is

recorded in October 1998, where the risk-neutral probability climbed to 32 percent

and the volatility to 56 percent. Inspection of Figure 5 reveals that the downward

movement on the German stock market since the first half of 2000 did not coincide

with a permanent increase in the probability of further declines. The most recent

episode, which is visible in Figure 5, concerns the increased uncertainty in the finan-

cial markets after the discovery of major accounting discrepancies at several large

US firms, as was the case, for example, with the Enron Corp which filed voluntary

petitions for Chapter 11 reorganisation in early December 2001. The discoveries

led to growing doubts about the reliability of the information that investors receive

about companies, and so we observe a clear rise both in the tail statistic and the

implied volatility.

Of particular interest is the information contained in the moments of the risk

neutral densities, summarised in Table 1. (row= moment of densities; column=

descriptive statistics in time (t)). We measure skewness with the Pearson statistic,

ie, (mean−mode)/standard deviation, because the commonly used skewness coef-
ficient, the central third moment divided by the standard deviation, is very sensitive

to the mass in the tails.

Table 1: Descriptive statistics of estimated moments

Mean (in t) Std (in t) Med (in t) Max (in t) Min (in t)

Mean 4912.592 1506.317 5079.224 8089.984 2253.081

Std 447.8361 197.15 476.15 929.3824 100.1263

Skewness -0.182735 0.068699 -0.178581 -0.011739 -0.560282

Kurtosis 0.882496 0.625993 0.794447 9.145827 -0.44906

2The V DAX is t he DAX bas ed vo lat ility in dex and express es the implied volat ility o f the DAX
index, as expected by the forward market.
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Figure 5: RNDs estimates for 10% tail statistics, VDAX (implied volatility) and

DAX
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We observe a pronounced negative asymmetry, so that the left tail is larger than

the right. For the US stock market this observation has been documented by Jack-

werth and Rubinstein (1996). The economic rationale behind the observation is

that put options are used as hedging instruments to protect against large downward

movements in stock prices. This demand by investors due to portfolio insurance

strategies has increased the price of protection and therefore the left tail of the den-

sity receives more weight. In the next section, we will test whether the negative

skewness in the risk-neutral density is compatible with the information in the actual

(statistical) density.

3.1 Forecasting Performance

Our second test, based on the von Mises statistic, clearly does not reject the null

when the entire sample is chosen. The results can be seen in Table 2. This is

true over all forecast horizons and for both the lognormal (θ = 0) and the mixture

of lognormals (except in the case of the mixture of lognormals with a forecasting

horizon of seven weeks, and even here the results only barely reject the null at the 5
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percent level). Therefore, the tests seem to indicate that the option-based densities

are good forecast densities.

Table 2: Von Mises statistic: p-values

Horizon h in days* 42 49 56

Mixture of Lognormals

Dec 1995 to Apr 2002 0.048 0.062 0.056
Dec 1995 to Mar 2000 0.000 0.000 0.000

Apr 2000 to Apr 2002 0.012 0.007 0.003

Lognormal

Dec 1995 to Apr 2002 0.263 0.243 0.172
Dec 1995 to Mar 2000 0.009 0.009 0.001

Apr 2000 to Apr 2002 0.006 0.004 0.001

*Bold numbers indicate that the hypothesis of an accurate density can’t be rejected.

The outcome is more complicated when we examine sub-periods of our sample

period. When choosing sub-periods, we are careful to avoid choosing on the basis

of outcomes, for this would induce a sample selection bias that would invalidate

our results. For example, one should not choose to split the sample into one sub-

sample that contained only those days where the prices increased and another in

which prices decreased. This would slant the test against the null of the risk-neutral

density being the same as the forecasting density. In the same sense one could not

split the sample on the basis of where the prices were rising, generally, and then

falling.

Yet, it is clear that a problem with the bootstrapped von Mises test lies in its lack

of a test for the time series properties of the data. If our observations were indepen-

dent, we could test the independence of the integral transforms {zh,1, ...zh,t, ...zh,T}
(which would then be a series of independent uniform U(0, 1) random variables).

However, it is our overlapping forecasting windows that cause the lack of indepen-

dence and led us to use the bootstrapping approach in the first place. A test built
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Figure 6: p-values for the RND (lognormal)
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around just the non overlapping windows would give such a small number of obser-

vations that the test would have very poor power.

We chose to look at the sample as if the researcher were continually monitoring

the forecasting performance of the risk-neutral densities from 100 days after the

beginning of the time period to the end of our sample. In other words, we tested

the forecasting properties of the densities 100 trading days after the first trading

day of our sample, 120 days, and so forth right to the end of the sample period

of more than 3,000 trading days. We computed p-values for each of the forecasting

horizons and for both the lognormal and mixture of lognormal models. The results

are graphed in Figures 6 and 7.

For the lognormal (Figure 6), the first four and a half years of the sample clearly

reject the null of a good forecasting density. Suddenly, in May 2000 (for the 6-

week horizon), July 2000 (7-week) and September 2000 (8-week), densities for all

of the forecasting horizons are accepted as good forecasts by our tests. Similarly,

the mixture of lognormals (Figure 7) is even more decisively rejected until the very

beginning of 2001, where the test does not reject or only weakly rejects the densities

for all forecast horizons. What is happening?
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Figure 7: p-values for the RND (mixture of lognormals)
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To better understand what may be at work, we divide the sample into the two

periods, not to test the forecasting density, so much as to examine the failure of the

densities as the market rose and to explore what happened as the market fell. The

graphical results of the deviations of the empirical density from individual quantiles

are shown in Figures 8 - 16. The nine Figures are organised in 3 blocks ( Figures

8 to 10, 11 to 13 and 14 to 16), each of which depicts the results for different

forecasting horizons (42; 49 and 56 days). Each individual Figure within a block

shows the result for a different sample period. The first period covers the euphoric

stock market period from December 1995 to March 2000, the second shows the

period during which the bubble ”burst” from April 2000 to March 2002, and the

third spans the entire range of the sample. In each of the nine Figures we plot the

actual ecdf of the integral-transformed realizations, zh,t, against the theoretical cdf ,

which is represented by the dashed 45 degree line. The vertical axis represents the

cumulative probabilities and the horizontal axis represents the bin number n, where

n lies between 1 and N, and here has been set at 200. Therefore, the nth bar in

the Figure represents the sum of the observed zh,t’s (i.e. bF (yn)’s) that are equal to
or less than n/N. Under the null hypothesis the number of zh,t’s in bin n is always
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equal to n/N. To assess whether deviations of the theoretical value are significant,

a 95 percent confidence interval
¡±2bσ2(.)¢ is calculated according to equation (6)

and drawn in the Figure (bold lines). The confidence intervals of these estimates

narrow down relatively slowly because of the high moving-average time dependence

(due to the overlapping data problem mentioned earlier) of the observations. The

standard deviations are calculated around the estimated parameter bF (yn), and the
null hypothesis of correct forecasting densities are rejected if the corresponding point

on the 45 degree line lies outside the lines.

In Figures 8 to 16 the areas of rejection of the hypothesis of correct densities are

greyed out. The results vary highly in different sample periods. The uniform cdf ’s

corresponding to the ecdf ’s of the first sub-sample (first column) are significantly

below the uniform line for most of the bins and rise above the uniform line only at the

end of the right side, indicating that the densities fail to capture the right frequency

of positive returns during this time. Over the boom years market participants

seemed to have had too pessimistic a view on the stockmarket, and subsequent

positive realisations came as a surprise. This result holds regardless of the forecasting

horizons of our densities.

Exactly the reverse is the case for the second sub-sample (second column). Here
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the uniform cdf ’s are significantly above the uniform line at the extreme left side,

but as one moves to the right, drop below it and stay there. Thus, for the second

sub-sample, the lognormal forecast densities - again independent of the forecasting

horizon - do not place enough probability mass at the left side. When the density

predicts an outcome that is less likely than 12 percent, the actual realisations are so

rare that we are not able to calculate standard deviations around these observations.

In this period, agents were obviously surprised by the extent on the downturn of the

German stock market. People systematically missed the trend of the market and

made enduring forecasting errors, an observation challenging the generally accepted

view of efficient markets.

When the entire sample is taken into account-/ borne in mind, things are different.

We are not able to reject the hypothesis of correct forecasting densities for this

period. Since the integral transformed realisations are not sorted chronologically,

the errors of sub-samples 1 and 2 may cancel each other out. This is because the

test statistic is based on the relative frequency of the realisations of zh,t’s in specific

bins. In sub-sample 1, the errors implied by the estimated density are reflected in

an overproportionally high frequency of high zh,t realisations, whereas in sub-sample

2 the opposite is true. If the two sub-samples are merged, the relative frequency on

both sides are declines, leading spuriously to a situation in which the null cannot

be rejected. In the case of the whole sample (column 3), the line of bins still runs

under the 45 degree line because the number of observations in sub-sample 1 with

high zh,t realisations is higher than the number of observations in sub-sample 2 with

low zh,t realisations. Having stated that, it is clear that under the null it should not

be possible to reject the hypothesis of correct densities in any sub-sample, so that a

test based on splitting the samples seems to be appropriate.

Note that the bootstrapped Cramer von Mises statistics, (CvMb), (Table 2) give

much the same intuition. We overwhelmingly reject the hypothesis of correct den-

sities for both sub-samples, independent of the type of density we use (log-normal,

mixtures of lognormals). But again, we have problems doing so on the basis of all

the data with exception of the 42-day horizon forecast, which we reject at the 5

percent level.

It should also be noted that our results have little to do with the peso problem on

the foreign exchange market or so-called small-sample bias. The small-sample bias

hypothesis was originally put forward by Rogoff (1980) who argued that the finding
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- based on t-statistics - that log forward exchange rates are biased predictors of the

future log spot exchange rates is spurious. He based his assertions on the observation

that convergence of the distribution of the slope parameters to normality is very

slow, due to the fact that distributions of asset price changes often show non-normal

features (such as fat tails and bi-modality). In this context, inference from t-test

statistics lead the researcher to reject the hypothesis of unbiasedness too often. In

other words, if we knew the small sample properties of the density of the estimated

parameter, we would not be able to reject the null.

The case is different for our estimated densities. Our method explicitly takes into

account the fact that asset prices are no normally distributed and assigns specific

probabilities to the occurrence of rare events. The approach of a mixture of lognor-

mal densities appears in particular to be appropriate for modelling discrete outcomes

such as regime shifts or sudden changes in a trend. Under the null of the sequence

of mixed lognormal densities being the true densities, we do not underestimate the

probability of a type-I error, as one might in the case cited by Rogoff. Therefore

the t-statistics of the individual bF (yn) give a nonbiased indication of whether the
densities fail and if so, where.

What seems to be happening, then, is that when the options market failed to

provide good forecasting densities, it did so in a way that was entirely symmetrical.

When it missed the dramatic rise early in the sample period, it placed too much

of the weight of the density on the low side; when it missed the fall, it placed too

much on the high side. That the market undershot the rapid rise and fall of the

DAX is obvious, but what is interesting is the symmetry of the failure. When both

densities are added together, their failures in a sense cancel each other out. The

option density seems like a good forecast density only when seen over the entire

sample period.

3.2 Trend adjusted tests

This suggests one further test to see if the difference in trend is the sole difficulty

driving the Von Mises rejection of the option based risk neutral density as a forecast

of future levels of the DAX. We check whether the de-trended future DAX is con-

sistent with the de trended forecast implied by the options. In other words, for the

two periods, the first up to 8. March 2000 where prices were generally rising rapidly,

and the second from 8. March onwards where prices were falling we de-trend the
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actual outcomes of the DAX. We then compare these two series with the two series

of forecast densities obtained from the options, with the density re-centered about

zero by a simple translation of the density obtained by subtraction of the mean from

all values of the density. Thus the series are corrected for any differences in means,

being both normalised to a mean of zero. A typical result is displayed in Table 3.

Table 3: Von-Mises statistic: p-values

Trend adjusted densities

Horizon h in days* 42 49 56

Mixture of Lognormals

Dec. 1995 to Mar. 2000 0.0055 0.0093 0.0191

Apr. 2000 to Apr. 2002 0.5828 0.1988 0.1001

*Bold numbers indicate that the hypothesis of an accurate density can’t be rejected.

It is clear from the table that such an experiment has only limited Success at best.

For the great run-up in stock values prior to April 2000, the densities do a poor

job of forecasting, even when adjusted for the differences in expectation. However,

after this period, during the crash, trend adjusting delivers densities that are quite

consistent with the DAX outcomes. The main message of Table 3, however, is that a

simple adjustment was not enough to repair the forecast densities implied by options

during the heady period of increasing stock values. The densities were off in more

ways than in just the mean.

4 Concluding remarks

This paper has analysed a method for measuring the market perception of the uncer-

tainty about the future dynamics in the German stock market. Our sample extended

from December 1995 to May 2002. We evaluated a mixture of lognormals. After

discussing the estimation results, we described our tests of the performance of the

DAX risk-neutral densities.

The tests revealed several things. Firstly, for the largest part of the sample pe-

riod, the data strongly reject the hypothesis of options price densities being correct

forecasting densities at the 6-week, 7-week and 8-week forecasting horizon. Sec-

ondly, the main reason for the rejection seems to be the future prices (the median
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of the densities) around which the densities are centred, since the sequence of fu-

ture prices consistently miss the temporary, stochastic trends prevailing in the data.

This was just as true during the upturn as during the downturn of the stock mar-

ket. In this symmetry, the experience of the DAX options has proved to be special.

Densities calculated for the US markets from options consistently mismeasure the

outcomes on the downside. We found that the DAX densities mismeasured on the

downside during the run-up in stock prices, but that in the subsequent period the

densities consistently over-predicted the stock prices. Thirdly, since the future price,

independent of the specific method applied (i.e., mixtures of lognormals, Shimko in-

terpolation etc), is always the “centre” of the density, the rejection is not restricted

to a mixture of lognormals approach. Fourth, if the data are purged of the trend (or

first moment error), it turns out this was not sufficient to fix the densities during

the period of rapidly rising prices, but during the price falls, higher moments are

matched quite well. The densities are capturing the standard deviation (general

level of uncertainty), the skewness (asymmetric up - and downward risks) and the

kurtosis (extreme events) of the underlying stochastic process quite accurately. In-

terestingly enough, this was true only during the period where the DAX options

over-predicted market performance, a phenomenon that is not typical of the expe-

rience of densities calculated from options on the S&P 500 index. Finally, when

observed over the entire seven year period of our data, options densities did a good

job of predicting the density of outcomes. Options provided poor densities when

measured with respect to sub-periods within our data.

A natural question arising in this context is how to interpret the results with

respect to the rationality of market participants. Given that the stock price process,

possibly corrected by a drift rate that reflects the growth path of the underlying

economy, is a martingale, it is not surprising that the futures process follows a

martingale, too. This is because basic "no arbitrage" principles make the futures rate

adjust so that it equals the spot price multiplied by the risk-free interest rate. The

martingale hypothesis is empirically corroborated by the fact that it is impossible

to reject the hypothesis of a unit root. Therefore, it makes perfect sense for the

market participants to centre their densities around the futures prices.

On the other hand, stock markets around the world, besides Japan, have soared

by historical standards to extreme high levels until recently. In contrast to this

development, basic economic indicators, the fundamentals, have not soared to the

26



same extent. Behind this backdrop, asset price increases seemed unwarranted given

historical experience. However relatively few openly denounced this phenomenon

as irrational. If the rational analysis of fundamentals does not justify the surge

in stock prices, then what were the driving factors behind the speculative bubble?

One explanation that recently gained a lot of support is that market participants do

not always behave completely rationally but have bounded rationality, at least for

longer horizons. However, one result of the bounded rationality literature of Hansen

and Sargent (2003) is that for a wide variety of classes of bounded rationality, the

effect on the market is to pose a simple mean shift in the pricing of risk. Our results

are inconsistent with this: even adjusting for differences in means do not account

for the failure in the option derived densities to forecast future prices. Something

seriously more complicated is at work here.

In this sense the degree of rationality is linked to the planning horizons of the

investors. When one looks at the performance of the option based densities over

the entire eight year period, the densities perform remarkably well. Yet much of the

literature about the recent bubbles have predicted the opposite conclusion. Whereas

investment managers and the general public have a rational view of stock market

prices in the short-term, they may be prone to make longer-term investment decisions

that are driven by self-fulfilling, possibly irrational factors, such as exuberance,

changes in attitudes towards savings, growing equity culture etc (for a survey, see

RJ Shiller (2000)). If this is the case, market participants may accept that in a boom

period, short-term expectations are consistently disappointed. It is an interesting,

yet open, question as to how our empirical results from these two horizons could be

reconciled by an agent-based model. Future research could point to this direction.
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6 Appendix

We are interested in the density of the integral transforms, fh,t (zh,t) at time t+ h.

From equation (2) we know that the integral transforms zh,t = bΠh,t (Xt+h) wherebΠt,h (Xt+h) is the estimated cdf (and therefore monotonic function) ofXt+h based on
information at time t. Moreover, assume that the true density of Xt+h is πh,t (Xt+h)

at t+ h.

• Then, since bΠh,t (Xt+h) is monotonic, the inverse transformation, Xt+h =bΠ−1h,t(zt+h), exists.
• The Jacobian of the transformation is the absolute value of the determinant
of the partial derivative J =

¯̄̄
%Xt+h
%zh,t

¯̄̄
=

¯̄̄̄
%bΠ−1h,t(zh,t)
%zh,t

¯̄̄̄
.

• Then the density fh,t (zh,t) = πh,t(Xt+h)

¯̄̄̄
%bΠ−1h,t(zh,t)
%zh,t

¯̄̄̄
= πh,t(bΠ−1h,t(zh,t)) ¯̄̄̄%bΠ−1h,t(zh,t)%zh,t

¯̄̄̄
.

• Inserting values for zh,t and bΠ−1h,t(zh,t) in ¯̄̄̄%bΠ−1h,t(zh,t)%zh,t

¯̄̄̄
yields

¯̄̄̄
%Xh,t

%bΠh,t(Xh,t)
¯̄̄̄
= 1bπh,t(Xh,t) .

• Therefore, fh,t (zh,t) = πh,t(bΠ−1h,t(zh,t))bπh,t(Xh,t) =
πh,t(Xh,t)bπh,t(Xh,t) .

Since bπh,t (Xt+h) is the estimated density, and πh,t (Xt+h) is the true density

of Xt+h, fh,t (zh,t) ∼ U(0, 1) if bπh,t (Xt+h) = πh,t (Xt+h) .
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